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Abstract Given a smooth, symmetric and homogeneous of degree one function f (A, ...,
An) satisfying 8; f > 0 Vi =1,...,n, and a properly embedded smooth cone C in R+,
we show that under suitable conditions on f, there is at most one f self-shrinker (i.e. a
hypersurface ¥ in Rr+1 satisfying f (1, ..., kn) + %X - N = 0, where ki, ..., K, are
principal curvatures of X) that is asymptotic to the given cone C at infinity.

Mathematics Subject Classification 53C44
1 Introduction

Let C be an orientable and properly embedded smooth cone (excluding the vertex O) in R"+1,
Suppose that ¥ is an orientable and properly embedded smooth hypersurface in R"*! which
satisfies

1
H—O—EX-N:O VXeX

C()Q
QZ&C as o \( 0

where N is the unit-normal and H = —Vy - N is the mean curvature of X. Then X is called
a self-shrinker to the mean curvature flow (i.e. & X~ = HN) which is smoothly asymptotic
to the cone C at infinity. It follows that the rescaled family of hypersufaces {E, =t ):}
forms a mean curvature flow starting from X (when r = —1) and converging locally smoothly
toCast / 0. Wang in [12] proves the uniqueness of such self-shrinkers by showing that:
suppose ¥ is also a self-shrinker which is asymptotic to the same cone, then outside a compact
set, ¥, = \/7 ¥ can be regarded as a normal graph of h, defined on X, \ Bg for some R > 0;
moreover, given ¢ > 0 and choose R large accordingly, there holds
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n =
t=0

Using the idea in [6], Wang derives a Carleman’s inequality for the heat operator on the flow
{X,;}, apply it to the localization of h, and use the unique continuation principle (see [4], for
instance) to conclude that h = 0.

On the other hand, Andrews [1] consider the motion of hypersurfaces in R"*! moved
by some degree one curvature (see also [2,3]). More precisely, given a smooth, symmetric
and homogeneous of degree-one function f = f (Aq, ..., A,) which satisfies 9; f > 0 Vi,
consider the following evolution of hypersurfaces:

Xt =f(ki,....,k))N
where k1, ..., k, are the principal curvatures of the evolving hypersurface. For instance, if
we take the curvature function to be f (A1, ..., A;) = A1 + - -+ + A, then this corresponds

to the mean curvature flow. And we call an orientable C2 hypersurface ¥ in R**'tobe a “ f
self-shrinkers” to the above “ f curvature flow” provided that

1
f(Kla~--,Kn)+5X-N=O

holds on X. Likewise, the rescaled family of  f* self-shrinkers” is a self-similar solution to
the f curvature flow; that is, the one-parameter family of hypersurfaces {E, =.-t2 } 1<0
is a f curvature flow. In the case when X is smoothly asymptotic to the cone C at infinity,
the rescaled flow {X;};_o will converge locally smoothly to C as ¢t 7 0.

This paper is an extension of the uniqueness result of [12] and existence result of [10]
to the class of f self-shrinkers with a tangent cone C at infinity. In fact, Wang’s idea (of
proving the uniqueness for the mean curvature flow) work perfectly for the f curvature flow
as well, except that some additional treatment for the nonlinearity of f is required (which is
not a concern in Wang’s case because the curvature function there is linear). The crucial step
is to derive Carleman’s inequality for the associated parabolic operator to the f curvature
flow under some conditions on the nonlinearity of f , the uniform positivity of 9; f and also
some curvature bounds of C. For this part, we are motivated by the work of Nguyen [11] and
Wu and Zhang [13] for deriving Carleman’s inequality for parabolic operator with variable
coefficients.

In order to state our main theorem, we have to first introduce some notaions and definitions
regarding the f self-shrinkers, the tangent cone of a hypersurface at infinity, and also some
basic assumptions on the curvature function f. We put all of these in Sect. 2.

In Sect. 3, we essentially follow [12] to show that if ¥ and ¥ are f self-shrinker which
are asymptotic to the given cone C at infinity, then outside a compact set, Y = /—t X can
be regarded as a normal graph of /; defined on E,\I? g for some R > 0, which satisfies some
parabolic equation and vanishes at time 0. We also give some estimates on the coefficients
of the parabolic operators.

In Sect. 4, we follow the idea of [6] for treating the backward uniqueness of the heat
equation (which is also used in [12] to deal with the uniqueness of self-shrinkers of the mean
curvature flow) to show that the deviation /; vanishes outside some compact set. We first use
the mean value inequality for parabolic equations and a local type of Carleman’s inequalities
to show the exponential decay of the deviation i, as¢ ' 0 asin [11]. Then we are devoted to
derive a different type of Carleman’s inequalities (based on the estimates of the coefficients
of the parabolic operator which we derive in Sect. 3) and use it to show that /; vanishes
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outside a compact set. In the end, we use the unique continuation principle to characterize
the overlap region of ¥ and X.

2 Assumptions and main results

Definition 2.1 (A regular cone) Let C be an orientable and properly embedded smooth cone
(excluding the vertex O) in R"*!; that is, C is an orientable and properly embedded hyper-
surface in R"*! satisfying oC =C Yo € Ry and O ¢ C.

We then define what it means for a hypersurface to be asymptotic to the cone C at infinity:

Definition 2.2 (Tangent cone at infinity) A C k hypersurface ¥ in R+ (with k € N) is said

ck.
to be C¥ asymptotic to C at infinity provided that o X % Cas 0 N\ 0 (see [8] for the C*
topology of hypersurfaces in R”*!). In this case, C is called the tangent cone of ¥ at infinity.

For a given C? orientable hypersurface ¥ in R**! | its shape operator (or Weingarten map)
A* sends tangent vectors to tangent vectors and is defined by

A* (V)= —-DyN

for any tangent vector field V on X, where N is the unit-normal of ¥. The second fundamental
form A is defined to be a 2 tensor on X such that

AWV, W)=A*v). w

for any tangent vector fields V and W on X. The components of A* and A with respect to a
given local frame {eq, ..., e,} of the tangent bundle of X are defined by

At (e;) = Al{ej, A(e,',ej) = Ajj

and we are used to denote A" and A by their components like A* ~ A/ and A ~ A;;. Note
that A* is a self-adjoint operator with repect to the dot product restricted to the tangent space
(or equivalently, A is a symmetric 2 tensor), so A* is diagonalizable. The eigenvectors of
A* are called pricipal vectors and its eigenvalues are called principal curvatures, which are
denoted by k1, ..., k. The mean curvature is defined to be H = tr (A*) = k1 + -+ + &y,
which is a linear, symmetric and homogeneous of degree-one function of the shape operator
(or the principal curvatures). In this paper, we consider a more general type of degree-one
curvature.

Definition 2.3 (The degree-one curvature function) Let F = F (S) be a conjugation-

invariant, homogeneous of degree-one function whose domain £ (in the space of n x n

matrices) containing a neighborhood of the set consisting of all the values of shape operator
Ag of C; besides, F can be written as a C3 function composed with the the elementary sym-
aF s AF

= >0(@e. =sisa
s/ ( as/

i i

metric functions &1, ..., &, (for instance, £; = tr and &, = det) and

positive matrix).

Note that by the conjugation-invariant and homogeneous property of F', we may assume
that ® is closed under conjugation and homothety; that is, if S € €, then so are RSR~! and
oS for any invetible n x n matrix R and positive number g.
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Also, by the condition that F can be written as a C> function composed with the the ele-
mentary symmetric functions, it induces a symmetric, homogeneous of degree-one function
f such that

FS)=f1,..., )

whenever A1, ..., A, are the eigenvalues of the matrix S; the function f is defined and C 3
on an open set U (in R") containing a neighborhood of the set consisting of all the values of
the pricinpal curvature vector (Kf, o, Kf ) of C. Likewise, we may assume that the domain
U is closed under permutation and homothety.

In fact, at a diagonal matrix S = diag (A1, ..., A,), there holds (see [1]):

OF
—7 =800, M) bij (2.1
3S;

92F
(S) = 83 f (Mav v hn) 8ij8un (2.2)
anaS
O F > 0 f —f

(8) = 0% f Miv ey hn) 8801 + Sudyj ifi £k (2.3)

35/ as! A = M

Since F is well-defined on conjugacy classes, (2.1), (2.2), (2.3) can be applied to any diago-
nalizable matrix in 2. For instance, by (2.1), we have
oF

25/ (AR) ~ 3 f (kf. ... kE) &)

where Aﬁ ~ Ké&,- ; is the shape operator (and principal curvatures) of C. Hence, by the
condition that % > (0 on £, we may assume that9; f >0 Vi=1,...,non0.

i

Now let U be an open neighborhood of the set consisting of the all the shape operator A*C*
of CatXc e CN (B3 \B} ) in . Note that we may assume that U is closed under conjugation

and that is uniformly positive on U ; that is, there exist a constant A € (0, 1] so that
; oF 1.
)\8;- <—< 78} 2.4
as; A

Also, we have

x = sup ‘Vc <8F (Aﬁ)) ’

Xc eCﬁ(&\Bl)

= \z

£ (VeAl), | = CnC I Fllew) @3
XCECO(B3\B§)

as’as’

where A*é and V¢ Ag are the shape operator of C and its covariant derivative at X¢, respec-
tively; B, = BZ,‘“ is the ball of radius o in R"*!. A more precise estimate of x is given
(see 4.97) in the case when C is rotationally symmetric.

Now let’s define the F self-shrinker (or f self-shrinker):
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Definition 2.4 (F self-shrinker) An oriented C? hypersurface ¥ (excluding its boundary) in
R+ is called a F self-shrinker (or f self-shrinker) provided that F is defined on the shape
operator A* of = (i.e. A* € ®) and satisfies

F(A#)+%X.N=o

where X is the position vector, N is the unit-normal, and A* is the shape operator of X;
or equivalently, f is defined on the principal curvatures of ¥ (i.e. («x1,...,k,) € O) and
satisfies

1
f(KlssKn)-l_EXN:O

where k1, ..., k, are the principal curvatures of X.

Note that the rescaled family of F self-shrinkers forms a self-similar solution to the F
curvature flow. More precisely, the one-parameter family {E, =./-t2 }7 1<1<0 is a motion
of a hypersurface moved by F curvature vector. That is,

WX+ =F (AN
where 9, X is the normal projection of d; X. Besides, for each time slice ¥, = /—t %, there
holds

X N

=0
2(—t)

F(A%) +

We will prove the following uniqueness result F self-shrinkers with a tangent cone in Sect. 4:

Theorem 2.1 (Uniqueness of self-shrikers with a conical end) Assume tha{ x < 67423 [in
( 2.4), ( 2.5)]. Then for any properly embedded F self-shrinkers ¥ and % which are C?

asymptotic to the cone C at infinity, there exists R = R (E, >.C.U, || F 3wy *s }() > 1
so that X\ Bg = f)\BR. Moreover, let

20 = {X eXn i]’ Y coincides with % in a neighborhood ofX]
then X0 is a nonempty hypersurface, which satisfies 9%° C <E)Z u 85)).

Remark 2.1 In the case of [12], F = &; (or equivalentsly, f (A1, ..., ) = A1+ -+ A,)
is a linear function, so [by (2.5), (2.2), (2.3)] » = 0 and the hypothesis of Theorem 2.1 is
trivially satisfied. On the other hand, consider

En

F=& £ ¢

n—1
or equivalently,
[T &
Z?:] (Hj;éi )‘j)

and take C to be a rotationally symmetric cone. Then by Theorem 2.1 and (4.97) in the last
section, the uniqueness holds when 0 < € < 1.

