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Abstract Given a smooth, symmetric and homogeneous of degree one function f (λ1, . . . ,

λn) satisfying ∂i f > 0 ∀ i = 1, . . . , n, and a properly embedded smooth cone C in R
n+1,

we show that under suitable conditions on f , there is at most one f self-shrinker (i.e. a
hypersurface � in R

n+1 satisfying f (κ1, . . . , κn) + 1
2 X · N = 0, where κ1, . . . , κn are

principal curvatures of �) that is asymptotic to the given cone C at infinity.

Mathematics Subject Classification 53C44

1 Introduction

Let C be an orientable and properly embedded smooth cone (excluding the vertex O) in R
n+1.

Suppose that � is an orientable and properly embedded smooth hypersurface in R
n+1 which

satisfies

H + 1

2
X · N = 0 ∀ X ∈ �

��
C∞

loc−→ C as � ↘ 0

where N is the unit-normal and H = −∇� · N is the mean curvature of �. Then � is called
a self-shrinker to the mean curvature flow (i.e. ∂t X⊥ = HN ) which is smoothly asymptotic
to the cone C at infinity. It follows that the rescaled family of hypersufaces

{
�t = √−t �

}

forms a mean curvature flow starting from � (when t = −1) and converging locally smoothly
to C as t ↗ 0. Wang in [12] proves the uniqueness of such self-shrinkers by showing that:
suppose �̃ is also a self-shrinker which is asymptotic to the same cone, then outside a compact
set, �̃t = √−t �̃ can be regarded as a normal graph ofht defined on �t\B̄R for some R > 0;
moreover, given ε > 0 and choose R large accordingly, there holds
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∣∣∣∂th − ��t h
∣∣∣ ≤ ε

(|∇�t | + |h|)

h
∣∣∣
t=0

= 0

Using the idea in [6], Wang derives a Carleman’s inequality for the heat operator on the flow
{�t }, apply it to the localization of h, and use the unique continuation principle (see [4], for
instance) to conclude that h = 0.

On the other hand, Andrews [1] consider the motion of hypersurfaces in R
n+1 moved

by some degree one curvature (see also [2,3]). More precisely, given a smooth, symmetric
and homogeneous of degree-one function f = f (λ1, . . . , λn) which satisfies ∂i f > 0 ∀ i ,
consider the following evolution of hypersurfaces:

∂t X
⊥ = f (κ1, . . . , κn) N

where κ1, . . . , κn are the principal curvatures of the evolving hypersurface. For instance, if
we take the curvature function to be f (λ1, . . . , λn) = λ1 + · · · + λn , then this corresponds
to the mean curvature flow. And we call an orientable C2 hypersurface � in R

n+1to be a “ f
self-shrinkers” to the above “ f curvature flow” provided that

f (κ1, . . . , κn)+ 1

2
X · N = 0

holds on �. Likewise, the rescaled family of “ f self-shrinkers” is a self-similar solution to
the f curvature flow; that is, the one-parameter family of hypersurfaces

{
�t = √−t �

}
t<0

is a f curvature flow. In the case when � is smoothly asymptotic to the cone C at infinity,
the rescaled flow {�t }t<0 will converge locally smoothly to C as t ↗ 0.

This paper is an extension of the uniqueness result of [12] and existence result of [10]
to the class of f self-shrinkers with a tangent cone C at infinity. In fact, Wang’s idea (of
proving the uniqueness for the mean curvature flow) work perfectly for the f curvature flow
as well, except that some additional treatment for the nonlinearity of f is required (which is
not a concern in Wang’s case because the curvature function there is linear). The crucial step
is to derive Carleman’s inequality for the associated parabolic operator to the f curvature
flow under some conditions on the nonlinearity of f , the uniform positivity of ∂i f and also
some curvature bounds of C. For this part, we are motivated by the work of Nguyen [11] and
Wu and Zhang [13] for deriving Carleman’s inequality for parabolic operator with variable
coefficients.

In order to state our main theorem, we have to first introduce some notaions and definitions
regarding the f self-shrinkers, the tangent cone of a hypersurface at infinity, and also some
basic assumptions on the curvature function f . We put all of these in Sect. 2.

In Sect. 3, we essentially follow [12] to show that if � and �̃ are f self-shrinker which
are asymptotic to the given cone C at infinity, then outside a compact set, �̃t = √−t �̃ can
be regarded as a normal graph of ht defined on�t\B̄R for some R > 0, which satisfies some
parabolic equation and vanishes at time 0. We also give some estimates on the coefficients
of the parabolic operators.

In Sect. 4, we follow the idea of [6] for treating the backward uniqueness of the heat
equation (which is also used in [12] to deal with the uniqueness of self-shrinkers of the mean
curvature flow) to show that the deviation ht vanishes outside some compact set. We first use
the mean value inequality for parabolic equations and a local type of Carleman’s inequalities
to show the exponential decay of the deviation ht as t ↗ 0 as in [11]. Then we are devoted to
derive a different type of Carleman’s inequalities (based on the estimates of the coefficients
of the parabolic operator which we derive in Sect. 3) and use it to show that ht vanishes
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outside a compact set. In the end, we use the unique continuation principle to characterize
the overlap region of � and �̃.

2 Assumptions and main results

Definition 2.1 (A regular cone) Let C be an orientable and properly embedded smooth cone
(excluding the vertex O) in R

n+1; that is, C is an orientable and properly embedded hyper-
surface in R

n+1 satisfying � C = C ∀ � ∈ R+ and O /∈ C.

We then define what it means for a hypersurface to be asymptotic to the cone C at infinity:

Definition 2.2 (Tangent cone at infinity) A Ck hypersurface � in R
n+1 (with k ∈ N) is said

to be Ck asymptotic to C at infinity provided that ��
Ck

loc−→ C as � ↘ 0 (see [8] for the Ck

topology of hypersurfaces in R
n+1). In this case, C is called the tangent cone of� at infinity.

For a given C2 orientable hypersurface � in R
n+1, its shape operator (or Weingarten map)

A# sends tangent vectors to tangent vectors and is defined by

A# (V ) = −DV N

for any tangent vector field V on�, where N is the unit-normal of�. The second fundamental
form A is defined to be a 2 tensor on � such that

A (V,W ) = A# (V ) · W
for any tangent vector fields V and W on �. The components of A# and A with respect to a
given local frame {e1, . . . , en} of the tangent bundle of � are defined by

A# (ei ) = A j
i e j , A

(
ei , e j

) = Ai j

and we are used to denote A# and A by their components like A# ∼ A j
i and A ∼ Ai j . Note

that A# is a self-adjoint operator with repect to the dot product restricted to the tangent space
(or equivalently, A is a symmetric 2 tensor), so A# is diagonalizable. The eigenvectors of
A# are called pricipal vectors and its eigenvalues are called principal curvatures, which are
denoted by κ1, . . . , κn . The mean curvature is defined to be H = tr

(
A#
) = κ1 + · · · + κn ,

which is a linear, symmetric and homogeneous of degree-one function of the shape operator
(or the principal curvatures). In this paper, we consider a more general type of degree-one
curvature.

Definition 2.3 (The degree-one curvature function) Let F = F (S) be a conjugation-
invariant, homogeneous of degree-one function whose domain � (in the space of n × n
matrices) containing a neighborhood of the set consisting of all the values of shape operator
A#
C of C; besides, F can be written as a C3 function composed with the the elementary sym-

metric functions E1, . . . , En (for instance, E1 = tr and En = det) and ∂F
∂S j

i

> 0 (i.e. ∂F
∂S j

i

is a

positive matrix).
Note that by the conjugation-invariant and homogeneous property of F , we may assume

that � is closed under conjugation and homothety; that is, if S ∈ �, then so are RSR−1 and
�S for any invetible n × n matrix R and positive number �.
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Also, by the condition that F can be written as a C3 function composed with the the ele-
mentary symmetric functions, it induces a symmetric, homogeneous of degree-one function
f such that

F (S) = f (λ1, . . . , λn)

whenever λ1, . . . , λn are the eigenvalues of the matrix S; the function f is defined and C3

on an open set � (in R
n) containing a neighborhood of the set consisting of all the values of

the pricinpal curvature vector
(
κC1 , . . . , κ

C
n

)
of C. Likewise, we may assume that the domain

� is closed under permutation and homothety.
In fact, at a diagonal matrix S = diag (λ1, . . . , λn), there holds (see [1]):

∂F

∂S j
i

(S) = ∂i f (λ1, . . . , λn) δi j (2.1)

∂2F

∂S j
i ∂S

l
i

(S) = ∂2
i i f (λ1, . . . , λn) δi jδil (2.2)

∂2F

∂S j
i ∂S

l
k

(S) = ∂2
ik f (λ1, . . . , λn) δi jδkl + ∂i f − ∂k f

λi − λk δilδk j if i �= k (2.3)

Since F is well-defined on conjugacy classes, (2.1), (2.2), (2.3) can be applied to any diago-
nalizable matrix in �. For instance, by (2.1), we have

∂F

∂S j
i

(
A#
C
) ∼ ∂i f

(
κC1 , . . . , κ

C
n

)
δi j

where A#
C ∼ κ iCδi j is the shape operator (and principal curvatures) of C. Hence, by the

condition that ∂F
∂S j

i

> 0 on �, we may assume that ∂i f > 0 ∀ i = 1, . . . , n on �.

Now let U be an open neighborhood of the set consisting of the all the shape operator A#
C

of C at XC ∈ C∩
(
B3\B̄ 1

3

)
in �. Note that we may assume thatU is closed under conjugation

and that ∂F
∂S j

i

is uniformly positive on U ; that is, there exist a constant λ ∈ (0, 1] so that

λδij ≤ ∂F

∂S j
i

≤ 1

λ
δij (2.4)

Also, we have

	 ≡ sup

XC∈C∩
(
B3\B̄ 1

3

)

∣∣∣∇C

(
∂F

∂S j
i

(
A#
C
)
) ∣∣∣

= sup

XC∈C∩
(
B3\B̄ 1

3

)

∣∣∣
∑

k,l

∂2F

∂S j
i ∂S

l
k

(
A#
C
) (∇C A#

C
)l
k

∣∣∣ ≤ C
(
n, C, ‖ F ‖C2(U )

)
(2.5)

where A#
C and ∇C A#

C are the shape operator of C and its covariant derivative at XC , respec-
tively; B� = Bn+1

� is the ball of radius � in R
n+1. A more precise estimate of 	 is given

(see 4.97) in the case when C is rotationally symmetric.

Now let’s define the F self-shrinker (or f self-shrinker):
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Definition 2.4 (F self-shrinker) An oriented C2 hypersurface� (excluding its boundary) in
R
n+1 is called a F self-shrinker (or f self-shrinker) provided that F is defined on the shape

operator A# of � (i.e. A# ∈ �) and satisfies

F
(
A#)+ 1

2
X · N = 0

where X is the position vector, N is the unit-normal, and A# is the shape operator of �;
or equivalently, f is defined on the principal curvatures of � (i.e. (κ1, . . . , κn) ∈ �) and
satisfies

f (κ1, . . . , κn)+ 1

2
X · N = 0

where κ1, . . . , κn are the principal curvatures of �.
Note that the rescaled family of F self-shrinkers forms a self-similar solution to the F

curvature flow. More precisely, the one-parameter family
{
�t = √−t �

}
−1�t<0 is a motion

of a hypersurface moved by F curvature vector. That is,

∂t X
⊥ = F

(
A#) N

where ∂t X⊥ is the normal projection of ∂t X . Besides, for each time slice�t = √−t �, there
holds

F
(
A#)+ X · N

2(−t)
= 0

We will prove the following uniqueness result F self-shrinkers with a tangent cone in Sect. 4:

Theorem 2.1 (Uniqueness of self-shrikers with a conical end) Assume that 	 ≤ 6−4λ3 [in
( 2.4), ( 2.5)]. Then for any properly embedded F self-shrinkers � and �̃ which are C5

asymptotic to the cone C at infinity, there exists R = R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1

so that �\BR = �̃\BR. Moreover, let

�0 =
{
X ∈ � ∩ �̃

∣∣∣� coincides with �̃ in a neighborhood of X
}

then �0 is a nonempty hypersurface, which satisfies ∂�0 ⊆
(
∂� ∪ ∂�̃

)
.

Remark 2.1 In the case of [12], F = E1 (or equivalentsly, f (λ1, . . . , λn) = λ1 + · · · + λn)
is a linear function, so [by (2.5), (2.2), (2.3)] 	 ≡ 0 and the hypothesis of Theorem 2.1 is
trivially satisfied. On the other hand, consider

F = E1 ± ε
En

En−1

or equivalently,

f (λ1, . . . , λn) = (λ1 + · · · + λn) ± ε

∏n
i=1 λi

∑n
i=1

(∏
j �=i λ j

)

and take C to be a rotationally symmetric cone. Then by Theorem 2.1 and (4.97) in the last
section, the uniqueness holds when 0 < ε � 1.
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In the last section, we assume C to be rotationally symmetric, say

C =
{
(σ s ν, s)

∣∣∣ ν ∈ Sn−1, s ∈ R+
}

for some constant σ > 0, where Sn−1 is the unit-sphere in R
n . In this case, its principal

curvatures at each point are

κC1 = · · · = κCn−1 = 1

σ s
√

1 + σ 2
, κCn = 0

Therefore, the condition that the curvature function f is defined on a neighborhood of the set
consisting of all the values of the pricinpal curvature vector

(
κC1 , . . . , κ

C
n

)
ofC in Definition 3 is

equivalent to requiring its domain � to contain a neighborhood of
(−→

1 , 0
)

= (1, . . . , 1, 0) ∈
R
n , since � is closed under permutation and homothety.

3 Deviation between two F self-shrinkers with the same asymptotic
behaviour at infinity

Let � be a properly embedded F self-shrinker (in Definition 2.4) which is C5 asymptotic to
the cone C at infinity.

By Definition 2.2, �� can be arbitrary C5 close to C on any fixed bounded set of R
n+1

which is away from the origin (e.g. on B2\B̄ 1
2
) as long as � is sufficiently small, so any

“rescaled C5 quantities” of�\B̄R can estimated by that of C for R � 1. Below we will show
these in detail.

First of all, there exists R � 1 (depending on �, C) such that outside a compact set, �
is a normal graph over C\B̄R , say X = � (XC) = XC + ψNC , where XC is the position
vector of C and NC is the unit-normal of C at XC . Consequently, we can define the “normal
projecton”  (to be the inverse map of �) which sends X ∈ � to XC ∈ C. Moreover, by
the rescaling argument, we may assume that Hn

(
� ∩ (

B2r\B̄r
)) ≤ C (n, C) rn for all r ≥ R

(i.e. � has polynomial volume growth).
On the other hand, fix X̂C ∈ C\B̄R , ˆ|XC |−1C = C is locally (near ˆ|XC |−1 X̂C) a graph

over the tangent hyperplanethe T|X̂C |−1 X̂CC, so by Definition 2.2, |X̂C |−1� must also be a

local graph over T|X̂C |−1 X̂CC and is C5 close to the corresponding graph of ˆ|XC |−1C = C.

