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Abstract We consider a fully nonlinear partial differential equation associated to the inter-
mediate L p Christoffel–Minkowski problem in the case 1 < p < k + 1. We establish
the existence of convex body with prescribed k-th even p-area measure on S

n , under an
appropriate assumption on the prescribed function. We construct examples to indicate cer-
tain geometric condition on the prescribed function is needed for the existence of smooth
strictly convex body. We also obtain C1,1 regularity estimates for admissible solutions of the
equation when p ≥ k+1

2 .

Mathematics Subject Classification 58J05 · 52A39 · 53C45

1 Introduction

Convex geometry plays important role in the development of fully nonlinear partial differ-
ential equations. The classical Minkowski problem and the Christoffel–Minkowski problem
in general, are beautiful examples of such interactions (e.g., [1,3,5,10,19–21]). The core of
convex geometry is the Brunn–Minkowski theory, the Minkowski sum, the mixed volumes,
curvature and area measures are fundamental concepts. The notion of the Minkowski sum
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was extended by Firey [6], he introduced the so-called p-sum (p > 1) for convex bod-
ies. Lutwak [16] further developed a corresponding Brunn–Minkowski–Firey theory based
on Firey’s p-sums. Lutwak initiated the study of the Minkowski problem for p-sums and
established the uniqueness of the problem, along with the existence in the even case. The
regularity of the solution in the even case was proved subsequently by Lutwak–Oliker [17].
Chou–Wang [4] and Guan–Lin [9] studied this problem from the PDE point of view, exten-
sive study was carried out by Lutwak–Yang–Zhang in a series of papers, we refer [2,18] for
further references in this direction.

This paper concerns the intermediate Christoffel–Minkowski problem related to p-sums,
which we call it the L p-Christoffel–Minkowski problem. While the L p-Minkwoski problem
corresponds to a Monge–Ampère type equations, the L p-Christoffel–Minkowski problem
corresponds to a fully nonlinear partial differential equation of Hessian type.

For a convex body K in R
n+1, we denote by h(K , ·) its support function. For any p ≥ 1,

the p-sum of two convex bodies K and L , K +p L , is defined through its support function,

h p(λ1 K +p λ2 L , ·) = λ1h p(K , ·) + λ2h p(L , ·), λ1, λ2 ∈ R+.

The mixed p-quermassintegrals for K and L are defined by

n + 1 − k

p
Wp,k(K , L) = lim

ε→0

Wk(K +p εL) − Wk(K )

ε
, p ≥ 1, 1 ≤ k ≤ n.

Here Wk(K ) is the usual quermassintegral for K . It was shown by Lutwak [16] that
Wp,k(K , L) has the following integral representation:

Wp,k(K , L) = 1

n + 1

∫
Sn

h(L , x)ph(K , x)1−pd Sk(K , x),

where d Sk(K , ·) is the k-th surface area measure of K . Thus h(K , x)1−pd Sk(K , x) is the
local version of the mixed p-quermassintegral. We call it k-th p-area measure. When p = 1,
it reduces to the usual k-th area measures.

If K is a convex body with C2 boundary and support function h, then

d Sk(K , ·) = σn−k(∇2h + hgSn )dμSn .

Here ∇2h is the Hessian on S
n , σn−k is the (n −k)-th elementary symmetric function. There-

fore, to solve the Minkowski problem for p-sum is equivalent to solve the following PDE:

σn(∇2u + ugSn ) = u p−1 f on S
n . (1.1)

After the development of L p-Minkowski problem, it is natural to consider the L p-
Christoffel–Minkowski problem, i.e., the problem of prescribing the k-th p-area measure
for general 1 ≤ k ≤ n − 1 and p ≥ 1. As before, this problem can be reduced to the
following nonlinear PDE:

σk(∇2u + ugSn ) = u p−1 f on S
n . (1.2)

A solution u to (1.2) is called admissible if (∇2u+ugSn ) ∈ �k and u is (strictly) spherically
convex if (∇2u+ugSn ) ≥ 0 (> 0). For k < n and p = 1, the above is exactly the equation for
the intermediate Christoffel–Minkowski problem of prescribing k-th area measures. Note that
admissible solutions to equation (1.2) is not necessary a geometric solution to L p-Christoffel–
Minkowski problem if k < n. As in the classical Christoffel–Minkowski problem [10], one
needs to deal with the convexity of the solutions of (1.2). Under a sufficient condition on the
prescribed function, Guan–Ma [10] proved the existence of a unique convex solution. The key
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tool to handle the convexity is the constant rank theorem for fully nonlinear partial differential
equations. Equation (1.2) has been studied by Hu et al. [13] in the case p ≥ k +1. In this case,
there is a uniform lower bound for solutions if f > 0 and they proved the existence of convex
solutions to (1.2) under some appropriate sufficient condition. The case 1 < p < k + 1 is
different, Eq. (1.2) is degenerate even for f > 0 as there is no uniform lower bound for
solutions in general.

The focus of this paper is to address two questions regarding equation (1.2) when 1 <

p < k + 1.

(1) When does there exist a smooth convex solution?
(2) Regularity of general admissible solutions of Eq. (1.2).

Our first result is the following.