S, ) =G +--+4,) €
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In the last section, we assume C to be rotationally symmetric, say
C = {(osv,s) ’ veS*lse R+]

for some constant ¢ > 0, where 8" is the unit-sphere in R”. In this case, its principal
curvatures at each point are

1
KIC:u-:K,(,ll:i k¢ =0

Us«/1+cr2’ "

Therefore, the condition that the curvature function f is defined on a neighborhood of the set
consisting of all the values of the pricinpal curvature vector (ch sk ) of C in Definition 3 is

equivalent to requiring its domain O to contain a neighborhood of (_1), O) =(,...,1,0) €
R", since U is closed under permutation and homothety.

3 Deviation between two F self-shrinkers with the same asymptotic
behaviour at infinity

Let X be a properly embedded F self-shrinker (in Definition 2.4) which is C> asymptotic to
the cone C at infinity.

By Definition 2.2, 0¥ can be arbitrary C> close to C on any fixed bounded set of R"*!
which is away from the origin (e.g. on B>\ B 1 ) as long as o is sufficiently small, so any

“rescaled C3 quantities” of X\ Bg can estimated by that of C for R >> 1. Below we will show
these in detail.

First of all, there exists R > 1 (depending on X, C) such that outside a compact set, X
is a normal graph over C\Bg, say X = W (X¢) = X¢ + ¥ Nc, where X¢ is the position
vector of C and N is the unit-normal of C at X¢. Consequently, we can define the “normal
projecton” IT (to be the inverse map of W) which sends X € ¥ to X¢ € C. Moreover, by
the rescaling argument, we may assume that H" (2 N (Bzr\ér)) <C(m,C)r'" forallr > R
(i.e. ¥ has polynomial volume growth).

On the other hand, fix X¢ € C\Bg, |Xo|~'C = C is locally (near |X.|~'X¢) a graph
over the tangent hyperplanethe T‘ %ol ;(Cc, so by Definition 2.2, |Xc|~'S must also be a

local graph over T C and is C° close to the corresponding graph of |X cl”lc =c.

1Xel~'Xe
Furthermore, we may choose a uniform constant p € (0, %] (depending on the dimension #,

the volume and the C3 bound of the curvature of C N (B3\1§ 1 )) so that near |)A(c |1 )?c, the

graphes of |)A(c|_IC =Cand |}A(c|_12 are defined on le)} = {x e R"| x| < ,OIJA(CI} C
c
T| Rel! ffcc and the C' norm of the local graph of C is small. By undoing the rescaling, it

tranlates into the following: there exists R = R (X, C) > 1 so that near each )A(c € C\B Rr,C
and ¥ can be respectively parameterized by

Xc = Xc (x) = X + (x, w(x))
X =X (x)=Xc + (x,ux)
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forx = (x1,...,x,) € B" ., suchthat w(0) =0, d,w (0) = 0 and

plXcl
Xl ™l w + | Byew || ! (3.1)
w oo (RN w oo ph .
C L (B ) X L>®(B ik ‘)_ 16
| Xel || 82w ||Loo<BnA y A 1Xel* 1 3w e . )< C (n,C) 3.2)
plXel rlXcl

o -1
Xl  lu—wllgeopn .y + Il 0xu — 0w [[poopn . )
pl%el ri¥el

“ N 1
+IXel | 92u— 82w llpoopr . ) +---+ Xl I 80w — 83w lpep . )< — (3.3)
piXel olkcl’~ 16

where we assume the unit-normal of C at )A(C to be (0, 1) for ease of notation (and hence
I1(X (0)) = Xc). Note that (3.1) is the rescale of the smallness of the C! norm of the local
graph of C, while (3.3) is the rescale of the small C? difference between the local graphes of
|Xcl~'Cand |Xc| 7T

By Definition 2.2 and the rescaling argument, the same thing holds for each rescaled
hypersurface ¥, = /—t X, t € [—1,0) as well. That is, outside a compact set, ¥, is a
normal graph over C\ Bg (with R >> 1 depending on X, C); besideis, near each Xc € C\Bg,
¥ is a graph over T3 fol-'Re C and can be parametrized by

X (¥) = X (x,1) = Xe + (x, 4 (1) = Xe + (x,u(x, 1)

which satisfies

IXel ' luG ) —wllpeogn . )+ Il 3w (1) — 3w lloe(pr . )
plkc! ri¥cl
5 2 2
+Xcl I dyu 1) — agw l[poopn . )
plxc

~ 1
+o Kol 1 33uC, ) — dw e < — (3.4)
olXel 16

Wecallt — X(x,t) = )A(c + (x,u(x, 1)) is the “vertical parametrization” of the flow
{2} _1<1<0- Note that by (3.1), (3.4)and 0 < p < é, we have

3 . - 5 .
Xl =Xl =[Xc+ (rulx. )] = 71Xcl

for x € lef( ; t € [—1,0); that is, | X| is comparable with I)?cl. Also, we still have the
c
following polynomial volume growth for %;:

H" (2, N (Bx\Br)) < C (n,0) 1" (3.5)

forallr > R.

On the other hand, ¥ is a F self-shrinker, which we can use to improve (3.4). To see this,
observe that under the condtions of being a F self-shrinker and having a tangent cone C at
infinity, the rescaled flow { =412 }7 | <¢= Moves by F curvature vector and converges

(in the locally C? sense) to the cone C as ¢ 7 0. In other words, we can define a F curvature
flow {£;}_1<,<o With &, = /=1 Z for r € [~1,0) and £¢ = C which is continuous upto
t = 0 (in the locally C? sense). Besides, near each )A(c € C\Bg (with R > 1 depending on
X, C), we have the vertical parametrization of the flow (as above) for r € [—1, 0] and the
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evolution of u, satisfies (by Definition 2.4)

du = 1+|axu|2F(A{(x,r)> for (v1,..ox) € Bl L —1<1<0  (3.6)

1Xcl

5
u ) > w onB".  ast /0 3.7)
rlXcl

where the shape operator Af (x) ~ Al’ (x, t) of Z; (with respect to the local coordinate frame
{01X¢,...,0,X,})is equal to

Al (x, 1) = 8 duen (3.8)
! V14 ]0,ul?

It follows (by using (3.6), (3.4), (3.1), (3.2) and (3.8)) that

o] = 1Xel V1 + ol |F (1%cla] @.0) |
< [Xcl™! <1+ | 9xus [lzoo(p . )) I F L)
olXcl

in which we use the homogeneity of F. Similarly, by differentiating (3.6) and using the
homogeneity of the derivatives of F, we get

IXel I 3 Got) llpoeqsr .y +IXel? I 3w 0) oo,
plXel rlXel

+1XelP I 902u (1) llpsosr .
rlXcl

+1Xel* | 883u (0 I, =€ (n.C. 1l Fllesw) (3.9)

which implies (by (3.9) and (3.6))

0
w0 =l = [ 10601 = C el Fllew) Kel™ (-0
t
Likewise, integrate the estimates for derivatives in (3.9) to get V¢ € [—1, 0]

IXel lluGot) —wlipoogr .y +HIXel* I dxu -y 1) — dew || ( )
rlXcl L>(B" .

prlXcl

HXel | 8fu 0 — dgw | (:.)
L B" .

olXel

+HXel* 107u (1) = 8w | (
L>®( B"

olkel

)s C(n.CAl Fleswy) (=0 (3.10)

which is the improvement of (3.4) by using the F self-shrinker equation (3.6).
In view of the pull-back metric g;; (x, t) = 8;; + d;ju (x,t) dju (x, t) and the associated

Christoftel symbols

du (x, 1) 8i2ju(x, 1)

V1I+19eu(x, 1) ?

together with (3.8), (3.10), the comparablity of | X| and I)A(c [, (2.4), (2.5) and the continuity
and homogeneity of F (and its derivati_ves), there exits R > 1 (depending on X,C, U, ||
F ”C3(U)’ A, x) such that for X; € ¥;\ Bg, the following hold:

Tf (x, 1) = (3.11)
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X/ A} e U (3.12)
A OF aF 2 .
=5t < (A = — (1x,1 AF) < =¢! (3.13)
J = ! - J
2 an s/ A
1X/] Z Fog ! (Vs A, |
k,l l k
32F l
\Z |XZ|A#>) (1% 2Vs, Af) | < 2 (3.14)
k,l i
1X,| 1A} + |X,| |vz,Af| +IXP | IV, Af| < C(n. 0) (3.15)

where A# is the shape operator of X; at X; and Vy, A# is the covariant derivative of A# (with
is of

rescpect to ;). Note that F' is homogeneous of degree 1, as <= is of degree 0 and s fasl
degree —1. I

Now let ¥ to be a F self-shrinker which is also C° asymptotic to C at infinity. By the same
limting behaviour, $ is C3close to  (in the rescale sense) for |X| > 1, and hence it can
be regarded as a normal graph of a function 4 defined on X. Later we will derive an elliptic
equation which is satisfied by 4. To this end, we need the following two lemmas (Lemma 3.1
& Lemma 3.2). The first one gives the decay rate of the fuction 4 and the difference of
the shape operators between ¥ and ¥ as |X| / oo; in the second one, we estimate the

coefficients of the differential equation to be satisfied by #.
Lemma 3.1 There exits R = R (E, >.n,C, | F ||C3(U)) > 1 so that outside a compact
set, ¥ is a normal graph over Y\ Bg and can be parametrized as

X =X+hN for X € £\Bg

where N is the inward unit-normal of ¥ and h is the deviation of by from X. Besides, there
hold

” |X|h ||L°°(E\ER) + ” |X|2V2h ||L°°(E\I§R) + ” |X|3V%h ”LOO(Z\BR)

<C(n.C. | Flcxw)) (3.16)
I 1XP (A% - A#) e + I 1XI* (Vo A* - va*‘) o0\ By

<C(n.C. | Fllcsw)) (3.17)
11X VS A* || oo s 3o

<C(.CIFlew) (3.18)

where At is the shape operator of & at X = X 4 hN and Vs A* is the covariant derivative
of A* (which can be regarded as a 2-tensor on . via the normal graphic parametrization)
with rescpect to 2.

Proof Choose R > 1 (depending on X, =, n,C, || F [|¢3(y)) so that £\ Bg and £\ Bg have
the local graph coordinates over tangent hyperplanes of C with appropriate estimates for the
graphes as before. That is, for each X € T\ Bg, we can respectively parametrize ¥ and ¥

locally (near T1 (X) = Xc € C) by
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X=Xx)=11 ()?) + (x, u(x))
X=X =0 (X) + (x, 0(x))
forx = (x1,...,x,) € B" H()?)‘, which satisfy [by (3.1), (3.2), (3.3) and the comparability

Pl
of |X| and | Xc|]

5\( -1 co (RN i) oo (RN 3( 82 oo (RN
(X7 lulle B0 ) +lloxullL B0 ) +I1X1 1 oyu llp By +
+1X[* ) 2w || oo g <C(n,C 3.19
[ X" ]l o7u Il (Bpm(;()‘)_ (n,0) (3.19)
5\( -1 a [e's} n 8 a o0 n X 82~ oo n e
(X1 1ol (Bpm().()‘) + 1l oxullz (Bpm(),()‘) +IX| 1 9zu Il (Bpm(f()l) +
HIXIH ) 0JG (s . )< C(n,C) (3.20)

pII(X)]
Also, by applying the triangle inequality to (3.10), we get

) HIXP 0,8 — deu lleopr - +IXP [ 078 — 07|

pITI(X)I
)< C (. C Al F lles) (3.21)

}? ﬁ—u co (BN
[X] |l 173 B )

4 3~ _ a3 cof pn
IR 05 = 0u e
By (3.21), we may assume that 3 is a normal graph of & defined on £\ Bg; that is, for each

x € B" , | ,thereisaunique y € B" .. such that
gm(x)\ duey pll'I(X)I

oD _n(f)+oaen G2

JI+u?

m (X) + (6, u () + h(x)

or equivalently,

¥ —22 w2 ) =y a )
NSENTRUEN 1+ [,uf?) nEy

where =D _ g the unit normal N of ¥ at IT ()A( ) + (x, u (x)). In other words, % is defined
V1+0xul? ' '

implicitly by the following equation

. h(x)
- + ——=1]=0 3.23
§ (W) (u — |axu|2) (3.23)
where
Oyu
Y(x) =x —h(x) (3.24)

