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Abstract We prove that local weak solutions of the orthotropic p-harmonic equation are
locally Lipschitz, for every p ≥ 2 and in every dimension. More generally, the result holds
true for more degenerate equations with orthotropic structure, with right-hand sides in suitable
Sobolev spaces.
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1 Introduction

1.1 The problem

In this paper, we pursue the study of the regularity of local minimizers of degenerate func-
tionals with orthotropic structure, that we already considered in [1–4]. More precisely, for
p ≥ 2, we consider local minimizers of the functional

F0(u,�′) =
N∑

i=1

1

p

ˆ
�′

|uxi |p dx, �′ � �, u ∈ W 1,p
loc (�′), (1.1)

and more generally of the functional

Fδ(u,�′) =
N∑

i=1

1

p

ˆ
�′

(|uxi | − δi )
p
+ dx +

ˆ
�′

f u dx, �′ � �, u ∈ W 1,p
loc (�′).

Here, � ⊂ R
N is an open set, N ≥ 2, and δ1, . . . , δN are nonnegative numbers.

A local minimizer u of the functional F0 defined in (1.1) is a local weak solution of the
orthotropic p-Laplace equation

N∑

i=1

(|uxi |p−2 uxi

)
xi

= 0. (1.2)

For p = 2, this is just the Laplace equation, which is uniformly elliptic. For p > 2, this
looks quite similar to the usual p-Laplace equation

N∑

i=1

(|∇u|p−2 uxi

)
xi

= 0,

whose local weak solutions are local minimizers of the functional

I(u,�′) = 1

p

ˆ
�′

|∇u|p dx, �′ � �, u ∈ W 1,p
loc (�′). (1.3)

However, as explained in [1,2], equation (1.2) is much more degenerate. Consequently, as
for the regularity of ∇u (i.e. boundedness and continuity), the two equations are dramatically
different.

In order to understand this discrepancy between the p-Laplacian and its orthotropic ver-
sion, let us observe that the map ξ �→ |ξ |p occuring in the definition (1.3) of I degenerates

123



On the Lipschitz character of orthotropic p-harmonic… Page 3 of 33 88

only at the origin, in the sense that its Hessian is positive definite onRN \{0}. On the contrary,
the definition of the orthotropic functional F0 in (1.1) is related to the map ξ �→∑N

i=1 |ξi |p ,
which degenerates on an unbounded set, namely the N hyperplanes orthogonal to the coor-
dinate axes of RN .

The situation is even worse when

max{δi : i = 1, . . . , N } > 0, (1.4)

for the lack of ellipticity of the degenerate p-orthotropic functional arises on the larger set

N⋃

i=1

{ξ ∈ R
N : |ξi | ≤ δi }.

As a matter of fact, the regularity theory for these very degenerate functionals is far less
understood than the corresponding theory for the standard case (1.3) and its variants.

Under suitable integrability conditions on the function f , we can use the classical theory
for functionals with p-growth and ensure that the local minimizers of Fδ are locally bounded
and Hölder continuous, see for example [11, Theorems 7.5 & 7.6]. This theory also assures
that the gradients of local minimizers lie in Lr

loc(�) for some r > p, see [11, Theorem 6.7].

We also point out that for f ∈ L∞
loc(�), local minimizers of Fδ are contained in W 1,q

loc (�),
for every q < +∞ (see [3, Main Theorem]).

1.2 Main result

In this paper, we establish the optimal regularity expected for the minimizers of Fδ , namely
the Lipschitz regularity.1 More precisely, we establish the following result.

Theorem 1.1 Let p ≥ 2, f ∈ W 1,h
loc (�) for some h > N/2 and let U ∈ W 1,p

loc (�) be a local
minimizer of the functional Fδ . Then U is locally Lipschitz in �.

Moreover, in the case δ1 = · · · = δN = 0, we have the following local scaling invariant
estimate: for every ball B2R0 � �, it holds

‖∇U‖L∞(BR0/2) ≤ C

( 
BR0

|∇U |p dx

) 1
p

+ C

⎡

⎣R2
0

( 
BR0

|∇ f |h dx

) 1
h
⎤

⎦

1
p−1

, (1.5)

for some C = C(N , p, h) > 1.

Remark 1.2 (Comparison with previous results) This result unifies and substantially extends
the results on the orthotropic functional Fδ contained in [2], where it has been established
that the local minimizers of Fδ are locally Lipschitz, provided that:

• p ≥ 2, N = 2 and f ∈ W 1,p′
loc (�), see [2, Theorem A];

• p ≥ 4, N ≥ 2 and f ∈ W 1,∞
loc (�), see [2, Theorem B].

The second result was based on the so-called Bernstein’s technique, see for example [12,
Proposition 2.19]. This technique had already been exploited in the pioneering paper [17] by
Uralt’seva and Urdaletova, for a class of functionals which contains the orthotropic functional
F0 defined in (1.1), but not its more degenerate version Fδ . Namely, the result of [17] does
not cover the case when condition (1.4) is in force.

1 Observe that when f ≡ 0, any Lipschitz function u with |∇u| ≤ min{δi : i = 1, . . . , N } is a local
minimizer of Fδ . Thus in general Lipschitz continuity is the best regularity one can hope for.
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Still for the case δ1 = · · · = δN = 0, an entirely different approach relying on viscosity
methods has been developped in [6]. To our knowledge, both methods are limited to (at least)
bounded lower order terms f .

On the contrary, [2, Theorem A] can be considered as the true ancestor to Theorem 1.1
above. Indeed, they both follow the Moser’s iteration technique, originally introduced in
[16] to establish regularity for uniformly elliptic problems. However, going beyond the two-
dimensional setting requires new ideas, that we will explain in Sect. 1.3 below.

In contrast to the partial results of [2, Theorems A & B], the proof of Theorem 1.1 does
not depend on the dimension and does not need any additional restriction on p, apart from
p ≥ 2. It allows unbounded lower order terms, even if the condition f ∈ W 1,h

loc (�) for
some h > N/2 is certainly not sharp. On this point, it is useful to observe that by Sobolev’s
embedding we have2

W 1,h ↪→ Lh∗
,

with h∗ larger than N and as close to N as desired, provided h is close to N/2. This means that,
in terms of summability, our assumption on f amounts to f ∈ Lq

loc(�) for some q > N . This
is exactly the sharp expected condition on f for the local minimizers to be locally Lipschitz,
at least if one nurtures the (optimistic) hope that the regularity for the orthotropic p-Laplacian
agrees with that for the standard p-Laplacian.3

Our strategy to prove Theorem 1.1 relies on energy methods and integral estimates, and
more precisely on ad hoc Caccioppoli-type inequalities. This only requires growth assump-
tions on the Lagrangian and its derivatives and can be adapted to a large class of functionals.
For instance, we briefly explain in “Appendix” how to adapt our poof to the case of nonlinear
lower order terms, i.e. when f u is replaced by a term of the form G(x, u).

Remark 1.3 We collect in this remark some interesting open issues:

(1) one word about the assumption p ≥ 2: as explained in [1,2], when δ1 = · · · = δN = 0,
the subquadratic case 1 < p < 2 is simpler in a sense. In this case, the desired Lipschitz
regularity can be inferred from [8, Theorem 2.2] (see also [9, Theorem 2.7]). However,
the more degenerate case (1.4) is open;

(2) in [1, Main Theorem], local minimizers were proven to be C1, in the two-dimensional
case, for 1 < p < ∞ and when δ1 = · · · = δN = 0. We also refer to the very recent
paper [14], where a modulus of continuity for the gradient of local mimizers is exhibited.
We do not know whether such a result still holds in higher dimensions;

(3) in [4, Theorem 1.4], local Lipschitz regularity is established in the two-dimensional
case for an orthotropic functional, with anisotropic growth conditions; that is, for the

2 We recall that

h∗ =
⎧
⎨

⎩

N h/(N − h), if h < N ,

any q < +∞, if h = N ,

+∞, if h > N .

3 In the case of the standard p-Laplacian, the sharp assumption to have Lipschitz regularity is that f belongs to

the Lorentz space L N ,1
loc . This sharp condition has been first detected by Duzaar and Mingione in [7, Theorem

1.2], see also [13, Corollary 1.6] for a more general and refined result. This sharp result is obtained by using

potential estimates techniques. We recall that Lq
loc ⊂ L N ,1

loc for every q > N and under this slightly stronger
assumption on f , Lipschitz regularity for the p-Laplacian can be proved by more standard techniques based
on Moser’s iteration, see for example [5].
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functional
2∑

i=1

1

pi

ˆ
(|uxi | − δi )

pi+ dx +
ˆ

f u dx, with 2 ≤ p1 ≤ p2.

For such a functional, Lipschitz regularity is open in higher dimensions, even for the case
δ1 = · · · = δN = 0, i.e. for the functional

2∑

i=1

1

pi

ˆ
|uxi |pi dx +

ˆ
f u dx, with 2 ≤ p1 ≤ p2 ≤ · · · ≤ pN .

We point out that in this case, Lipschitz regularity in every dimension has been obtained
in [17, Theorem 1] for bounded local minimizers, under the additional restrictions

p1 ≥ 4 and pN < 2 p1.

Though these restrictions are not optimal, we recall that regularity can not be expected
when pN and p1 are too far apart, due to the well-known counterexamples by Giaquinta
[10] and Marcellini [15].

1.3 Technical novelties of the proof

Our main result is obtained by considering a regularized problem having a unique smooth
solution converging to our local minimizer, and proving a local Lipschitz estimate indepen-
dent of the regularization parameter.