Theorem 1.1 Let 1 ≤ k ≤ n − 1 be an integer and 1 < p < k + 1 be a real number. For
any positive even function f ∈ Cl(Sn) (l ≥ 2) satisfying

(∇2 f − 1
k+p−1 + f − 1

k+p−1 gSn ) ≥ 0, (1.3)

there is a unique even, strictly spherically convex solution u of the Eq. (1.2). Moreover, for
each α ∈ (0, 1), there is some constant C, depending on n, k, p, l, α, min f and ‖ f ‖Cl (Sn),
such that

‖u‖Cl+1,α(Sn) ≤ C. (1.4)

An immediate consequence of the previous theorem is the following existence result for
the L p Christoffel–Minkowski problem for the case 1 < p < k + 1.

Corollary 1.1 Let 1 ≤ k ≤ n − 1 be an integer and 1 < p < k + 1 be a real number. For
any positive even function f ∈ Cl(Sn) (l ≥ 2) satisfying (1.3). Then there is a unique closed
strictly convex hypersurface M in R

n+1 of class Cl+1,α (for all 0 < α < 1) such that the
(n − k)-th p-area measure of M is f dμSn .

This is an analogue result of Lutwak–Oliker [17]. We use method of continuity to prove
Theorem 1.1. The strictly convexity can be preserved along the continuity method by the
constant rank theorem as in [10,13]. Unlike the case p ≥ k + 1, the lower bound of u is not
true in general if p < k + 1. The crucial step is to show a uniform positive lower bound for
u under evenness assumption. In contrast to the L p-Minkowski problem [17], the evenness
assumption does not directly yield the lower bound of u when k < n as we do not have direct
control of the volume of the associated convex body. The most technical part in this paper
is to obtain a refined gradient estimate Proposition 3.1 and to use it to prove Proposition 4.1
with the assumption of evenness and spherical convexity of u. One would like to ask that
would condition (1.3) guarantee the positivity of u? We will exhibit some examples in section
5 to indicate that condition (1.3) is not sufficient (see Proposition 5.1).

As in the case of the L p-Minkowski problem [9], one has C2 estimate if p ≥ k+1
2 .

Theorem 1.2 Let 1 ≤ k ≤ n − 1 be an integer and k+1
2 ≤ p < k + 1 be a real number. For

any positive function f ∈ C2(Sn) there exists a solution u to (1.2) with (∇2u + ugSn ) ∈ �̄k .
Moreover,

‖u‖C1,1(Sn) ≤ C.

where C depends on n, k, p, ‖ f ‖C2(Sn) and minSn f . Furthermore, solution is C2 continuous

(i.e., ∇2u is continuous) if p > k+1
2 .

From next section on, the range for p is 1 < p < k + 1 unless otherwise specified.
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2 Preliminaries

We recall the basic notations.
Let σk(A) be the k-th elementary symmetric function defined on the set Mn of symmetric

n × n matrices and σk(A1, . . . , Ak) be the complete polarization of σk for Ai ∈ Mn, i =
1, . . . , k, i.e.

σk(A1, . . . , Ak) = 1

k!
n∑

i1,...ik=1,
j1,..., jk=1

δ
i1...ik
j1... jk

A1i1 j1
. . . Akik jk

.

Let �k be Garding’s cone

�k = {A ∈ Mn : σi (A) > 0 for i = 1, . . . , k}.
Let (Sn, gSn ) be the unit round n-sphere and ∇ be the covariant derivative on S

n . For a
function u ∈ C2(Sn), we denote by Wu the matrix

Wu := ∇2u + ugSn .

In the case Wu is positive definite, the eigenvalue of Wu represents the principal radii of a
strictly convex hypersurface with support function u.

Let ui ∈ C2(Sn), i = 1, . . . , n + 1. Set

V (u1, u2, . . . , un+1) :=
∫
Sn

u1σn(Wu2 , . . . , Wun+1)dμSn ,

Vk+1(u
1, u2, . . . , uk+1) := V (u1, u2, . . . , uk+1, 1, . . . , 1).

We collect the following properties which have been proved in [12].

Lemma 2.1 ([12]) (1) Vk(u1, u2, . . . , uk) is a symmetric multilinear form on (C2(Sn))n+1.
In particular,

Vk+1(u, . . . , u︸ ︷︷ ︸
k+1

) = Vk+2(1, u, . . . , u︸ ︷︷ ︸
k+1

).

Therefore, the Minkowski’s integral formula holds:∫
Sn

uσk(Wu)dμSn = k + 1

n − k

∫
Sn

σk+1(Wu)dμSn . (2.1)

(2) Let ui ∈ C2(Sn), i = 1, 2, . . . , k be such that ui > 0 and Wui ∈ �k for i = 1, 2, . . . , k,
Then for any v ∈ C2(Sn),the Alexandrov–Fenchel inequality holds:

Vk+1(v, u1, . . . , uk)2 ≥ Vk+1(v, v, u2, . . . , uk)Vk+1(u
1, u1, u2 . . . , uk), (2.2)

the equality holds if and only if v = au1 +∑n+1
l=1 al xl for some constants a, a1, . . . , an+1.

In particular, there are some sharp constant Cn,k such that

(∫
Sn

σk+1(Wu)dμSn

) 1
k+1 ≤ Cn,k

(∫
Sn

σk(Wu)dμSn

) 1
k

. (2.3)

Inequality (2.3) in Lemma 2.1 follows from Alexandrov–Fenchel’s inequality (2.2) and
Minkowski’s formula (2.1) via an iteration argument.