NSESTRAE

defines a map from B” .. into B" , . . Since |k (x) | stands for the distance from the
sim (%)) pin (%)l

point IT ()A() + (Y (x), u (¥ (x))) on ¥ (i.e. the RHS of (3.22)) to =, we immediately have
()| < 18 (Y () —u@@)] < C (1. C. || F llesy) 1XI™
To proceed further, first notice that for the unit normal vectors of ¥ and >

N (x) = M N (x) = M (3.25)

NAESTERES V14 18,42
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respectively, we may assume, by (3.21), (3.19), that

1

N — N || poo(pn
I Iz pm(X)‘)— 3

pIM(X)
which implies that for each x € B"
im(R)r

y+ I Noy — N |1

N @) N = N - N = [V @) = N6l IN )
— (IN @) = N @) [+ IN @) - N@I) =

v
Wi

(3.26)
Let

® (r.s) = i dJyu n K
x,s)=ul|lx—s———|)—-(ut+ ————
V14| dcu |? V14| du 2

then by (3.23), (3.24) and (3.26), we have ©® (x, h(x)) = 0 and

- 2
950 (x, h(x)) = —\/1+ | 3yT (¥ (x) 2 N (¢ (x) - N(x) < ~3

Therefore, by the implicit function theorem, we have i € Cc? Bnl ( >>.Besides, by doing
the implicit differentiation of (3.23) (or ® (x, 2(x)) = 0), we get
14+8Goy -dju
V1+|8cul?

dih = (Bitoy — du)

N 8ju a‘z'u
—|9juoy -0 +0dju h

l\/1+|3xu|2 J (+|3 u|2)%

(3.27)

in which we sum over repeated indicies. Note that we can use (3.27), together with (3.19)
and (3.21), to estimate d, /. For instance, for the first term on the RHS of the equation, we
have

[0;jG oy —diu| < |0;Goy —diuo Y|+ |djuo ¥y — d;u|
<cwcnmmmﬂm4

Oy ’d@ [9;ul |
ulx —bh——= _—
\/1+ | dxu |2 V 1+ [3cuf?
=C (Yl,cs I F ||C3(U)) X2

Thus we get || dch || poopn )< C(n.Cll Flleawy) |X|~2. Similarly, doing the

Zin(%)]
implicit differentiation of (3.27) and using (3.19) and (3.21) yields || 82h o0 B", ) )<
(%)

C(n.CAlFlesw) |X|73. The bounds on the covariant derivatives of & follow from the
the following estimates on the pull-back metric g;; = 9; X - 3; X and the Christoffel symbols
Fl’fj in (3.11) associated with the local coordinates x = (x1, ..., X,):
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5
55./ < gj= 14 diu 81'1,1 < 13”‘ (3.28)
|0k ul

NSESTRYE

where we have used (3.19). This completes the derivation of (3.16). ~
As for (3.17), let’s first observe that the normal graph reparametrization of ¥ amounts to
the following change of variables:

Irkl = 7l < C (n.C. F) |X|™! (3.29)

Oy u

NIESTRIE

X=n (X) £ (,00) with y=vx) =x—h(x) (3.30)

Note that from (3.30), (3.19) and (3.16), we have

B 0. u d N
Dk _ sk n.a, (’”) S L (|X|’2> (3.31)

dxi J1+ [3,uf? V1T [8eul?

By taking R sufficiently large, we may assume thaty : B” , . — Imy C B" ,., isa
y g y larg y 4 §|H<X)| ¥ pm(x)‘

C? diffeomorphism and the inverse of g% satisfies

ax,' : A
=5+ 0 (1%7)
dyp K * X1
It follows that the components of shape operators A* of & and A* of & with respect to the
local coodinates x = (x, ..., x,) are respectively equal to
N N dy, U : Oy u
A = OV OX) o wt ’ LAl =, [ —— (3.32)
Cdkdn T iaap ) e’ T VT 0l

in which we sum over repeated indicies. Using the triangle inequality, combined with (3.19),
(3.21), (3.30), (3.16) and (3.31), we then get from (3.32) that

‘A{ - A,j‘ = C(H,C, I F ||C3(U)) X7
Due to (3.28), the above implies that

‘A# - A#‘ <C(mCIFlew) X172

Also, in view of Vy A* ~ V,/iij, Vs A* ~ VrAij and
VAl =0, A] — T5,AL + TLAS, VAl =0,A] — TS, AL + TL A (3.33)
in which we sum over repeated indicies, we can similarly derive
VeA® = VeA* < C(n.C I F lleswy) 1X17°

This completes (3.17).
Equation (3.18) follows from taking one more derivative of (3.33) and use (3.32), (3.29),
(3.19), (3.21) and (3.28). O
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Next, we’d like to define a 2-tensor a on X (outside a compact set), which will be served as
the coefficients of the differential equation to be satisfied by the deviation /. Note that by
(3.12), Lemma 8 [in particular (3.17)], we may assume that

1—0)|1X|A* +0|X|A* e U VX € £\Bg, 6 €]0,1] (3.34)
where A" is the shape operator of YatX = X 4+ hN.

Definition 3.1 In the setting of Lemma 3.11 let’s take a local coordinate x = (x1, ..., X)
of X (outside a compact set) so that ¥ and ¥ can be respectively parametrized as

X=Xx), X@®)=Xx+h& N (&)

where & (x)is the deviation and N (x) is the unit-normal of ¥ at X (x). Then we define

all (x) = Za;{ (x) gkj (x) with
k

. L 3F -
al (x) = / = ((1 —0)|X| A* (x) + 0] X| A* (x)) d6
0 9S;
and its symmetrization
i, 1, .. g
a’ (x) = 3 (a” (x) +a’t (x))

where g/ (x) is the inverse of the pull-back metric gij = 0; X -0;X, A* (x) ~ A{ (x) =
—0; N - 0;X is the shape operator of X at X (x), Af (x) ~ Al/ (x,1) = —9;N - 8,5( is the
shape operator of SatX (x) with N (x) being the unit-normal of SatX (x).

Note that

1
al (x):/ B—F.<(1—6)|X|A#(x)+9|X|A#(x)) do
0 98/
1
:/ 31.((1—9)&‘ (x)+9A#(x)) 6
0 98/

since % is homogeneous of degree 0; besides, the operator a is independent of the choice

13
of local coordinates and hence defines a 2-tensor on X.

We have the following estimates for the tensor a, which is based on (3.13), (3.14), (3.15),
(3.17), (3.18) and the homogeneity of F and its derivatives.

Lemma 3.2 There exits R = R (Z, $.CU, | F 3wy A }{) > 1 such that

% <acx< ; (3.35)
|X|‘Vga’ < 3x (3.36)
|X|2‘V%a‘ <C(nC I Fllesw) (3.37)

forall X € $\Bg.
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Proof By (3.13), (3.14), (3.34), (3.17), the homogeneity and continuity of F' (and its deriva-
tives), there exists R = R (2, $.C,U | F llesn o x) > 1 such that

A , LaF ~ 3 .

L5 < al =/ & ((1 —6)|x| A* +9|X|A#) do < 2si

3 0 9S/ A
1

|X|‘/o Zasfask
/OZBS/ ((1—9)|X|A#+9|X|A#>

.((1 —6)|X] V,Ai +0|X|2V,A§<) d@‘ <3x

| X

J
Vra;

((1 — o)At GA#) . ((1 —0)V, AL + evrAf{) d@‘

Likewise, with the help of (3.15), (3.18), we can get
IXP|V3a| = C (1.1 F llesw)
The conclusion follows immediately. O

Now we are in a position to derive an elliptic equation satisfied by /.

Proposition 3.1 There exits R = R (%, %, C, U, | F llcsgy, 4 %) = 1 such that the devi-

ation h satisfies
l _ —1 -2
Vs - (adh) — 5 (X-Vsh—h)=0(IXI"")|Vshl+ O (1X|7%) Al (3.38)
for X € $\Bg, where

Vs - @dh) =YV (a¥ V.,-h)

in local coordinates and the notation O (|X |_1) means that

0 (x| = (nc. 1 Fllerw) 1XI7!

Proof Fix X e Z\éR anAd take a local coodinate x = (x1, ..., x,) of ¥ which is normal
and pricipal (w.r.t. ¥) at X = X (0). That is

=i,

=0, A/
=0 X

i, rk — kS
gl] o ij ¥ -0 ¥y

where g;; is the pull-back metric, I’fj is the Christoffel symbols and Aij is the shape operator
of ¥ at X (x). Denote the principal direction of X at X by

aiX = €;

x=0

Throughout the proof, we adopt the Einstein summation convension (i.e. summing over
repeated indicies). Recall that we regard ¥ (outside a compact set) as a normal graph over
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>\ Bg and parametrize itby X=X (x)+h(x)N (x). We then want to compute some geomtric
quantities of ¥ in terms of this local coordinate at X (0) = X 4+ hN ‘X First, we compute

(s — aln) X + 00 N| = (I —wihye; +Vih N
x=!

= — (ASV -+ AV VAS ) e+ (A + VER = ALR) N (339)

which (together with Lemma 3.1) gives the metric of $, its inverse and determinant as
follows:

i 5 , Vih Vih
G| = (=) 8 + Vi Vjh = (1 = ih) <5,-,~ + m)
—1
gl =0 -km? (m + %)
= (14260 87 + 0 (1X172) IVzhl + 0 (1%172) 1n]
detg‘ = (1 —=k1h)? ... (1 — kyh)? det (5,»,- + M)
x=0 (1 —kih)
—1—2Hh+ 0<|>?|*2)|v2h|+0(|)2|*3) Ih| (3.40)

and also the unit-normal of X:

1\7’ = et@) 2 K A A DK
x=l

n
@etd) "2 [ =S Vin [T(1=wjh) | e + (1 —kcih) ... (1= i) N
i=1 i

—f(l + i+ 0 (1R172) 195kl + 0 (1X17) 1h1) Vil -
i=1
+ (140 (1%172) 1Vzhl + 0 (1R17) 1)) N (3.41)

By (3.39), (3.40), (3.41) and Lemma 3.1, we compute the shape operator of Sat X (0):

Al _ =4 g/’—(a}kf(-ff) gk
= (An+VEh+ 0 (1%172) [Vshl + 0 (1X172) 1]
( +2i) 8 + 0 (1172 |Vzh|)
+ (A +Vih+0 (1%172) IVehl + 0 (1872 1nl) 0 (12172) 1n
= Al +68Vih+ 0 (|fc|—2) (IVshl + |h)) (3.42)
and
X-N| =X-N-X-Veh+h+0 (1R7")19shi+0 (1X72) Il (343)
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Thus, in view of the F self-shrinker equation satisfied by ¥ and %, we get