Furthermore, we may choose a uniform constant ρ ∈ (0, 1
8 ] (depending on the dimension n,

the volume and the C3 bound of the curvature of C ∩
(
B3\B̄ 1

3

)
) so that near |X̂C |−1 X̂C , the

graphes of |X̂C |−1C = C and |X̂C |−1� are defined on Bn
ρ|X̂C | =

{
x ∈ R

n
∣∣∣ |x | < ρ|X̂C |

}
⊂

T|X̂C |−1 X̂CC and the C1 norm of the local graph of C is small. By undoing the rescaling, it

tranlates into the following: there exists R = R (�, C) ≥ 1 so that near each X̂C ∈ C\B̄R , C
and � can be respectively parameterized by

XC = XC (x) ≡ X̂C + (x,w (x))
X = X (x) ≡ X̂C + (x,u (x))
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for x = (x1, . . . , xn) ∈ Bn
ρ|X̂C |, such that w (0) = 0, ∂xw (0) = 0 and

|X̂C |−1 ‖ w ‖L∞(Bn
ρ|X̂C |)

+ ‖ ∂xw ‖L∞(Bn
ρ|X̂C |)

≤ 1

16
(3.1)

|X̂C | ‖ ∂2
xw ‖L∞(Bn

ρ|X̂C |)
+ · · · + |X̂C |4 ‖ ∂5

xw ‖L∞(Bn
ρ|X̂C |)

≤ C (n, C) (3.2)

|X̂C |−1 ‖ u − w ‖L∞(Bn
ρ|X̂C |)

+ ‖ ∂xu − ∂xw ‖L∞(Bn
ρ|X̂C |)

+|X̂C | ‖ ∂2
xu − ∂2

xw ‖L∞(Bn
ρ|X̂C |)

+ · · · + |X̂C |4 ‖ ∂5
xu − ∂5

xw ‖L∞(Bn
ρ|X̂C |)

≤ 1

16
(3.3)

where we assume the unit-normal of C at X̂C to be (0, 1) for ease of notation (and hence
(X (0)) = X̂C). Note that (3.1) is the rescale of the smallness of the C1 norm of the local
graph of C, while (3.3) is the rescale of the small C5 difference between the local graphes of
|X̂C |−1C and |X̂C |−1�.

By Definition 2.2 and the rescaling argument, the same thing holds for each rescaled
hypersurface �t = √−t �, t ∈ [−1, 0) as well. That is, outside a compact set, �t is a
normal graph over C\B̄R (with R � 1 depending on�, C); besideis, near each X̂C ∈ C\B̄R ,
�t is a graph over T|X̂C |−1 X̂CC and can be parametrized by

Xt (x) = X (x, t) ≡ X̂C + (x,ut (x)) = X̂C + (x,u (x, t))
which satisfies

|X̂C |−1 ‖ u (·, t)− w ‖L∞(Bn
ρ|X̂C |)

+ ‖ ∂xu (·, t)− ∂xw ‖L∞(Bn
ρ|X̂C |)

+ |X̂C | ‖ ∂2
xu (·, t)− ∂2

xw ‖L∞(Bn
ρ|X̂C |)

+ · · · + |X̂C |4 ‖ ∂5
xu (·, t)− ∂5

xw ‖L∞(Bn
ρ|X̂C |)

≤ 1

16
(3.4)

We call t �→ X (x, t) = X̂C + (x,u (x, t)) is the “vertical parametrization” of the flow
{�t }−1≤t<0. Note that by (3.1), (3.4) and 0 < ρ ≤ 1

8 , we have

3

4
|X̂C | ≤ |X (x, t) | = |X̂C + (x,u (x, t)) | ≤ 5

4
|X̂C |

for x ∈ Bn
ρ|X̂C |, t ∈ [−1, 0); that is, |X | is comparable with |X̂C |. Also, we still have the

following polynomial volume growth for �t :

Hn (�t ∩ (
B2r\B̄r

)) ≤ C (n, C) rn (3.5)

for all r ≥ R.
On the other hand,� is a F self-shrinker, which we can use to improve (3.4). To see this,

observe that under the condtions of being a F self-shrinker and having a tangent cone C at
infinity, the rescaled flow

{
�t = √−t �

}
−1≤t<0 moves by F curvature vector and converges

(in the locally C5 sense) to the cone C as t ↗ 0. In other words, we can define a F curvature
flow {�t }−1≤t≤0 with �t = √−t � for t ∈ [−1, 0) and �0 = C which is continuous upto
t = 0 (in the locally C5 sense). Besides, near each X̂C ∈ C\B̄R (with R � 1 depending on
�, C), we have the vertical parametrization of the flow (as above) for t ∈ [−1, 0] and the
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evolution of ut satisfies (by Definition 2.4)

∂tu =
√

1 + |∂xu|2 F
(
A j
i (x, t)

)
for (x1, . . . , xn) ∈ Bn

ρ|X̂C |, −1 ≤ t < 0 (3.6)

u (·, t) C5−→ w on Bn
ρ ˆ|XC | as t ↗ 0 (3.7)

where the shape operator A#
t (x) ∼ A j

i (x, t) of�t (with respect to the local coordinate frame
{∂1Xt , . . . , ∂n Xt }) is equal to

A j
i (x, t) = ∂i

(
∂ ju (x, t)√
1 + |∂xu|2

)

(3.8)

It follows (by using (3.6), (3.4), (3.1), (3.2) and (3.8)) that

|∂tu| = |X̂C |−1
√

1 + |∂xu|2
∣∣∣F

(
|X̂C |A j

i (x, t)
) ∣∣∣

≤ |X̂C |−1
(

1+ ‖ ∂xut ‖L∞(Bn
ρ ˆ|XC |)

)
‖ F ‖L∞(U )

in which we use the homogeneity of F . Similarly, by differentiating (3.6) and using the
homogeneity of the derivatives of F , we get

|X̂C | ‖ ∂tu (·, t) ‖L∞(Bn
ρ ˆ|XC |)

+|X̂C |2 ‖ ∂t∂xu (·, t) ‖L∞(Bn
ρ ˆ|XC |)

+ |X̂C |3 ‖ ∂t∂2
xu (·, t) ‖L∞(Bn

ρ ˆ|XC |)

+ |X̂C |4 ‖ ∂t∂3
xu (·, t) ‖L∞(Bn

ρ ˆ|XC |)
≤ C

(
n, C, ‖ F ‖C3(U )

)
(3.9)

which implies (by (3.9) and (3.6))

|u (·, t)− w| ≤
ˆ 0

t
|∂tu (·, τ ) | ≤ C

(
n, C, ‖ F ‖C3(U )

) |X̂C |−1 (−t)

Likewise, integrate the estimates for derivatives in (3.9) to get ∀ t ∈ [−1, 0]

|X̂C | ‖ u (·, t)− w ‖L∞(Bn
ρ ˆ|XC |)

+|X̂C |2 ‖ ∂xu (·, t)− ∂xw ‖
L∞

(
Bn
ρ ˆ|XC |

)

+|X̂C |3 ‖ ∂2
xu (·, t)− ∂2

xw ‖
L∞

(
Bn
ρ ˆ|XC |

)

+|X̂C |4 ‖ ∂3
xu (·, t)− ∂3

xw ‖
L∞

(
Bn
ρ ˆ|XC |

)≤ C
(
n, C, ‖ F ‖C3(U )

)
(−t) (3.10)

which is the improvement of (3.4) by using the F self-shrinker equation (3.6).
In view of the pull-back metric gi j (x, t) = δi j + ∂i u (x, t) ∂ j u (x, t) and the associated

Christoffel symbols

�k
i j (x, t) = ∂ku (x, t) ∂2

i ju (x, t)√
1 + |∂xu (x, t) |2

(3.11)

together with (3.8), (3.10), the comparablity of |X | and |X̂C |, (2.4), (2.5) and the continuity
and homogeneity of F (and its derivatives), there exits R ≥ 1 (depending on �, C,U, ‖
F ‖C3(U ), λ, 	) such that for Xt ∈ �t\B̄R , the following hold:
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|Xt | A#
t ∈ U (3.12)

λ

2
δij ≤ ∂F

∂S j
i

(
A#
t

) = ∂F

∂S j
i

(|Xt | A#
t

) ≤ 2

λ
δij (3.13)

|Xt |
∣∣∣
∑

k,l

∂2F

∂S j
i ∂S

l
k

(
A#
t

) (∇�t A
#
t

)l
k

∣∣∣

=
∣∣∣
∑

k,l

∂2F

∂S j
i ∂S

l
k

(|Xt |A#
t )
) · (|Xt |2∇�t A

#
t

)l
k

∣∣∣ ≤ 2	 (3.14)

|Xt | |A#
t | + |Xt |2|∇�t A

#
t | + |Xt |3 | |∇2

�t
A#
t | ≤ C (n, C) (3.15)

where A#
t is the shape operator of�t at Xt and ∇�t A

#
t is the covariant derivative of A#

t (with

rescpect to �t ). Note that F is homogeneous of degree 1, ∂F
∂S j

i

is of degree 0 and ∂2F
∂S j

i ∂S
l
k

is of

degree −1.
Now let �̃ to be a F self-shrinker which is also C5 asymptotic to C at infinity. By the same

limting behaviour, �̃ is C5close to � (in the rescale sense) for |X | � 1, and hence it can
be regarded as a normal graph of a function h defined on �. Later we will derive an elliptic
equation which is satisfied by h. To this end, we need the following two lemmas (Lemma 3.1
& Lemma 3.2). The first one gives the decay rate of the fuction h and the difference of
the shape operators between � and �̃ as |X | ↗ ∞; in the second one, we estimate the
coefficients of the differential equation to be satisfied by h.

Lemma 3.1 There exits R = R
(
�, �̃, n, C, ‖ F ‖C3(U )

)
≥ 1 so that outside a compact

set, �̃ is a normal graph over �\B̄R and can be parametrized as

X̃ = X + hN for X ∈ �\B̄R

where N is the inward unit-normal of � and h is the deviation of �̃ from �. Besides, there
hold

‖ |X | h ‖L∞(�\B̄R)
+ ‖ |X |2∇�h ‖L∞(�\B̄R)

+ ‖ |X |3∇2
�h ‖L∞(�\B̄R)

≤ C
(
n, C, ‖ F ‖C3(U )

)
(3.16)

‖ |X |3
(
Ã# − A#

)
‖L∞(�\B̄R)

+ ‖ |X |4
(
∇� Ã# − ∇� A#

)
‖L∞(�\B̄R)

≤ C
(
n, C, ‖ F ‖C3(U )

)
(3.17)

‖ |X |3∇2
� Ã

# ‖L∞(�\B̄R)

≤ C
(
n, C, ‖ F ‖C3(U )

)
(3.18)

where Ã# is the shape operator of �̃ at X̃ = X + hN and ∇� Ã# is the covariant derivative
of Ã# (which can be regarded as a 2-tensor on � via the normal graphic parametrization)
with rescpect to �.

Proof Choose R � 1 (depending on�, �̃, n, C, ‖ F ‖C3(U )) so that�\B̄R and �̃\B̄R have
the local graph coordinates over tangent hyperplanes of C with appropriate estimates for the
graphes as before. That is, for each X̂ ∈ �\B̄R , we can respectively parametrize � and �̃

locally (near
(
X̂
)

= X̂C ∈ C) by
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X = X (x) ≡ 
(
X̂
)

+ (x,u(x))
X̃ = X̃(x) ≡ 

(
X̂
)

+ (x, ũ(x))
for x = (x1, . . . , xn) ∈ Bn

ρ|
(
X̂
)
|, which satisfy [by (3.1), (3.2), (3.3) and the comparability

of |X̂ | and |X̂C |]
|X̂ |−1 ‖ u ‖L∞(Bn

ρ|(X̂)|)
+ ‖ ∂xu ‖L∞(Bn

ρ|(X̂)|)
+ ˆ|X | ‖ ∂2

xu ‖L∞(Bn
ρ|(X̂)|)

+ · · ·
+ |X̂ |4 ‖ ∂5

xu ‖L∞(Bn
ρ|(X̂)|)

≤ C (n, C) (3.19)

|X̂ |−1 ‖ ũ ‖L∞(Bn
ρ|(X̂)|)

+ ‖ ∂x ũ ‖L∞(Bn
ρ|(X̂)|)

+ |X̂ | ‖ ∂2
x ũ ‖L∞(Bn

ρ|(X̂)|)
+ · · ·

+ |X̂ |4 ‖ ∂5
x ũ ‖L∞(Bn

ρ|(X̂)|)
≤ C (n, C) (3.20)

Also, by applying the triangle inequality to (3.10), we get

|X̂ | ‖ ũ − u ‖L∞(Bn
ρ|(X̂)|)

+|X̂ |2 ‖ ∂x ũ − ∂xu ‖L∞(Bn
ρ|(X̂)|)

+|X̂ |3 ‖ ∂2
x ũ − ∂2

xu ‖
+ |X̂ |4 ‖ ∂3

x ũ − ∂3
xu ‖L∞(Bn

ρ|(X̂)|)
≤ C

(
n, C, ‖ F ‖C3(U )

)
(3.21)

By (3.21), we may assume that �̃ is a normal graph of h defined on �\B̄R ; that is, for each
x ∈ Bn

ρ
2 |

(
X̂
)
|, there is a unique y ∈ Bn

ρ|
(
X̂
)
| such that


(
X̂
)

+ (x,u (x))+ h(x)
(−∂xu, 1)√
1 + |∂xu|2 = 

(
X̂
)

+ (y, ũ (y)) (3.22)

or equivalently,
(

x − h(x)
∂xu√

1 + |∂xu|2 , u (x)+
h(x)

√
1 + |∂xu|2

)

= (y, ũ (y))

where (−∂xu,1)√
1+|∂xu|2 is the unit normal N of� at

(
X̂
)
+(x,u (x)). In other words, h is defined

implicitly by the following equation

ũ (ψ(x))−
(

u + h(x)
√

1 + |∂xu|2
)

= 0 (3.23)

where

ψ(x) = x − h(x)
∂xu√

1 + |∂xu|2 (3.24)

defines a map from Bn
ρ
2 |

(
X̂
)
| into Bn

ρ|
(
X̂
)
|. Since |h (x) | stands for the distance from the

point
(
X̂
)

+ (ψ(x), ũ (ψ(x))) on �̃ (i.e. the RHS of (3.22)) to �, we immediately have

|h(x)| ≤ |ũ (ψ(x))− u(ψ(x))| ≤ C
(
n, C, ‖ F ‖C3(U )

) |X̂ |−1

To proceed further, first notice that for the unit normal vectors of � and �̃

N (x) = (−∂xu, 1)√
1 + |∂xu|2 , Ñ (x) = (−∂x ũ, 1)√

1 + |∂x ũ|2 (3.25)
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respectively, we may assume, by (3.21), (3.19), that

‖ Ñ − N ‖L∞(Bn
ρ|(X̂)|)

+ ‖ N ◦ ψ − N ‖L∞(Bn
ρ
2 |(X̂)|)

≤ 1

3

which implies that for each x ∈ Bn
ρ
2 |

(
X̂
)
|,

Ñ (ψ(x)) · N (x) ≥ N (x) · N (x)− |Ñ (ψ(x))− N (x)| |N (x)|
≥ 1 −

( ˜|N (ψ(x))− N (ψ(x)) | + |N (ψ(x))− N (x)|
)

≥ 2

3
(3.26)

Let

�(x, s) = ũ

(

x − s
∂xu√

1+ | ∂xu |2
)

−
(

u + s
√

1+ | ∂xu |2
)

then by (3.23), (3.24) and (3.26), we have �(x, h(x)) = 0 and

∂s�(x, h(x)) = −
√

1+ | ∂y ũ (ψ(x)) |2 Ñ (ψ(x)) · N (x) ≤ −2

3

Therefore, by the implicit function theorem, we have h ∈ C2

(

Bn
ρ
2 |

(
X̂
)
|

)

. Besides, by doing

the implicit differentiation of (3.23) (or �(x, h(x)) = 0), we get

1 + ∂ j ũ ◦ ψ · ∂ ju√
1 + |∂xu|2 ∂i h = (∂i ũ ◦ ψ − ∂iu)