We remark that in Lemma 2.1 (2), it is sufficient to assume Wui ∈ �k instead that Wu is
positive definite which is the classical assumption from convex geometry.
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We list some other known results which will be used in the rest of the sections.
The following theorem was proved for (1.2) by Hu–Ma–Shen in [13], a generalization of

the constant rank theorem in [10].

Theorem 2.1 ( [13]) Let p > 1. Let u be a positive solution to (1.2) such that Wu is positive

semi-definite. Then if f − 1
p−1+k is spherically convex, then Wu is positive definite.

The following lemma is a special case of Lemma 1 in [8], we state it for Wu ∈ C1(Sn).

Lemma 2.2 Let e1, . . . , en be a local orthonormal frame on S
n, denote ∇s = ∇es ,∀s =

1, . . . , n, then ∀W = Wu ∈ �k ∩ C1(Sn), k ≥ 2,

−σ
i j,lm
k ∇s Wi j∇s Wlm ≥ σk

[∇sσk

σk
− ∇sσ1

σ1

]

[(
1

k − 1
− 1

) ∇sσk

σk
−
(

1

k − 1
+ 1

) ∇sσ1

σ1

]
. (2.4)

3 A priori estimate for admissible solutions

In this section we establish C1 a priori estimates for the admissible solutions of (1.2).

3.1 A gradient estimate

Proposition 3.1 Let u be a positive admissible solution to (1.2). Set mu = min u and
Mu = max u. Then there exist some positive constants A and 0 < γ < 1, depending
on n, k, p, min f and ‖ f ‖C1 , such that

|∇u|2
|u − mu |γ ≤ AM2−γ

u .

Proof Let 	 = |∇u|2
(u−mu )γ

, where 0 < γ < 1 is to be determined. First we claim 	 is well-

defined, in other words, 	 can be defined at the minimum points. Consider 	ε = |∇u|2
(u−mu+ε)γ

for ε > 0. Then at a maximum point of 	ε , we have

(∇2u + uI )∇u =
(

γ

2

|∇u|2
u − mu + ε

+ u

)
∇u.

Hence

	ε ≤ 2

γ
(u − mu + ε)1−γ max

Sn
λmax (Wu),

where λmax (Wu) is the largest eigenvalue of Wu . Thus when γ < 1, we have 	ε(y) → 0 for
u(y) = mu as ε → 0. Therefore, it make sense to define 	 = 0 at the minimum point of u.

Assume 	 attains its maximum at x0. Then u(x0) > mu . By using the orthonormal frame
and rotating the coordinate, we can assume gi j (x0) = δi j , u1(x0) = |∇u|(x0) and ui (x0) = 0
for i = 2, . . . , n. In the following we compute at x0. By the critical condition,

2ululi

|∇u|2 = γ
ui

u − mu
for each i.
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Thus u1i = 0 for i = 2, . . . , n and

u11 = γ

2

u2
1

u − mu
. (3.1)

By rotating the remaining n −1 coordinates, we can assume (ui j ) is diagonal. Consequently,
Fi j = ∂σk

∂Wi j
is also diagonal.

We may assume 	 ≥ AM2−γ
u , where A is a large constant to be determined. Then

u11 = γ

2

u2
1

u − mu
≥ γ

2

AM2−γ
u

(u − mu)1−γ
≥ γ

2
AMu . (3.2)

Since u ≤ Mu , for δ > 0, we may choose A with A >> 2
γ

such that

W11 = u11 + u ≤ (1 + δ)u11. (3.3)

As Wii ≥ uii , by the maximal condition and (3.1),

0 ≥ Fii (log 	)i i

= Fii 2u2
i i + 2ululii

|∇u|2 − γ
Fii uii

u − mu
+ γ (1 − γ )

Fii u2
i

(u − mu)2

= 2Fii u2
i i

u2
1

+ 2Fii u1(Wii1 − uiδ1i )

u2
1

−γ
Fii uii

u − mu
+ γ (1 − γ )

Fii u2
i

(u − mu)2

= 2Fii u2
i i

u2
1

+ 2p − 1u p−1−1 f + 2u p−1 f1

u1
− 2F11

−γ
Fii uii

u − mu
+ γ (1 − γ )

Fii u2
i

(u − mu)2

≥ 2Fii u2
i i

u2
1

+ γ (1 − γ )
F11u2

1

(u − mu)2 + 2u p−1 f1

u1
− 2F11 − γ

Fii Wii

u − mu

= 2Fii u2
i i

u2
1

+ 2(1 − γ )
F11u11

u − mu
+ 2u p−1 f1

u1
− 2F11 − kγ

σk(W )

u − mu

=
∑
i 
=1

2Fii u2
i i

u2
1

+ 2(1 − γ )
F11u11

u − mu
+ 2u p−1 f1

u1

+2F11

(
u2

11

u2
1

− 1

)
− kγ

σk(W )

u − mu
. (3.4)

By (3.1) and (3.2), if A ≥ 4
γ 2 ,

u2
11

u2
1

− 1 ≥ γ 2

4
A

Mu

u − mu
− 1 ≥ 0. (3.5)
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Using the definition of 	, we have

−2u p−1 f1

u1
≥ −Cu p−1	− 1

2 (u − mu)−
γ
2

≥ − C√
A

M−1+ γ
2 u p−1(u − mu)−

γ
2

≥ − C√
A

u p−1(u − mu)−1

≥ − C√
A

σk(W )

u − mu
.