OzF(A#>—F(A#)+%<)~(-1\7—X-N)

x=0
1
oF - - ; 1
=/ = ((1—9)A#+6A#) de.(A{ —A{) — —(X-Vsh—h)
0 as} 2
+0 (1X17) IVshl + 0 (1X172) In|
i 3jkv2 1 o—1 o2
= a8/ Vih = S (X - Vsh—h) + 0 (|X| ) \Vsh| + O (|X| ) Ih|
ik2 1 o—1 o2
= a*Vih— 5 (X Vsh—h)+0 <|X| ) \Vsh| + 0 <|X| ) Ih|
1 A N
= (@, VEh) = 3 (X-Vsh =)+ 0 (1R17) 19kl + 0 (18172) 101 (344)
Note that by the symmetry of the Hessian and Lemma 3.2, we have
. 1/ .. .
(2. V3h) = ' Vih = 5 (a” n aﬂ) Vih = (a, Vih)
—v, (a"fvjh) — (viaif) Vih = Vs - (@dh) + O (|f(|—1) |Vsh| (3.45)
(3.38) follows from combining (3.44) and (3.45). O
Our goal is to show that 4 vanishes on X\ By for some R >> 1, which will be done in the
next section through Carleman’s inequality. For that purpose, we first observe that for each
te[—1,0), X = /-t Z~is (outside a compact set) also a normal graph over X,\ Bg and
it can be parametrized as X; = X; + h;N;. For the rest of this section, we will show that
each h; = h (-, t) satisfies a similar equation as 4 (-, —1) does in Proposition 3.1. Due to
the property that {%;}_; ;o form a F curvature flow, it turns out that the evolution of &,
satisfies a parabolic equation. We then give some estimates for the coefficients of the parabolic
equations (as in Lemma 3.2) , which is crucial for deriving the Carleman’s inequality in the
next section.
Now fix t € [—1, 0) and define a 2-tensor a; on X; = /—t X as in Definition 3.1. First,

take a local coordinate x = (xp, ..., x,) of ¥; (outside a compact set) so that X, and fl, can
be respectively parametrized as

Xi =X (x), X, (x) =X, (x)+h (x) Ny (x)
We define
.. . . . 1 ~
ay (x) = Za}((x, 1) g,k] (x) witha'(x,1) = /0 ;TF] ((1 —0)AF (x) + 9At# (x)) do
k i

and its symmetrization
. 1/ . .
a (0= 3 (2 @+l @)

where g/’ (x) is the inverse of the pull-back metric g;; (x, 1) = 3 X, (x)- 8, X; (x), A¥ (x) ~
Aij (x,t) = —0; N; (x) - 3; X; (x) is the shape operator of ¥, at X, (x) with N, (x) being the
unit-normal of ¥, at X; (x), A,# ~ Aij (x,1) = —8,']\7t (x) - BJX, (x) is the shape operator
of ¥; at X; (x) with N, (x) being the unit-normal of X; at X; (x).

@ Springer



Uniqueness of self-shrinkers to the degree-one curvature flow... Page 17 of 43 81

Then we have the following lemma, which is an analogous of Proposition 3.1 for ¥; =

J=tZ, t e[—1,0):

Lemma 3.3 There exits R = R (E, $.C.U, || F lcsw)ys A }f) > 1 such that for each
t € [—1,0), the deviation h; satisfies

1
V):, -(a; dhy) — 27

oy (Xe- Vaihe =) = 0 (1Xel™") [V, el + O (1X:17) el

(3.46)
for X, € £,\Bg, where Vg, - (a,dh) = ¥, ; V; (a;f th,) and

0(1X17) | = € (1.1 Fllsn) Xl
Also, we have

11Xe 0 he ooz By + 1 IXPVE R oomn By + 1 IXPVE R oo (5 Br)
<C(n,C I Fllcsw) (=) (3.47)

L e >\ Bg and

Proof Fixt € [—1,0) and X, € X,\Bg, then we have X = =

1
<V21 g dh) — 5 s (X, - Vi, hy — h,)) ’X

t

1 1

— J% (0 (|3(|*1) |Vsh| 4+ O (Iffl’z) Ihl) '&
= (0 (1%7) (Vs lul + 0 (1%172) 1)

Similarly, to derive (3.47), it suffices to rescale (3.16) to get

e

X

1Xel 1ol + 1Xe P 1V el + 1%V Ry

5
= (=0 (1X1181 + 1% PV sh| + 1R1|VEhI)

<C(nC | F ||c3(U)) (=1

e

Next, we define the “normal parametrization” of the flow:

Definition 3.2 X; = X (-, t) is called a “normal parametrization” for the motion of a hyper-
surface {%,} provided that

X =F(A*)N

That is, each particle on the hypersurface moves in normal direction during the flow. (See
also Definition 2.4)

In the derivation of the parabolic equation to be satisfied by h; = h (-, t), we will start with a
“radial parametrization” of the flow {X;}_; <, .o (i.e. each particles on the hypersurface moves
in the radial direction along the flow, see the proof of Propostion 3.2 for more deatails), then
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we make a trasition to the “normal parametrization” by using a time-dependent tangential
diffeomorphism. Note that in general, the “radial parametrization” exists only for a short
period of time (unlike the “vertical parametrization™), so later in the proof, we will do a
“local” (in spacetime) argument, which is quite sufficient for deriviving the equation.

Proposition 3.2 There exits R = R (E, S,.CU,| F llc3wys As x) > 1 so that in the

normal parametrization of the F curvature flow {;}_ ;.o , the deviation h; satisfies

Ph = 0,h — Vyx, - (a(-, 1) dh) (3.48)
O (I1X:17") IV, il + O (1X,172) ||
h(0=0 ast /0 (3.49)

for X; € Et\BR, —1 <t <0, wherea(-,t) = a,.

Proof Fix f € [—1,0), X e E;\BR, and take a local coordinate x = (x1,...,x,) of X;
around X. Define the “radial parametrization” of the flow starting at time 7 near the point X
by

i
e

For this parametrization, we can decompose the velocity vector into the normal part and the
tangential part as follows:

X(x, 1) = Xp(x)

0 X(x,t) = X;(x)

~1

2/ —t=t
~1

:rf«/jt (X; (x) - N; () N; (X)-l-;g () (X; (x) - 9;X; (x)) 0: X; (x)

=F(A{(x,t))N(x,r)_ Zﬁgu @) (X () - 9;X (. 0) 3 X (x.1)

(3.50)

in which we use the F self-shrinker equation of X; = v —f ¥ (in Definition 2.4) and the
homogeneity of F. Note that the normal part agrees with Definition 4 for the F' curvature
flow. Now consider the following ODE system:

1
dxi = Zﬁg” .0 (X (1) -3, X (x,1)

xi' =&, i=1,...,n (3.51)
1=t

Let the solution (which exists at least for a while) to be x = ¢, (§). In other words, ¢; is the
local diffeomorphism on ¥; generated by the tangent vector field 2( 5 X (x,0)" . By (3.50)
and (3.51), the reparametrization X (¢; (£) , t) of the flow becomes a normal parametrization.
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On the other hand, in the radial parametrization, h(x, 1) = V] h;(x). Thus, by (3.51)

e
and Lemma 3.3, we get
Tt )0 = 0 (0 3 5 g () (X (- 0K (5.0) i 0|
at —2(-1) / x=01(6)
1
= —h(x,t)+ X (x,t)-Vg,h
2(—1) {=h 0+ X0 Ve h) =g, (®)
= Vs, - @, 1) dhy) + O (1X:17") [V hel + O (IXel72) |hel x=g,6)
which proves (3.48).
Equation (3.49) follows from (3.47). O

Lastly, we conclude this section by some estimates on the 2-tensor a (-, t) on each time-slice
.

Proposition 3.3 There exits R = R (E, 2.CU, | F llc3wys s x) > 1 so that fort €
[—1,0), X; € %;\Bg, there hold

Patns ] (3.52)
- af(, = - .
3~ A
X Vs,ac.n| =3x (3.53)
XP[VEa.n| = CnC I Fllow) (3.54)
X PJaac, 0| <€l Fllew) (3.55)

where the time derivative in the last term is taken with respect to the normal parametrization
of the flow {2} _1 < <o

Proof We adopt the Einstein summation convension throughout the proof.
By using the rescaling argument and the homogeneity of the derivatives of F, (3.52),

(3.53), (3.54) follow from (3.35), (3.36), (3.37), respectively. As for (3.55), note that in
normal parametrization, we have

il (1) = o, (a;;(t) gk ) - (a,a;;(z)) e 422l (1) F (A%) AY (3.56)

in which we use the following evolution equation for the metric along the F curvature flow
{Zi}_1<r<0 (see [1]):

dgij (1) = —2F (A") Ay (1), o8/ =2F (A¥) AY (3.57)

By the rescaling argument, (3.12), and the homogeneity of F and its derivatives, we can
estimate each term in (3.56) by

|X,|2’F (A%) A7 <C(.C N Flew)

= | F (1,1 Af) - 1%/ A7
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and

1 2
; 0°F - # -
X, Ployal | = |x,|2’/ asf g (a=eyaf+04") (0 -6 a4 +69,.4}) ao|

~ #
- ‘/ asfasl (=o)X af +oix,14")
0

(@ =0y 1x.o 4 +01x, 8,4} do|
= CCIF leow) ]/O (a =0y 1x.1a. 4, +01x,5,4L) do|

Thus, to establish (3.55), it suffices to show that

1X,18, A < C(n.C. I F lleswy) (3.58)
X P18, AF — 9, AF] < C(n.C. Il F lleswy) (3.59)
forall X, € £,\Bg,t € [—1,0).

Firstly, let’s recall the evolution equation for the shape operator Af in the normal
parametrization along the flow (see [1]):

i oF oF I
3, A7 (1) = I (AF) - 8" Ve A] + asl (A7) - (A7) A @)
k
+ °r (") ¢/ ALV, AL (1) (3.60)
astasd k '

which yields (3.58) by the rescaling argument, (3.15) and the homogeneity of F and its
derivatives.

Secondly, we would like to compute 9, (Af - Af) in the normal parametrization (of
{2t} _1<1<0) by using the same trick as in the proof of Proposition 3.2. Fix fe[-1,0),
X e Z;\BR, and take a local coordinate x = (x1, ..., x,) of X; which is normal at X =
X (0). Consider the radial parametrization of the flow starting at time 7 near the point X by

X(x, )= g X;(x). Then we have

L . V=t /~; A i o

A ery— A (x1) = = (A{ (x.7) — A7 (x, r))
Letx = ¢ (S) with ¢; = id to be the local diffeomorphism on X; generated by the tangent
vector field 2( 5 X (-, )" as before. Then the reparametrization X (¢; (£),t) of the flow
becomes a normal parametrization and we have

o (& w©. 0=l @®.n)| =04 -aal) e©.0

+ @ €)1 (Xi (@ (€)1 - 9 Xs (@0 (£), 1))

2(—1)

(34 @ ©.0—0al @ &) .0) |

= (l_f) [(A @ - ald) + off (x;-00x) (Vek] D) = via] D)} |
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Note that for each ¢ € [—1, 0), by the rescaling argument and (3.17), we have
~ # ~ #
11X (A" = AF) gz + 11X (95,4 = V5,47) iwgs

= {” |X|3 (A# - A#) ”LDO(E\BR) + || |X|4 (VZ‘A# - v)f.‘A#) ”LDQ(E\BR)] (=1)
<C(n,CI F llcsy) (=0 (3.62)

Combining (3.61) and (3.62) to get (3.59). ]

4 Carleman’s inequalities and uniqueness of F self-shrinkers with a
tangent cone

This section is a continuation of the previous section. Here we still assume that ¥ and %
are properly embedded F self-shrinkers (in Definition 2.4) which are C° asymptotic to the

cone C at infinity, and they induce F curvature flows {¥;}_{<;<¢ and [f],] 0 with
- = —l<t<

Y =12, £ =—tS forr € [-1,0) and ¢y = C = %(. We also consider the
deviation h; = h (-, 1) of &, from ¥, for r € [—1, 0] (we set hg = 0), which is defined
on E,\BR with R > 1 (depending on X, f), C,U,| F IICs(U), A, ). For the function 4,
recall that we have Proposition 3.2 and Proposition 3.3. Note that the Einstein summation
convension is adopted throughout this section (i.e. summing over repeated indicies).

At the beginning, we will like to improve the decay rate of h; as ¢ / 0 in (3.47) to
exponential decay. To achieve that, we need Proposition 4.1, which is due to [4] and [11] for
different cases. The proof (of Proposition 4.1) will be included here for readers’ convenience,
and it is based on two crucial lemmas. The first one is a mean value inequality for parabolic
equations from [9].