At first sight, the strategy to prove such an estimate may seem quite standard:

(a) differentiate equation (1.2);
(b) obtain Caccioppoli-type inequalities for convex powers of the components uxk of the

gradient;
(c) derive an iterative scheme of reverse Hölder’s inequalities;
(d) iterate and obtain the desired local L∞ estimate on ∇u.

However, steps (b) and (c) are quite involved, due to the degeneracy of our equation. This
makes their concrete realization fairly intricate. Thus in order to smoothly introduce the
reader to the proof, we prefer to spend some words.

We point out that our proof is not just a mere adaption of techniques used for the p-Laplace
equation. Moreover, it does not even rely on the ideas developed in [2] for the two-dimensional
case. In a nutshell, we need new ideas to deal with our functional in full generality.

In order to obtain “good” Caccioppoli-type inequalities for the gradient, we exploit an
idea introduced in nuce in [1]. This consists in differentiating (1.2) in the direction x j and
then testing the resulting equation with a test function of the form4

ux j |ux j |2s−2 |uxk |2m,

with 1 ≤ s ≤ m. This leads to an estimate of the type (see Proposition 4.1)

N∑

i=1

ˆ
|uxi |p−2 u2

xi x j
|ux j |2 s−2 |uxk |2 m dx

4 This test function is not really admissible, since it is not compactly supported. Actually, to make it admissible,
we have to multiply it by a cut-off function. However, this gives unessential modifications and we prefer to
avoid it in order to neatly present the idea of the proof.
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≤ C
N∑

i=1

ˆ
|uxi |p−2 (|ux j |2 s+2 m + |uxk |2 s+2 m) dx

+
N∑

i=1

ˆ
|uxi |p−2 u2

xi x j
|ux j |4 s−2 |uxk |2 m−2 s dx . (1.6)

Then the idea is the following: let us suppose that we are interested in improving the summa-
bility of the component uxk . Ideally, we would like to take s = 1 in (1.6), since in this case
the left-hand side boils down to

N∑

i=1

ˆ
|uxi |p−2 u2

xi x j
|uxk |2 m dx ≥

ˆ
|uxk |p−2 u2

xk x j
|uxk |2 m dx

�
ˆ ∣∣∣∣
(
|uxk |

p
2 +m

)

x j

∣∣∣∣
2

dx .

If we now sum over j = 1, . . . , N , this would give a control on the W 1,2 norms of convex
powers of uxk . But there is a drawback here: indeed, this W 1,2 norm is estimated still in terms
of the Hessian of u, which is contained in the right-hand side of (1.6). Observe that (1.6) has
the following form

I(s − 1, m) ≤ C
N∑

i=1

ˆ
|uxi |p−2 (|ux j |2 s+2 m + |uxk |2 s+2 m) dx

+I(2 s − 1, m − s), (1.7)

where

I(s, m) =
N∑

i=1

ˆ
|uxi |p−2 u2

xi x j
|ux j |2 s |uxk |2 m dx .

This suggests to perform a finite iteration of (1.7) for s = si and m = mi such that
{

2 si − 1 = si+1 − 1
s0 = 1

and mi − si = mi+1, for i = 0, . . . , �.

The number � is chosen so that we stop the iteration when we reach m� = 0. The above
conditions imply that for every i = 0, . . . , �, we have

mi + si = m0 + s0 = 2�.

In this way, after a finite number of steps (comparable to �), the coupling between uxk and
the Hessian of u contained in the term I will disappear from the right-hand side. In other
words, we will end up with an estimate of the type

ˆ ∣∣∣∇|uxk |2
�+ p−2

2

∣∣∣
2

dx ≤ C
N∑

i, j=1

ˆ
|uxi |p−2

(
|ux j |2

�+1 + |uxk |2
�+1
)

dx

+
N∑

i=1

ˆ
|uxi |p−2 u2

xi x j
|ux j |2 (2�−1) dx .

(1.8)

Observe that we still have the Hessian of u in the right-hand side (this is the second term),
but this time it is harmless. It is sufficient to use the standard Caccioppoli inequality (3.3) for
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the gradient, which reads

N∑

i=1

ˆ
|uxi |p−2 u2

xi x j
|ux j |2 (2�−1) dx �

N∑

i=1

ˆ
|uxi |p−2 |ux j |2

�+1
dx,

and the last term is already contained in the right-hand side of (1.8). All in all, by applying the
Sobolev inequality in the left-hand side of (1.8), we get the following type of self-improving
information

∇u ∈ L2 γ (BR) �⇒ ∇u ∈ L2∗γ (Br ), where we set γ = p − 2

2
+ 2�.

In this way, we obtain an iterative scheme of reverse Holder’s inequalities. This is Step 1 in
the proof of Proposition 5.1 below. Thus, apparently, we safely land in step (c) of the strategy
described above.

We now want to pass to step (d) and iterate infinitely many times the previous information.
The goal would be to define the diverging sequence of exponents γ� by

γ� = p − 2

2
+ 2�, � ≥ 1,

and conclude by iterating

∇u ∈ L2 γ�(BR) �⇒ ∇u ∈ L2∗γ�(Br ). (1.9)

Once again, there is a drawback. Indeed, observe that by definition

2∗

2
γ� �= γ�+1.

One may think that this is not a big issue: indeed, it would be sufficient to have

γ�+1 ≤ 2∗

2
γ�, (1.10)

then an application of Hölder’s inequality in (1.9) would lead us to

∇u ∈ L2 γ�(BR) �⇒ ∇u ∈ L2 γ�+1(Br ),

and we could enchain all the estimates. However, since the ratio 2∗/2 tends to 1 as the
dimension N goes to ∞, it is easy to see that (1.10) cannot be true in general. More precisely,
such a condition holds only up to dimension N = 4.

The idea is then to go back to (1.9) and use interpolation in Lebesgue spaces in order to
construct a Moser’s scheme “without holes”. In a nutshell, we control the termˆ

BR

|∇u|2 γ� dx,

with ˆ
BR

|∇u|2 γ�−1 dx and
ˆ

BR

|∇u|2∗ γ� dx,

and use an iteration over shrinking radii in order to absorb the last term, see Step 2 of the proof
of Proposition 5.1. Once this is done, we end up with the updated self-improving information

∇u ∈ L2 γ�−1(BR) �⇒ ∇u ∈ L2∗γ�(Br ).
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What we gain is that now 2∗ γ� > 2 γ� > 2 γ�−1, thus by using Hölder’s inequality we obtain

∇u ∈ L2 γ�−1(BR) �⇒ ∇u ∈ L2 γ�(Br ).

The information comes with a precise iterative estimate and a good control on the relevant
constants. We can thus launch the Moser’s iteration procedure and obtain the desired L∞
estimate, see Step 3 of the proof of Proposition 5.1.

There is still a small detail that needs some care: the first exponent of the iteration is

2 γ0 = p + 2,

which means that on ∇u we obtain a L∞ − L p+2 local estimate. Finally, in order to obtain
the desired L∞ − L p estimate, one can simply use an interpolation argument (this is Step 4
of the proof of Proposition 5.1).

1.4 Plan of the paper

In Sect. 2, we define the approximation scheme and settle all the needed machinery. We have
dedicated Sect. 3 to the new Caccioppoli inequalities which mix together the derivatives of
the gradient with respect to 2 orthogonal directions. In Sect. 4, we exploit these Caccioppoli
inequalities to establish integrability estimates on power functions of the gradient. In the
subsequent section, we rely on these estimates to construct a Moser’s iteration scheme which
finally leads to the uniform a priori estimate of Proposition 5.1.

For ease of readability, both in Sects. 4 and 5, we first consider the case f = 0 and δ = 0,
in order to emphasize the main ideas and novelties of our approach. We explain subsequently
in Sects. 4.2 and 5.2 respectively the technicalities to cover the general case f ∈ W 1,h

loc (�)

and max{δi : i = 1, . . . , N } > 0.
Finally, in “Appendix”, we generalize Theorem 1.1 to nonlinear lower order terms.

2 Preliminaries

We will use the same approximation scheme as in [2, Section 2]. We introduce the notation

gi (t) = 1

p
(|t | − δi )

p
+, t ∈ R, i = 1, . . . , N ,

where 0 ≤ δ1, . . . , δN are given real numbers and we also set

δ = 1 + max{δi : i = 1, . . . , N }. (2.1)

We are interested in local minimizers of the following variational integral

Fδ(u;�′) =
N∑

i=1

ˆ
�′

gi (uxi ) dx +
ˆ

�′
f u dx, u ∈ W 1,p

loc (�),

where �′ � � and f ∈ W 1,h
loc (�) for some h > N/2. The latter implies that

f ∈ Lh∗
loc(�) ⊂ L N

loc(�) ⊂ L p′
loc(�).

The last inclusion is a consequence of the fact that p ≥ 2 and N ≥ 2. The condition f ∈ L p′
loc

is exactly the one required in [2, Section 2] to justify the approximation scheme that we now
describe.
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We set

gi,ε(t) = gi (t) + ε

2
t2 = 1

p
(|t | − δi )

p
+ + ε

2
t2, t ∈ R. (2.2)

Remark 2.1 For p = 2 and δi > 0, we have gi ∈ C1,1(R)∩ C∞(R \ {δi ,−δi }), but gi is not
C2. In this case, like in [3, Section 2] one would need to replace gi by a regularized version,
in particular for the C2 regularity result of Lemma 2.2 below. In order not to overburden the
presentation, we prefer to avoid to explicitely write down this regularization and keep on
using the same symbol gi .

From now on, we fix U a local minimizer of Fδ . We also fix a ball

B � � such that 2 B � � as well.