−
⎛

⎝∂ j ũ ◦ ψ · ∂i ∂ ju√
1 + |∂xu|2 + ∂ ju

∂2
i ju

(
1 + |∂xu|2) 3

2

⎞

⎠ h

(3.27)

in which we sum over repeated indicies. Note that we can use (3.27), together with (3.19)
and (3.21), to estimate ∂xh. For instance, for the first term on the RHS of the equation, we
have

|∂i ũ ◦ ψ − ∂iu| ≤ |∂i ũ ◦ ψ − ∂iu ◦ ψ | + |∂iu ◦ ψ − ∂iu|
≤ C

(
n, C, ‖ F ‖C3(U )

) |X̂ |−2

+
∑

j

ˆ 1

0

∣∣∣∂2
i ju

(

x − θh ∂xu√
1+ | ∂xu |2

) ∣∣∣ dθ
|∂ ju|

√
1 + |∂xu|2 |h|

≤ C
(
n, C, ‖ F ‖C3(U )

) |X̂ |−2

Thus we get ‖ ∂xh ‖L∞(Bn
ρ
2 |(X̂)|)

≤ C
(
n, C, ‖ F ‖C3(U )

) |X̂ |−2. Similarly, doing the

implicit differentiation of (3.27) and using (3.19) and (3.21) yields ‖ ∂2
x h ‖L∞(Bn

ρ
2 |(X̂)|)

≤
C
(
n, C, ‖ F ‖C3(U )

) |X̂ |−3. The bounds on the covariant derivatives of h follow from the
the following estimates on the pull-back metric gi j = ∂i X · ∂ j X and the Christoffel symbols
�k
i j in (3.11) associated with the local coordinates x = (x1, . . . , xn):
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δi j ≤ gi j = 1 + ∂iu ∂ ju ≤ 5

4
δi j (3.28)

|�k
i j | = |∂ku|

√
1 + |∂xu|2 |∂2

i ju| ≤ C (n, C, F) |X̂ |−1 (3.29)

where we have used (3.19). This completes the derivation of (3.16).
As for (3.17), let’s first observe that the normal graph reparametrization of �̃ amounts to

the following change of variables:

X̃ = 
(
X̂
)

+ (y, ũ(y)) with y = ψ(x) = x − h(x)
∂xu√

1 + |∂xu|2 (3.30)

Note that from (3.30), (3.19) and (3.16), we have

∂yk
∂xi

= δki − h · ∂xi
(

∂x ju√
1 + |∂xu|2

)

− ∂xi h
∂ku√

1 + |∂xu|2 = δki + O
(
|X̂ |−2

)
(3.31)

By taking R sufficiently large, we may assume that ψ : Bn
ρ
2 |

(
X̂
)
| → Imψ ⊂ Bn

ρ|
(
X̂
)
| is a

C2 diffeomorphism and the inverse of ∂yk
∂xi

satisfies

∂xi
∂yk

= δik + O
(
|X̂ |−2

)

It follows that the components of shape operators Ã# of �̃ and A# of � with respect to the
local coodinates x = (x1, . . . , xn) are respectively equal to

Ã j
i = ∂yk

∂xi

∂x j
∂yl

∂yk

⎛

⎝ ∂yl ũ√
1 + |∂y ũ|2

⎞

⎠
∣∣∣
y=ϕ(x), A j

i = ∂xi

(
∂x ju√

1 + |∂xu|2
)

(3.32)

in which we sum over repeated indicies. Using the triangle inequality, combined with (3.19),
(3.21), (3.30), (3.16) and (3.31), we then get from (3.32) that

∣∣∣ Ã j
i − A j

i

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

) |X̂ |−3

Due to (3.28), the above implies that
∣∣∣ Ã# − A#

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

) |X̂ |−3

Also, in view of ∇� Ã# ∼ ∇r Ã
j
i , ∇� A# ∼ ∇r A

j
i and

∇r Ã
j
i = ∂r Ã

j
i − �s

ri Ã
j
s + �

j
rs Ã

s
i , ∇r A

j
i = ∂r A

j
i − �s

ri A
j
s + �

j
rs A

s
i (3.33)

in which we sum over repeated indicies, we can similarly derive

|∇� Ã# − ∇� A#| ≤ C
(
n, C, ‖ F ‖C3(U )

) |X̂ |−4

This completes (3.17).
Equation (3.18) follows from taking one more derivative of (3.33) and use (3.32), (3.29),

(3.19), (3.21) and (3.28). ��
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Next, we’d like to define a 2-tensor a on � (outside a compact set), which will be served as
the coefficients of the differential equation to be satisfied by the deviation h. Note that by
(3.12), Lemma 8 [in particular (3.17)], we may assume that

(1 − θ) |X | A# + θ |X | Ã# ∈ U ∀ X ∈ �\B̄R, θ ∈ [0, 1] (3.34)

where Ã# is the shape operator of �̃ at X̃ = X + hN .

Definition 3.1 In the setting of Lemma 3.1, let’s take a local coordinate x = (x1, . . . , xn)
of � (outside a compact set) so that � and �̃ can be respectively parametrized as

X = X (x) , X̃ (x) = X (x)+ h (x) N (x)

where h (x)is the deviation and N (x) is the unit-normal of � at X (x). Then we define

ai j (x) =
∑

k

aik (x) g
kj (x) with

aij (x) =
ˆ 1

0

∂F

∂S j
i

(
(1 − θ) |X | A# (x)+ θ |X | Ã# (x)

)
dθ

and its symmetrization

ai j (x) = 1

2

(
ai j (x)+ a j i (x)

)

where gi j (x) is the inverse of the pull-back metric gi j = ∂i X · ∂ j X , A# (x) ∼ A j
i (x) =

−∂i N · ∂ j X is the shape operator of � at X (x) , Ã#
t (x) ∼ Ã j

i (x, t) = −∂i Ñ · ∂ j X̃ is the
shape operator of �̃ at X̃ (x) with Ñ (x) being the unit-normal of �̃ at X̃ (x).

Note that

aij (x) =
ˆ 1

0

∂F

∂S j
i

(
(1 − θ) |X | A# (x)+ θ |X | Ã# (x)

)
dθ

=
ˆ 1

0

∂F

∂S j
i

(
(1 − θ) A# (x)+ θ Ã# (x)

)
dθ

since ∂F
∂S j

i

is homogeneous of degree 0; besides, the operator a is independent of the choice

of local coordinates and hence defines a 2-tensor on �.

We have the following estimates for the tensor a, which is based on (3.13), (3.14), (3.15),
(3.17), (3.18) and the homogeneity of F and its derivatives.

Lemma 3.2 There exits R = R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1 such that

λ

3
≤ a ≤ 3

λ
(3.35)

|X |
∣∣∣∇�a

∣∣∣ ≤ 3	 (3.36)

|X |2
∣∣∣∇2
�a

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

)
(3.37)

for all X ∈ �\B̄R.
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Proof By (3.13), (3.14), (3.34), (3.17), the homogeneity and continuity of F (and its deriva-

tives), there exists R = R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1 such that

λ

3
δij ≤ aij =

ˆ 1

0

∂F

∂S j
i

(
(1 − θ) |X | A# + θ |X | Ã#

)
dθ ≤ 3

λ
δij

|X |
∣∣∣∇ra

j
i

∣∣∣ = |X |
∣∣∣
ˆ 1

0

∑

k,l

∂2F

∂S j
i ∂S

l
k

(
(1 − θ) A# + θ Ã#

)
·
(
(1 − θ)∇r A

l
k + θ∇r Ã

l
k

)
dθ

∣∣∣

=
∣∣∣
ˆ 1

0

∑

k,l

∂2F

∂S j
i ∂S

l
k

(
(1 − θ) |X | A# + θ |X | Ã#

)

·
(
(1 − θ) |X |2∇r A

l
k + θ |X |2∇r Ã

l
k

)
dθ

∣∣∣ ≤ 3	

Likewise, with the help of (3.15), (3.18), we can get

|X |2
∣∣∣∇2
�a

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

)

The conclusion follows immediately. ��

Now we are in a position to derive an elliptic equation satisfied by h.

Proposition 3.1 There exits R = R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1 such that the devi-

ation h satisfies

∇� · (a dh)− 1

2
(X · ∇�h − h) = O

(|X |−1) |∇�h| + O
(|X |−2) |h| (3.38)

for X ∈ �\B̄R, where

∇� · (a dh) =
∑

i, j

∇i

(
ai j∇ j h

)

in local coordinates and the notation O
(|X |−1

)
means that

∣∣∣O
(|X |−1)

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

) |X |−1

Proof Fix X̂ ∈ �\B̄R and take a local coodinate x = (x1, . . . , xn) of � which is normal
and pricipal (w.r.t. �) at X̂ = X (0). That is

gi j
∣∣∣
x=0

= δi j , �
k
i j

∣∣∣
x=0

= 0, A j
i

∣∣∣
x=0

= κiδi j

where gi j is the pull-back metric, �k
i j is the Christoffel symbols and A j

i is the shape operator

of � at X (x). Denote the principal direction of � at X̂ by

∂i X
∣∣∣
x=0

= ei

Throughout the proof, we adopt the Einstein summation convension (i.e. summing over
repeated indicies). Recall that we regard �̃ (outside a compact set) as a normal graph over
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�\B̄R and parametrize it by X̃ = X (x)+h(x)N (x). We then want to compute some geomtric

quantities of �̃ in terms of this local coordinate at X̃ (0) = X̂ + hN
∣∣∣
X̂

. First, we compute

∂i X̃
∣∣∣
x=0

=
(
δki − Ak

i h
)
∂k X + ∂i h N

∣∣∣
x=0

= (1 − κi h) ei + ∇i h N

∂2
i j X̃

∣∣∣
x=0

= −
(
Ak
i ∇ j h + Ak

j∇i h + ∇i A
k
j · h

)
ek +

(
Ai j + ∇2

i j h − A2
i j h

)
N (3.39)

which (together with Lemma 3.1) gives the metric of �̃, its inverse and determinant as
follows:

g̃i j
∣∣∣
x=0

= (1 − κi h)2 δi j + ∇i h ∇ j h = (1 − κi h)2
(
δi j + ∇i h ∇ j h

(1 − κi h)2
)

g̃i j
∣∣∣
x=0

= (1 − κi h)−2
(
δi j + ∇i h ∇ j h

(1 − κi h)2
)−1

= (1 + 2κi h) δ
i j + O

(
|X̂ |−2

)
|∇�h| + O

(
|X̂ |−3

)
|h|

det g̃
∣∣∣
x=0

= (1 − κ1h)
2 . . . (1 − κnh)2 det

(
δi j + ∇i h ∇ j h

(1 − κi h)2
)

= 1 − 2Hh + O
(
|X̂ |−2

)
|∇�h| + O

(
|X̂ |−3

)
|h| (3.40)

and also the unit-normal of �̃:

Ñ
∣∣∣
x=0

= (det g̃)−
1
2 ∂1 X̃ ∧ · · · ∧ ∂n X̃

= (det g̃)−
1
2

⎛

⎝−
n∑

i=1

⎛

⎝∇i h
∏

j �=i

(
1 − κ j h

)
⎞

⎠ ei + (1 − κ1h) . . . (1 − κnh) N
⎞

⎠

= −
n∑

i=1

(
1 + κi h + O

(
|X̂ |−2

)
|∇�h| + O

(
|X̂ |−3

)
|h|

)
∇i h · ei

+
(

1 + O
(
|X̂ |−2

)
|∇�h| + O

(
|X̂ |−3

)
|h|

)
N (3.41)

By (3.39), (3.40), (3.41) and Lemma 3.1, we compute the shape operator of �̃at X̃ (0):

Ã j
i

∣∣∣
x=0

= Ãik g̃
k j =

(
∂2
ik X̃ · Ñ

)
g̃k j

=
(
Aik + ∇2

ikh + O
(
|X̂ |−2

)
|∇�h| + O

(
|X̂ |−2

)
|h|

)

((
1 + 2κ j h

)
δk j + O

(
|X̂ |−2

)
|∇�h|

)

+
(
Aik + ∇2

ikh + O
(
|X̂ |−2

)
|∇�h| + O

(
|X̂ |−2

)
|h|

)
O
(
|X̂ |−3

)
|h|

= A j
i + δk j∇2

ikh + O
(
|X̂ |−2

)
(|∇�h| + |h|) (3.42)

and

X̃ · Ñ
∣∣∣
x=0

= X · N − X · ∇�h + h + O
(
|X̂ |−1

)
|∇�h| + O

(
|X̂ |−2

)
|h| (3.43)
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Thus, in view of the F self-shrinker equation satisfied by � and �̃, we get

0 = F
(
Ã#
)

− F
(
A#)+ 1

2

(
X̃ · Ñ − X · N

) ∣∣∣
x=0

=
ˆ 1

0

∂F

∂S j
i

(
(1 − θ) A# + θ Ã#

)
dθ ·

(
Ã j
i − A j

i

)
− 1

2
(X · ∇�h − h)

+ O
(
|X̂ |−1

)
|∇�h| + O

(
|X̂ |−2

)
|h|

= aijδ
jk∇2

ikh − 1

2
(X · ∇�h − h)+ O

(
|X̂ |−1

)
|∇�h| + O

(
|X̂ |−2

)
|h|

= aik∇2
ikh − 1

2
(X · ∇�h − h)+ O

(
|X̂ |−1

)
|∇�h| + O

(
|X̂ |−2

)
|h|

= 〈a,∇2
�h〉 − 1

2
(X · ∇�h − h)+ O

(
|X̂ |−1

)
|∇�h| + O

(
|X̂ |−2

)
|h| (3.44)

Note that by the symmetry of the Hessian and Lemma 3.2, we have

〈a,∇2
�h〉 = ai j∇2

i j h = 1

2

(
ai j + a j i

)
∇2
i j h = 〈a,∇2

�h〉
= ∇i

(
ai j∇ j h

)
−
(
∇iai j

)
∇ j h = ∇� · (a dh)+ O

(
|X̂ |−1

)
|∇�h| (3.45)

(3.38) follows from combining (3.44) and (3.45). ��
Our goal is to show that h vanishes on �\B̄R for some R � 1, which will be done in the
next section through Carleman’s inequality. For that purpose, we first observe that for each
t ∈ [−1, 0), �̃t = √−t �̃ is (outside a compact set) also a normal graph over �t\B̄R and
it can be parametrized as X̃t = Xt + ht Nt . For the rest of this section, we will show that
each ht = h (·, t) satisfies a similar equation as h (·,−1) does in Proposition 3.1. Due to
the property that {�t }−1≤t<0 form a F curvature flow, it turns out that the evolution of ht
satisfies a parabolic equation. We then give some estimates for the coefficients of the parabolic
equations (as in Lemma 3.2) , which is crucial for deriving the Carleman’s inequality in the
next section.