Lemma 4.1 (Mean value inequality) Let P = d;—9; (a'/ (x, t) 9;) be a differential operator
such that a;J =d(,t)eC! (B]”)fort e [—1,0], d = a’t, and

l st

A
L(u—fy+n—ﬂﬂ

rsY < al

IA

la" (x,1) —a' ()E, f) |

IA

for some A € (0, 1], L > 0, where B} = {x e R”
Suppose thatu € C*! (B;1 x [T, O]) satisfies

|ﬂ<1}

1 1
Pul<L|—]0 —
[Pu| < <ﬁ| ul + TIUI)
for some T € (0, 1], then there holds

u e, 1)+ V=1 [3xu (e, )] < C (n, A, L) ][ Jul
0(x.: V)

for (x,t) € O (0, 0; g), where Q (x,t; r) = B! (x) x (—=r2, 0) is the parabolic cylinder
centered at (x, t) and fD means the average of a function on the domain D.
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Remark 4.1 To prove the above lemma, we may consider the following change of variables:
(x, 1) = (ﬁx Tf)

In the new variables, the equation in Lemma 4.1 becomes

o — 05, (a (VT % T7)dg,0) | = L9l + Jub

forx € B .t € [—1,0]. Then apply the standard theorem from [9] to the new equation.

YT
The second lemma is a local type of Carleman’s inequalities from [5].

Lemma 4.2 (Local Carleman’s inequality) Let P = 9; — 0; (a’j (x,t) 0 j) be a differential
operator such that a;] =a(, 1) e C! (Bf‘) fort € [—1,0], al = alt, 4 (0,0) = 8V
and
.. .. 1 ..
A8V <a’ < —§Y
- A

jal e, 1) — ' (7.7) = L (I =5 +1e = 71)

for some A € (0, 1], L > 0, where B} = {x cR"

xl < 1}.
Then for any fixed constant M > 4, there exists a non-increasing function ¢ : (— %, 0) —

Ry satisfying _7’ < @ (t) < —t for some constant o = o (n, A, L) > 1, so that for any

constant § € (0, %) and function v € Ccz.*l (B’l’ X (—%, 0]), there holds
MZ/ Vo, Mg dxdr + M/ 10.:v205 M @5 dx dt

50/ |Pv)>py M @5 dx dr

t=0

+ (O‘M)M sup/ (|3XV|2 +v2) dx +0M/ Vz(pS_M<I>5 dx

t<0

h N=@—08) and ®s(x.1)=® (x.1 —8) = — L (—ﬂ)
where @3 (1) = ¢ (¢ = 8) and @ (x.1) = @ (v.1 = 8) = - exp (~ il

Remark 4.2 Note that the last term on the RHS of the above inequality vanishes provided

that v =0.
1=0

Now we state the proposition (of showing the exponential deay) and then follow [4,11] to
give it a proof:

Proposition 4.1 (Exponential decay/Unique continuation principle) Ler P = 0; —
0; (aij (x,1) 8j) be a differential operator such that a;J = dii¢,1n e C! (B{‘) for
te[—1,0] all = aji, and

As < all < L5
- A
jal (e, 1) — 'l (7.7) = L (I =7+ 10 = 71)

for some A € (0, 1], L > 0, where B} = {x cR”

x| < 1}.
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Suppose thatu € C*! (Bf x [T, 0]) satisfies
1
VT

for some T € (0, 1], and that either u vanishes at (0, 0) to infinite order (see [4]), i.e.

1
|Pul < L ( |0xul + ?Iul) 4.1

VkeN 3C >0 st |u(x.n)| < C (x| +=1) (4.2)

or u vanishes identically att = 0 (see [11]), i.e.

u| =0 4.3)

1=0
Then there exist A = A (n, A, L) >0, =a (n,\, L) € (0, 1) so that

[ux, )|+ [3yu(x, 1) |
1
< Aeni (|| dcu [lzoo xi—r.0n + I Iz, x[=T,01)) 4.4

forx € B}

1 € [—aT,0).

Remark 4.3 Later we will apply Proposition 4.1 under the condition (4.3) to show the expo-
nential decay of the deviation & as ¢t /' 0. On the other hand, the proposition implies that
under the condtion (4.2), the function u in (4.1) must vanish identically at t+ = 0; in par-
ticular, it implies that u vanishes identically in the case when u is time-independent. Such
phenomenon is called the “unique continuation principle” and will be used at the end of this
section.

Proof For simplicity, we may assume that ¢/ (0, 0) = 8%/ Otherwise, we can do change of

variables like ¥ = a%/ (0, 0) ™2 x to achieve that.
In the proof, we will focus on dealing with the case of (4.2), since the same argument
work for the case of (4.3) with only a slight difference, which we will point out on the way

of proof.

4L%(n+o0)
T

Fix a constant M € [ , 00) (to be chosen), where 0 = o (n,A, L) > 1 is the

constant that appears in Lemma 4.1. Then for any € € (0, min {ﬁ 1}), choose smooth

cut-off functions ¢ = ¢(x), ne = n.(t) and n = n(¢) such that

A

X8y,

(3]

10: e

=¢=xp I¢lle2=4
nefX[fﬁz,_%]v x[;lo]fnfx[fﬁz’o], Ne /' ase 0

2,
N
1] P X[—€,0]

IA

IA

2MX[;2 -1
M M
where XB! is the characteristic function of BY. Let v¢ (x,1) = ¢(x)ne(r)u(x,t) be a

localization of u, which satisfies Vel = 0 and convergers pointwisely to v (x,t) =

1=l
c(x)n)u(x, ) as € \( 0. By the product rule, we have

Pve = P (E(x)ne(t)u(x, 1))
= {(x)ne(t) Pu+ (P ($(x) ne(1))) u—2a" 8; (£(x) ne (1)) 0ju

= () ne®) Pu+ (@m0 ) = ne) dy (a78;¢) ) w—2a (1) 3¢ 9y
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By (4.1), it follows that

1
|Pve| < {nelL |3xll|+?|u|>

1
(77
2L
+C A, L) (|oxul + ul) xB\B, (x) + 2LM |u] X[;z ;u] @) + — |ul X[—e,01 ()
2 M> M €
1 1
<L ﬁ|axve| + ?|VE| + C(A, L) M (|oyu] + |u]) xg (x,1)
2L
+ - [ul X[—e,07 (1) 4.5)

where

2 1
E:{(x,z)eB;“ 10)‘7<|x|<lor—<t<—}
M M

Note that in the case of (4.3), it suffices to consider v (without using the € cut-off) in order
to make the function vanishing at = 0. By (4.1).

Then for each § € (O, %), by Lemma 4.1 (applied to v) and (4.5), there holds
M? / vio; M®sdx di + M/ 10 ve 2@l ™M @5 dx dt
520L2/ ( L Bevel >¢1*M<1>5dxdz
T2 T 8
+2C (A, LyoM? /E (18xul* +u?) o5 M @5 dx dt

doL? [0 2 1-M M 2,2
u@; " ®sdxdt + (o M)" sup (|8xv€| + VG) dx
—e J By t

By our choice of M, the first term on the RHS of the above inequality can be absorbed by its
LHS. Thus, we get

MZ/v§¢qu>5 dxdt < C(x,L)aMZ/ (18xu* +u?) o5 M @5 dx dt
E

5 L2 0
+4@MM  sup / (18cul* +u?) dx + 02 //uzq);‘M%dxdt (4.6)
—T<t<0J B € —e J By

Now choose an integer k > M + % then by (4.2) the last term on the RHS of (4.6) can be
estimated by

4012 [0
5 //uzqo;_Md)(;dxdt
€ —€ B[
‘ 2

—Ix]
4aL2/ / Cr (Ix] + /=1)2 M) eXp(4(—r+S)) J
X
—e J B

(=Mt (4 (—t +8)°

a

<Cn,C,0,M,L)

1 0 |X|2 )M+g < —|X|2 )

— +1 exp| —— ) d —t+8) dt
2 _e{/Bl (—r+3 Placiss) & )
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O ( [ " _1E12
SC(n,Ck,a,M,L)eiz/ {/ (|§|2+1)M+§exp< £ )ds}(—r+5)’%+1 s
0

—€ 4
(e +8)7T2 — 5312

<C(n.Cr.o.M, L) -
€

4.7

In view of (4.7), apply the monotone convergence theorem to (4.6) by first letting § \( 0 and
then € N\ 0 to arrive at

/ Vo M dxdt
Px(5h0)
< C (A, L)a/ (|8xu|2 —|—u2) (pl_M<I> dxdt + (40M)M sup / (|8xu|2 +u2) dx
E —T<t<0J B
=C, A L)

(0/ o' Medxdt + (UM)M> (Il dxu ooy x(=7.01p + Il 0 2208, x[-T.01) (4.8)
E

Note that in the case of (4.3), we can get (4.8) directly from taking the limit as § ~\ 0 without
using (4.7).
Next, we would like to estimate the first term on the RHS of (4.8). For (x, t) € E, either

2 -1 . .
7 St < 737,in which case we have

(4.9)

—t 1-M 1 (UM)M_1+%
<
o

(pl—Mq)(x’t) =< (7 [I— n
(4m (=1)>2 (4mo)2

or% <|x| <land _ﬁ2 <t < 0, in which case we have

=M (x t)<< oM )Ml M3 o ( -M )
¢ T \EnM @r (ot P16 (—M)

MLy (MY (Mo

(—tM)M=1+E exp (248 4 eM/16
160 n\\ M1t
- (T (1 +5)> (4.10)
Note that in (4.10) we use the fact that the function @ (¢) = ¢ —1+3 exp (%) achieves its
M/16

minimumon R, at & = .
+at§ M-1+%

On the other hand, for any (v, s) € B} x [8_711, 0), the parabolic cylinder Q (y, s; v/=s) =
B" () x (2s,5) is contained in Bfj, x (37 0) and hence the LHS of (4.8) is bounded
below by

2 M exXp :;;/? 2
v Medrdr = ————— u? dx dt (4.11)
By, x(50) (@m)2 (=29)M%2 Jo(y.s: v=5)
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Combining (4.8), (4.9), (4.10), (4.11), we conclude that for (y, s) € Q (0, 0; &),

/ u?dx dt
O (y.5: /=)

640 M—1+3
<C@m\L,o0) (T (—SM)) (Il 9xu ooy x(=7.01 + Il 0 [0, x[~T.01))
(4.12)

Now let 8 = % (647")_1. For each (y, s) € B, x [ T.0), we choose M = _% SO

—p
, 4L2(n+0)
that M > w (and note that ﬁ <s < 0). By (4.12), we get

w? dx dt

][Q(y,s; V=5)

B
=143

< Cm A Lo)(—s) 2! <§> (II dxu [Izoo By xi=7,0n + I llzoo(B, x[=T,07))

1
B\
< CoLA L) (22) (10w lesmit-r.op + 10 s xi-7.00) 4.13)

-1
Leta = A = max {C (n,\,L,0), (g In 2) }, then (4.4) follows from (4.13)

B
4L2(n+0)’
and Lemma 4.1. ]

Combining Propositions 3.2, 3.3 and 4.1, we can show the exponential decay of i; as¢ /0
as in [12] (see also [11]).

Proposition 4.2 (Exponential decay of the deviation) There exist R = R (E, .C,U,

IFlleawybox) = LA =A0CAFlleswy. ) > 0.0 =a(ClFlewr) €
(0, 1) such that for X € L;\Bg, t € [—«,0), there holds

|V, hl 4+ |h] < A p X1
eX .
! At

Proof Fix X € £\Bg with R = R (2, $.CU || F lleswy o x) > 1, first we would like
to show that near X , there is a “normal parametrization” for the flow {%,} for t € [—1, 0].