Here λ B denotes the ball having the same center as B, scaled by a factor λ > 0.
For every 0 < ε � 1 and every x ∈ B, we set Uε(x) = U ∗ 
ε(x), where 
ε is a smooth

convolution kernel, supported in a ball of radius ε centered at the origin.
Finally, we define

Fδ,ε(v; B) =
N∑

i=1

ˆ
B

gi,ε(vxi ) dx +
ˆ

B
fε v dx,

where fε = f ∗ 
ε . The following preliminary result is standard, see [2, Lemma 2.5 and
Lemma 2.8].

Lemma 2.2 (Basic energy estimate) There exists ε0 > 0 such that for every 0 < ε ≤ ε0 < 1,
the problem

min
{
Fε(v; B) : v − Uε ∈ W 1,p

0 (B)
}

, (2.3)

admits a unique solution uε. Moreover, there exists a constant C = C(N , p) > 0 such that
the following uniform estimate holdsˆ

B
|∇uε|p dx ≤ C

[ˆ
2 B

|∇U |p dx + |B| p′
N

ˆ
2 B

| f |p′
dx + (ε0 + (δ − 1)p)|B|

]
.

Finally, uε ∈ C2(B).

We also rely on the following stability result, which is slightly more precise than [2,
Lemma 2.9].

Lemma 2.3 (Convergence to a minimizer) With the same notation as before, there exists a
sequence {εk}k∈N ⊂ (0, ε0) converging to 0, such that

lim
k→∞ ‖uεk − ũ‖L p(B) = 0,

where ũ is a solution of

min
{
Fδ(v; B) : v − U ∈ W 1,p

0 (B)
}

.

We also have ∣∣∣̃uxi − Uxi

∣∣∣ ≤ 2 δi , for a. e. x ∈ B, i = 1, . . . , N . (2.4)

In the case δ = 1, i.e. when δ1 = · · · = δN = 0, then ũ = U and we have the stronger
convergence

lim
k→∞ ‖uεk − U‖W 1,p(B) = 0. (2.5)
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Proof The first part is proven in [2, Lemma 2.9], while (2.4) is proven in [2, Lemma 2.3]. For
the case δ = 1, we observe that ũ = U follows from the strict convexity of the functional,
together with the local minimality of U . In order to prove (2.5), we observe that
∣∣∣∣∣

N∑

i=1

1

p

ˆ
B

∣∣(uεk )xi

∣∣p dx −
N∑

i=1

1

p

ˆ
B

∣∣Uxi

∣∣p dx

∣∣∣∣∣ ≤
∣∣Fδ,εk (uεk ; B) − Fδ(U ; B)

∣∣

+ εk

2

ˆ
B

|∇uεk |2 dx

+
∣∣∣∣
ˆ

B
fεk uεk dx −

ˆ
B

f U dx

∣∣∣∣ .

We now use that {uεk }k∈N strongly converges in L p(B), is bounded in W 1,p(B) and that
{ fεk }k∈N strongly converges in L p′

(B) to f . By further using that (see the proof of [2,
Lemma 2.9])

lim
k→∞

∣∣Fδ,εk (uεk ; B) − Fδ(U ; B)
∣∣ = 0,

we finally get

lim
k→∞

N∑

i=1

ˆ
B

∣∣(uεk )xi

∣∣p dx =
N∑

i=1

ˆ
B

∣∣Uxi

∣∣p dx, i = 1, . . . , N . (2.6)

Observe that by Clarkson’s inequality for p ≥ 2, we obtain

N∑

i=1

∥∥∥∥
(uεk )xi + Uxi

2

∥∥∥∥
p

L p(B)

+
N∑

i=1

∥∥∥∥
(uεk )xi − Uxi

2

∥∥∥∥
p

L p(B)

≤ 1

2

(
N∑

i=1

‖(uεk )xi ‖p
L p(B) +

N∑

i=1

‖Uxi ‖p
L p(B)

)
.

By using this and (2.6), we eventually get (2.5). ��
Remark 2.4 Observe that the functional Fδ is not strictly convex when δ > 1. Thus property
(2.4) is useful in order to transfer a Lipschitz estimate for the minimizer ũ selected in the
limit, to the chosen one U .

Finally, we will repeatedly use the following classical result, see [11, Lemma 6.1] for a proof.

Lemma 2.5 Let 0 < r < R and let Z(t) : [r, R] → [0,∞) be a bounded function. Assume
that for r ≤ t < s ≤ R we have

Z(t) ≤ A
(s − t)α0

+ B
(s − t)β0

+ C + ϑ Z(s),

with A,B, C ≥ 0, α0 ≥ β0 > 0 and 0 ≤ ϑ < 1. Then we have

Z(r) ≤
(

1

(1 − λ)α0

λα0

λα0 − ϑ

) [ A
(R − r)α0

+ B
(R − r)β0

+ C
]

,

where λ is any number such that

ϑ
1
α0 < λ < 1.
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3 Caccioppoli-type inequalities

The solution uε of the regularized problem (2.3) satisfies the Euler-Lagrange equation

N∑

i=1

ˆ
g′

i,ε((uε)xi ) ϕxi dx +
ˆ

fε ϕ dx = 0, ϕ ∈ W 1,p
0 (B). (3.1)

From now on, in order to simplify the notation, we will systematically forget the subscript ε

on uε and fε and simply write u and f respectively.
We now insert a test function of the form ϕ = ψx j ∈ W 1,p

0 (B) in (3.1), compactly
supported in B. Then an integration by parts yields

N∑

i=1

ˆ
g′′

i,ε(uxi ) uxi x j ψxi dx +
ˆ

fx j ψ dx = 0, (3.2)

for j = 1, . . . , N . This is the equation solved by ux j .
We refer to [2, Lemma 3.2] for a proof of the following Caccioppoli inequality:

Lemma 3.1 Let � : R → R
+ be a C1 convex function. Then there exists a universal constant

C > 0 such that for every function η ∈ C∞
0 (B) and every j = 1, . . . , N, we have

N∑

i=1

ˆ
g′′

i,ε(uxi )

∣∣∣
(
�(ux j )

)
xi

∣∣∣
2

η2 dx

≤ C
N∑

i=1

ˆ
g′′

i,ε(uxi ) |�(ux j )|2 η2
xi

dx + C
ˆ

| fx j | |�′(ux j )| |�(ux j )| η2 dx .

(3.3)

We need a more elaborate Caccioppoli-type inequality for the gradient, which is reminiscent
of [1, Proposition 3.1].

Proposition 3.2 (Weird Caccioppoli inequality) Let �,� : [0,+∞) → [0,+∞) be two
non-decreasing continuous functions. We further assume that � is convex and C1. Then
there exists a universal constant C > 0 such that for every η ∈ C∞

0 (B), 0 ≤ θ ≤ 2 and
k, j = 1, . . . , N,

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

�(u2
x j

)�(u2
xk

) η2 dx

≤ C
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
x j

�(u2
x j

)�(u2
xk

) |∇η|2 dx

+ C

(
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

u2
x j

�(u2
x j

)2 � ′(u2
xk

)θ η2 dx

) 1
2

×
⎡

⎢⎣

(
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2θ �(u2
xk

)2−θ |∇η|2 dx

) 1
2

+ E1( f )
1
2

⎤

⎥⎦+ C E2( f )

(3.4)

123



88 Page 12 of 33 P. Bousquet et al.

where

E1( f ) :=
ˆ

| fxk | |uxk |θ+1
∣∣∣�(u2

xk
)� ′(u2

xk
)

∣∣∣
1− θ

2
η2 dx,

E2( f ) :=
ˆ

| fx j | |ux j | �(u2
x j

)�(u2
xk

) η2 dx .

Proof By a standard approximation argument, one can assume that � is C1 as well. We take
in (3.2)

ϕ = ux j �(u2
x j

)�(u2
xk

) η2.

This gives

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

(
�(u2

x j
) + 2u2

x j
�′(u2

x j
)
)

�(u2
xk

) η2 dx

= −2
N∑

i=1

ˆ
g′′

i,ε(uxi ) uxi x j ux j �(u2
x j

)�(u2
xk

) η ηxi dx

− 2
N∑

i=1

ˆ
g′′

i,ε(uxi ) uxi x j ux j uxi xk uxk � ′(u2
xk

)�(u2
x j

) η2 dx

−
ˆ

fx j ux j �(u2
x j

)�(u2
xk

) η2 dx =: A1 + A2 + A3.

(3.5)

We now proceed to estimating the three terms A�. We have

A1 ≤ 1

2

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

�(u2
x j

)�(u2
xk

) η2 dx

+ 2
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
x j

�(u2
x j

)�(u2
xk

) η2
xi

dx

and the integral containing the Hessian of u can be absorbed in the left-hand side of (3.5).
Using also that 2 u2

x j
�′(u2

x j
) ≥ 0, this yields

1

2

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

�(u2
x j

)�(u2
xk

) η2 dx

≤ 2
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
x j

�(u2
x j

)�(u2
xk

) η2
xi

dx + A2 + A3.

(3.6)

We now estimateA2, which is the most delicate term: writing� ′(u2
xk

)=� ′(u2
xk

)
θ
2 � ′(u2

xk
)1− θ

2

and using the Cauchy-Schwarz inequality, we get

A2 ≤ 2

(
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

u2
x j

�(u2
x j

)2 � ′(u2
xk

)θ η2 dx

) 1
2

×
(

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi xk

u2
xk

� ′(u2
xk

)2−θ η2 dx

) 1
2

.

(3.7)
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We observe that

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi xk

u2
xk

� ′(u2
xk

)2−θ η2 dx = 1

4

N∑

i=1

ˆ
g′′

i,ε(uxi )

∣∣∣
(
G(uxk )

)
xi

∣∣∣
2

η2 dx,

where G is the convex nonnegative C1 function defined by

G(t) =
ˆ t2

0
� ′(τ )1− θ

2 dτ.