Now fix t ∈ [−1, 0) and define a 2-tensor at on �t = √−t � as in Definition 3.1. First,
take a local coordinate x = (x1, . . . , xn) of�t (outside a compact set) so that�t and �̃t can
be respectively parametrized as

Xt = Xt (x) , X̃t (x) = Xt (x)+ ht (x) Nt (x)

We define

ai jt (x) =
∑

k

aik(x, t) g
kj
t (x) with aij (x, t) =

ˆ 1

0

∂F

∂S j
i

(
(1 − θ) A#

t (x)+ θ Ãt
#
(x)

)
dθ

and its symmetrization

ai jt (x) = 1

2

(
ai jt (x)+ a j i

t (x)
)

where gi jt (x) is the inverse of the pull-back metric gi j (x, t) = ∂i Xt (x) ·∂ j Xt (x), A#
t (x) ∼

A j
i (x, t) = −∂i Nt (x) · ∂ j Xt (x) is the shape operator of �t at Xt (x) with Nt (x) being the

unit-normal of �t at Xt (x), Ãt
# ∼ Ã j

i (x, t) = −∂i Ñt (x) · ∂ j X̃ t (x) is the shape operator
of �̃t at X̃t (x) with Ñt (x) being the unit-normal of �̃t at X̃t (x).
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Then we have the following lemma, which is an analogous of Proposition 3.1 for �t =√−t �, t ∈ [−1, 0):

Lemma 3.3 There exits R = R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1 such that for each

t ∈ [−1, 0), the deviation ht satisfies

∇�t · (at dht )− 1

2 (−t)

(
Xt · ∇�t ht − ht

) = O
(|Xt |−1) |∇�t ht | + O

(|Xt |−2) |ht |
(3.46)

for Xt ∈ �t\B̄R, where ∇�t · (at dht ) = ∑
i, j ∇i

(
ai jt ∇ j ht

)
and

∣∣∣O
(|Xt |−1)

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

) |Xt |−1

Also, we have

‖ |Xt | ht ‖L∞(�t\B̄R)
+ ‖ |Xt |2∇�t ht ‖L∞(�t\B̄R)

+ ‖ |Xt |3∇2
�t
ht ‖L∞(�t\B̄R)

≤ C
(
n, C, ‖ F ‖C3(U )

)
(−t) (3.47)

Proof Fix t ∈ [−1, 0) and X̂t ∈ �t\BR , then we have X̂ = X̂t√−t
∈ �\B̄R and

(
∇�t · (at dht )− 1

2 (−t)

(
Xt · ∇�t ht − ht

)) ∣∣∣
X̂t

= 1√−t

(
∇� · (a dh)− 1

2
(X · ∇�h − h)

) ∣∣∣
X̂t

= 1√−t

(
O
( ˆ|X |−1

)
|∇�h| + O

(
|X̂ |−2

)
|h|

) ∣∣∣
X̂t

=
(
O
(
|X̂t |−1

)
|∇�t ht | + O

(
|X̂t |−2

)
|ht |

) ∣∣∣
X̂t

Similarly, to derive (3.47), it suffices to rescale (3.16) to get

|X̂t | |ht | + |X̂t |2|∇�t ht | + |X̂t |3|∇2
�t
ht |

∣∣∣
X̂t

= (−t)
( ˆ|X | |h| + |X̂ |2|∇�h| + |X̂ |3|∇2

�h|
) ∣∣∣

X̂t

≤ C
(
n, C, ‖ F ‖C3(U )

)
(−t)

��
Next, we define the “normal parametrization” of the flow:

Definition 3.2 Xt = X (·, t) is called a “normal parametrization” for the motion of a hyper-
surface {�t } provided that

∂t X = F
(
A#) N

That is, each particle on the hypersurface moves in normal direction during the flow. (See
also Definition 2.4)

In the derivation of the parabolic equation to be satisfied by ht = h (·, t), we will start with a
“radial parametrization” of the flow {�t }−1≤t<0 (i.e. each particles on the hypersurface moves
in the radial direction along the flow, see the proof of Propostion 3.2 for more deatails), then
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we make a trasition to the “normal parametrization” by using a time-dependent tangential
diffeomorphism. Note that in general, the “radial parametrization” exists only for a short
period of time (unlike the “vertical parametrization”), so later in the proof, we will do a
“local” (in spacetime) argument, which is quite sufficient for deriviving the equation.

Proposition 3.2 There exits R = R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1 so that in the

normal parametrization of the F curvature flow {�t }−1≤t<0 , the deviation ht satisfies

Ph ≡ ∂t h − ∇�t · (a (·, t) dh) (3.48)

= O
(|Xt |−1) |∇�t h| + O

(|Xt |−2) |h|
h (·, 0) = 0 as t ↗ 0 (3.49)

for Xt ∈ �t\B̄R,−1 ≤ t < 0, where a (·, t) = at .

Proof Fix t̂ ∈ [−1, 0), X̂ ∈ �t̂\B̄R , and take a local coordinate x = (x1, . . . , xn) of �t̂

around X̂ . Define the “radial parametrization” of the flow starting at time t̂ near the point X̂
by

X (x, t) =
√−t
√

−t̂
Xt̂ (x)

For this parametrization, we can decompose the velocity vector into the normal part and the
tangential part as follows:

∂t X (x, t) = −1

2
√

−t̂
√−t

Xt̂ (x)

= −1

2
√

−t̂
√−t

⎛

⎝(Xt̂ (x) · Nt̂ (x)
)
Nt̂ (x)+

∑

i, j

gi j
t̂
(x)

(
Xt̂ (x) · ∂ j Xt̂ (x)

)
∂i Xt̂ (x)

⎞

⎠

= F
(
A j
i (x, t)

)
N (x, t)−

∑

i, j

1

2 (−t)
gi j (x, t)

(
X (x, t) · ∂ j X (x, t)

)
∂i X (x, t)

(3.50)

in which we use the F self-shrinker equation of �t̂ =
√

−t̂ � (in Definition 2.4) and the
homogeneity of F . Note that the normal part agrees with Definition 4 for the F curvature
flow. Now consider the following ODE system:

∂t xi =
∑

i, j

1

2(−t)
gi j (x, t)

(
X (x, t) · ∂ j X (x, t)

)

xi
∣∣∣
t=t̂

= ξi , i = 1, . . . , n (3.51)

Let the solution (which exists at least for a while) to be x = ϕt (ξ). In other words, ϕt is the
local diffeomorphism on �t generated by the tangent vector field 1

2(−t) X (x, t)
!. By (3.50)

and (3.51), the reparametrization X (ϕt (ξ) , t) of the flow becomes a normal parametrization.
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On the other hand, in the radial parametrization, h(x, t) =
√−t√

−t̂
ht̂ (x). Thus, by (3.51)

and Lemma 3.3, we get

∂

∂t
{h (ϕt (ξ) , t)} = ∂t h (x, t)+

∑

i, j

1

2 (−t)
gi j (x, t)

(
X (x, t) · ∂ j X (x, t)

)
∂i h (x, t)

∣∣∣
x=ϕt (ξ)

= 1

2 (−t)

{−h (x, t)+ X (x, t) · ∇�t h
} ∣∣∣

x=ϕt (ξ)

= ∇�t · (a (·, t) dht )+ O
(|Xt |−1) |∇�t ht | + O

(|Xt |−2) |ht |
∣∣∣x=ϕt (ξ)

which proves (3.48).
Equation (3.49) follows from (3.47). ��

Lastly, we conclude this section by some estimates on the 2-tensor a (·, t) on each time-slice
�t .

Proposition 3.3 There exits R = R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1 so that for t ∈

[−1, 0), Xt ∈ �t\B̄R, there hold

λ

3
≤ a (·, t) ≤ 3

λ
(3.52)

|Xt |
∣∣∣∇�t a (·, t)

∣∣∣ ≤ 3	 (3.53)

|Xt |2
∣∣∣∇2
�t
a (·, t)

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

)
(3.54)

|Xt |2
∣∣∣∂ta (·, t)

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

)
(3.55)

where the time derivative in the last term is taken with respect to the normal parametrization
of the flow {�t }−1≤t<0.

Proof We adopt the Einstein summation convension throughout the proof.
By using the rescaling argument and the homogeneity of the derivatives of F , (3.52),

(3.53), (3.54) follow from (3.35), (3.36), (3.37), respectively. As for (3.55), note that in
normal parametrization, we have

∂ta
i j (t) = ∂t

(
aik(t) g

kj
t

)
=
(
∂ta

i
k(t)

)
gkjt + 2aik(t) F

(
A#
t

)
Akj
t (3.56)

in which we use the following evolution equation for the metric along the F curvature flow
{�t }−1≤t<0 (see [1]):

∂t gi j (t) = −2F
(
A#
t

)
Ai j (t) , ∂t g

i j
t = 2F

(
A#
t

)
Ai j
t (3.57)

By the rescaling argument, (3.12), and the homogeneity of F and its derivatives, we can
estimate each term in (3.56) by

|Xt |2
∣∣∣F

(
A#
t

)
Ai j
t

∣∣∣ =
∣∣∣ F

(|Xt | A#
t

) · |Xt | Ai j
t

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

)
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and

|Xt |2|∂taij | = |Xt |2
∣∣∣
ˆ 1

0

∂2F

∂S j
i ∂S

l
k

(
(1 − θ) A#

t + θ Ãt
#
)

·
(
(1 − θ) ∂t Al

k + θ∂t Ãl
k

)
dθ

∣∣∣

=
∣∣∣
ˆ 1

0

∂2F

∂S j
i ∂S

l
k

(
(1 − θ) |Xt | A#

t + θ |Xt | Ãt
#
)

·
(
(1 − θ) |Xt |3∂t Al

k + θ |Xt |3∂t Ãl
k

)
dθ

∣∣∣

≤ C
(
n, C, ‖ F ‖C3(U )

) ∣∣∣
ˆ 1

0

(
(1 − θ) |Xt |3∂t Al

k + θ |Xt |3∂t Ãl
k

)
dθ

∣∣∣

Thus, to establish (3.55), it suffices to show that

|Xt |3|∂t A#
t | ≤ C

(
n, C, ‖ F ‖C3(U )

)
(3.58)

|Xt |3|∂t Ã#
t − ∂t A#

t | ≤ C
(
n, C, ‖ F ‖C3(U )

)
(3.59)

for all Xt ∈ �t\B̄R , t ∈ [−1, 0).
Firstly, let’s recall the evolution equation for the shape operator A#

t in the normal
parametrization along the flow (see [1]):

∂t A
j
i (t) = ∂F

∂Slk

(
A#
t

) · glmt ∇2
km A j

i + ∂F

∂Slk

(
A#
t

) · (A2
t

)l
k A

j
i (t)

+ ∂2F

∂Slk∂S
q
p

(
A#
t

) · g jm
t ∇i A

l
k(t)∇m Aq

p(t) (3.60)

which yields (3.58) by the rescaling argument, (3.15) and the homogeneity of F and its
derivatives.

Secondly, we would like to compute ∂t
(
Ã#
t − A#

t

)
in the normal parametrization (of

{�t }−1≤t<0) by using the same trick as in the proof of Proposition 3.2. Fix t̂ ∈ [−1, 0),
X̂ ∈ �t̂\B̄R , and take a local coordinate x = (x1, . . . , xn) of �t̂ which is normal at X̂ =
X (0). Consider the radial parametrization of the flow starting at time t̂ near the point X̂ by

X (x, t) =
√−t√

−t̂
X t̂ (x). Then we have

Ã j
i (x, t)− A j

i (x, t) =
√

−t̂√−t

(
Ã j
i

(
x, t̂

)− A j
i

(
x, t̂

))

Let x = ϕt (ξ) with ϕt̂ = id to be the local diffeomorphism on �t generated by the tangent
vector field 1

2(−t) X (·, t)! as before. Then the reparametrization X (ϕt (ξ) , t) of the flow
becomes a normal parametrization and we have

∂t

(
Ã j
i (ϕt (ξ) , t)− A j

i (ϕt (ξ) , t)
) ∣∣∣
ξ=0,t=t̂

=
(
∂t Ã

j
i − ∂t A j

i

)
(ϕt (ξ) , t)

+ 1

2 (−t)
gkl (ϕt (ξ) , t) (Xt (ϕt (ξ) , t) · ∂l Xt (ϕt (ξ) , t))

(
∂k Ã

j
i (ϕt (ξ) , t)− ∂k A j

i (ϕt (ξ) , t)
) ∣∣∣
ξ=0,t=t̂

= 1

2
(−t̂

)
{(

Ã j
i (t̂)− A j

i (t̂)
)

+ gkl
t̂

(
Xt̂ · ∂l Xt̂

) (∇k Ã
j
i (t̂)− ∇k A

j
i (t̂)

)} ∣∣∣
X̂

(3.61)
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Note that for each t ∈ [−1, 0), by the rescaling argument and (3.17), we have

‖ |Xt |3
(
Ãt

# − A#
t

)
‖L∞(�t\B̄R)

+ ‖ |Xt |4
(
∇�t Ãt

# − ∇�t A
#
t

)
‖L∞(�t\B̄R)

≤
{
‖ |X |3

(
Ã# − A#

)
‖L∞(�\B̄R)

+ ‖ |X |4
(
∇� Ã# − ∇� A#

)
‖L∞(�\B̄R)

}
(−t)

≤ C
(
n, C, ‖ F ‖C3(U )

)
(−t) (3.62)

Combining (3.61) and (3.62) to get (3.59). ��

4 Carleman’s inequalities and uniqueness of F self-shrinkers with a
tangent cone

This section is a continuation of the previous section. Here we still assume that � and �̃
are properly embedded F self-shrinkers (in Definition 2.4) which are C5 asymptotic to the

cone C at infinity, and they induce F curvature flows {�t }−1≤t≤0 and
{
�̃t

}

−1≤t≤0
with

�t = √−t �, �̃t = √−t �̃ for t ∈ [−1, 0) and �0 = C = �̃0. We also consider the
deviation ht = h (·, t) of �̃t from �t for t ∈ [−1, 0] (we set h0 = 0), which is defined
on �t\B̄R with R � 1 (depending on �, �̃, C,U, ‖ F ‖C3(U ), λ, 	). For the function h,
recall that we have Proposition 3.2 and Proposition 3.3. Note that the Einstein summation
convension is adopted throughout this section (i.e. summing over repeated indicies).

At the beginning, we will like to improve the decay rate of ht as t ↗ 0 in (3.47) to
exponential decay. To achieve that, we need Proposition 4.1, which is due to [4] and [11] for
different cases. The proof (of Proposition 4.1) will be included here for readers’ convenience,
and it is based on two crucial lemmas. The first one is a mean value inequality for parabolic
equations from [9].

Lemma 4.1 (Mean value inequality)Let P = ∂t−∂i
(
ai j (x, t) ∂ j

)
be a differential operator

such that ai jt = ai j (·, t) ∈ C1
(
Bn

1

)
for t ∈ [−1, 0], ai j = a ji , and

λδi j ≤ ai j ≤ 1

λ
δi j

|ai j (x, t)− ai j
(
x̃, t̃

) | ≤ L
(
|x − x̃ | + |t − t̃ | 1

2

)

for some λ ∈ (0, 1], L > 0, where Bn
1 =

{
x ∈ R

n
∣∣∣ |x | < 1

}
.

Suppose that u ∈ C2,1
(
Bn

1 × [−T, 0]
)
satisfies

|Pu| ≤ L

(
1√
T

|∂xu| + 1

T
|u|
)

for some T ∈ (0, 1], then there holds

|u (x, t) | + √−t |∂xu (x, t) | ≤ C (n,λ, L)
 
Q(x,t;√−t)

|u|

for (x, t) ∈ Q
(
0, 0; T

2

)
, where Q (x, t; r) = Bn

r (x) × (−r2, 0) is the parabolic cylinder
centered at (x, t) and

ffl
D means the average of a function on the domain D.
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Remark 4.1 To prove the above lemma, we may consider the following change of variables:

(x, t) =
(√

T x̃, T t̃
)

In the new variables, the equation in Lemma 4.1 becomes
∣∣∣∂t̃u − ∂x̃i

(
ai j

(√
T x̃, T t̃

)
∂x̃ j u

) ∣∣∣ ≤ L (|∂x̃u| + |u|)
for x̃ ∈ Bn

1/
√
T
, t̃ ∈ [−1, 0]. Then apply the standard theorem from [9] to the new equation.

The second lemma is a local type of Carleman’s inequalities from [5].