For N > 1 to be determined later, denote

K = {i : uii > Nu11}.
When A is large enough, by (3.3),

uii = Wii − u ≥ Wii − δu11 ≥ Wii − δuii , ∀i ∈ K .

Hence

∑
i∈K

2Fii u2
i i

u2
1

≥
∑
i∈K

2N Fii uii u11

u2
1

= Nγ
∑
i∈K

Fii uii

u − mu

≥ Nγ

1 + δ

∑
i∈K

Fii Wii

u − mu
. (3.6)

Combining (3.1)–(3.6)

0 ≥ Nγ

1 + δ

∑
i∈K

Fii Wii

u − mu
+ 2(1 − γ )

1 + δ

F11W11

u − mu

− C√
A

σk(W )

u − mu
− kγ

σk(W )

u − mu
. (3.7)

Let’s denote Wmm = max{Wii |i = 1, . . . , n}. We have

σk(W ) = σk−1(W |m)Wmm + σk(W |m).

If σk(W |m) ≤ 0, then

σk−1(W |m)Wmm ≥ σk(W ).

Let’s assume σk(W |m) > 0, that implies (W |m) ∈ �k . In turn, σk−1(W |mi) > 0,∀i 
= m
and

kσk(W |m) =
∑
i 
=m

Wiiσk−1(W |mi) ≤ Wmm

∑
i 
=m

σk−1(W |mi) = (n − k)Wmmσk−1(W |m).

Combining the above inequalities, we have

σk−1(W |m)Wmm ≥ k

n
σk(W ). (3.8)

If K 
= ∅, then m ∈ K , and

∑
i∈K

Fii Wii

u − mu
≥ Fmm Wmm

u − mu
≥ k

n

σk(W )

u − mu
. (3.9)
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If K = ∅, then 0 ≤ W11 ≤ Wmm ≤ N W11, as F11 ≥ Fmm ,

F11W11

u − mu
≥ 1

N

Fmm Wmm

u − mu
≥ k

Nn

σk(W )

u − mu
. (3.10)

Combining (3.7), (3.9) and (3.10),

0 ≥
[

min

{
Nkγ

n(1 + δ)
,

2k(1 − γ )

Nn(1 + δ)

}
− C√

A
− kγ

]
σk(W )

u − mu
> 0, (3.11)

if we pick N = n(1 + 2δ), γ = 2
N 2+2

, and A sufficiently large (for any δ > 0 fixed, e.g,

δ = 1
1010 ). This is a contradiction. Thus for our choice of γ and A, we must have 	 ≤ AM2−γ

u

at its maximum. 
�

When k = n, similar result was proved in [14,15] where upper bound of u was readily
available. We note the proof of Proposition 3.1 also works for certain range of p < 1.

3.2 Upper bound of u

We now use raw C1 estimate in Proposition 3.1 to get an upper bound of u.

Proposition 3.2 Let u be a positive admissible solution to (1.2). Then there exist some
positive constants c0 and C0, depending on n, k, p, min f and

∫
Sn f , such that

0 < c0 ≤ max u ≤ C0.

Proof Let x0 be a maximum point of u. Then ∇2u(x0) ≤ 0. It follows that

(
n

k

)
uk(x0) ≥ σk(Wu)(x0) = u p−1(x0) f (x0),

and in turn we have

max
Sn

u = u(x0) ≥
(

minSn f(n
k

)
) 1

k−p+1

. (3.12)

From Proposition 3.1, we know |∇u|2(x) ≤ AM2
u = Au(x0)

2 for any x ∈ S
n , we have

u(x) ≥ 1

2
u(x0) if dist (x, x0) ≤ 1

2
√

A
. (3.13)

Thus
∫
Sn

u p f ≥
∫

{x∈Sn :dist (x,x0)≤ 1
2
√

A
}

u p f

≥ 1

2p
u p(x0) min

Sn
f

∣∣∣∣{x ∈ S
n : dist (x, x0) ≤ 1

2
√

A
}
∣∣∣∣ . (3.14)
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On the other hand, using Minkowski’s integral formula (2.1), Alexandrov–Fenchel’s inequal-
ity (2.3), Hölder’s inequality and (1.2), we have∫

Sn
u p f =

∫
Sn

uσk(Wu) = k + 1

n − k

∫
Sn

σk+1(Wu)

≤ C

(∫
Sn

σk(Wu)

) k+1
k = C

(∫
Sn

u p−1 f

) k+1
k

≤ C

(∫
Sn

u p f

) p−1
p

k+1
k
(∫

Sn
f

) 1
p

k+1
k

. (3.15)

Since p < k + 1, it follows from (3.15) that

∫
Sn

u p f ≤ C

(∫
Sn

f

) k+1
k−p+1

. (3.16)

Combining (3.14) and (3.16), we obtain u ≤ u(x0) ≤ C . 
�
Combining Propositions 3.1 and 3.2 we get full C1 estimate.