Thus by the Caccioppoli inequality (3.3) with xk in place of x j and

�(t) = G(t), t ∈ R,

we get

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi xk

u2
xk

� ′(u2
xk

)2−θ η2 ≤ C
N∑

i=1

ˆ
g′′

i,ε(uxi ) G(uxk )
2 η2

xi
dx

+ C
ˆ

| fxk |
∣∣∣G(uxk ) G ′(uxk )

∣∣∣ η2 dx .

By Jensen’s inequality

0 ≤ G(uxk ) ≤ |uxk |θ
(ˆ u2

xk

0
� ′(τ ) dτ

)1− θ
2

≤ |uxk |θ �(u2
xk

)1− θ
2 .

Together with the fact that G ′(uxk ) = 2 uxk �
′(u2

xk
)1− θ

2 , this implies

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi xk

u2
xk

� ′(u2
xk

)2−θ η2 ≤ C
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2θ �(u2
xk

)2−θ η2
xi

dx

+ C
ˆ

| fxk | |uxk |θ+1
∣∣∣�(u2

xk
)� ′(u2

xk
)

∣∣∣
1− θ

2
η2 dx,

which in turn yields by (3.6) and (3.7),

1

2

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

�(u2
x j

)�(u2
xk

) η2 dx

≤ 2
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
x j

�(u2
x j

)�(u2
xk

) η2
xi

dx

+ C

(
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

u2
x j

�(u2
x j

)2 � ′(u2
xk

)θ η2 dx

) 1
2

×
⎡

⎢⎣

(
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2θ �(u2
xk

)2−θ η2
xi

dx

) 1
2

+
(ˆ

| fxk | |uxk |θ+1
∣∣∣�(u2

xk
)� ′(u2

xk
)

∣∣∣
1− θ

2
η2 dx

) 1
2

⎤

⎦+ A3.
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Here, we have also used the inequality (A + B)1/2 ≤ A1/2 + B1/2.

Finally,

A3 ≤ C
ˆ

| fx j | |ux j | �(u2
x j

)�(u2
xk

) η2 dx .

This completes the proof. ��

4 Local energy estimates for the regularized problem

In order to emphasize the main ideas of the proof, we have divided this section in two parts.
In the first one, we explain how (3.4) leads to higher integrability estimates for the gradient
when f = 0 and δ = 1. This allows to ignore a certain amount of technicalities. In the second
part, we then detail the modifications of the proof to obtain the corresponding estimates in
the general case.

4.1 The homogeneous case

In this subsection, we assume that f = 0 and δ = 1. Then the two terms E1( f ) and E2( f ) in
(3.4) vanish. Also observe that in this case from (2.2) we have

g′′
i,ε(t) = (p − 1) |t |p−2 + ε.

Let us single out a particular case of Proposition 3.2 by taking

�(t) = t s−1 and �(t) = tm, for t ≥ 0, (4.1)

with 1 ≤ s ≤ m.

Proposition 4.1 (Staircase to the full Caccioppoli) Let p ≥ 2 and let η ∈ C∞
0 (B), then for

every k, j = 1, . . . , N and 1 ≤ s ≤ m

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |2 s−2 |uxk |2 m η2 dx

≤ C
N∑

i=1

ˆ
g′′

i,ε(uxi ) |ux j |2 s+2 m |∇η|2 dx

+ C (m + 1)

N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 s+2 m |∇η|2 dx

+
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |4 s−2 |uxk |2 m−2 s η2 dx .

(4.2)

Proof We use (3.4) with the choices (4.1) above and

θ =

⎧
⎪⎪⎨

⎪⎪⎩

m − s

m − 1
∈ [0, 1] if m > 1,

1 if m = 1.
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On the Lipschitz character of orthotropic p-harmonic… Page 15 of 33 88

This gives

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |2 s−2 |uxk |2 m η2 dx

≤ C
N∑

i=1

ˆ
g′′

i,ε(uxi ) |ux j |2 s |uxk |2 m |∇η|2 dx

+ C

(
mθ

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |4 s−2 |uxk |2 m−2 s η2 dx

) 1
2

×
(

N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 m+2 s |∇η|2 dx

) 1
2

.

We use Young’s inequality in the form C
√

a b ≤ C2 b/4+a for the product in the right-hand
side to get

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |2 s−2 |uxk |2 m η2 dx

≤ C
N∑

i=1

ˆ
g′′

i,ε(uxi ) |ux j |2 s |uxk |2 m |∇η|2 dx

+ C mθ
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 m+2 s |∇η|2 dx

+
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |4 s−2 |uxk |2 m−2 s η2 dx .

In the first term of the right-hand side, we use Young’s inequality with the exponents

2 m + 2 s

2 s
,

2 m + 2 s

2 m
.

We also observe for the second term that mθ ≤ m. This gives the desired estimate. ��

Proposition 4.2 (Caccioppoli for power functions of the gradient) We fix an exponent

q = 2�0 − 1, for a given �0 ∈ N \ {0}.
Let η ∈ C∞

0 (B), then for every k = 1, . . . , N we have

ˆ ∣∣∣∇
(
|uxk |q+ p−2

2 uxk

)∣∣∣
2

η2 dx ≤C q5
N∑

i, j=1

ˆ
g′′

i,ε(uxi ) |ux j |2 q+2 |∇η|2 dx

+ C q5
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 q+2 |∇η|2 dx,

(4.3)

for some C = C(N , p) > 0.
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Proof We define the two finite families of indices {s�} and {m�} such that

s� = 2�, m� = q + 1 − 2�, � ∈ {0, . . . , �0}.

Observe that

1 ≤ s� ≤ m�, � ∈ {0, . . . , �0 − 1},
s� + m� = q + 1, � ∈ {0, . . . , �0},
4 s� − 2 = 2 s�+1 − 2, 2 m� − 2 s� = 2 m�+1,

and

s0 = 1, m0 = q, s�0 = 2�0 , m�0 = 0.

In terms of these families, inequality (4.2) implies for every � ∈ {0, . . . , �0 − 1}

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |2 s�−2 |uxk |2 m� η2 dx

≤ C
N∑

i=1

ˆ
g′′

i,ε(uxi ) |ux j |2 q+2 |∇η|2 dx

+ C (m� + 1)

N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 q+2 |∇η|2 dx

+
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |2 s�+1−2 |uxk |2 m�+1 η2 dx,

for some C > 0 universal. By starting from � = 0 and iterating the previous estimate up to
� = �0 − 1, we then get

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|uxk |2 q η2 dx ≤ C q2
N∑

i=1

ˆ
g′′

i,ε(uxi ) |ux j |2 q+2 |∇η|2 dx

+ C q2
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 q+2 |∇η|2 dx

+
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |2 q η2 dx,

for a universal constant C > 0. For the last term, we apply the Caccioppoli inequality (3.3)
with

�(t) = |t |q+1

q + 1
, t ∈ R,
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thus we get

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|uxk |2 q η2 dx ≤ C q2
N∑

i=1

ˆ
g′′

i,ε(uxi ) |ux j |2 q+2 |∇η|2 dx

+ C q2
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 q+2 |∇η|2 dx

+ C

(q + 1)2

N∑

i=1

ˆ
g′′

i,ε(uxi ) |ux j |2 q+2 |∇η|2 dx;

that is,

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|uxk |2 q η2 dx ≤ C q2
N∑

i=1

ˆ
g′′

i,ε(uxi ) |ux j |2 q+2 |∇η|2 dx

+ C q2
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 q+2 |∇η|2 dx,

(4.4)

possibly for a different universal constant C > 0.

We now observe that g′′
i,ε(uxi ) =

(
(p − 1) |uxi |p−2 + ε

)
and thus

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|uxk |2 q η2 dx ≥
ˆ

|uxk |p−2 u2
xk x j

|uxk |2 q η2 dx

=
(

2

2 q + p

)2 ˆ ∣∣∣∣
(
|uxk |q+ p−2

2 uxk

)

x j

∣∣∣∣
2

η2 dx .

When we sum over j = 1, . . . , N , we get

N∑

i, j=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|uxk |2 q η2 dx ≥
(

2

2 q + p

)2 ˆ ∣∣∣∇
(
|uxk |q+ p−2

2 uxk

)∣∣∣
2

η2 dx .

This proves the desired inequality. ��
4.2 The non-homogeneous case

In the general case where f �= 0 and/or δ > 1, we can prove the following analogue of (4.2),
in a similar way:

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |2 s−2 |uxk |2 m η2 dx

≤
N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|ux j |4 s−2 |uxk |2 m−2 s η2 dx

+ C (m + 1)

N∑

i=1

ˆ
g′′

i,ε(uxi )
(|ux j |2 s+2 m + |uxk |2 s+2 m) |∇η|2 dx

+ C m2
ˆ

|∇ f | (|uxk |2 s+2 m−1 + |ux j |2 s+2 m−1) η2 dx .

(4.5)
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We then deduce the following analogue of Proposition 4.2:

Proposition 4.3 We fix an exponent

q = 2�0 − 1, for a given �0 ∈ N \ {0}.
Let η ∈ C∞

0 (�), then for every k = 1, . . . , N we have

ˆ ∣∣∣∣∇
(

(|uxk | − δk)
p
2+ |uxk |q

)∣∣∣∣
2

η2 dx

≤ C q5
N∑

i=1

ˆ
g′′

i,ε(uxi )

⎛

⎝|uxk |2 q+2 +
N∑

j=1

|ux j |2 q+2

⎞

⎠ |∇η|2 dx

+ C q5
ˆ

|∇ f |
⎛

⎝|uxk |2 q+1 +
N∑

j=1

|ux j |2 q+1

⎞

⎠ η2 dx,

(4.6)

for some C = C(N , p) > 0.