Lemma 4.2 (Local Carleman’s inequality) Let P = ∂t − ∂i
(
ai j (x, t) ∂ j

)
be a differential

operator such that ai jt = ai j (·, t) ∈ C1
(
Bn

1

)
for t ∈ [−1, 0] , ai j = a ji , ai j (0, 0) = δi j

and

λδi j ≤ ai j ≤ 1

λ
δi j

|ai j (x, t)− ai j
(
x̃, t̃

) | ≤ L
(
|x − x̃ | + |t − t̃ | 1

2

)

for some λ ∈ (0, 1], L > 0, where Bn
1 =

{
x ∈ R

n
∣∣∣ |x | < 1

}
.

Then for any fixed constant M ≥ 4, there exists a non-increasing functionϕ : (− 4
M , 0

) →
R+ satisfying −t

σ
≤ ϕ (t) ≤ −t for some constant σ = σ (n,λ, L) ≥ 1, so that for any

constant δ ∈ (
0, 1

M

)
and function v ∈ C2,1

c

(
Bn

1 × (− 2
M , 0]

)
, there holds

M2
ˆ

v2ϕ−M
δ �δ dx dt + M

ˆ
|∂xv|2ϕ1−M

δ �δ dx dt

≤ σ
ˆ

|Pv|2ϕ1−M
δ �δ dx dt

+ (σM)M sup
t<0

ˆ (|∂xv|2 + v2) dx + σM
ˆ

v2ϕ−M
δ �δ dx

∣∣∣
t=0

where ϕδ (t) = ϕ (t − δ) and �δ (x, t) = � (x, t − δ) = 1

(4π(−t+δ)) n2
exp

(
− |x |2

4(−t+δ)
)
.

Remark 4.2 Note that the last term on the RHS of the above inequality vanishes provided

that v
∣∣∣
t=0

= 0.

Now we state the proposition (of showing the exponential deay) and then follow [4,11] to
give it a proof:

Proposition 4.1 (Exponential decay/Unique continuation principle) Let P = ∂t −
∂i
(
ai j (x, t) ∂ j

)
be a differential operator such that ai jt = ai j (·, t) ∈ C1

(
Bn

1

)
for

t ∈ [−1, 0], ai j = a ji , and

λδi j ≤ ai j ≤ 1

λ
δi j

|ai j (x, t)− ai j
(
x̃, t̃

) | ≤ L
(
|x − x̃ | + |t − t̃ | 1

2

)

for some λ ∈ (0, 1], L > 0, where Bn
1 =

{
x ∈ R

n
∣∣∣ |x | < 1

}
.
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Suppose that u ∈ C2,1
(
Bn

1 × [−T, 0]
)
satisfies

|Pu| ≤ L

(
1√
T

|∂xu| + 1

T
|u|
)

(4.1)

for some T ∈ (0, 1], and that either u vanishes at (0, 0) to infinite order (see [4]), i.e.

∀ k ∈ N ∃Ck > 0 s.t. |u (x, t) | ≤ Ck
(|x | + √−t

)k
(4.2)

or u vanishes identically at t = 0 (see [11]), i.e.

u
∣∣∣
t=0

= 0 (4.3)

Then there exist 	 = 	 (n,λ, L) > 0, α = α (n,λ, L) ∈ (0, 1) so that

|u (x, t) | + |∂xu (x, t) |
≤ 	 e

1
	t
(‖ ∂xu ‖L∞(B1×[−T,0]) + ‖ u ‖L∞(B1×[−T,0])

)
(4.4)

for x ∈ Bn
1/4, t ∈ [−αT, 0).

Remark 4.3 Later we will apply Proposition 4.1 under the condition (4.3) to show the expo-
nential decay of the deviation h as t ↗ 0. On the other hand, the proposition implies that
under the condtion (4.2), the function u in (4.1) must vanish identically at t = 0; in par-
ticular, it implies that u vanishes identically in the case when u is time-independent. Such
phenomenon is called the “unique continuation principle” and will be used at the end of this
section.

Proof For simplicity, we may assume that ai j (0, 0) = δi j . Otherwise, we can do change of

variables like x̃ = ai j (0, 0)− 1
2 x to achieve that.

In the proof, we will focus on dealing with the case of (4.2), since the same argument
work for the case of (4.3) with only a slight difference, which we will point out on the way
of proof.

Fix a constant M ∈ [ 4L2(n+σ)
T ,∞) (to be chosen), where σ = σ (n,λ, L) ≥ 1 is the

constant that appears in Lemma 4.1. Then for any ε ∈ (
0,min

{ 1
M , 1

})
, choose smooth

cut-off functions ζ = ζ(x), ηε = ηε(t) and η = η(t) such that

χBn
1/2

≤ ζ ≤ χBn
1
, ‖ ζ ‖C2≤ 4

χ[−1
M ,−ε

] ≤ ηε ≤ χ[−2
M ,− ε

2

], χ[−1
M ,0

] ≤ η ≤ χ[−2
M ,0

], ηε ↗ η as ε ↘ 0

|∂tηε | ≤ 2Mχ[−2
M ,

−1
M

] + 3

ε
χ[−ε,0]

where χBn
1

is the characteristic function of Bn
1 . Let vε (x, t) = ζ(x) ηε(t) u (x, t) be a

localization of u, which satisfies vε
∣∣∣
t=0

= 0 and convergers pointwisely to v (x, t) =
ζ(x) η(t) u (x, t) as ε ↘ 0. By the product rule, we have

Pvε = P (ζ(x) ηε(t) u (x, t))

= ζ(x) ηε(t) Pu + (P (ζ(x) ηε(t))) u − 2ai j∂i (ζ(x) ηε(t)) ∂ ju

= ζ(x) ηε(t) Pu +
(
(∂tηε) ζ(x)− ηε(t) ∂i

(
ai j∂ jζ

))
u − 2ai jηε(t) ∂iζ ∂ ju
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By (4.1), it follows that

|Pvε | ≤ ζηεL

(
1√
T

|∂xu| + 1

T
|u|
)

+C (λ, L) (|∂xu| + |u|) χB1\B 1
2
(x)+ 2LM |u|χ[−2

M ,
−1
M

] (t)+ 2L

ε
|u|χ[−ε,0] (t)

≤ L

(
1√
T

|∂xvε | + 1

T
|vε |

)
+ C (λ, L)M (|∂xu| + |u|) χE (x, t)

+ 2L

ε
|u|χ[−ε,0] (t) (4.5)

where

E =
{
(x, t) ∈ Bn

1 × [−1, 0)
∣∣∣

1

2
≤ |x | ≤ 1 or

−2

M
≤ t ≤ −1

M

}

Note that in the case of (4.3), it suffices to consider v (without using the ε cut-off) in order
to make the function vanishing at t = 0. By (4.1).

Then for each δ ∈ (
0, 1

M

)
, by Lemma 4.1 (applied to vε) and (4.5), there holds

M2
ˆ

v2
εϕ

−M
δ �δ dx dt + M

ˆ
|∂xvε |2ϕ1−M

δ �δ dx dt

≤ 2σ L2
ˆ (

v2
ε

T 2 + |∂xvε |2
T

)
ϕ1−M
δ �δ dx dt

+ 2C (λ, L) σM2
ˆ
E

(|∂xu|2 + u2)ϕ1−M
δ �δ dx dt

+ 4σ L2

ε2

ˆ 0

−ε

ˆ
B1

u2ϕ1−M
δ �δ dx dt + (σM)M sup

t

ˆ (|∂xvε |2 + v2
ε

)
dx

By our choice of M , the first term on the RHS of the above inequality can be absorbed by its
LHS. Thus, we get

M2
ˆ

v2
εϕ

−M
δ �δ dx dt ≤ C (λ, L) σM2

ˆ
E

(|∂xu|2 + u2)ϕ1−M
δ �δ dx dt

+ 4 (σM)M sup
−T≤t≤0

ˆ
B1

(|∂xu|2 + u2) dx + 5σ L2

ε2

ˆ 0

−ε

ˆ
B1

u2ϕ1−M
δ �δ dx dt (4.6)

Now choose an integer k ≥ M + n
2 , then by (4.2) the last term on the RHS of (4.6) can be

estimated by

4σ L2

ε2

ˆ 0

−ε

ˆ
B1

u2ϕ1−M
δ �δ dx dt

≤ 4σ L2

ε2

ˆ 0

−ε

ˆ
B1

Ck
(|x | + √−t

)2(M+ n
2 )

(−t+δ
σ

)M−1

exp
( −|x |2

4(−t+δ)
)

(4π (−t + δ)) n2 dx dt

≤ C (n,Ck, σ,M, L)

1

ε2

ˆ 0

−ε

{ˆ
B1

( |x |2
−t + δ + 1

)M+ n
2

exp

( −|x |2
4 (−t + δ)

)
dx

}

(−t + δ) dt
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≤ C (n,Ck, σ,M, L)
1

ε2

ˆ 0

−ε

{ˆ ∞

0

(|ξ |2 + 1
)M+ n

2 exp

(−|ξ |2
4

)
dξ

}
(−t + δ) n2 +1 dt

≤ C (n,Ck, σ,M, L)
(ε + δ) n2 +2 − δ n

2 +2

ε2 (4.7)

In view of (4.7), apply the monotone convergence theorem to (4.6) by first letting δ ↘ 0 and
then ε ↘ 0 to arrive at

ˆ
B 1

2 ×
(−1
M ,0

)
u2ϕ−M� dx dt

≤ C (�, L) σ
ˆ
E

(|∂xu|2 + u2)ϕ1−M� dx dt + (4σM)M sup
−T≤t≤0

ˆ
B1

(|∂xu|2 + u2) dx

≤ C (n,�, L)
(
σ

ˆ
E

ϕ1−M� dx dt + (σM)M
) (‖ ∂xu ‖L∞(B1×[−T,0]) + ‖ u ‖L∞(B1×[−T,0])

)
(4.8)

Note that in the case of (4.3), we can get (4.8) directly from taking the limit as δ ↘ 0 without
using (4.7).

Next, we would like to estimate the first term on the RHS of (4.8). For (x, t) ∈ E , either
−2
M ≤ t ≤ −1

M , in which case we have

ϕ1−M� (x, t) ≤
(−t

σ

)1−M 1

(4π (−t))
n
2

≤ (σM)M−1+ n
2

(4πσ)
n
2

(4.9)

or 1
2 ≤ |x | ≤ 1 and −2

M ≤ t < 0, in which case we have

ϕ1−M� (x, t) ≤
(
σM

(−t)M

)M−1 M
n
2

(4π (−t)M)
n
2

exp

( −M

16 (−tM)

)

= (σM)M−1 ( M
4π

) n
2

(−tM)M−1+ n
2 exp

(
M/16
−tM

) ≤ (σM)M−1
(
M

4π

) n
2
(
M − 1 + n

2

e M/16

)M−1+ n
2

≤
(

16σ

e

(
M − 1 + n

2

))M−1+ n
2

(4.10)

Note that in (4.10) we use the fact that the function ϑ (ξ) = ξM−1+ n
2 exp

(
M/16
ξ

)
achieves its

minimum on R+ at ξ = M/16

M−1+ n
2

.

On the other hand, for any (y, s) ∈ B 1
4
×[ −1

8M , 0), the parabolic cylinder Q
(
y, s; √−s

) =
Bn√−s

(y) × (2s, s) is contained in Bn
1/2 × (−1

M , 0
)

and hence the LHS of (4.8) is bounded
below by

ˆ
Bn

1/2
×
(−1

M ,0
) u2ϕ−M� dx dt ≥ exp −1/4

−8s

(4π)
n
2 (−2s)M+ n

2

ˆ
Q(y,s;√−s)

u2 dx dt (4.11)
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Combining (4.8), (4.9), (4.10), (4.11), we conclude that for (y, s) ∈ Q
(
0, 0; −1

8M

)
,ˆ

Q(y,s;√−s)
u2 dx dt

≤ C (n,λ, L , σ )

(
64σ

e
(−sM)

)M−1+ n
2 (‖ ∂xu ‖L∞(B1×[−T,0]) + ‖ u ‖L∞(B1×[−T,0])

)

(4.12)

Now let β = 1
2

( 64σ
e

)−1
. For each (y, s) ∈ Bn

1/4 × [ −β
4L2(n+σ)T, 0), we choose M = β

−s so

that M ≥ 4L2(n+σ)
T (and note that −1

8M ≤ s < 0). By (4.12), we get 
Q(y,s;√−s)

u2 dx dt

≤ C (n,�, L , σ ) (−s)−
n
2 −1

(
1

2

)− β
s −1+ n

2 (‖ ∂xu ‖L∞(B1×[−T,0]) + ‖ u ‖L∞(B1×[−T,0])
)

≤ C (n,λ, L , σ )
(

2
β
2

) 1
s (‖ ∂xu ‖L∞(B1×[−T,0]) + ‖ u ‖L∞(B1×[−T,0])

)
(4.13)

Let α = β

4L2(n+σ) , 	 = max

{
C (n,λ, L , σ ) ,

(
β
2 ln 2

)−1
}

, then (4.4) follows from (4.13)

and Lemma 4.1. ��
Combining Propositions 3.2, 3.3 and 4.1, we can show the exponential decay of ht as t ↗ 0
as in [12] (see also [11]).

Proposition 4.2 (Exponential decay of the deviation) There exist R = R
(
�, �̃, C,U,

‖ F ‖C3(U ), λ, 	
) ≥ 1, � = �

(
n, C, ‖ F ‖C3(U ), λ

)
> 0, α = α

(
n, C, ‖ F ‖C3(U ), λ

) ∈
(0, 1) such that for X ∈ �t\B̄R, t ∈ [−α, 0), there holds

|∇�t h| + |h| ≤ � exp

( |X |2
�t

)

Proof Fix X̂ ∈ �\B̄R with R = R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1, first we would like

to show that near X̂ , there is a “normal parametrization” for the flow {�t } for t ∈ [−1, 0].
Recall that in the beginning of Sect. 3, we show that there exists a constant ρ = ρ (n, C) ∈

(0, 1) so that near X̂ , each �t is the graph of the function ut = u (·, t) defined on Bn
ρ|X̂ | ⊂

TX̂CC for t ∈ [−1, 0], where X̂C = 
(
X̂
)

is the the normal projection of X̂ onto C. Note that

|X̂C | is comparable with |X̂ |. In other words, locally near X̂ , we have the following “vertical
parametrization” of the flow {�t }−1≤t≤0:

X = X (x, t) ≡ X̂C + (x,u (x, t))
Here we assume that the unit-normal of C at X̂C to be (0, 1) for ease of notation. For this
vertical parametrization, we may decompose the velocity vector into normal and tangential
components as follows:

∂t X = F
(
A# (x, t)

)
N (x, t)+

n∑

i=1

∂iu ∂tu

1 + |∂xu|2 ∂i X
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where A# (x, t), N (x, t) are the shape operator and the unit-normal of�t at X (x, t), respec-
tively. Note that the normal component is given by Definition 2.4 for the F curvature flow.