Proposition 3.3 Let u be an admissible solution to (1.2). Set mu = min u. Then there exist
some positive constants 0 < γ < 1 and C, depending on n, k, p − 1, min f and ‖ f ‖C1 ,
such that

|∇u|2
|u − mu |γ ≤ C.

4 Convex solutions

So far, we have been dealing with general admissible solutions of equation (1.2). In order to
solve the L p-Christoffel–Minkowski problem, we need to establish the existence of convex
solutions, i.e., solutions to (1.2) with Wu ≥ 0. As in the case of the classical Christoffel–
Minkowski problem [10], one needs some sufficient conditions on the prescribed function f
in equation (1.2) when k < n. Unlike the classical Christoffel–Minkowski problem, Eq. (1.2)
may degenerate when p > 1 in general. We first derive lower bound of convex solutions.

4.1 Lower bound for u

To get a uniform positive lower bound, we need to impose evenness assumption together with
Wu ≥ 0. We remark that such estimate was straightforward when k = n since the equation
implies a positive lower bound of volume. For k < n, a lower bound on quermassintegral
Vk+1 does not guarantee the non-degeneracy of the convex body. We need some extra effort.

Proposition 4.1 Let u be a positive, even, spherically convex solution to (1.2). Then there
exists some positive constant C, such that

u ≥ C > 0.

Proof Since u is even, we can assume without loss of generality that u(x1) = max u =: M
and u(x2) = min u and dist (x1, x2) =: 2d ≤ π

2 . So d ≤ π
4 . Let γ : [−d, d] → S

n be the arc-
length parametrized geodesic such that γ (−d) = x1 and γ (d) = x2. Let u : [−d, d] → R

be the function u(t) = u(γ (t)) and denote

123
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u′′(t) + u(t) = g(t). (4.1)

It follows from the critical condition of u at x1 and x2 that

u′(−d) = u′(d) = 0, u(−d) = M. (4.2)

Let us explore the boundary value problem for the ODE, (4.1) and (4.2). It is easy to check
that A cos t + B sin t is the general solutions to homogeneuous ODE

u′′ + u = 0

and a special solution to (4.1) is given by cos t
∫ t
−d

1
cos2 τ

∫ τ

−d g(s) cos sdsdτ , which can be

obtained by writing u = cos(t)v(t) and solving first order ODE for v
′
. Also, by Fubini’s

theorem, one sees this special solution is equal to
∫ t
−d sin(t − s)g(s)ds. Combining with the

boundary condition (4.2), we see all the solutions to (4.1) and (4.2) are

u(t) = cos t
∫ t

−d

1

cos2 τ

∫ τ

−d
g(s) cos sdsdτ + M cos(d + t). (4.3)

For simplicity, we denote by G(τ ) = ∫ τ

−d g(s) cos sds. It follows from (4.3) that

u(d) = cos d
∫ d

−d

G(τ )

cos2 τ
dτ + M cos 2d. (4.4)

Our aim is to derive a positive lower bound of min u = u(d). We divide the proof into
two cases.

Case 1. 2d ≤ π
4 .

Note that g(t) ≥ 0 as Wu ≥ 0, hence G(τ ) ≥ 0,∀τ ∈ [−d, d]. One see from (4.4) that

u(d) ≥
√

2
2 M .

Case 2. 2d ≥ π
4 .

From the definition of G(τ ), by performing integration by parts, we have

G(τ ) =
∫ τ

−d
g(s) cos sds

=
∫ τ

−d
(u

′′
(s) + u(s)) cos sds

= u′(s) cos s|τ−d +
∫ τ

−d
u′(s) sin s + u(s) cos sds

= u′(τ ) cos τ + u(s) sin s|τ−d

= u′(τ ) cos τ + u(τ ) sin τ − M sin(−d), (4.5)

where facts u′(−d) = 0, u(−d) = M are used. In particular, as u′(d) = 0,

G(d) = (u(d) + M) sin d.

Since sin d ≥ sin π
8 and u ≥ 0, we see

G(d) ≥ M sin
π

8
> 0. (4.6)

By Proposition 3.3, such that for τ ∈ [−d, d],
|u′(τ )| ≤ C(u(τ ) − u(d))

γ
2 ≤ C max

Sn
|∇u| γ

2 |τ − d| γ
2 ≤ C̃ |τ − d| γ

2 .

123



L p Christoffel–Minkowski problem… Page 11 of 23 69

Therefore, G(τ ) is continuous as a function of τ from (4.5), and

G(τ ) ≥ G(d) − C∗|τ − d| γ
2 , ∀τ ∈ [−d, d], (4.7)

for some C∗ ≥ 0 under control. Take δ = min{d, (
G(d)
2C∗ )

2
γ }. It follows from (4.3), (4.6),

(4.7) and d ∈ [0, π
4 ] that

u(d) = cos d
∫ d

−d

G(τ )

cos2 τ
dτ + M cos 2d

≥ cos d
∫ d

d−δ

G(τ )dτ ≥
√

2

2
· 1

2
G(d)δ.


�
4.2 Higher regularity

Proposition 4.2 Let u be a positive, even, spherically convex solution to (1.2). For any l ∈ R

and 0 < α < 1, there exists some positive constant C, depending on n, k, p, l, min f and
‖ f ‖Cl , such that (1.4) holds.