Proof Using the same notation and the same strategy as in the proof of (4.3), except that we
start from (4.5) instead of (4.2), we get the following analogue of (4.4):

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|uxk |2 q η2 dx

≤ C q2
N∑

i=1

ˆ
g′′

i,ε(uxi ) (|ux j |2 q+2 + |uxk |2 q+2) |∇η|2 dx

+ C q3
ˆ

|∇ f | (|uxk |2 q+1 + |ux j |2 q+1) η2 dx .

We now observe that

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|uxk |2 q η2 dx ≥ (p − 1)

ˆ
(|uxk | − δk)

p−2
+ u2

xk x j
|uxk |2 q η2 dx .

Noting that

(|uxk | − δk)
p
+ ≤ (|uxk | − δk)

p−2
+ |uxk |2,

we have
∣∣∣∣∣

(
(|uxk | − δk)

p
2+ |uxk |q

)

x j

∣∣∣∣∣

2

≤ 2

∣∣∣∣∣

(
(|uxk | − δk)

p
2+
)

x j

∣∣∣∣∣

2

|uxk |2 q

+ 2 (|uxk | − δk)
p
+
∣∣∣
(|uxk |q

)
x j

∣∣∣
2

≤ C q2 (|uxk | − δk)
p−2
+ |uxk |2 q u2

xk x j
.

We deduce therefrom

N∑

i=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|uxk |2 q η2 dx ≥ C

q2

ˆ ∣∣∣∣∣

(
(|uxk | − δk)

p
2+ |uxk |q

)

x j

∣∣∣∣∣

2

η2 dx,
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thus when we sum over j = 1, . . . , N , we get

N∑

i, j=1

ˆ
g′′

i,ε(uxi ) u2
xi x j

|uxk |2 q η2 dx ≥ C

q2

ˆ ∣∣∣∣∇
(

(|uxk | − δk)
p
2+ |uxk |q

)∣∣∣∣
2

η2 dx .

This proves the desired inequality (4.6). ��

5 Proof of Theorem 1.1

Proof The core of the proof of Theorem 1.1 is the uniform Lipschitz estimate of Proposition
5.1 below. Its proof, which is postponed for ease of readability, uses the integrability estimates
of Sect. 4. Once we have this uniform estimate, we can reproduce the proof of [2, Theorem
A] and prove that ∇U ∈ L∞(�′), for every �′ � �.

We now detail how to obtain the scaling invariant local estimate (1.5) in the case δ1 =
· · · = δN = 0. We take 0 < r0 < R0 ≤ 1 and a ball B2R0 � �. We then consider the
sequence of miminizers {uεk }k∈N of (2.3) obtained in Lemma 2.3, with B a ball slightly
larger than BR0 so that 2 B � �. By using the uniform Lipschitz estimate (5.3) below, taking
the limit as k goes to ∞ and using the strong convergence of Lemma 2.3, we obtain

‖∇U‖L∞(Br0 ) ≤ C

(R0 − r0)σ2

(
1 + ‖∇ f ‖σ2

Lh(BR0 )

) (
‖∇U‖σ1

L p(BR0 ) + 1
)

.

Without loss of generality, we can assume that ‖∇U‖L p(BR0 ) > 0. Hence, by Young’s
inequality,

‖∇U‖L∞(Br0 ) ≤ C

(R0 − r0)σ2

(
1 + ‖∇ f ‖2 σ2

Lh(BR0 )
+ ‖∇U‖2 σ1

L p(BR0 )

)
, (5.1)

possibly for a different C = C(N , p, h) > 0. We now observe that for every λ > 0, λ U is
still a solution of the orthotropic p−Laplace equation, with the right hand side f replaced
by λp−1 f . We can use (5.1) for λ U and get

λ ‖∇U‖L∞(Br0 ) ≤ C

(R0 − r0)σ2

(
1 + λ2 σ2 (p−1) ‖∇ f ‖2 σ2

Lh(BR0 )
+ λ2 σ1 ‖∇U‖2 σ1

L p(BR0 )

)
.

Dividing by λ, we obtain

‖∇U‖L∞(Br0 ) ≤ C

(R0 − r0)σ2

(
1

λ
+ λ2 σ2 (p−1)−1 ‖∇ f ‖2σ2

Lh(BR0 )
+ λ2 σ1−1 ‖∇U‖2 σ1

L p(BR0 )

)
.

We take

λ := 1

‖∇U‖L p(BR0 ) + ‖∇ f ‖
1

p−1

Lh(BR0 )

,

and observe that if ‖∇ f ‖Lh(BR0 ) > 0, then

λ2 σ2 (p−1)−1 ‖∇ f ‖2σ2
Lh(BR0 )

≤ 1
(

‖∇ f ‖
1

p−1

Lh(BR0 )

)2 σ2 (p−1)−1
‖∇ f ‖2σ2

Lh(BR0 )
= ‖∇ f ‖

1
p−1

Lh(BR0 )
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while the inequality is obvious when ‖∇ f ‖Lh(BR0 ) = 0. Similarly,

λ2 σ1−1 ‖∇U‖2 σ1
L p(BR0 ) ≤ 1

‖∇U‖2 σ1−1
L p(BR0 )

‖∇U‖2 σ1
L p(BR0 ) = ‖∇U‖L p(BR0 ).

It thus follows that

‖∇U‖L∞(Br0 ) ≤ C

(R0 − r0)σ2

(
‖∇ f ‖

1
p−1

Lh(BR0 )
+ ‖∇U‖L p(BR0 )

)
. (5.2)

We now make this estimate dimensionally correct. Given R0 > 0, we consider a ball B2R0 �
�. Then the rescaled function

UR0(x) = U (R0 x), for x ∈ R−1
0 �,

is a solution of the orthotropic p-Laplace equation, with right-hand side fR0(x) :=
R p

0 f (R0 x). We can use for it the estimate (5.2) with radii 1 and 1/2. By scaling back,
we thus obtain

R0 ‖∇U‖L∞(BR0/2) ≤ C

(
R

− N
p +1

0 ‖∇U‖L p(BR0 ) + R
h (p+1)−N

h (p−1)

0 ‖∇ f ‖
1

p−1

Lh(BR0 )

)
,

for some constant C = C(N , p, h) > 1. Dividing by R0, we get

‖∇U‖L∞(BR0/2) ≤ C

( 
BR0

|∇U |p dx

) 1
p

+ C R
2

p−1 − N
h (p−1)

0

(ˆ
BR0

|∇ f |h dx

) 1
h (p−1)

.

This concludes the proof. ��

Proposition 5.1 (Uniform Lipschitz estimate) Let p ≥ 2, h > N/2 and 0 < ε ≤ ε0. For
every Br0 ⊂ BR0 � B with 0 < r0 < R0 ≤ 1, we have

‖∇uε‖L∞(Br0 ) ≤ C

⎛

⎝
1 + ‖∇ fε‖σ2

Lh(BR0 )

(R0 − r0)σ2

⎞

⎠
(
‖∇uε‖σ1

L p(BR0 ) + 1
)
, (5.3)

where C = C(N , p, h, δ) > 1 and σi = σi (N , p, h) > 0, for i = 1, 2.

5.1 Proof of Proposition 5.1: the homogeneous case

In this subsection, we assume that f = 0 and δ = 1.
For simplicity, we assume throughout the proof that N ≥ 3, so in this case the Sobolev

exponent 2∗ is finite. The case N = 2 can be treated with minor modifications and is left to
the reader. For ease of readability, we divide the proof into four steps.
Step 1: a first iterative scheme We add on both sides of inequality (4.3) the term

ˆ
|∇η|2 |uxk |2 q+p dx .
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We thus obtain

ˆ ∣∣∣∇
((

|uxk |q+ p−2
2 uxk

)
η
)∣∣∣

2
dx ≤ C q5

N∑

i, j=1

ˆ
g′′

i,ε(uxi ) |ux j |2 q+2 |∇η|2 dx

+ C q5
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 q+2 |∇η|2 dx

+ C
ˆ

|∇η|2 |uxk |2 q+p dx .

An application of the Sobolev inequality leads to

(ˆ
|uxk |

2∗
2 (2 q+p) η2∗

dx

) 2
2∗

≤ C q5
N∑

i, j=1

ˆ
g′′

i,ε(uxi ) |ux j |2 q+2 |∇η|2 dx

+ C q5
N∑

i=1

ˆ
g′′

i,ε(uxi ) |uxk |2 q+2 |∇η|2 dx

+ C
ˆ

|∇η|2 |uxk |2 q+p dx .

We now sum over k = 1, . . . , N and use that by the Minkowski inequality,

N∑

k=1

(ˆ
|uxk |

2∗
2 (2 q+p) η2∗

dx

) 2
2∗

=
N∑

k=1

∥∥|uxk |2 q+pη2
∥∥

L
2∗
2

≥
∥∥∥∥∥

N∑

k=1

|uxk |2 q+pη2

∥∥∥∥∥
L

2∗
2

.

This implies

⎛

⎜⎝
ˆ ∣∣∣∣∣

N∑

k=1

|uxk |2 q+p

∣∣∣∣∣

2∗
2

η2∗
dx

⎞

⎟⎠

2
2∗

≤ C q5
N∑

i,k=1

ˆ
g′′

i,ε(uxi ) |uxk |2 q+2 |∇η|2 dx

+ C
ˆ

|∇η|2
N∑

k=1

|uxk |2 q+p dx .

(5.4)

We now introduce the function

U(x) := max
k=1,...,N

|uxk (x)|.