Recall that in the beginning of Sect. 3, we show that there exists a constant p = p (n,C) €

(0, 1) so that near X, each %, is the graph of the function u;, = u (-, f) defined on BZ\XI C

TXCC fort € [—1, 0], where X c=1 ()A( ) is the the normal projection of X onto C. Note that

|)A( c| is comparable with |)A( |. In other words, locally near X, we have the following “vertical
parametrization” of the flow {¥;}_; <, <o:

X=X, 1)=Xc+ (x,ulx, 1)

Here we assume that the unit-normal of C at }A(c to be (0, 1) for ease of notation. For this
vertical parametrization, we may decompose the velocity vector into normal and tangential
components as follows:

n

d;ju o;u
X =F (A" (x,0)) N (x,1 +§:7‘ ;
! (A% D) N () — 1+ [3,ul?
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where A* (x, 1), N (x, t) are the shape operator and the unit-normal of ¥, at X (x, 1), respec-
tively. Note that the normal component is given by Definition 2.4 for the F curvature flow.

Next, we would like to do suitable change of variables to go from this “vertical parametriza-
tion” to the “noramal parametrization” of the flow (see Definition 3.2). For that purpose, we
use the same trick as in Proposition 3.2. Let x = ¢, (§) with ¢_; = id to be the local
diffeomorphism on ¥; generated by the following tangent vector field:

n n

d;u d;u :

Vix,t :—E ——0; X E—E Vix,t) 0; X
()C ) = 1+|axu|2 t p (X ) i

That is, ¢, (§) = ¢ (&, t) satisfies

gy =V @ 0),... V' ($.0), d1(5)=§ (4.14)
in which, by (3.4) and (3.9), we have

VI<C(mClFlew) XIT' Yi=1,....n (4.15)
Thus, by taking R sufficiently large, ¢; is well-defined for & € B’} & t € [—1, 0]. It follows

7

that thAe reparametrization X = X (¢, (£) , t) of the flow becomes a “normal parametrization”
near X for ¢t € [—1, 0]; that is,

a
o X @ &), 0)=F (A* (¢ (6), 1)) N (¢ (§),1)

Let gij (§,1) = 05, (X (¢ (§), 1)) - 0g; (X (1 (&), 1)) be the pull-back metric associated
with this “normal parametrization”, then by the evolution equation for the metric in [1], the
homogeneity of F' and the condition that ¢_; = id, we have

higij (€.1) = —2F (A" (9 (€).1) Ayj (91 €).1) (4.16)
= 2[x @ ©.0|'F(|x 6 ©.0[4" @ ©.0) 4 @ ©.0
gij &, —1) =4;; +9u(, —1) 9;u(, -1 4.17)

where the second fundamental form A; (x) ~ A;; (x, t) is equal to

8i2ju(x, )
V14 [0u(x, 1) ?

By (4.18), (3.1), (3.2), (3.3), (3.12) and the comparability of | X (x, ¢) | and |)A(|, the ¢2 norm
of the matrix 9,g;; (§, t) satisfies

Ajj (x, 1) = (4.18)

18igij (.01 < C(n,C. || F llcr ) 1XI72 (4.19)

So by (4.17), (3.1), (3.3) and (4.19), the pull-back metric g;; (£, t) is equivalent to the dot
product §;;.
Let Ff‘j (&, 1) be the Christoffel symbols associated with the metric g;; (&, ), then we have

1 . . .
Tl = 28 (Vigy + V8 = Vigy) (4.20)
. Bu €, —1) 33 € —1)
¢ - = (4.21)

VI+ 3, —1)?
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where (éij = 0,8ij = —2F (A") A;;. Similarly, and also by (3.15), the homogeneity of the
derivative of F, the equivalence of g;; and §;;, we have

0,51 < C (. C Nl F llcry) 1XI7°
TS & =D < C(nC I Fllciw) IXI™

which implies )
5 601 < C(nCl F o) 1X17! 4.22)

Now consider the deviation % in the local coordinates (£, ¢), then the equation in Propo-
sition 3.2 becomes

ok — {05, (a (6,18, h) + Tl €.1) a9 &.1) 05, |
= C(1.C N F llesay) (1R17 gkt + X171 ) (4.23)
h(,00=0 (4.24)
where a'/ (£, 1) = all (£, 1) satisfies (by Proposition 3.3 and (4.22))

A

8
C(n.C. I F llicswy)

IA

2 @0 el €0 = gl €0

C(n.C Al Fles)
<
- A
C(n.C Il Fllesw ) (4.26)

8t (4.25)

Xl|ocal €.0) | + X1

bl (€.1) |

Thus, by (4.22), (4.25), (4.17) and (4.19), the equation (4.23) is equivalent to

IA

ok — b (a% 6.1) 0, ) ‘
= C (1. CF llesays %) (IR17106h] + 1%1721A1) “27)

for (§,1) € B, . x[—1,0].
51X]

Let’s consider the following change of variables:

€n=z@n=((5m)& (5i1)°7)

and let i = h o,/ = a'/ o . Then (4.27) and (4.24) in the new variables become

ogh — o, (37 () 9, h) | = C (1. C. 1 F oy, 2 0) (10gh1 + 1A1)  (4.28)

Kl =0 (4.29)
t=0
and (4.25), (4.26) are translated into
A - L C(n,C, | F .
8V <a (£7) < (n.C 1 ||C3<U))5’f (4.30)
C(n.C. Al Flesa) A
\agé"f (1) \ + |0:a (£.7) ] < C(n.C I Flicswy *s p) 431

forf € B, T e [— (§|5f|)_2,0].
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Applying Proposition 20 to /2 (£,7), we may conclude that there exist A = A (n,C,
I Fllcsw)s A) >0, =« (n, Coll Flleswys A) € (0, 1) for which the following holds:

|ogh| + 1]
S S ] L L B S
Af L (le[ (2\X|) 0]) L (le[ (le\) ,OD

(4.32)

o N2
for (£,7) € Bjj, x [~a <§|X|) , 0). By undoing change of variables, (4.32) becomes

NSRS

|X|10:h| + |h]

<A exp PN (2021 ) 0o A
- At 2 § LDO(B" Ax[fl,O]) LOC(B” Ax[71,0]>

51Xl 51%
(4.33)

for (§,1) € BY, , x
g1X] )
product §;; and that | X (x, ¢) | is comparable with | X|. The conclusion follows immediately.

[m}

[—«, 0). Note that the pull-back metric g;; (§, ) is equivalent to the dot

Next, we’d like to go from the exponential decay to identically vanishing of the deviation &
outside a compact set. To this end, we have to derive a different type of Carleman’s inequality
on the flow {X;}_| <; <o, which is done through two lemmas. The first lemma is a modification
of the integral equality in [4].

Lemma 4.3 Let (M, gt) be a flow of Riemannian manifolds and P be a differential operator
on the flow defined by

PV =0,v— Vg (adv)=dv—V, (aif (1) Vjv)

where a; = a(-,t) is a symmetric 2-tensor on M. Then given functions G,V €
C>' (M x [T, 0]) with G > 0, define a function ® as
%G +V; (aVV;G) + tr(3,g) G
G
» . 1
— 5 InG+V; (a'fvj In G) +aViInG V;InG + Str(irg) (4.34)

and a 2-tensor Y as
ij ik jlo2 [N,
Y =a"a’'V;InG — =9;a"
kil 2 4
1 ) . , , ..
+3 (alkvka/[ + al* vt — alkaa‘/) V,InG (4.35)
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It follows that for any u € C>! (M x [T, 0]), there holds
. . 1 .
/ {(n’-/ —(@=9)a) ViuVyu+ 3 (9 = Vi (a7V,9) + (@ - w)w) u2} Gdu
M
, 1
= / 2 Pu (3,u +d’VilnGVju+ E\Uu) Gduy
M
, 1 2
_/ 2 (8111 —+ alJV,- ll’lGlel —+ EWu) GdI.L[
M

i, 1
— 0 {/ (a”V,-u Viu— E\Ilu2> Gdu,} (4.36)
M

where [, is the volume form of (M, g,).

Proof Let’s begin with

) {/ RAVY v,quu,}
y .

. , 1 y
:/ {2a”Vju VidyuG + a”’ViuV;u <8tG + Etr(('),g) G) + 8,a’JViuVjuG} dy
M

(4.37)
in which we use the commutativity
0;du =d o;u, du~ Viu
and the evolution equation of the volume form:
ordps = %tr (0:8) dus (4.38)

Applying integation by parts on (M, g,), (4.37) becomes
/M ~2(Vi (a¥9j0) + a"/¥i 10 G V;u) u G dp,
+/I\4ai.iviuvju (a,G + Vi (alezG) + %tr (0:8) G) di
- /Ma"f'v,»u VjuVi (a1iG) dp + /M dallVuviuGdu,  (4.39)
By (4.34), integrating by parts twice and the symmetry of a;, (4.39) becomes
2 /M (Vi (a7V;u) + a7V, 10 G Vju) du G dpy + /M AlIVu VG dp,
+ /M [Vkaij ViuV;u ak[VI InG
2V, (aV,u) VauaHViIn G — 247 VuViu V0V n G G dug

-2 / a’ViuViua Vi Gdu, + / da ViuViuGdp, (4.40)
M M
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Then we reorganize (4.40) (in order to make up the term Pu) to get
2/ {(a,u _v, (a"fv,-u)) (a,u +d"V,InG V,u) — (3w)? - 24"V;In G V;u a,u} Gdu,
M

+/ DaliViuViuGdu, — 2/ ala" (V310G + V;InG Vi 1n G) ViuViu G dpu;
M M

+/ [a4Vea ¥/ 1n GViu V0 = 241V;aH Vi 1n G Viu Vi + 8,07 Viu Y0} G
JM
(4.41)

By (4.35), (4.41) becomes
iy g 2
2/ {(&u—vi (a790)) (8 +a"Vin G Vi) = (du+ a7V, n G V) }Gdu,
M
+/ @aijViuVjqu/L, — 2/ TijViuVjqu//.,
M M
iy 1
:2/ Pu <3tu+ a’VilnG Vju+ E\I/u> Gdu;
M
— / (B,u -V (aijVju)) YuGdu,
M
, 1 2
_2/ <8tu+ a’v; lnGVju—i-E\IJu) Gduy
M
.. 1
+2/ <B,u+a’./vi InGV;u+ EWu) YuGduy
M
1 .. ..
- / w226 du, — / (2T” - cba'f) ViuViuGdu (4.42)
2 /m M ‘

For the second term of (4.42), by the product rule and integration by parts, we get

—/ (a,u— v (aijVju))u\I/Gdu,
M
1 y y
- 5/ (02 = Vi (a7 V;0%) + 247 Viu V) WG dy
M

1 1
:f/ WVG+ V(3,G+-tr(dg) G))udu,
2 Jm 2

1 )
— 0 /f\llzuzGdu; —/a"’ViuVju‘lJdeL,
M 2 M

+5/ [V; (a79:9) G + 20796 v, % + WV, (a7V,6) | w? dus

M

1 y y

- 5/ (0% + V) (79 %) + W + dTViInG VW) WG ds

M

— / \IJaijViu ViuGdu,
M

1
-9 ( / —v2u’G dm> (4.43)
M 2
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Likewise, for the fourth term of (4.42), we have
g 1
2/ (8,u +d’VilnGVju+ E‘lfu) YuGduy
M

=/ 8,u2\IJGd;Lt+/aijViGVjuZ\IJd/L,+/\Il2u2deLt
M M M

1
= _/ <3t\I-’G+ 7 (3,G+ S8 G>)u2dut + 9 (/ lDuzGdu,)
M M

+/ Wu?G dp,

M

—/ (V) (a79:6) W + a1¥,G ;) wdp,
M

_ _/ (a,\y + QU+ diV; InG VW — \pz) w2G du; + 9, </ lIJuzGd,u,>
M M
(4.44)
Combining (4.42), (4.43), (4.44) to get (4.36). ]

We hereafter consider the Riemannian manifold in Lemma 4.3 to be each time-slice X; with
the induced metric g; evolving (in “normal parametrization”) like ;¢ = —2F (A#) A (see
[1]) and the differential operator (in Lemma 4.3) to be the one in Proposition 3.2.