Proof of Proposition 4.2 From Proposition 3.2 and 4.1, we see u is bounded from above and
below by uniform positive constants. When k = 1, as we already have C1 bounds for u,
higher regularity follows from elliptic linear PDE. We may assume k ≥ 2. Let

F̃(Wu) := σ
1
k

k (Wu) = (u p−1 f )
1
k .

Differentiating the equation twice, we have


(u p f )
1
k = F̃ ii Wiiss + F̃ i j,lm Wi js Wlms

= F̃ ii (Wssii − Wss + nWii ) + F̃ i j,lm Wi js Wlms

≤ F̃ ii (σ1)i i −
∑

i

F̃ i iσ1 + nσ
1
k

k

= F̃ ii (σ1)i i −
∑

i

F̃ i iσ1 + n(u p−1 f )
1
k . (4.8)

where we used the concavity of F̃ .

Note that |
(u p f )
1
k | ≤ Cσ1 and

∑
i F̃ i i = n

k σ
1−k

k
k σk−1 ≥ Cn,kσ

− 1
k(k−1)

k σ
1

k−1
1 . Applying

the maximum principle on (4.8), we see that σ1 ≤ C . Thus ‖u‖C2 ≤ C . Since Wu ≥ 0,
we see that the equation is uniformly elliptic. Our assertion follows now from the standard
Evans–Krylov and Schauder estimates. 
�

Remark 4.1 The conditions that u is even and Wu ≥ 0 have been only used in Proposition 4.1.

4.3 Existence

In the following we use the continuity method to prove the existence and uniqueness of
strictly convex solutions.
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Proof of Theorem 1.1.
We first show that the solution is unique. The uniqueness of strictly spherically convex

solution was showed by Lutwak [16]. For convenience of readers, we give a proof on the
uniqueness of admissible solutions.

Assume u, v are two admissible solutions to (1.2). Then we have

σk(Wu) = u p−1 f, σk(Wv) = v p−1 f. (4.9)

Multiplying v to the first equation in (4.9) and integrating over Sn , we have by using the
Alexandrov-Fenchel inequality (2.2)∫

Sn
vu p−1 f =

∫
Sn

vσk(Wu) = Vk+1(v, u, . . . , u)

≥ Vk+1(u, u, . . . , u)
k

k+1 Vk+1(v, v, . . . , v)
1

k+1

=
(∫

Sn
u p f

) k
k+1
(∫

Sn
v p f

) 1
k+1

. (4.10)

On the other hand, using Hölder’s inequality,

∫
Sn

vu p−1 f ≤
(∫

Sn
v p f

) 1
p
(∫

Sn
u p f

) p−1
p

. (4.11)

Combining (4.10) and (4.11), in view of 1 < p < k + 1, we obtain∫
Sn

u p f ≤
∫
Sn

v p f.

Similar argument by interchanging the role of u and v gives∫
Sn

v p f ≤
∫
Sn

u p f.

Thus all the above inequalities are equalities. In particular, equality holds in (4.10). That is,
equality holds in (2.3). In view of (4.9), we must have u ≡ v.

We now prove the existence. Denote

ft =
(

t f − 1
p−1+k + (1 − t)

(
n

k

)− 1
p−1+k

)−(p−1+k)

for t ∈ [0, 1].

Then ft is even and satisfies (1.3). Consider the equation

σk(∇2u + ugSn ) = u p−1 ft . (4.12)

Let

S = {t ∈ [0, 1]|(4.12) has a positive, even solution ut with Wut > 0}.
It is clear that u0 ≡ 1 is a positive, even solution of (4.12) with Wu0 > 0 for t = 0. Thus S
is non-empty.

Next we show S is open. The linearized operator at u is given by

Lu(v) := σ
i j
k (Wu)(Wv)i j − (p − 1)u p−1−1v ft = σ

i j
k (Wu)(Wv)i j − (p − 1)u−1vσk(Wu).

Suppose Lu(v) = 0. Then

σ
i j
k (Wu)(Wv)i j − (p − 1)u−1vσk(Wu) = 0. (4.13)
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Multiplying (4.13) with u and integrating over Sn , we have

k
∫
Sn

vσk(Wu) =
∫
Sn

uσ
i j
k (Wu)(Wv)i j = (p − 1)

∫
Sn

vσk(Wu)

Since k 
= p − 1, we have
∫
Sn vσk(Wu) = 0. On the other hand, Multiplying (4.13) with v

and integrating over Sn , we have

kV (v, v, u, . . . , u) =
∫
Sn

vσ
i j
k (Wu)(Wv)i j = (p − 1)

∫
Sn

u−1v2σk(Wu)

Since V (v, u, . . . , u) = ∫
Sn vσk(Wu) = 0, by using the Alexandrov–Fenchel inequality

(2.2), we see

V (v, v, u, . . . , u) ≤ 0.

Thanks to p > 1, we have
∫
Sn u−1v2σk(Wu) ≤ 0, which implies v ≡ 0. Hence the kernel of

the linearized operator of the equation is trivial. By the implicit function theorem, for each
t0 ∈ S, there exists a neighborhood N of t0 such that there exists a positive solution ut of
(4.12) with Wut > 0 for t ∈ N . Since ft is even, it follows from the uniqueness result that
ut must be even. Hence, N ⊂ S and S is open.