Next, we would like to do suitable change of variables to go from this “vertical parametriza-
tion” to the “noramal parametrization” of the flow (see Definition 3.2). For that purpose, we
use the same trick as in Proposition 3.2. Let x = φt (ξ) with φ−1 = id to be the local
diffeomorphism on �t generated by the following tangent vector field:

V (x, t) = −
n∑

i=1

∂iu ∂tu

1 + |∂xu|2 ∂i X ≡ −
n∑

i=1

V i (x, t) ∂i X

That is, φt (ξ) = φ (ξ, t) satisfies

∂tφt = (V1 (φt , t) , . . . ,Vn (φt , t)
)
, φ−1 (ξ) = ξ (4.14)

in which, by (3.4) and (3.9), we have

|V i | ≤ C
(
n, C, ‖ F ‖C3(U )

) |X̂ |−1 ∀ i = 1, . . . , n (4.15)

Thus, by taking R sufficiently large, φt is well-defined for ξ ∈ Bn
ρ
2 |X̂ |, t ∈ [−1, 0]. It follows

that the reparametrization X = X (φt (ξ) , t) of the flow becomes a “normal parametrization”
near X̂ for t ∈ [−1, 0]; that is,

∂

∂t
(X (φt (ξ) , t)) = F

(
A# (φt (ξ) , t)

)
N (φt (ξ) , t)

Let gi j (ξ, t) = ∂ξi (X (φt (ξ) , t)) · ∂ξ j (X (φt (ξ) , t)) be the pull-back metric associated
with this “normal parametrization”, then by the evolution equation for the metric in [1], the
homogeneity of F and the condition that φ−1 = id, we have

∂t gi j (ξ, t) = −2F
(
A# (φt (ξ) , t)

)
Ai j (φt (ξ) , t) (4.16)

= −2
∣∣∣X (φt (ξ) , t)

∣∣∣−1F
(∣∣∣X (φt (ξ) , t)

∣∣∣ A# (φt (ξ) , t)
)
Ai j (φt (ξ) , t)

gi j (ξ,−1) = δi j + ∂iu (ξ,−1) ∂ ju (ξ,−1) (4.17)

where the second fundamental form At (x) ∼ Ai j (x, t) is equal to

Ai j (x, t) = ∂2
i ju (x, t)√

1 + |∂xu (x, t) |2
(4.18)

By (4.18), (3.1), (3.2), (3.3), (3.12) and the comparability of |X (x, t) | and |X̂ |, the �2 norm
of the matrix ∂t gi j (ξ, t) satisfies

|∂t gi j (ξ, t) | ≤ C
(
n, C, ‖ F ‖C1(U )

) |X̂ |−2 (4.19)

So by (4.17), (3.1), (3.3) and (4.19), the pull-back metric gi j (ξ, t) is equivalent to the dot
product δi j .

Let�k
i j (ξ, t) be the Christoffel symbols associated with the metric gi j (ξ, t), then we have

∂t�
k
i j = 1

2
gkl

(
∇i

·
gl j + ∇ j

·
gil − ∇l

·
gi j

)
(4.20)

�k
i j (ξ,−1) = ∂ku (ξ,−1) ∂2

i ju (ξ,−1)
√

1 + |∂xu (ξ,−1) |2 (4.21)
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where
·
gi j = ∂t gi j = −2F

(
A#
)
Ai j . Similarly, and also by (3.15), the homogeneity of the

derivative of F , the equivalence of gi j and δi j , we have

|∂t�k
i j | ≤ C

(
n, C, ‖ F ‖C1(U )

) |X̂ |−3

|�k
i j (ξ,−1) | ≤ C

(
n, C, ‖ F ‖C1(U )

) |X̂ |−1

which implies
|�k

i j (ξ, t) | ≤ C
(
n, C, ‖ F ‖C1(U )

) |X̂ |−1 (4.22)

Now consider the deviation h in the local coordinates (ξ, t), then the equation in Propo-
sition 3.2 becomes

∣∣∣∂t h −
{
∂ξi

(
ai j (ξ, t) ∂ξ j h

)
+ �i

ik (ξ, t) a
k j (ξ, t) ∂ξ j h

} ∣∣∣

≤ C
(
n, C, ‖ F ‖C3(U )

) (|X̂ |−1|∂ξh| + |X̂ |−2|h|
)

(4.23)

h (ξ, 0) = 0 (4.24)

where ai j (ξ, t) = a j i (ξ, t) satisfies (by Proposition 3.3 and (4.22))

λ

C
(
n, C, ‖ F ‖C3(U )

)δi j ≤ λ

3
gi j (ξ, t) ≤ ai j (ξ, t) ≤ 3

λ
gi j (ξ, t)

≤ C
(
n, C, ‖ F ‖C3(U )

)

λ
δi j (4.25)

|X̂ |
∣∣∣∂ξai j (ξ, t)

∣∣∣ + |X̂ |2
∣∣∣∂tai j (ξ, t)

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U ), λ

)
(4.26)

Thus, by (4.22), (4.25), (4.17) and (4.19), the equation (4.23) is equivalent to
∣∣∣∂t h − ∂ξi

(
ai j (ξ, t) ∂ξ j h

) ∣∣∣

≤ C
(
n, C, ‖ F ‖C3(U ), λ

) (|X̂ |−1|∂ξh| + |X̂ |−2|h|
)

(4.27)

for (ξ, t) ∈ Bn
ρ
2 |X̂ | × [−1, 0].

Let’s consider the following change of variables:

(ξ, t) =  
(
ξ̄ , t̄

) ≡
((ρ

2
|X̂ |

)
ξ̄ ,

(ρ

2
|X̂ |

)2
t̄

)

and let h̄ = h ◦ ψ ,Nai j = ai j ◦ ψ . Then (4.27) and (4.24) in the new variables become
∣∣∣∂t̄ h̄ − ∂ξ̄i

(
āi j

(
ξ̄ ,t̄

)
∂ξ̄ j h̄

) ∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U ), λ, ρ

) (|∂ξ̄ h̄| + |h̄|
)

(4.28)

h̄
∣∣∣
t̄=0

= 0 (4.29)

and (4.25), (4.26) are translated into

λ

C
(
n, C, ‖ F ‖C3(U )

)δi j ≤ āi j
(
ξ̄ ,t̄

) ≤ C
(
n, C, ‖ F ‖C3(U )

)

λ
δi j (4.30)

∣∣∣∂ξ̄ ā
i j (ξ̄ ,t̄

) ∣∣∣+
∣∣∣∂t̄ ā

i j (ξ̄ ,t̄
) ∣∣∣ ≤ C

(
n, C, ‖ F ‖C3(U ), λ, ρ

)
(4.31)

for ξ̄ ∈ Bn
1 , t̄ ∈

[
−
(

ρ
2 |X̂ |

)−2
, 0

]
.
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Applying Proposition 20 to h̄
(
ξ̄ , t̄

)
, we may conclude that there exist �̃ = �̃ (n, C,

‖ F ‖C3(U ), λ
)
> 0, α = α

(
n, C, ‖ F ‖C3(U ), λ

) ∈ (0, 1) for which the following holds:

|∂ξ̄ h̄| + |h̄|

≤ �̃ exp

(
1

�̃t̄

) ⎛

⎝‖ ∂ξ̄ h̄ ‖
L∞

(
Bn

1 ×
[
−
(

ρ
2

ˆ|X |
)−2

,0

]) + ‖ h̄ ‖
L∞

(
Bn

1 ×
[
−
(

ρ
2 |X̂ |

)−2
,0

])

⎞

⎠

(4.32)

for
(
ξ̄ , t̄

) ∈ Bn
1/4 × [−α

(
ρ
2 |X̂ |

)−2
, 0). By undoing change of variables, (4.32) becomes

ρ

2
|X̂ | |∂ξh| + |h|

≤ �̃ exp

(
|X̂ |2
�̃t

) ⎛

⎝ρ

2
|X̂ | ‖ ∂ξh ‖

L∞
(
Bn

ρ
2 |X̂ |×[−1,0]

) + ‖ h ‖
L∞

(
Bn

ρ
2 |X̂ |×[−1,0]

)

⎞

⎠

(4.33)

for (ξ, t) ∈ Bn
ρ
8 |X̂ | × [−α, 0). Note that the pull-back metric gi j (ξ, t) is equivalent to the dot

product δi j and that |X (x, t) | is comparable with |X̂ |. The conclusion follows immediately.
��

Next, we’d like to go from the exponential decay to identically vanishing of the deviation h
outside a compact set. To this end, we have to derive a different type of Carleman’s inequality
on the flow {�t }−1≤t≤0, which is done through two lemmas. The first lemma is a modification
of the integral equality in [4].

Lemma 4.3 Let
(
M, gt

)
be a flow of Riemannian manifolds and P be a differential operator

on the flow defined by

Pv = ∂tv − ∇gt · (at dv) ≡ ∂tv − ∇i

(
ai j (·, t)∇ jv

)

where at = a(·, t) is a symmetric 2-tensor on M. Then given functions G, ! ∈
C2,1 (M × [−T, 0]) with G > 0, define a function " as

" = ∂tG + ∇i
(
ai j∇ j G

)+ 1
2 tr (∂t g) G

G

= ∂t ln G + ∇i

(
ai j∇ j ln G

)
+ ai j∇i ln G ∇ j ln G + 1

2
tr (∂t g) (4.34)

and a 2-tensor ϒ as

ϒ i j = aika jl∇2
kl ln G − 1

2
∂t a

i j

+ 1

2

(
aik∇ka

jl + a jk∇ka
il − alk∇ka

i j
)

∇l ln G (4.35)
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It follows that for any u ∈ C2,1
c (M × [−T, 0]), there holds

ˆ
M

{(
2ϒ i j − ("−!) ai j

)
∇iu ∇ ju + 1

2

(
∂t! − ∇i

(
ai j∇ j!

)
+ ("−!)!

)
u2
}
G dμt

=
ˆ

M
2 Pu

(
∂tu + ai j∇i ln G ∇ ju + 1

2
!u

)
G dμt

−
ˆ

M
2

(
∂tu + ai j∇i ln G ∇ ju + 1

2
!u

)2

G dμt

− ∂t
{ˆ

M

(
ai j∇iu ∇ ju − 1

2
!u2

)
G dμt

}
(4.36)

where μt is the volume form of
(
M, gt

)
.

Proof Let’s begin with

∂t

{ˆ
M
ai j∇iu ∇ ju G dμt

}

=
ˆ

M

{
2ai j∇ ju ∇i∂tu G + ai j∇iu ∇ ju

(
∂tG + 1

2
tr (∂t g) G

)
+ ∂t a

i j∇iu ∇ ju G

}
dμt

(4.37)

in which we use the commutativity

∂t du = d ∂tu, du ∼ ∇iu

and the evolution equation of the volume form:

∂t dμt = 1

2
tr (∂t g) dμt (4.38)

Applying integation by parts on
(
M, gt

)
, (4.37) becomes

ˆ
M

−2
(
∇i

(
ai j∇ ju

)
+ ai j∇i ln G ∇ ju

)
∂tu G dμt

+
ˆ

M
ai j∇iu ∇ ju

(
∂tG + ∇k

(
akl∇lG

)
+ 1

2
tr (∂t g) G

)
dμt

−
ˆ

M
ai j∇iu ∇ ju ∇k

(
akl∇lG

)
dμt +

ˆ
M
∂t a

i j∇iu ∇ ju G dμt (4.39)

By (4.34), integrating by parts twice and the symmetry of at , (4.39) becomes

−2
ˆ

M

(
∇i

(
ai j∇ ju

)
+ ai j∇i ln G ∇ ju

)
∂tu G dμt +

ˆ
M
ai j∇iu ∇ ju"G dμt

+
ˆ

M

{
∇ka

i j∇iu ∇ ju a
kl∇l ln G

− 2∇ j

(
ai j∇iu

)
∇ku akl∇l ln G − 2ai j∇iu ∇ku ∇ j a

kl∇l ln G
}
G dμt

−2
ˆ

M
ai j∇iu ∇ku akl∇2

jlG dμt +
ˆ

M
∂t a

i j∇iu ∇ ju G dμt (4.40)
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Then we reorganize (4.40) (in order to make up the term Pu) to get

2
ˆ

M

{(
∂tu − ∇i

(
ai j∇ ju

)) (
∂tu + akl∇k ln G ∇lu

)
− (∂tu)

2 − 2ai j∇i ln G ∇ ju ∂tu
}
G dμt

+
ˆ

M
"ai j∇iu ∇ ju G dμt − 2

ˆ
M
ai j akl

(
∇2

jl ln G + ∇ j ln G ∇l ln G
)
∇iu ∇ku G dμt

+
ˆ

M

{
akl∇ka

i j ∇l ln G∇iu ∇ ju − 2ai j∇ j a
kl ∇l ln G ∇iu ∇ku + ∂t a

i j∇iu ∇ ju
}
G dμt

(4.41)

By (4.35), (4.41) becomes

2
ˆ

M

{(
∂tu − ∇i

(
ai j∇ ju

)) (
∂tu + akl∇k ln G ∇lu

)
−

(
∂tu + ai j∇i ln G ∇ ju

)2
}
G dμt

+
ˆ

M
"ai j∇iu ∇ ju G dμt − 2

ˆ
M
ϒ i j∇iu ∇ ju G dμt

= 2
ˆ

M
Pu

(
∂tu + ai j∇i ln G ∇ ju + 1

2
!u

)
G dμt

−
ˆ

M

(
∂tu − ∇i

(
ai j∇ ju

))
!u G dμt

−2
ˆ

M

(
∂tu + ai j∇i ln G ∇ ju + 1

2
!u

)2

G dμt

+ 2
ˆ

M

(
∂tu + ai j∇i ln G ∇ ju + 1

2
!u

)
!u G dμt

− 1

2

ˆ
M
!2u2G dμt −

ˆ
M

(
2ϒ i j −"ai j

)
∇iu ∇ ju G dμt (4.42)

For the second term of (4.42), by the product rule and integration by parts, we get

−
ˆ

M

(
∂tu − ∇i

(
ai j∇ ju

))
u!G dμt

= − 1

2

ˆ
M

(
∂tu

2 − ∇i

(
ai j∇ ju

2
)

+ 2ai j∇iu ∇ ju
)
!G dμt

= 1

2

ˆ
M

(
∂t! G + !

(
∂tG + 1

2
tr (∂t g) G

))
u2 dμt

− ∂t
(ˆ

M

1

2
!2u2G dμt

)
−

ˆ
M
ai j∇iu ∇ ju!G dμt

+ 1

2

ˆ
M

{
∇ j

(
ai j∇i!

)
G + 2ai j∇i G ∇ j! + !∇ j

(
ai j∇i G

)}
u2 dμt

= 1

2

ˆ
M

(
∂t! + ∇ j

(
ai j∇i!

)
+ "! + ai j∇i ln G ∇ j!

)
u2G dμt

−
ˆ

M
!ai j∇iu ∇ ju G dμt

− ∂t
(ˆ

M

1

2
!2u2G dμt

)
(4.43)
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Likewise, for the fourth term of (4.42), we have

2
ˆ

M

(
∂tu + ai j∇i ln G ∇ ju + 1

2
!u

)
!u G dμt

=
ˆ

M
∂tu

2!G dμt +
ˆ

M
ai j∇i G ∇ ju

2! dμt +
ˆ

M
!2u2G dμt

= −
ˆ

M

(
∂t! G + !

(
∂tG + 1

2
tr∂t g G

))
u2 dμt + ∂t

(ˆ
M
!u2G dμt

)

+
ˆ

M
!2u2G dμt

−
ˆ

M

(
∇ j

(
ai j∇i G

)
! + ai j∇i G ∇ j!

)
u2 dμt

= −
ˆ

M

(
∂t! + "! + ai j∇i ln G ∇ j! − !2

)
u2G dμt + ∂t

(ˆ
M
!u2G dμt

)

(4.44)

Combining (4.42), (4.43), (4.44) to get (4.36). ��
We hereafter consider the Riemannian manifold in Lemma 4.3 to be each time-slice�t with
the induced metric gt evolving (in “normal parametrization”) like ∂t g = −2F

(
A#
)
A (see

[1]) and the differential operator (in Lemma 4.3) to be the one in Proposition 3.2.
For the second lemma, we choose suitable weight function G and auxiliary function! in

Lemma 4.3 in order to bound the LHS of (4.36) from below. The choice of G is due to [6]
and [12]. As for!, it is not shown in [12] but is used here to deal with the last term in (4.35),
which comes from the nonlinear nature of F (see Definition 3.1). Note that in the linear case
when F (S) = tr (S) (see [12]), the coefficients of the differenital operator in Proposition 3.2
becomes ai j = gi j ; besides, (4.35) is reduced to

ϒ i j = gikg jl∇2
kl ln G − H Ai j

The idea of using an auxiliary function for the nonlinear case is motivated by [11].