We use that

U2 q+p ≤
N∑

k=1

|uxk |2 q+p ≤ N U2 q+p,

and also that g′′
i,ε(uxi ) |uxk |2 q+2 ≤ C U2 q+p + ε U2 q+2 for every 1 ≤ i, k ≤ N . This yields

(ˆ
U 2∗

2 (2 q+p) η2∗
) 2

2∗
≤ C q5

ˆ
U2 q+p|∇η|2 dx + Cq5ε

ˆ
U2q+2 |∇η|2 dx
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for a possibly different C = C(N , p) > 1. By using that U2 q+2 ≤ 1 + U2 q+p , we obtain
(for ε < 1)

(ˆ
U 2∗

2 (2 q+p) η2∗
dx

) 2
2∗

≤ C q5
ˆ

|∇η|2
(
U2q+p + 1

)
dx . (5.5)

We fix two concentric balls Br ⊂ BR � B and 0 < r < R ≤ 1. Let us assume for simplicity
that all the balls are centered at the origin. Then for every pair of radius r ≤ t < s ≤ R we
take in (5.5) a standard cut-off function

η ∈ C∞
0 (Bs), η ≡ 1 on Bt , 0 ≤ η ≤ 1, ‖∇η‖L∞ ≤ C

s − t
. (5.6)

This yields

(ˆ
Bt

U 2∗
2 (2 q+p) dx

) 2
2∗

≤ C
q5

(s − t)2

ˆ
Bs

(
U2 q+p + 1

)
dx . (5.7)

We define the sequence of exponents

γ j = p + 2 j+2 − 2, j ∈ N,

and take in (5.7) q = 2 j+1 − 1. This gives

(ˆ
Bt

U 2∗
2 γ j dx

) 2
2∗

≤ C
25 j

(s − t)2

ˆ
Bs

(
Uγ j + 1

)
dx, (5.8)

for a possibly different constant C = C(N , p) > 1.
Step 2: filling the gaps We now observe that

γ j−1 < γ j <
2∗

2
γ j , for every j ∈ N \ {0}.

By interpolation in Lebesgue spaces, we obtain

ˆ
Bt

Uγ j dx ≤
(ˆ

Bt

Uγ j−1 dx

) τ j γ j
γ j−1

(ˆ
Bt

U 2∗
2 γ j dx

) (1−τ j ) 2

2∗

where 0 < τ j < 1 is given by

τ j =
2∗
2 − 1

2∗
2

γ j

γ j−1
− 1

.

We now rely on (5.8) to get

ˆ
Bt

Uγ j dx ≤
(ˆ

Bt

Uγ j−1 dx

) τ j γ j
γ j−1

(
C

25 j

(s − t)2

ˆ
Bs

(
Uγ j + 1

)
dx

)1−τ j

=
⎡

⎢⎣

(
C

25 j

(s − t)2

) 1−τ j
τ j
(ˆ

Bt

Uγ j−1 dx

) γ j
γ j−1

⎤

⎥⎦

τ j (ˆ
Bs

(
Uγ j + 1

)
dx

)1−τ j

.

The sequence (τ j ) j≥1 is decreasing, which implies

τ j > lim
n→∞ τn = 1

2

2∗ − 2

2∗ − 1
=: τ for every j ∈ N \ {0}.
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Hence,

1 − τ j

τ j
≤ 1 − τ

τ
=: β.

Using that s ≤ R ≤ 1 and C > 1, this implies that

(
C

25 j

(s − t)2

) 1−τ j
τ j

≤
(

C
25 j

(s − t)2

)β

.

By Young’s inequality,

ˆ
Bt

Uγ j dx ≤ (1 − τ j )

ˆ
Bs

(
Uγ j + 1

)
dx + τ j

(
C

25 j

(s − t)2

)β (ˆ
Bt

Uγ j−1 dx

) γ j
γ j−1

≤ (1 − τ)

ˆ
Bs

Uγ j dx + C
25 j β

(s − t)2 β

(ˆ
BR

Uγ j−1 dx

) γ j
γ j−1 + |BR |.

By applying Lemma 2.5 with

Z(t) =
ˆ

Bt

Uγ j dx, α0 = 2 β, and ϑ = 1 − τ ,

we finally obtain

ˆ
Br

Uγ j dx ≤ C

⎛

⎝25 j β (R − r)−2 β

(ˆ
BR

Uγ j−1 dx

) γ j
γ j−1 + 1

⎞

⎠ , (5.9)

for some C = C(N , p) > 1.
Step 3: Moser’s iteration We now want to iterate the previous estimate on a sequence of
shrinking balls. We fix two radii 0 < r < R ≤ 1, then we consider the sequence

R j = r + R − r

2 j−1 , j ∈ N \ {0},

and we apply (5.9) with R j+1 < R j instead of r < R. Thus we get

ˆ
BR j+1

Uγ j dx ≤ C

⎛

⎜⎝27 j β (R − r)−2 β

(ˆ
BR j

Uγ j−1 dx

) γ j
γ j−1

+ 1

⎞

⎟⎠ (5.10)

where the constant C > 1 only depends on N and p.
We introduce the notation

Y j =
ˆ

BR j

Uγ j−1 dx,

thus (5.10) rewrites as

Y j+1 ≤ C

(
27 j β (R − r)−2 β Y

γ j
γ j−1
j + 1

)
≤ 2 C 27 j β (R − r)−2 β (Y j + 1)

γ j
γ j−1 .
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Here, we have used again that R ≤ 1, so that the term multiplying Y j is larger than 1. By
iterating the previous estimate starting from j = 1 and using some standard manipulations,
we obtain

Yn+1 ≤
(

C 27 β (R − r)−2 β
)n−1∑

j=0
(n− j) γn

γn− j
[
Y1 + 1

] γn
γ0 ,

possibly for a different constant C = C(N , p) > 1. We now take the power 1/γn on both
sides:

Y
1
γn

n+1 ≤
(

C 27 β (R − r)−2 β
)n−1∑

j=0

n− j
γn− j

[
Y1 + 1

] 1
γ0

=
(

C 27 β (R − r)−2 β
) n∑

j=1

j
γ j
[
Y1 + 1

] 1
γ0 .

We observe that γ j ∼ 2 j+2 as j goes to ∞. This implies the convergence of the series above
and we thus get

‖U‖L∞(Br ) = lim
n→∞

(ˆ
BRn+1

Uγn+1 dx

) 1
γn+1

≤ C (R − r)−β ′
(ˆ

BR

U p+2 dx + 1

) 1
p+2

,

for some C = C(N , p) > 1 and β ′ = β ′(N , p) > 0. We also used that γ0 = p + 2. By
recalling the definition of U , we finally obtain

‖∇u‖L∞(Br ) ≤ C (R − r)−β ′
(ˆ

BR

|∇u|p+2 dx + 1

) 1
p+2

. (5.11)

Step 4 L∞ − L p estimate We fix two concentric balls Br0 ⊂ BR0 � B with R0 ≤ 1. Then
for every r0 ≤ t < s ≤ R0 from (5.11) we have

‖∇u‖L∞(Bt ) ≤ C

(s − t)β ′

(ˆ
Bs

|∇u|p+2 dx

) 1
p+2 + C

(s − t)β ′ ,

where we also used the subadditivity of τ �→ τ 1/(p+2). We now observe that

C

(s − t)β ′

(ˆ
Bs

|∇u|p+2 dx

) 1
p+2 ≤ C

(s − t)β ′

(ˆ
Bs

|∇u|p dx

) 1
p+2 ‖∇u‖

2
p+2
L∞(Bs )

≤ 2

p + 2
‖∇u‖L∞(Bs )

+ p

p + 2

(
C

(s − t)β ′

) p+2
p
(ˆ

Bs

|∇u|p dx

) 1
p

.

We can apply again Lemma 2.5, this time with the choices

Z(t) = ‖∇u‖L∞(Bt ), A = p

p + 2
C

p+2
p

(ˆ
BR0

|∇u|p dx

) 1
p

, α0 = p + 2

p β ′ , β0 = β ′.

This yields

‖∇u‖L∞(Br0 ) ≤ C

⎡

⎣ 1

(R0 − r0)
β ′ p+2

p

(ˆ
BR0

|∇u|p dx

) 1
p

+ 1

(R0 − r0)β
′

⎤

⎦ ,
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for every R0 ≤ 1. This readily implies the desired estimate (5.3) in the homogeneous case. ��
5.2 Proof of Proposition 5.1: the non-homogeneous case

We follow step by step the proof of the homogeneous case and we only indicate the main
changes, which essentially occur in Step 1 and Step 2.
Step 1: a first iterative scheme This time, we add on both sides of inequality (4.6) the term

ˆ
|∇η|2 (|uxk | − δk)

p
+ |uxk |2 q dx .

Then the left-hand side is greater, up to a constant, than

ˆ ∣∣∣∣∇
(

(|uxk | − δk)
p
2+ |uxk |q η

)∣∣∣∣
2

dx .

The latter in turn, by the Sobolev inequality is greater, up to a constant, than

(ˆ
(|uxk | − δk)

2∗ p
2+ |uxk |2

∗q η2∗
dx

) 2
2∗

.

By summing over k = 1, . . . , N and using the Minkowski inequality, we obtain the analogue
of (5.4), namely

(ˆ ∣∣∣
N∑

k=1

(|uxk | − δk)
p
+ |uxk |2 q

∣∣∣
2∗
2
η2∗

dx

) 2
2∗

≤ Cq5
N∑

i,k=1

ˆ
g′′

i,ε(uxi ) |uxk |2q+2 |∇η|2 dx

+ C q5
N∑

k=1

ˆ
|∇ f | |uxk |2 q+1 η2 dx

+ C
ˆ

|∇η|2
N∑

k=1

(|uxk | − δk)
p
+ |uxk |2 q dx .