We now prove the closedness of S. Let {ti }∞i=1 ⊂ S be a sequence such that ti → t0 and
uti be a positive even solution to (4.12) with Wuti

> 0 for t = ti . By virtue of the a priori
estimate in Theorem 4.2, there exists a subsequence, still denote by uti , converges to some
function u in Cl+1 norm. In particular, u is an even solution to (4.12) for t = t0. Suppose
Wu is not positive definite, then Wu is positive semi-definite and det(Wu)(x0) = 0 for some
x0 ∈ S

n . Since ft0 satisfies (1.3), we know from the constant rank theorem that Wu must be
positive definite. A contradiction. Therefore, t0 ∈ S and S is closed.

We conclude that S = [0, 1] and (4.12) with t = 1, which is (1.2), has a positive even
solution u with Wu > 0. The proof is completed. 
�

5 Examples

For the Minkowski problem for p-sum with 1 < p < n + 1, a C2 convex hypersurface to
the L p Minkowski problem does not always exist even if f is a smooth positive function. A
series of counterexamples have been constructed in [9]. The arguments in [9] can be extended
to construct similar examples for equation (1.2).

Let α = k
k−p+1 . Set u(x) = (1 − xn+1)

α , where x = (x1, . . . , xn, xn+1) =: (x ′, xn+1) ∈
S

n ⊂ R
n+1. We view the open hemisphere S

n+, centered at the north pole, as a graph over
{x ′ ∈ R

n : |x ′|2 < 1}. The metric g and its inverse g−1 on S
n+ are

gi j = δi j + xi x j

1 − |x ′|2 , gi j = δi j − xi x j

and the Christoffel symbol is

�l
i j = gi j xl .
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In this local coordinates, u(x) = (1 −√
1 − |x ′|2)α . By a direct computation, we have

gil∇2
jlu + uδi j = gil(∂ j∂lu − �m

jl∂mu) + uδi j

= (1 −
√

1 − |x ′|2)α−1
(
(α − 1)

√
1 − |x ′|2 + 1

)
δi j

+α(α − 1)(1 −
√

1 − |x ′|2)α−2xi x j

Using (α − 1)k = α(p − 1), we see

σk(g
il∇2

jlu + uδi j ) = u p−1 f

where

f = σk

[(
(α − 1)

√
1 − |x ′|2 + 1

)
δi j + α(α − 1)

xi x j

1 −√
1 − |x ′|2

]
.

It is clear that the eigenvalues of the matrix (δi j + b
xi x j

|x |2 ) are 1 with multiplicity n − 1 and
1 + b with multiplicity 1. Thus

f =
(
(α − 1)

√
1 − |x ′|2 + 1

)k

×
⎡
⎣
(

n − 1

k

)
+
(

n − 1

k − 1

)⎛
⎝1 + α(α − 1)|x ′|2

(1 −√
1 − |x ′|2)

(
(α − 1)

√
1 − |x ′|2 + 1

)
⎞
⎠
⎤
⎦

=
(

n

k

)(
(α − 1)

√
1 − |x ′|2 + 1

)k

+
(

n − 1

k − 1

)
α(α − 1)|x ′|2

1 −√
1 − |x ′|2

(
(α − 1)

√
1 − |x ′|2 + 1

)k−1
.

Since
√

1 − |x ′|2 = 1 − 1

2
|x ′|2 − 1

8
|x ′|4 + o(|x ′|4),

we have

f =
(

n

k

)(
αk − 1

2
kαk−1(α − 1)|x ′|2

)

+ 2α(α − 1)

(
n − 1

k − 1

)(
1 − 1

4
|x ′|2

)

[
αk−1 − 1

2
(k − 1)αk−2(α − 1)|x ′|2

]
+ o(|x ′|2)

=
[(

n

k

)
+ 2(α − 1)

(
n − 1

k − 1

)]
αk

−1

2
αk−1(α − 1)

[
k

(
n

k

)
+
(

n − 1

k − 1

)(
α + 2(k − 1)(α − 1)

)]

|x ′|2 + o(|x ′|2).
Since α > 1, it is direct to see that

f (|x ′|) > 0 and f ′′(|x ′|) < 0 near x ′ = 0. (5.1)

123



L p Christoffel–Minkowski problem… Page 15 of 23 69

Hence ∇2 f − 1
p−1+k + f − 1

p−1+k I ≥ 0 is satisfied near the north pole. As in [9], using a lemma
in [7], one may patch a global convex solution to Eq. (1.2) with some positive function f
such that solution is equal to (1 − xn+1)

α near the north pole. That is u = 0 at the north pole
and condition (1.3) is satisfied near the north pole.

Next, we will construct a solution to (1.2) for some positive smooth function f satisfying
condition (1.3) everywhere but u touches 0. This shows that, a C2 convex hypersuface to the
k-th Christoffel–Minkowski problem for p-sum with 1 < p < k + 1 does not always exist
even if f is a smooth positive function such that (1.3) holds. Hence, the evenness assumption
on f cannot be dropped in Theorem 1.1.

Proposition 5.1 There exists some 0 < p̄ < k, such that for 0 < p − 1 ≤ p̄, there is
some positive function f ∈ C∞(Sn) satisfying (1.3) and a solution u to (1.2) such that
(∇2u + ugSn ) ≥ 0 and u = 0 at some point. Moreover, u is not C3.