Lemma 4.4 Assume that 	 ≤ 6−4λ3 in (2.1) and (2.2). Then there exists R =
R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1 so that for any constants M ≥ 1, τ ∈ (0, 1], let

G = GM,τ := exp
(
M (t + τ) |X | 3

2 + |X |2
)

(4.45)

! = !M,τ :=
(

3

2
M (t + τ) |X |− 1

2 + 2

)2

ai j (X · ∂i X)
(
X · ∂ j X

)+ M |X | 3
2

+ 1

2

(
3

2
M (t + τ) |X |− 1

2 + 2

)(
tr (a)− λ

3

)

+
(
tr (a)− λ

3

)
+ 3

4
M (t + τ) |X |− 5

2

(
tr (a) |X |2 − ai j (X · ∂i X)

(
X · ∂ j X

))

(4.46)

(note that G > 0 and ! ≥ 0), there hold

2ϒ i j − ("−!) ai j ≥ λ2

9 gi j (4.47)

1
2

(
∂t! − ∇i

(
ai j∇ j!

)+ ("−!)!) ≥ λ2

9 |X |2 (4.48)
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for X ∈ �t\B̄R, t ∈ [−τ, 0), where tr (a) = gi jai j , " and ϒ i j are defined in (4.34) and
(4.35), respectively, with the covariant derivative is taken w.r.t. �t , ∂t g = −2F

(
A#
)
A, and

ai j = ai j .

Remark 4.4 In view of Proposition 3.3, the hypothesis that 	 ≤ 6−4λ3 amounts to requiring
the smallness of |X | |∇�t a| (compared with the ellipticity of a). Similar hypothesis also
appears in [11] and [13] when using Carleman’s inequalities to prove the backward uniqueness
of parabolic equations.

Proof Let’s start with computing the covariant derivatives of ln G:

∇i ln G =
(

3

2
M (t + τ) |X |− 1

2 + 2

)
(X · ∂i X) (4.49)

∇2
i j ln G =

(
3

2
M (t + τ) |X |− 1

2 + 2

) (
gi j + X · N Ai j

)

− 3

4
M (t + τ) |X |− 5

2
(|X |2gi j − (X · ∂i X)

(
X · ∂ j X

))

+ 2t

(
3

2
M (t + τ) |X |− 1

2 + 2

)
F
(
A#) Ai j (4.50)

and its evolution

∂t ln G = M |X | 3
2 +

(
3

2
M (t + τ) |X |− 1

2 + 2

)
(X · ∂t X)

= M |X | 3
2 + 2t

(
3

2
M (t + τ) |X |− 1

2 + 2

)
F
(
A#)2

(4.51)

in which we use the F curvature flow equation in normal parametrization (see Definition 3.2)

∂t X = F
(
A#) N

and the F self-shrinker equation for �t = √−t � (in Definition 2.4):

X · N = 2t F
(
A#)

Thus, by (4.34), (4.49), (4.50) and (4.51), we have

" =
(

3

2
M (t + τ) |X |− 1

2 + 2

)2

ai j (X · ∂i X)
(
X · ∂ j X

)+ M |X | 3
2

+ 1

2

(
3

2
M (t + τ) |X |− 1

2 + 2

)
tr (a)

+ tr (a)+ 3

4
M (t + τ) |X |− 5

2

(
tr (a) |X |2 − ai j (X · ∂i X)

(
X · ∂ j X

))

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)

{(
∇iai j

) (
X · ∂ j X

)+ 2t F
(
A#)

(
F
(
A#)+ ai j Ai j

)}
− F

(
A#) H (4.52)
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which, together with (4.46), implies that

"−! = λ

2

(
3

2
M (t + τ) |X |− 1

2 + 2

)
+ λ

3

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)

{(
∇kakl

)
(X · ∂l X)+ 2t F

(
A#)

(
F
(
A#)+ akl Akl

)}
− F

(
A#) H

(4.53)

By (4.35), (4.49), (4.50) and (4.53),

2ϒ i j − ("−!) ai j

=
(

3

2
M (t + τ) |X |− 1

2 + 2

)(
aika jl gkl − λ

6
ai j

)

+
(

2aika jl gkl − λ

3
ai j

)
+ 3

2
M (t + τ) |X |− 5

2 aika jl (|X |2gkl − (X · ∂k X) (X · ∂l X)
)

+
(

3

2
M (t + τ) |X |− 1

2 + 2

){
aik∇ka jl + a jk∇kail − alk∇kai j − ai j∇kakl

}
(X · ∂l X)

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)(
2aika jl Akl − ai jakl Akl − F

(
A#) ai j

)
2t F

(
A#)

− ∂tai j + F
(
A#) H ai j (4.54)

which can be estimated from below, using (3.52), (3.53), (3.55), (3.12), (3.15) and the homo-
geneity of F , by

2ϒ i j − ("−!) ai j ≥
(

3

2
M (t + τ) |X |− 1

2 + 2

)((
λ2

18
− 36

	

λ

)
gi j + O

(|X |−2)
)

+ λ2

9
gi j + O

(|X |−2) (4.55)

where the notation O
(|X |−2

)
means that

∣∣∣O
(|X |−2)

∣∣∣ ≤ C
(
n, C, ‖ F ‖C3(U )

) |X |−2

Then (4.47) follows from (4.45) and the hypothesis (	 ≤ 6−4λ3) provided that R � 1
(independing of M and τ ).

On the other hand, by (3.52), (3.53), (3.12), (3.15), the homogeneity of F , the hypothesis
that 	 ≤ 6−4λ3 (note that λ ∈ (0, 1]) and R � 1 (independing of M and τ ), we can estimate
(4.53) from below by

"−! ≥
(

3

2
M (t + τ) |X |− 1

2 + 2

)(
λ

6
− 3	 + O

(|X |−2)
)

+ λ

3
+ O

(|X |−2)

≥
(

3

2
M (t + τ) |X |− 1

2 + 2

)
λ

9
+ λ

6
(4.56)
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Similarly, from the F self-shrinker equation for�t , we can estimate the tangential component
of the position vector by

|X!|2 = |X |2 − (X · N ) 2 = |X |2 − (
2t F

(
A#))2

= |X |2 − (
2t F

(|X | A#))2 |X |−2 = |X |2 + O
(|X |−2) (4.57)

Consequently, (4.46) can be estimated (from below), using (3.52) and (4.57), by

! ≥
(

3

2
M (t + τ) |X |− 1

2 + 2

)2

ai j (X · ∂i X)
(
X · ∂ j X

)+ M |X | 3
2

≥
(

3

2
M (t + τ) |X |− 1

2 + 2

)2 (
λ

3
|X |2 + O

(|X |−2)
)

+ M |X | 3
2 (4.58)

Multiplying (4.56) and (4.58) to get

("−!)! ≥
(

3

2
M (t + τ) |X |− 1

2 + 2

)3 1

36
λ2|X |2

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)2 1

27
λ2|X |2

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)
λ

9
M |X | 3

2 + λ

6
M |X | 3

2 (4.59)

To achieve (4.48), let’s first rearrange (4.46) to get

! =
(

3

2
M (t + τ) |X |− 1

2 + 2

)2

akl (X · ∂k X) (X · ∂l X)+ M |X | 3
2

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)(
tr (a)− akl (X · ∂k X) (X · ∂l X)

2|X |2 − λ

6

)

+ akl (X · ∂k X) (X · ∂l X)
|X |2 − λ

3
(4.60)

Then we would like to take time-derivative of (4.60) and estimate it by using Proposition 3.3,
(3.12), (3.15), the homogeneity of F and its derivatives, the F self-shrinker equaiton for �t

(i.e. X · N = 2t F
(
A#
)
) and the F curvature flow equation (i.e. ∂t X = F

(
A#
)
N )), and also

assuming that R � 1 (depending on λ). Note that we can simplify the compuation by taking
“normal coodinates” of �t . For instance, let’s compute and estimate the time-derivative of
the first term in (4.60):

∂t

{(
3

2
M (t + τ) |X |− 1

2 + 2

)2

akl (X · ∂k X) (X · ∂l X)
}

= 2

(
3

2
M (t + τ) |X |− 1

2 + 2

)

{
3

2
M |X |− 1

2 + 3

2
M (t + τ)

(
−1

2
|X |− 3

2

)
X · F (

A#
)
N

|X |

}

akl (X · ∂k X) (X · ∂l X)

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)2

{(
∂takl

)
(X · ∂k X) (X · ∂l X)+ 2akl (X · ∂k X)

(
X · ∂l

(
F
(
A#) N

))}
(4.61)
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By taking normal coordinates, we may assume that (at the point of consideration) gi j = δi j
(so the norm is Proposition 3.3 becomes �2 norm), {∂1X, . . . , ∂n X, N } is an orthonomal basis
for R

n+1, and the last term in (4.61) can be computed and estimated by

∂l
(
F
(
A#) N

) = ∂F

∂S j
i

(
A#)

(
∂l A

j
i

)
N + F

(
A#)

(
−Ak

l ∂k X
)

= ∂F

∂S j
i

(|X | A#)
(
∇l A

j
i

)
N + |X |−1F

(|X | A#)
(
−Ak

l ∂k X
)

= O
(|X |−2)

so (4.61) can be estimated by

(
3

2
M (t + τ) |X |− 1

2 + 2

)(
3M |X |− 1

2 + M · O
(
|X |− 9

2

))
akl (X · ∂k X) (X · ∂l X)

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)2

O (1)

By doing the same thing to other terms in (4.60), we arrive at

∂t! =
(

3

2
M (t + τ) |X |− 1

2 + 2

)(
3M |X |− 1

2 + M · O
(
|X |− 9

2

))
akl (X · ∂k X) (X · ∂l X)

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)2

O (1)

+ M · O
(
|X |− 1

2

)
+

(
3

2
M (t + τ) |X |− 1

2 + 2

)
O
(|X |−2)+ O

(|X |−2)

≥
(

3

2
M (t + τ) |X |− 1

2 + 2

)(
2

3
λM |X | 3

2

)

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)2

O (1)+ M · O
(
|X |− 1

2

)
(4.62)

Similarly, we can compute ∇i
(
ai j∇ j!

)
and estimate it by

∇i

(
ai j∇ j!

)
= ai j∇2

i j! +
(
∇iai j

) (∇ j!
)

=
(

3

2
M (t + τ) |X |− 1

2 + 2

)2

O (1)

+
(

3

2
M (t + τ) |X |− 1

2 + 2

)
O
(|X |−2)+ M · O

(
|X |− 1

2

)
(4.63)

Then (4.48) follows from (4.59), (4.62) and (4.63). ��

Using the above two lemmas, we can derive the following Carleman’s inequality on the flow
{�t }−1≤t≤0 (with �0 = C).

Proposition 4.3 (Carleman’s inequality) Assume that 	 ≤ 6−4λ3 in (2.4) and (2.5). Then
there exists R ≥ 1 (depending on �, �̃, C,U, ‖ F ‖C3(U ), λ, 	) so that for any constants
M ≥ 1, τ ∈ (0, 1], and one-parameter family of C2 functions ut = u (·, t)which is compactly
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supported in �t\B̄R for each t ∈ [−τ, 0] and is differentiable in time, there holds

λ2

9

ˆ 0

−τ

ˆ
�t

(|∇�t u|2 + u2)G dHndt

≤
ˆ 0

−τ

ˆ
�t

|Pu|2G dHndt + 3

λ

ˆ
�−τ

|∇�−τ u−τ |2G (·,−τ) dHn

+ 1

2

ˆ
C
! (·, 0) u2 (·, 0) G (·, 0) dHn (4.64)

whereHn is the n dimensional Hausdorff measure; P, G = GM,τ and! = !M,τ are defined
in (3.48), (4.45), (4.46), respectively.

Proof Apply Lemma 4.3 to the hypersurface �t (with ∂t g = −2F
(
A#
)
A), the differential

operator P and the function ut to get
ˆ
�t

{(
2ϒ i j − ("−!) ai j

)
∇iu ∇ ju + 1

2

(
∂t! − ∇i

(
ai j∇ j!

)
+ ("−!)!

)
u2
}
G dHn

=
ˆ
�t

2Pu

(
∂tu + ai j∇i ln G ∇ ju + 1

2
!u

)
G dHn

−
ˆ
�t

2

(
∂tu + ai j∇i ln G ∇ ju + 1

2
!u

)2

G dHn

−∂t
{ˆ

�t

(
ai j∇iu ∇ ju − 1

2
!u2

)
G dHn

}
(4.65)

By Cauchy-Schwarz inequality, the RHS of (4.65) is bounded from above by
ˆ
�t

|Pu|2G dHndt − ∂t
{ˆ

�t

(
ai j∇iu ∇ ju − 1

2
!u2

)
G dHn

}
(4.66)

By Lemma 4.4 and R ≥ 1, the LHS of (4.65) is bounded from below by

λ2

9

ˆ
�t

(|∇�t u|2 + u2)G dHn (4.67)

Combining (4.65), (4.66), (4.67), we get

λ2

9

ˆ
�t

(|∇�t u|2 + u2)G dHn

≤
ˆ
�t

|Pu|2G dHndt − ∂t
{ˆ

�t

(
ai j∇iu ∇ ju − 1

2
!u2

)
G dHn

}
(4.68)

Integrate (4.68) in time from −τ to 0 and then use (3.52) and ! ≥ 0 to conclude (4.64). ��

Now we are ready to show that h vanishes outside a compact set. We basically follow the
proof in [6] (which is also used in [12]).

Theorem 4.1 Suppose that 	 ≤ 6−4λ3 in (2.4) and (2.5), then there exists R =
R
(
�, �̃, C,U, ‖ F ‖C3(U ), λ, 	

)
≥ 1 so that the deviation h (·,−1) of �̃ from � vanishes

on �\B̄R. In other words, �̃ = � outside the ball BR.
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Proof Choose R � 1 (depending on �, �̃, C,U, ‖ F ‖C3(U ), λ) so that Proposition 3.2,
Proposition 3.3, Proposition 4.2, Proposition 4.3 and (3.15) hold; in particular, we may assume
that for all X ∈ �t\B̄R , t ∈ [−τ, 0]

|Ph| ≤ λ

6

(|∇�t h| + |h|) (4.69)

|∇�t h| + |h| ≤ � exp

( |X |2
�t

)
(4.70)

where� = �
(
n, C, ‖ F ‖C3(U ), λ

)
> 0, τ ≡ min

{
α
(
n, C, ‖ F ‖C3(U ), λ

)
, 1
�

}
(see Propo-

sition 4.2).
For any given M ≥ 1 and R ≥ 4R + 1, choose a smooth cut-off function ζ = ζ (X) so

that

χBR−1\B̄R+1
≤ ζ ≤ χBR\B̄R

|Dζ | + |D2ζ | ≤ 3 (4.71)

Note that Dζ is supported in E =
{
X ∈ R

n+1
∣∣∣ R ≤ |X | ≤ R + 1 or R − 1 ≤ |X | ≤ R

}
.