For the second lemma, we choose suitable weight function G and auxiliary function W in
Lemma 4.3 in order to bound the LHS of (4.36) from below. The choice of G is due to [6]
and [12]. As for W, it is not shown in [12] but is used here to deal with the last term in (4.35),
which comes from the nonlinear nature of F (see Definition 3.1). Note that in the linear case
when F (S) = tr (S) (see [12]), the coefficients of the differenital operator in Proposition 3.2
becomes a/ = gij; besides, (4.35) is reduced to

T = g'*g/'V2 InG — HAY
The idea of using an auxiliary function for the nonlinear case is motivated by [11].

Lemma 4.4 Assume that x < 6-*A3 in (2.1) and (2.2). Then there exists R =
R (E, S.CU, | F leswys »s )f) > 1 so that for any constants M > 1, t € (0, 1], let

G = Gypi= exp (M t+1) X3 + |X|2> (4.45)
3 _1 2 ij 3
U =Wy, = EM(z+r)|X| 242) aV (X -9, X) (X-9;X) 4+ M|X]|2

ey X742 ~
+§<§ (t+17)|X]| + <tr(a)—§

+ <tr(a) - %) + %M(r +o)X|72 (tr(a) X% — all (X - ;%) (X - a,»x))

(4.46)
(note that G > 0 and ¥ > 0), there hold

27 — (& — Wyall > &gl (4.47)

L(0,w — V; (1 V; ) + (& — W) W) > &7 |x|? (4.48)
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for X € S\Bg, t € [—1,0), where tr (a) = g;_/aij, & and Y are defined in (4.34) and
(4.35), respectively, with the covariant derivative is taken w.r.t. ¥;, 0;g = —2F (A#) A, and
a'l = all,

Remark 4.4 In view of Proposition 3.3, the hypothesis that » < 6=#23 amounts to requiring
the smallness of |X||Vs,a| (compared with the ellipticity of a). Similar hypothesis also
appearsin[11]and [13] when using Carleman’s inequalities to prove the backward uniqueness
of parabolic equations.

Proof Let’s start with computing the covariant derivatives of In G:
3 _1
VilnG = <§M(t+r)|X| 2 +2> (X -0;X) (4.49)
2 3 -1
ViilnG = 5M(r+r)|X| T4+2)(gij+ X NA;j)
3 _3
= M+ IXI7 (X Pgij = (X 0,X) (X - 0,X))
3 1 #
+2t 5M(z+z)|X| 2 +2 | F(A%) Ay (4.50)
and its evolution
3 3 _1
InG = M|X|2 + (EM(t—I—r) | X|"2 +2> (X -0:X)
3 3 _1 "2
= M|X|2 +2t 5M(r+r) |X|72 +2 | F (A%) 4.51)
in which we use the F curvature flow equation in normal parametrization (see Definition 3.2)
%X =F (A*)N
and the F self-shrinker equation for ¥, = \/—¢ ¥ (in Definition 2.4):
X - N =2tF (A%
Thus, by (4.34), (4.49), (4.50) and (4.51), we have
3 1 2 ij 3
D= 5M(x+r)|X| 24+2) a’ (X -8, X)(X-9;X)+ M|X|2
1/3 _1
+§ <§M(I+T)|X| 2 +2) tr (a)
3 -3 2 _ ij
+ir@) + M+ (X3 (tr(a) X2 — al (X - 9; X) (X.ajx))
3 |
+ (EM t+o)IX|72+ 2)
[(via'l) (x -0, %) + 20F (4%) (F (4") +al A )| = F(a") 1 452)
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which, together with (4.46), implies that
o—w=(Chuatroxiia)s?
=22 ’ 3
3 _1
+<§M(t+r) x|~ +2>
[(va®) cx - o)+ 20F (%) (F (a%) +a¥ax) | = F (4" 1
(4.53)
By (4.35), (4.49), (4.50) and (4.53),

27 — (@ — w)a/

3 o A
< M@G+7)|X]72 + )(a’kaf’gkz— 6a’f)
+

3 L
2a’all gy — —a ) + M+ 1) X 2a%al (1X2gu — (X - 8X) (X - X))

+ (EM t+71) |X|_7 + 2) {3lkvkaﬂ +a/*viall — al*viall — a“Vkakl} (X -9, X)
3 o . -
+ (EM (t+1) X2 + 2) (2a’kaﬂAk, —a'lak Ay — F (a%) a'f) 2 F (A"
— " + F (A*) Ha'l (4.54)
which can be estimated from below, using (3.52), (3.53), (3.55), (3.12), (3.15) and the homo-
geneity of F, by

2
270 — (@ — W)a > (%M(Hr)lxr% +2> ((%; —36= >g"f' + 0(|X|’2))

A
+5 87+ 0 (1X17?) (4.55)
where the notation O (] X|~2) means that

01X | = (ne. 1l Fliesw) 1XI72

Then (4.47) follows from (4.45) and the hypothesis (»x < 6423 provided that R > 1
(independing of M and 7).

On the other hand, by (3.52), (3.53), (3.12), (3.15), the homogeneity of F, the hypothesis
that % < 6~4A3 (note that A € (0, 1]) and R > 1 (independing of M and ), we can estimate
(4.53) from below by

3
q>—wz<§M(t+r)|X|—%+2) .

3
> <§M t+71) X772 + 2)

% —3x+0 (|X|—2)) +r 40 (1X1723)

+ (4.56)

o>

N >
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Similarly, from the F' self-shrinker equation for X;, we can estimate the tangential component
of the position vector by

IXTP = (X = (X -N)2 = [X? = (21 F (%))
= X2 = (2t F (1X| A")? X2 = [XP + 0 (1X]72) (4.57)
Consequently, (4.46) can be estimated (from below), using (3.52) and (4.57), by

3 2
= (EM(r+r>|X|*% +2> all (X8 X) (X - 0;X) + M|X]?

3 -4 Ph -2 3
> (§M(r+r) |X| z+2> <§|X| + 0 (1X] )>+M|X|2 (4.58)

Multiplying (4.56) and (4.58) to get

3 3
(®— W)U > (§M(t+r)|X|_% +2> SVIXP

Cmar ot 2) e
3 s il
2 27
3 _1 A 3 A 3
+(SMerDIxTER2) SMixE + SMIxE (459)

To achieve (4.48), let’s first rearrange (4.46) to get

3 2 3
v = (EM(I—I—‘L') 1X|"2 +2) a*l (X -0 X) (X - 9, X) + M |X|3

+ @M (t+1) X2 + 2) (tr (a) —

al (X X)(X-9X) A

X -3 (4.60)

akl (X - X) (X -9X) A
2|X|? 6

Then we would like to take time-derivative of (4.60) and estimate it by using Proposition 3.3,
(3.12), (3.15), the homogeneity of F and its derivatives, the F self-shrinker equaiton for %,
(i.e. X - N = 2t F (A*)) and the F curvature flow equation (i.e. 9 X = F (A*) N)), and also
assuming that R > 1 (depending on A). Note that we can simplify the compuation by taking
“normal coodinates” of %;. For instance, let’s compute and estimate the time-derivative of
the first term in (4.60):

2
o {GM(I +1) x| +2) a (X - 9eX) (X - 81X>}

3
=2 <§M(t L)X +2>

SMixIt 4 SMa <—1X3)X'F(A#)N HX - X) (X -9 X

§||+§(+T) §|| Ta('k)('l)
3 . z

+<5M(t+t)|X|_f +2>

[(a:a") Cx- 80 (X - 000 + 24 (X 90 (X - 0 (F (4%) N)) | (4.61)
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By taking normal coordinates, we may assume that (at the point of consideration) g;; = J;;
(so the norm is Proposition 3.3 becomes 02 norm), {01 X, ..., 9, X, N}is an orthonomal basis
for R"*!, and the last term in (4.61) can be computed and estimated by

I (aty (al) N+ F (4%) (~af cx)

() = 1

z?; (1] A% (VIA{) N +1X|7'F (1X] A%) (-A{c akx) =0 (1XI7?)
l

s0 (4.61) can be estimated by
3 -1 -2 ki
M+ ) 1X] L) 3M|X| 14M. 0(|X| 2))a (X - X) (X - 9, X)
3
+<§M(I+I)IX| 2) o (1)
By doing the same thing to other terms in (4.60), we arrive at
3 _1 —1 -2 ki
oW = (M +0) X2 42 (3M|X| 2+M~0(|X| z))a (X - 0 X) (X - 9,X)
3 1 2
+ 5M(t+r)|X| 24+2) 0()
+M~0 |X|_7 ( M@ +1) X2 +2)0(|X|—2)+0(|X|—2)
3 2
M(t—l—T)IXI 3/\MIXI
3 _1
+<5M(t+r)|X| +2> 0(1)+M-O(|X| z) (4.62)
Similarly, we can compute V; (aij V; \Il) and estimate it by
Vi (a7 VW) = all V2w + (Vi) (V)
3 | 2
= <5M(t+r)|X|_§ +2> o (1)
3 _1 ) _1
+(GME+DIXITE42)0(1X17) + Moo (1x177) 463
Then (4.48) follows from (4.59), (4.62) and (4.63). ]

Using the above two lemmas, we can derive the following Carleman’s inequality on the flow
{24} _1<1<0 (With g = C).

Proposition 4.3 (Carleman’s inequalit~y) Assume that » < 6~*A3 in (2.4) and (2.5). Then
there exists R > 1 (depending on %, %,C, U, || F |lc3yy, A, %) so that for any constants

M > 1,1 € (0, 1], and one-parameter family of C* functions u; = u (-, t) which is compactly
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supported in ¥;\Bpg for each t € [—t, 0] and is differentiable in time, there holds
)\2 0
7/ / (IVs,ul* +u*) G dH"dt
9 -1 JX
0 3
< / |Pul’G dH"dr + y / |V271u71|2G (,—7) dH"
-t J 3% -7

+ % / (-, 0) u’(-,0) G(-,0) dH" (4.64)
c

where H" is the n dimensional Hausdorff measure; P, G = Gy, and VW = Wy . are defined
in (3.48), (4.45), (4.46), respectively.

Proof Apply Lemma 4.3 to the hypersurface ¥, (with d;g = —2F (A*) A), the differential
operator P and the function u, to get

» , 1 ,
/E i(zw ~ (@ w)a’) ViuVju+ 5 (00w = Vi (a79,9) + (@ - w) w) uz} GdM"
1
’ 1
:/ 2Pu (atu+ al'lvi lnGVju—F E\Ilu) GdH"
5

, 1 2
—/ 2<B,u+ a’V;InG V;u+ illlu> GdH"
Z

. 1
—8 { / <a” ViuV,u— 5\1/112) GdH"} (4.65)
P
By Cauchy-Schwarz inequality, the RHS of (4.65) is bounded from above by
. 1
/ |Pul’G dH"dt — &, { / <a” ViuVu — E\Ifuz) G dH”} (4.66)
PP X
By Lemma 4.4 and R > 1, the LHS of (4.65) is bounded from below by
32
o (IVs,ul® +u?) G dH" (4.67)
%

Combining (4.65), (4.66), (4.67), we get
22
= | (IVgul* +v®) GdH"
9 Js,
pp 1
< / |Pul’G dH"dt — 9, {/ <a’]V[u Viu— 5\1«12) GdH”} (4.68)
% %

Integrate (4.68) in time from —7 to 0 and then use (3.52) and W > 0 to conclude (4.64). O

Now we are ready to show that # vanishes outside a compact set. We basically follow the
proof in [6] (which is also used in [12]).