We now introduce the function

U(x) := 1

2 δ
max

k=1,...,N
|uxk (x)|,

where the parameter δ is defined in (2.1). We use that

N∑

k=1

(|uxk | − δk)
p
+ |uxk |2 q ≥ (2 δ U − δ)

p
+ |2 δ U |2 q ≥ (2 δ)2 q+p

(
U − 1

2

)p

+
U2 q ,

and also that for every 1 ≤ i ≤ N ,

g′′
i,ε(uxi ) = (p − 1) (|uxi | − δi )

p−2
+ + ε ≤ C δ p−2 U p−2 + ε.
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This yields

⎛

⎝
ˆ (

U − 1

2

) 2∗
2 p

+
U2∗q η2∗

dx

⎞

⎠

2
2∗

≤ C q5
ˆ

U2 q+p |∇η|2 dx

+ C q5ε

ˆ
U2 q+2 |∇η|2 dx

+ C q5
ˆ

|∇ f |U2 q+1 η2 dx

for a possibly different C = C(N , p, δ) > 1.
With the concentric balls Br ⊂ Bt ⊂ Bs ⊂ BR and the function η as defined in (5.6), an

application of Hölder’s inequality leads to

⎛

⎝
ˆ

Bt

(
U − 1

2

) 2∗
2 p

+
U2∗ q dx

⎞

⎠

2
2∗

≤ C
q5

(s − t)2

ˆ
Bs

U2 q+p dx

+ C
q5

(s − t)2 ε

ˆ
Bs

U2 q+2 dx

+ C q5 ‖∇ f ‖Lh(BR)

(ˆ
Bs

U (2 q+1) h′
dx

) 1
h′

.

(5.12)

From now on, we assume that

q ≥ max

{
p − 2 h′

2 (h′ − 1)
,

2∗ p

2 h′ − 1

}
. (5.13)

This in particular implies that

2 q + 2 ≤ 2 q + p ≤ (2 q + 2) h′,

then by using Hölder’s inequality and taking into account that s ≤ 1, we get

⎛

⎝
ˆ

Bt

(
U − 1

2

) 2∗
2 p

+
U2∗ q dx

⎞

⎠

2
2∗

≤ C
q5

(s − t)2

(ˆ
Bs

U (2 q+2) h′
dx

) 2 q+p
(2 q+2) h′

+ C
q5

(s − t)2 ε

(ˆ
Bs

U (2 q+2) h′
dx

) 1
h′

+ C q5 ‖∇ f ‖Lh(BR)

(ˆ
Bs

U (2 q+2) h′
dx

) 2 q+1
(2 q+2) h′

.

Thanks to the relation on the exponents, this gives (recall that ε < 1 and s ≤ 1)

⎛

⎝
ˆ

Bt

(
U − 1

2

) 2∗
2 p

+
U2∗ q dx

⎞

⎠

2
2∗

≤ C q5

(s − t)2

(
1 + ‖∇ f ‖Lh(BR)

)

×
(ˆ

Bs

U (2 q+2) h′
dx + 1

) 2 q+p
(2 q+2) h′

.

(5.14)
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We now estimateˆ
Bs

U (2 q+2) h′
dx =

ˆ
Bs∩{U≥1}

U (2 q+2) h′
dx +

ˆ
Bs∩{U≤1}

U (2 q+2) h′
dx

≤
ˆ

Bs∩{U≥1}
U (2 q+2) h′

dx + C.

Observe that on the set {U ≥ 1}, we have U ≤ 2 (U − 1/2)+. Hence,

ˆ
Bs

U (2 q+2) h′
dx ≤ C

ˆ
Bs

(
U − 1

2

) 2∗
2 p

+
U (2 q+2) h′− 2∗

2 p dx + C, (5.15)

where the exponent (2 q + 2) h′ − (2∗ p)/2 is positive, thanks to the choice (5.13) of q . We
deduce from (5.14) that

⎛

⎝
ˆ

Bt

(
U − 1

2

) 2∗
2 p

+
U2∗ q dx

⎞

⎠

2
2∗

≤ C q5

(s − t)2

(
1 + ‖∇ f ‖Lh(BR)

)

×
⎛

⎝
ˆ

Bs

(
U − 1

2

) 2∗
2 p

+
U (2 q+2) h′− 2∗

2 p dx + 1

⎞

⎠

2 q+p
(2 q+2) h′

,

(5.16)

for a constant C = C(N , p, h, δ) > 1. We now take q = 2 j+1 − 1 for j ≥ j0 − 1, where
j0 ∈ N is chosen so as to ensure condition (5.13). Then we define the sequence of positive
exponents

γ j = (2 q + 2) h′ − 2∗

2
p = 2 j+2 h′ − 2∗

2
p, j ≥ j0,

and

γ̂ j = 2∗ q = 2∗ (2 j+1 − 1), j ≥ j0.

In order to simplify the notation, we also introduce the absolutely continuous measure

d μ :=
(
U − 1

2

) 2∗
2 p

+
dx .

From (5.16), we get

(ˆ
Bt

U γ̂ j dμ

) 2
2∗

≤ C 25 j

(s − t)2

(
1 + ‖∇ f ‖Lh(BR)

) (ˆ
Bs

Uγ j dμ + 1

) 2
2∗

γ̂ j + 2∗
2 p

γ j + 2∗
2 p

.

We now observe that h > N/2 implies h′ < 2∗/2. By recalling that p ≥ 2, we thus have
2 h′ < (2∗ p)/2, which in turn implies

γ̂ j

γ j
≥ 2∗

2 h′ > 1, j ≥ j0. (5.17)

It follows that

γ̂ j + 2∗

2
p

γ j + 2∗

2
p

≤ γ̂ j

γ j
.
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Hence, we obtain

(ˆ
Bt

U γ̂ j dμ

) 2
2∗

≤ C 25 j

(s − t)2

(
1 + ‖∇ f ‖Lh(BR)

) (ˆ
Bs

Uγ j dμ + 1

) 2
2∗

γ̂ j
γ j

. (5.18)

Step 2: filling the gaps Since

γ j−1 < γ j < γ̂ j , for every j ≥ j0 + 1,

we obtain by interpolation in Lebesgue spaces,

ˆ
Bt

Uγ j dμ ≤
(ˆ

Bt

Uγ j−1 dμ

) τ j γ j
γ j−1

(ˆ
Bt

U γ̂ j dμ

) (1−τ j ) γ j
γ̂ j

,

where 0 < τ j < 1 is given by

τ j =
γ̂ j

γ j
− 1

γ̂ j

γ j

γ j

γ j−1
− 1

. (5.19)

We now rely on (5.18) to get

ˆ
Bt

Uγ j dμ ≤
(ˆ

Bt

Uγ j−1 dμ

) τ j γ j
γ j−1

×
⎡

⎢⎣

(
C

25 j

(s − t)2 (1 + ‖∇ f ‖Lh(BR))

) 2∗ γ j
2 γ̂ j

(ˆ
Bs

Uγ j dμ + 1

)
⎤

⎥⎦

1−τ j

=
⎡

⎢⎣

(
C

25 j

(s − t)2 (1 + ‖∇ f ‖Lh(BR))

) 2∗ γ j (1−τ j )
2 γ̂ j τ j

(ˆ
Bt

Uγ j−1 dμ

) γ j
γ j−1

⎤

⎥⎦

τ j

×
(ˆ

Bs

Uγ j dμ + 1

)1−τ j

.

(5.20)
We claim that

τ j ≥ τ := 2∗ − 2 h′

4 · 2∗ − 2 h′ for every j ≥ j0 + 1. (5.21)

We already know by (5.17) that (γ̂ j/γ j ) ≥ 2∗/(2h′). Moreover, relying on the fact that
(2∗ p)/2 ≤ 2 j0 h′ (this follows from the definition of j0), we also have

2 ≤ γ j

γ j−1
≤ 4, j ≥ j0 + 1.

By recalling the definition (5.19) of τ j , we get

τ j = ζ

(
γ̂ j

γ j
,

γ j

γ j−1

)
, where ζ(x, y) = x − 1

x y − 1
.
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Observe that on [2∗/(2 h′),+∞) × [2, 4], the function x �→ ζ(x, y) is increasing, while
y �→ ζ(x, y) is decreasing. Thus we get

τ j ≥ ζ

(
2∗

2 h′ , 4

)
,

which is exactly claim (5.21). We deduce from (5.21) and (5.17) that

2∗ γ j (1 − τ j )

2 γ̂ j τ j
≤ 1 − τ

τ
h′ =: β.

In particular, we have

(
C

25 j

(s − t)2 (1 + ‖∇ f ‖Lh(BR))

) 2∗ γ j (1−τ j )
2 γ̂ j τ j

≤
(

C
25 j

(s − t)2 (1 + ‖∇ f ‖Lh(BR))

)β

,

since the quantity inside the parenthesis is larger than 1 (here, we use again that s ≤ 1). In
view of (5.20), this implies

ˆ
Bt

Uγ j dμ ≤
⎡

⎣
(

C
25 j

(s − t)2 (1 + ‖∇ f ‖Lh(BR))

)β (ˆ
Bt

Uγ j−1 dμ

) γ j
γ j−1

⎤

⎦
τ j

×
(ˆ

Bs

Uγ j dμ + 1

)1−τ j

.