Let u (·, t) = ζ h (·, t), then u (·, t) is compactly supported in�t\B̄R for each t ∈ [−τ, 0],
and we have, by (4.69), (4.70), (4.71)

∣∣∣Pu
∣∣∣ =

∣∣∣ζ Ph − h Pζ − 2ai j∇iζ ∇ j h
∣∣∣

≤ λ

6

(|∇�t u| + |u|)+ C
(
n, C, ‖ F ‖C3(U ), λ

) (|∇�t h| + |h|) χE

≤ λ

6

(|∇�t u| + |u|)+ C
(
n, C, ‖ F ‖C3(U ), λ

)
exp

( |X |2
�t

)
χE (4.72)

u (·, 0) = 0 (4.73)

By (4.72), (4.73), Proposition 4.3 and (4.70), we get

λ2

9

ˆ 0

−τ

ˆ
�t

(|∇�t u|2 + u2)G dHndt

≤ λ2

18

ˆ 0

−τ

ˆ
�t

(|∇�t u|2 + u2)G dHndt

+C
(
n, C, ‖ F ‖C3(U ), λ

) ˆ 0

−τ

ˆ
�t∩E

exp

(
2
|X |2
�t

)
G dHndt

+C
(
n, C, ‖ F ‖C3(U ), λ

) ˆ
�−τ

exp

(
−2

|X |2
�τ

)
G (·,−τ) dHn (4.74)

where G is defined in (4.45). Note that by the choice τ ≤ 1
�

, we can estimate the last two
terms on the RHS of (4.74) by

ˆ 0

−τ

ˆ
�t∩E

exp

(
2
|X |2
�t

)
G dHndt ≤

ˆ 0

−τ

ˆ
�t∩E

exp
(
Mτ |X | 3

2 − |X |2
)
dHndt

(4.75)
and ˆ

�−τ
exp

(
−2

|X |2
�τ

)
G (·,−τ) dHn ≤

ˆ
�−τ

exp
(−|X |2) dHn (4.76)
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Consequently, by (4.75), (4.76) and noting that the first term on the RHS of (4.74) can be
abosorbed by its LHS, we get from (4.74) that

λ2

18

ˆ 0

−τ

ˆ
�t

(|∇�t u|2 + u2)G dHndt

≤ C
(
n, C, ‖ F ‖C3(U ), λ

) ˆ 0

−τ

ˆ
�t∩E

exp
(
Mτ |X | 3

2 − |X |2
)
dHndt

+C
(
n, C, ‖ F ‖C3(U ), λ

)ˆ
�−τ

exp
(−|X |2) dHn

≤ C
(
n, C, ‖ F ‖C3(U ), λ

) ˆ 0

−τ

ˆ
�t∩(BR−1\B̄R)

exp
(
MτR 3

2 − (R − 1) 2
)
dHndt

+C
(
n, C, ‖ F ‖C3(U ), λ

)ˆ 0

−τ

ˆ
�t∩(BR\B̄R+1)

exp
(
Mτ (R + 1)

3
2 − R2

)
dHndt

+C
(
n, C, ‖ F ‖C3(U ), λ

)ˆ
�−τ

exp
(−|X |2) dHn (4.77)

The first term on the RHS of (4.77) goes away as R ↗ ∞; the last term is bounded from
above by C

(
n, C, ‖ F ‖C3(U ), λ

)
because of (3.5). For the LHS of (4.77), we have

λ2

18

ˆ 0

−τ

ˆ
�t

(|∇�t u|2 + u2)G dHndt ≥ λ2

18

ˆ 0

− τ
2

ˆ
�t∩(BR−1\B̄4R)

u2G dHndt

≥ λ2

18
exp

(
4Mτ R

3
2

) ˆ 0

− τ
2

ˆ
�t∩(BR−1\B̄4R)

h2 dHndt

Therefore, let R ↗ ∞ in (4.77), we arrive at
ˆ 0

− τ
2

ˆ
�t\B̄4R

h2 dHndt

≤ exp
(
−4Mτ R

3
2

)
C
(
n, C, ‖ F ‖C3(U ), λ

) {
exp

(
2
√

2Mτ R
3
2

)
+ 1

}
(4.78)

Let M ↗ ∞ in (4.78), we get ht = h (·, t) vanishes on �t\B̄4R for t ∈ [− τ
2 , 0

]
, and

hence �̃− τ
2

=
√
τ
2 �̃ coincides with �− τ

2
=

√
τ
2 � outside B4R , which in turn shows that

�̃ coincides with � outside the ball of radius R = 4R√
τ/2

. ��
By the previous theorem and the “unique continuation principle” in Proposition 4.1 (see also
Remark 4.3), we have the following conclusion on the overlap region of � and �̃.

Theorem 4.2 Under the same hypothesis of Theorem 4.1, let

�0 =
{
X ∈ � ∩ �̃

∣∣∣� coincides with �̃ in a neighborhood of X
}

then �0 is a nonempty hypersurface and ∂�0 ⊆
(
∂� ∪ ∂�̃

)
.

Proof Note that�0 is a nonempty hypersurface follows from Theorem 4.1 and the definition
of �0.

Suppose that ∂�0
�

(
∂� ∪ ∂�̃

)
, then pick X̂ ∈ ∂�0\

(
∂� ∪ ∂�̃

)
and choose a

sequence
{
X̂m ∈ �0

}
converging to X̂ . Note that N

(
X̂
)

= Ñ
(
X̂
)

since N
(
X̂m

)
=
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Ñ
(
X̂m

)
for all m ∈ N, where N , Ñ are the unit-normal of � and �̃, respectively. Thus,

near X̂ ,� and �̃ can be regarded as graphes of u and ũ, respectively, over Bn
� ⊂ TX̂� = TX̂ �̃

for some � ∈ (0, 1). That is, � and �̃ can be respectively parametrized by

X = X (x) ≡ X̂ + (x, u (x)) , X̃ = X̃ (x) ≡ X̂ + (
x, ũ (x)

)
for x ∈ Bn

�

in which we assume that N
(
X̂
)

= Ñ
(
X̂
)

= (0, 1) for ease of notation. Note also that

A j
i (0) = Ãi

j
(0) since A j

i (xm) = Ãi
j
(xm) for all m ∈ N, where xm is the coordinates of

X̂m (i.e. X (xm) = X̂m) and

A# (x) ∼ A j
i (x) = ∂i

(
∂ ju (x)√
1 + |∂xu|2

)

,

Ã# (x) ∼ Ã j
i (x) = ∂i

(
∂ j ũ (x)√
1 + |∂x ũ|2

)

(4.79)

are the shape operators of� and�̃, respectively. As a result, we may assume (by choosing �

small if necessary) that Ã j
i (x) is so closed to A j

i (x) that the set

U =
{
(1 − θ) A j

i (x)+ θ Ã j
i (x)

∣∣∣ x ∈ Bn
� , θ ∈ [0, 1]

}

is a bounded subset of � and there holds

λ̄ ≤ ∂F

∂S j
i

(
(1 − θ) A# (x)+ θ Ã# (x)

)
≤ 1

λ̄

for some λ̄ ∈ (0, 1].
From the F shrinker equation in Definition 2.4, we get

√
1 + |∂xu|2 F

(
A j
i (x)

)
+ 1

2
(u − x · ∂xu) = 0,

√
1 + |∂x ũ|2 F

(
Ã j
i (x)

)
+ 1

2

(
ũ − x · ∂x ũ

) = 0 (4.80)

Substracting (4.80) and using (4.79) and the mean value theorem, we then get an equation
for v = Qu − u:

ai j∂2
i jv + b j∂ jv + 1

2
v = 0 (4.81)

with

ai j (x) =
ˆ 1

0

{
∂F

∂S j
i

(
(1 − θ) A# (x)+ θ Ã# (x)

)

− ∂F

∂Ski

(
(1 − θ) A# (x)+ θ Ã# (x)

) ∂kuθ ∂ juθ

1 + |∂xuθ |2
}

dθ (4.82)

b j (x) = −
ˆ 1

0

∂F

∂S j
i

(
(1 − θ) A# (x)+ θ Ã# (x)

) ∂kuθ ∂
2
ikuθ

1 + |∂xuθ |2 dθ

−
ˆ 1

0

∂F

∂Ski

(
(1 − θ) A# (x)+ θ Ã# (x)

) ∂ juθ ∂2
ikuθ + ∂kuθ ∂2

i juθ

1 + |∂xuθ |2 dθ
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+3
ˆ 1

0

∂F

∂Ski

(
(1 − θ) A# (x)+ θ Ã# (x)

) ∂ juθ ∂kuθ ∂luθ ∂2
iluθ

(
1 + |∂xuθ |2

) 3
2

dθ

+
ˆ 1

0
F
(
(1 − θ) A# (x)+ θ Ã# (x)

) ∂ juθ√
1 + |∂xuθ |2

dθ − 1

2
x j (4.83)

where uθ = (1 − θ) u + θ ũ. Note that (4.81) is equivalent to the following divergence form
equation:

− ∂i
(
ai j + a j i

2
∂ jv

)
=
(
−∂i

(
ai j + a j i

2

)
+ b j

)
∂ jv + 1

2
v (4.84)

And by (4.82), (4.83) and (4.79), we have the following estimates for the coefficients of
(4.84):

λ̄

1+ ‖ ∂xuθ ‖2
L∞(Bn

�)

≤ ai j + a j i

2
≤ C

(
‖ F ‖C1(U), ‖ u ‖C2(Bn

�)

)
(4.85)

|∂xai j | + |b j | ≤ C
(
‖ F ‖C2(U), ‖ u ‖C3(Bn

�)

)
(4.86)

On the other hand, since X̂m ∈ �0 and X̂m → X̂ as m ↗ ∞, v is vanishing at each neigh-
borhood of xm and xm → 0 asm ↗ ∞. Thus, by Proposition 4.1 and Remark 4.3, v vanishes
on Bn

(
xm,

1
4 (� − |xm |)) for all m ∈ N, which implies that v vanishes on Bn

(
0, 1

4�
)
. In

other words, � coincides with �̃ in a neighborhood of X̂ , which contradicts with X̂ ∈ ∂�0.
��

Lastly, we would like to estimate 	 (defined in (2.5)) in the rotationally symmetric case. For
that purpose, we have to compute the covariant derivatives of the second fundamental form
of C.

Lemma 4.5 At each point XC = (σ s ν, s)∈ C (with ν ∈ Sn−1, s > 0), pick an orthonormal
basis

{
eC1 , . . . , e

C
n

}
for TXCC so that eCn = (σν,1)√

1+σ 2 , then we have

AC
(
eCi , e

C
j

)
= κCi δi j , with κC1 = · · · = κCn−1 = 1

σ |XC | , κ
C
n = 0 (4.87)

∇C AC
(
eCi , e

C
j , e

C
n

)
= −1

σ |XC |2 δi j = − κCi
|XC |δi j , ∀ i, j �= n (4.88)

∇C AC
(
eCi , e

C
j , e

C
k

)
= ∇C AC

(
eCi , e

C
n , e

C
n

) = ∇C AC
(
eCn , e

C
n , e

C
n

) = 0 ∀ i, j, k �= n

(4.89)

where AC is the second fundamental form of C and ∇C AC is its covariant derivative. Note
that AC and ∇C AC are totally symmetric tensors (by Codazzi equation).

Proof Let’s parameterize C by

XC = (σ s ν, s) for ν ∈ Sn−1, s ∈ R+

and take an othornomal local frame
{
eC1 , . . . , e

C
n

}
of C so that

eCn = ∂s XC
|∂s XC | = (σν, 1)√

1 + σ 2
(4.90)
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By the general formula (see [7]) for the principal curvatures of hypersuface of revolution, we
get

κC1 = · · · = κCn−1 = 1

σ s
√

1 + σ 2
= 1

σ |XC | , κCn = 0 (4.91)

Since
{
eC1 , . . . , e

C
n

}
forms a principal basis at each point, so by (4.91) we have

AC
i i = κCi = 1

σ s
√

1 + σ 2
= 1

σ |XC | whenever i �= n

AC
i j = 0 = AC

nn whenever i �= j (4.92)

where AC
i j ≡ AC

(
eCi , e

C
j

)
. Also, by the orthonormality of

{
eC1 , . . . , e

C
n

}
and the product rule,

the Christoffel symbols C�k
i j ≡

(
DC
eCi

eCj

)
· eCk satisfy

C� j
ki =

(
DC
eCk

eCi

)
· eCj = −

(
DC
eCk

eCj

)
· eCi = −C�i

k j (4.93)

Thus, from (4.92) and (4.93), we deduce that whenever i, j �= n or i = j = n, there holds

∇C
k A

C
i j = DeCk

(
AC
i j

)
− C� j

ki A
C
j j − C�i

k j A
C
i i = DeCk

(
AC
i j

)
(4.94)

By (4.94), (4.92) and (4.90), we get

∇C
n A

C
i j = DeCn

(
κCi δi j

) = 1√
1 + σ 2

∂s

(
1

σ s
√

1 + σ 2

)
δi j

= −1

σ
(
1 + σ 2

)
s2
δi j = −1

σ |XC |2 δi j if i, j �= n

which verifies (4.88).
By (4.94), (4.92) and noting that |XC | is invariant along eCk for k �= n , we get

∇C
k A

C
i j = DeCk

(
κCi δi j

) = DeCk

(
1

σ |XC |
)
δi j = 0 if i, j, k �= n (4.95)

From (4.94) and (4.92), we have

∇C
i AC

nn = DeCi

(
AC
nn

) = 0 ∀ i (4.96)

Then (4.89) follows from (4.95) and (4.96). ��

Combining (2.1), (2.2), (2.3) with Lemma 4.5, we conclude the following:

Proposition 4.4 The constant 	 defined in (2.5) can be estimated by

	 ≤ C (n)
(∣∣∣∂2 f

(−→
1 , 0

) ∣∣∣+
∣∣∣∂1 f

(−→
1 , 0

)
− ∂n f

(−→
1 , 0

) ∣∣∣
)

(4.97)

Proof At each point XC ∈ C, take an orthonormal basis
{
eC1 , . . . , e

C
n

}
for TXCC so that

eCn = (σν,1)√
1+σ 2 . Then by (2.2), (2.3), Lemma 4.5 and the homogeneity of the derivatives of f ,

we get
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∣∣∣
∂2F

∂S j
i ∂S

l
k

(
A#
C
) ∣∣∣ ≤

(∣∣∣∂2 f
(
κC1 , . . . , κ

C
n

) ∣∣∣+
∣∣∣
∂1 f

(
κC1 , . . . , κ

C
n

)− ∂n f
(
κC1 , . . . , κ

C
n

)

κC1 − κCn
∣∣∣

)

= 1

κC1

(∣∣∣∂2 f
(−→

1 , 0
) ∣∣∣+

∣∣∣∂1 f
(−→

1 , 0
)

− ∂k f
(−→

1 , 0
) ∣∣∣
)

which implies that

|XC |
∣∣∣
∑

k,l

∂2F

∂S j
i ∂S

l
k

(
A#
C
) (∇C A#

C
)l
k

∣∣∣

≤ |XC | C (n)
κC1

(∣∣∣∂2 f
(−→

1 , 0
) ∣∣∣+

∣∣∣∂1 f
(−→

1 , 0
)

− ∂k f
(−→

1 , 0
) ∣∣∣
) κC1

|XC |
= C (n)

(∣∣∣∂2 f
(−→

1 , 0
) ∣∣∣+

∣∣∣∂1 f
(−→

1 , 0
)

− ∂k f
(−→

1 , 0
) ∣∣∣
)

Therefore,

	 = sup

XC∈C∩
(
B3\B̄ 1

3

)

∣∣∣
∑

k,l

∂2F

∂S j
i ∂S

l
k

(
A#
C
) (∇C A#

C
)l
k

∣∣∣

≤ C (n)
(∣∣∣∂2 f

(−→
1 , 0

) ∣∣∣+
∣∣∣∂1 f

(−→
1 , 0

)
− ∂k f

(−→
1 , 0

) ∣∣∣
)

��
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