Theorem 4.1 Suppose that »x < 6%A3 in (2.4) and (2.5), then there exists R =
R (E, f), C,U,| F ||C3(U)’ A, %) > 1 so that the deviation h (-, —1) offlfrom Y vanishes
on Z\BR. In other words, ¥ = ¥ outside the ball Bg.
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Proof Choose R > 1 (depending on X, S.C,U,| F lc3(wy> ») so that Proposition 3.2,
Proposition 3.3, Proposition 4.2, Proposition 4.3 and (3.15) hold; in particular, we may assume
that for all X € ¥;\Bg, t € [—1, 0]

|Ph|

IA

A
& (V3 ki +1h1) (4.69)

2
A exp <|A|t > 4.70)

where A = A (n,C. || F llc3yy.A) > 0,7 = min{a (n,C, || F llc3y. A) . & } (see Propo-
sition 4.2).

For any given M > 1 and R > 4R + 1, choose a smooth cut-off function { = ¢ (X) so
that

IV, hl + |k

IA

XBr_\Bry1 =% = XBr\Br
|D¢| + |D%*¢| <3 (4.71)

Note that D¢ is supported in E = [XER"'H’RS [ X|<R+1lorR-1< |X] SR].

Letu(-,t) = ¢ h (-, t),thenu (-, t) is compactly supported in E,\BR foreacht € [—1, 0],
and we have, by (4.69), (4.70), (4.71)

‘Pul - ‘; Ph— hPr — 23l V¢ th‘

A
<< (IVs,ul+ ul) + € (n.C. || F llc3wy. 2) (IVs,hl + |h1) xE
2 X
<3 (IVg,ul + ul) + € (. C. | F lle3w). 1) exp ) @472
u(-,0) =0 4.73)

By (4.72), (4.73), Proposition 4.3 and (4.70), we get

)\2 0

7/ / (IVs,ul* +u?) GaH"dt
—TJ %

< / / |Vs,ul> +u?) G dH"dt
18 —TJ%

2
+C (n.C, ||F||C3(U),k)/ / exp<2u> GdH"dt
-t JXNE

2
+C(n,c,||F||cs<u>,k)/ exp( 'L)G( —T) dH' (474
P

-

where G is defined in (4.45). Note that by the choice 7 < % , we can estimate the last two
terms on the RHS of (4.74) by

n 3 2 n
exp GdH'dt < exp (Mt|X|2 —1X?) dH"dr
—tJsinE SNE

(4.75)
an

2
/ exp<—2|A|T>G( —7) dH" < /E exp (—|X|*) dH" (4.76)
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Consequently, by (4.75), (4.76) and noting that the first term on the RHS of (4.74) can be
abosorbed by its LHS, we get from (4.74) that

)"2 0 2 2 n
= (IVs,ul* +v*) GdH"dt
8 -t J%
0 3 2 n
<C(nC I F ||C3(U),A)/ / exp (MTIX|3 = X1?) ddr
—t JENE

Cc(ncC | F ||C3(U),/\)/ exp (—|X|?) dH"

-7

0
<C(nC | F ”@(”)’A)/f/m(g ™ (MRS = (R = 1)?) ards
- R-1\PR

0
(el F||cz<y),x)/ / e (MrR+ 1) — &) arar
—1 JZN(Br\Br+1)

+C (n.C Al F llesys A) /E exp (—1X[%) dH" 4.77)

-7

The first term on the RHS of (4.77) goes away as R ' oo; the last term is bounded from
above by C (n, CAlFlleswys A) because of (3.5). For the LHS of (4.77), we have

)\2 0
7/ / (IVs,ul* +u?) GdH"dt > 7/ / WG dH"dt
18 /¢ Js, 2 JBN(Br-1\Bsr)

22
> — exp 4MrR2 / / ~ h*dH"de
18 5 JEN(Br-1\B4r)

Therefore, let R 7 oo in (4.77), we arrive at

/ /  hrdH"dr
5 JZ\Bar

3 3
< exp (—4Mer) C(n,C Il Fllesy ») {exp (2f2MrRz) n 1} (4.78)

Let M 7 oo in (4.78), we get h; = h (-, 1) vanishes on X,\Byg for t € [—%,0], and

hence f),% = \/% 3 coincides with 2,% = \/% Y outside By4g, which in turn shows that

4R

% coincides with ¥ outside the ball of radius R = o

[m}

By the previous theorem and the “unique continuation principle” in Proposition 4.1 (see also
Remark 4.3), we have the following conclusion on the overlap region of ¥ and X.

Theorem 4.2 Under the same hypothesis of Theorem 4.1, let

20 = {X eXxn f)‘ ¥ coincides with ¥ in a neighborhood ofX]

then £ is a nonempty hypersurface and 9%° C (82 U 852).

Proof Note that £ is a nonempty hypersurface follows from Theorem 4.1 and the definition
of £°.
Suppose that 3 ° 7,@ (32 U Bf]), then pick X e ax0\ (82 u 8i) and choose a

sequence [)A(m € 20] converging to X. Note that N ()?) =N (}A() since N ()A(m) =
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N (X,n) for all m € N, where N , N are the unit-normal of ¥ and 3, respectively. Thus,

near X, ¥ and £ can be regarded as graphes of u and 11, respectively, over BZ,’ CTy2 =Ty by
for some @ € (0, 1). That is, & and ¥ can be respectively parametrized by

X=X@=X+@xuw), X=X@=X+(x.i&) forxe B}

in which we assume that N ( ) N ( ) (0, 1) for ease of notation. Note also that

Al’ 0) = A, (0) smce A/ (xm) = ] (xp) for all m € N, where x,, is the coordinates of
m (e X (xp) = m) and

A (o) ~ AT (o) = gy [ M)
: VIFlau?)’

. L 91l (x)
0 P 0 ( 1+ |axﬁ|2> @7

are the shape operators of X and, respectively. As a result, we may assume (by choosing @
small if necessary) that A{ (x) is so closed to A{ (x) that the set

= {(1 —0) Al (x) + 04! (x) ‘x e Bl O €0, 1]]
is a bounded subset of £ and there holds

< ;TF] ((1 —0) A" (x) + A" (x)) <

>0 =

for some A € (0, 1].
From the F shrinker equation in Definition 2.4, we get

T+l F (4] @) + % (W= x - ) =0,
140,12 F (A{ (x)) + % (f—x-0,) =0 (4.80)

Substracting (4.80) and using (4.79) and the mean value theorem, we then get an equation
forv=90—u

.. . 1
a5 v+ b ojv + 5v=0 (4.81)

with

1
ol (x)=/ {M((I—Q)A#(x)—i-HA#(x))
o (as/

oF 3 M ™ Orttp 0jUg

T ((1 0) A* (x) + 0A* (x )) 71+|a | } (4.82)
. LoF - g B2 ug
i =— [ X (-6 at # ) kuo digo
b/ (x) = /0 " ((1 0) A* (x) + 04 (x)) T

djug afkug + g 3i2ju9
1+ [9cu)?

IF
—/O W((1 —0) A* (x) + 0A* (x))
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2
0jug Okl djug 3;;Ug 40

LaF
+3/ ak((l—G)A#(x)—i—GA#()) !
0 95 (1+ 0vug?)?

5 1
i0 Sxp (483)

V1+|8cug|? 2

where 1y = (1 — 0) u 4 6u. Note that (4.81) is equivalent to the following divergence form

equation:
ij Ji ij Ji . 1
5 (7“ ;a ajv> - (—ai (%) + bf) 0v+ 3 (4.84)

And by (4.82), (4.83) and (4.79), we have the following estimates for the coefficients of
(4.84):

1
+/ F((l —6) A* (x) + 0A* (x))
0

2 all + aft
< <C(IFlcig Iule ) (4.85)
103 112 2 (1 e 1w e
|9,a| 4 [b/] sC(n F llc2ys ||u||cs(B;)) (4.86)

On the other hand, since X m € ¥0 and X m = X asm /' 00, v is vanishing at each neigh-
borhood of x,, and x,, — 0asm " co. Thus, by Proposition 4.1 and Remark 4.3, v vanishes
on B" (Xm, § (@ — xw|)) for all m € N, which implies that v vanishes on B" (0, }o). In
other words, ¥ coincides with ¥ in a neighborhood of X , which contradicts with X € 9x0.

O

Lastly, we would like to estimate » (defined in (2.5)) in the rotationally symmetric case. For
that purpose, we have to compute the covariant derivatives of the second fundamental form

of C.

Lemma 4.5 At each point X¢ = (osv, s)e C (withv € Sl g > 0), pick an orthonormal

basis{ef,.‘.,eS}forTxCCsothateS—% then we have
1
Ac (e6,€5) = k8 with il =+ =k = ———, k§ =0 4.87
c €] Kk 8ij,  with Ky Ky_q oIXc] Ky ( )
VA(C ¢ C) . < Vi, j (4.88)
cAac e[sejven _O_|XC|2 y — |XC| Lj» L] n .
VeAc (ef,ef-,e,f):VcAc (eic,e,(f ) VCAC( ¢ C C)—O Vi, j,k#n

(4.89)

where Ac is the second fundamental form of C and V¢ Ac is its covariant derivative. Note
that Ac and V¢ Ac are totally symmetric tensors (by Codazzi equation).

Proof Let’s parameterize C by
Xe = (osv,s) forveS" ! seRy
and take an othornomal local frame {e{, ..., S} of C so that

9, X (v, 1)
I sAC

e = - (4.90)
" [9s Xl V1402
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By the general formula (see [7]) for the principal curvatures of hypersuface of revolution, we
get

" osJ/1+02 olXcl !
Since {elc, R eS} forms a principal basis at each point, so by (4.91) we have
AS ¢ ! ! heneveri # n
=K = = w
! " osV1402  olXel
Afj =0=AC, wheneveri # j (4.92)
where Ag = Ac (ef, e?). Also, by the orthonormality of {ef, ..., €5 } and the product rule,
the Christoffel symbols °T'f; = (DECC ef) - ef satisfy
°rf = (DC 6) = (ac e§> o =1 (493)

Thus, from (4.92) and (4.93), we deduce that whenever i, j # n or i = j = n, there holds
VEAG = D¢ (AG) = rfaS, ;4G = D¢ (aG) (4.94)

By (4.94), (4.92) and (4.90), we get

VSAS = D, (k£8i) = L ! 8ij
neu T e T o2 \esvT+02)

-1 —1
= 6;; ifi,j#n
a(1+02)s2 YT o Xe2 Y J#

which verifies (4.88).
By (4.94), (4.92) and noting that | X¢| is invariant along e,f for k # n, we get

VEAS = Dye (ki) = Dyc <ﬁ) 8;=0 ifi,j,k#n (4.95)
From (4.94) and (4.92), we have
VEAS = D, (AS,) =0 Vi (4.96)
Then (4.89) follows from (4.95) and (4.96). ]
Combining (2.1), (2.2), (2.3) with Lemma 4.5, we conclude the following:

Proposition 4.4 The constant x defined in (2.5) can be estimated by

P - d — —
%5C(n)(‘8 f(l ,0).+’81f<1 ,0)—8,,f< I ,0) D (4.97)
Proof At each point X¢ € C, take an orthonormal basis {ef, o, eS} for Tx,C so that

c _ (ov,D) . L
e = ST Then by (2.2), (2.3), Lemma 4.5 and the homogeneity of the derivatives of f,

n
we get
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|

35/ 0SL

PF

(AZ) ‘

IA

‘Blf(/clc,...,/cf)—8,,f(/clc,...,/cf)‘

C C
Ky — Ky

e (2 (T.0) | s (7-0)=aus (.0))

02F (k€S |+

which implies that

|XC|‘Zasfask o) (Veat), ‘

< e S0 (5 (7.0) s (7.0) = (7.0))

=C ) (\a F(T.0) |+ [orr (T.0) —acr (T.0)]) C

Therefore,
1
n = sup ‘ T ) (VcAﬁ)k ‘
XCECO(B}\B%) k.l 8S 8Sk
< cm (7 (T.0) [+ (7.0) - (7.9) )
[m}
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