By Young’s inequality,
ˆ

Bt

Uγ j dμ ≤ (1 − τ j )

(ˆ
Bs

Uγ j dμ + 1

)

+ τ j

(
C

25 j

(s − t)2 (1 + ‖∇ f ‖Lh(BR))

)β (ˆ
Bt

Uγ j−1 dμ

) γ j
γ j−1

≤ (1 − τ)

ˆ
Bs

Uγ j dμ

+ C
25 j β

(s − t)2 β
(1 + ‖∇ f ‖Lh(BR))

β

(ˆ
BR

Uγ j−1 dμ

) γ j
γ j−1 + 1,

where C = C(N , p, h, δ) > 1 as usual. By applying again Lemma 2.5, this times with the
choices

Z(t) =
ˆ

Bt

Uγ j dμ, α0 = 2 β, and ϑ = 1 − τ ,

we finally obtain

ˆ
Br

Uγ j dμ ≤ C
25 j β

(R − r)2 β
(1 + ‖∇ f ‖Lh(BR))

β

(ˆ
BR

Uγ j−1 dμ

) γ j
γ j−1 + C. (5.22)

Step 3: Moser’s iteration Estimate (5.22) is the analogue of (5.9), except that the Lebesgue
measure dx is now replaced by the measure dμ, and the index j is assumed to be larger than
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some j0 +1, instead of j ≥ 0 as in (5.9). Following the same iteration argument and starting
from j = j0 + 1, we are led to

‖U‖L∞(Br , dμ) ≤ C

(
1 + ‖∇ f ‖Lh(BR)

R − r

)β ′ (ˆ
BR

Uγ j0 dμ + 1

) 1
γ j0

, (5.23)

for some C = C(N , p, h, δ) > 1, β ′ = β ′(N , p, h) > 0.
Step 4 L∞ − L p estimate We now want to replace the norm Lγ j0 (BR, dμ) of U in the
right-hand side of (5.23) by its norm L p(BR, dx). Let q1 := 2 j1+1 − 1 where

j1 := min
{

j ≥ j0 : j + 1 ≥ log2

(
1 + γ j0

2∗
)}

.

Then γ j0 ≤ 2∗ q1 and thus, by using that

Uγ j0 ≤ 22∗q1−γ j0 U2∗q1 , whenever U ≥ 1

2
,

we have

‖U‖L
γ j0 (BR , dμ)

≤ C ‖U‖
2∗q1
γ j0

L2∗q1 (BR , dμ)
. (5.24)

We rely on (5.14) with q = q1 to get for every 0 < r < t < s < R

‖U‖2 q1

L2∗q1 (Bt , dμ)
≤ C

(s − t)2

(
1 + ‖∇ f ‖Lh(BR)

) (‖U‖2 q1+p

L2 (q1+1) h′
(Bs )

+ 1
)

, (5.25)

for some new constant C = C(N , p, h, δ) > 1.
Since j1 ≥ j0, we have p < (2 q1 + 2) h′ < (2q1 + p) 2∗

2 , and thus, by interpolation in
Lebesgue spaces

‖U‖L2 (q1+1) h′
(Bs )

≤ ‖U‖θ

L2∗ q1+ 2∗
2 p

(Bs )

‖U‖1−θ
L p(Bs )

, (5.26)

where θ ∈ (0, 1) is determined as usual by scale invariance. As in the proof of (5.15), we
have

‖U‖
L2∗q1+ 2∗

2 p
(Bs )

≤ C ‖U‖
2 q1

2 q1+p

L2∗q1 (Bs , dμ)
+ C.

Inserting this last estimate into (5.26), we obtain

‖U‖2 q1+p

L2 (q1+1) h′
(Bs )

≤ C ‖U‖2 q1 θ

L2∗q1 (Bs , dμ)
‖U‖(1−θ) (2 q1+p)

L p(Bs )
+ C ‖U‖(1−θ) (2 q1+p)

L p(Bs )
,

up to changing the constant C = C(N , p, h, δ) > 1. In view of (5.25), this gives

‖U‖2 q1

L2∗q1 (Bt , dμ)
≤ C

(s − t)2

(
1 + ‖∇ f ‖Lh(BR)

)

×
(
‖U‖2 q1 θ

L2∗q1 (Bs , dμ)
‖U‖(1−θ) (2 q1+p)

L p(Bs )
+ ‖U‖(1−θ) (2 q1+p)

L p(Bs )
+ 1
)

.

By Young’s inequality, we get

‖U‖2 q1

L2∗q1 (Bt , dμ)
≤ θ ‖U‖2 q1

L2∗q1 (Bs , dμ)

+ (1 − θ)

(
C

(s − t)2 (1 + ‖∇ f ‖Lh(BR))

) 1
1−θ ‖U‖ (2 q1+p)

L p(BR)

+ C

(s − t)2

(
1 + ‖∇ f ‖Lh(BR)

) (‖U‖(1−θ) (2 q1+p)

L p(BR) + 1
)

.
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By Lemma 2.5, this implies

‖U‖2 q1

L2∗ q1 (Br , dμ)
≤ C

(
1

(R − r)2 (1 + ‖∇ f ‖Lh(BR0 ))

) 1
1−θ (‖U‖ (2 q1+p)

L p(BR) + 1
)

,

after some standard manipulations. Coming back to (5.23) and taking into account (5.24),
we obtain

‖U‖L∞(Br0 , dμ) ≤ C

(
1 + ‖∇ f ‖Lh(BR0 )

R0 − r0

)σ2 (
‖U‖σ1

L p(BR0 ) + 1
)

,

where C = C(N , p, h, δ) > 1 and σi = σi (N , p, h) > 0, for i = 1, 2. By definition of U ,
we have

|∇u| ≤ 2 δ
√

N U ≤ √
N |∇u|.

Since ‖U‖L∞(Br0 , dμ) + 1 ≥ ‖U‖L∞(Br0 ), it follows that

‖∇u‖L∞(Br0 ) ≤ C

(
1 + ‖∇ f ‖Lh(BR0 )

R0 − r0

)σ2 (
‖∇u‖σ1

L p(BR0 ) + 1
)

,

possibly for a different constant C = C(N , p, h, δ) > 1. This completes the proof. ��
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Appendix: Lipschitz regularity with a nonlinear lower order term

In this section, we consider the functional

Gδ(u,�′) =
N∑

i=1

ˆ
�′

[
gi (uxi ) + G(x, u)

]
dx, �′ � �, u ∈ W 1,p

loc (�′).

The lower order term f u of the functionalFδ is thus replaced by a more general term G(x, u).
We assume that G is a Carathéodory function and that for almost every x ∈ �, the map

ξ �→ G(x, ξ) is C1 and convex.

We denote f (x, ξ) := Gξ (x, ξ) and we assume that f ∈ W 1,h
loc (� ×R), for some h > N/2.

Finally, we assume that G(x, ξ) satisfies the inequality

|G(x, ξ)| ≤ b(x) |u|γ + a(x) (A.1)

where 1 < p ≤ γ < p∗ and a, b are two non-negative functions belonging respectively to
Ls

loc(�) and Lσ
loc(�) with s > N/p and σ > p∗/(p∗ − γ ).

Under assumption (A.1), all the local minimizers of Gδ are locally bounded, see [11,
Theorem 7.5] and moreover, for every such minimizer u, for every Br0 � BR0 � �,

‖u‖L∞(Br0 ) ≤ M,
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where M depends on ‖u‖W 1,p(BR0 ), r0, R0, ‖b‖Lσ (R0), and ‖a‖Ls (BR0 ).
Then we have:

Theorem A.1 Let p ≥ 2 and let U ∈ W 1,p
loc (�) be a local minimizer of the functional Gδ .

Then U is locally Lipschitz in �.

Proof We only explain the main differences with respect to the proof of Theorem 1.1. Since
G is convex with respect to the second variable, the functional G is still convex. This implies
that Lemma 2.3 remains true with the same proof. We then introduce the approximation of
G:

Gε(x, ξ) =
ˆ
RN ×R

G(x − y, ξ − ζ ) ρε(y) ρ̃ε(ζ ) dy dζ,

where ρε is the same regularization kernel as before, while ρ̃ε is a regularization kernel on
R.

Given a local minimizer U ∈ W 1,p
loc (�) and a ball B ⊂ 2 B � �, there exists a unique C2

solution uε to the regularized problem

min
{
Gε(v; B) : v − Uε ∈ W 1,p

0 (B)
}

,

where

Gε(v; B) =
N∑

i=1

ˆ
B

gi,ε(vxi ) dx +
ˆ

B
Gε(x, v) dx

and Uε = U ∗ ρε. Moreover, by [11, Remark 7.6] we have uε ∈ L∞(B), with a bound on
the L∞ norm uniform in ε > 0. In order to simplify the notation, we simply write as usual
u and f instead of uε and fε. The Euler equation is now

N∑

i=1

ˆ
g′

i,ε(uxi ) ϕxi dx +
ˆ

f (x, u) ϕ dx = 0, ϕ ∈ W 1,p
0 (B).

When we differentiate the Euler equation with respect to some direction x j , we obtain

N∑

i=1

ˆ
g′′

i,ε(uxi ) uxi x j ψxi dx+
ˆ (

fx j (x, u) + fξ (x, u) ux j

)
ψ dx = 0, ψ ∈ W 1,p

0 (B).

We can then repeat the proof of Proposition 5.1 with this additional term fξ (x, u)ux j which
leads to the following analogue of (5.12):

⎛

⎝
ˆ

Bt

(
U − 1

2

) 2∗
2 p

+
U2∗ q dx

⎞

⎠

2
2∗

≤ C
q5

(s − t)2

ˆ
Bs

U2 q+p dx

+ C
q5

(s − t)2 ε

ˆ
Bs

U2 q+2 dx

+ C q5 ‖∇x f ‖Lh

(ˆ
Bs

U (2 q+1) h′
dx

) 1
h′

+ C q5 ‖ fξ‖Lh

(ˆ
Bs

U (2 q+2) h′
dx

) 1
h′

.
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Using again Hölder’s inequality for the first three terms, we obtain inequality (5.14) where
‖∇ f ‖ now represents the full gradient of f with respect to both x and ξ . The rest of the
proof is the same and leads to a uniform Lipschitz estimate, as desired. ��
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