Proof Choose an orthonormal basis {ei }n
i=1 on S

n . For coordinate functions xl , l =
1, 2, . . . , n + 1, we know ∇2

i j xl + xlδi j = 0. Since |∇xl |2 + x2
l = |∇x j |2 + x2

j for any

j 
= l and |∇x |2 + |x |2 = ∑n
i=1 |ei |2 + |x |2 = n + 1, we get |∇xl |2 + x2

l = 1 for any
l = 1, 2, . . . , n + 1.

Let u(x) = (1 − xn+1)
α. By direct computations,

∇ j u = −α(1 − xn+1)
α−1∇ j xn+1,

∇2
i j u = α(α − 1)(1 − xn+1)

α−2∇i xn+1∇ j xn+1

−α(1 − xn+1)
α−1∇2

i j xn+1

= α(α − 1)(1 − xn+1)
α−2∇i xn+1∇ j xn+1

+α(1 − xn+1)
α−1xn+1δi j .

Thus

∇2
i j u + uδi j = α(α − 1)(1 − xn+1)

α−2∇i xn+1∇ j xn+1

+(1 − xn+1)
α−1(1 + (α − 1)xn+1)δi j

= (1 − xn+1)
α−1(1 + (α − 1)xn+1)[

δi j + α(α − 1)∇i xn+1∇ j xn+1

(1 − xn+1)(1 + (α − 1)xn+1)

]
.

Therefore

σk(∇2
i j u + uδi j ) = (1 − xn+1)

k(α−1)(1 + (α − 1)xn+1)
k

×
[(

n − 1

k

)
+
(

n − 1

k − 1

)(
1 + α(α − 1)|∇xn+1|2

(1 − xn+1)(1 + (α − 1)xn+1)

)]

= u
k(α−1)

α (1 + (α − 1)xn+1)
k−1

×
[(

n

k

)
(1 + (α − 1)xn+1) +

(
n − 1

k − 1

)
α(α − 1)(1 + xn+1)

]

= (n − 1)!
k!(n − k)!u

k(α−1)
α (1 + (α − 1)xn+1)

k−1

× [n + kα(α − 1) + (n + kα)(α − 1)xn+1
]
.

In the second equality we used the fact |∇xn+1|2 = 1 − x2
n+1.
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Let f (x) = (n−1)!
k!(n−k)! (1 + (α − 1)xn+1)

k−1
[
n + kα(α − 1) + (n + kα)(α − 1)xn+1

]
and

α = k
k−p+1 . Then u(x) = (1 − xn+1)

α with α = k
k−p+1 is a solution to

σk(∇2
i j u + uδi j ) = u p−1 f on S

n .

Now let us analyze the function f on S
n . First, f is smooth. Second it is direct to check

that when α < 2, i.e. p − 1 < k
2 , f > 0.

We claim that when 0 < α − 1 lies in certain range, i.e., p − 1 ≤ p̄, f satisfies the

convexity condition (∇2 f − 1
k+p−1 + f − 1

k+p−1 I ) > 0.

Let g̃ = f̃ − 1
k+p−1 , where

f̃ = k!(n − k)!
(n − 1)! f = (1 + (α − 1)xn+1)

k−1 [n + kα(α − 1) + (n + kα)(α − 1)xn+1
]
.

We need to show

(∇2
i j g̃

g̃ + δi j

)
> 0. To simplify the notation, we denote y = xn+1. Direct

computations give

∇i g̃

g̃
= − α − 1

k + p − 1

[
k − 1

1 + (α − 1)y
+ n + kα

n + kα(α − 1) + (n + kα)(α − 1)y

]
∇i y.

∇2
i j g̃

g̃
= ∇i g̃∇ j g̃

g̃2 − α − 1

k + p − 1

[
k − 1

1 + (α − 1)y
+ n + kα

n + kα(α − 1) + (n + kα)(α − 1)y

]
∇2

i j y

+ α − 1

k + p − 1

[
(k − 1)(α − 1)

(1 + (α − 1)y)2 + (n + kα)2(α − 1)

[n + kα(α − 1) + (n + kα)(α − 1)y]2

]
∇i y∇ j y.

Using ∇2
i j y = −yδi j , we have

∇2
i j g̃

g̃
+ δi j =

{
α − 1

k + p − 1

[
k − 1

1 + (α − 1)y
+ n + kα

n + kα(α − 1) + (n + kα)(α − 1)y

]
y + 1

}
δi j

+
{

α − 1

k + p − 1

[
(k − 1)(α − 1)

(1 + (α − 1)y)2 + (n + kα)2(α − 1)

[n + kα(α − 1) + (n + kα)(α − 1)y]2

]

+
(

α − 1

k + p − 1

)2 [ k − 1

1 + (α − 1)y
+ n + kα

n + kα(α − 1) + (n + kα)(α − 1)y

]2 }
∇i y∇ j y.

Notice that the coefficient of ∇i y∇ j y on the RHS of above equation is always positive. To

ensure

(∇2
i j g̃

g̃ + δi j

)
is positive definite, we only need the coefficient of δi j on the RHS of

above equation is positive, i.e.,

α − 1

k + p − 1

[
k − 1

1 + (α − 1)y
+ n + kα

n + kα(α − 1) + (n + kα)(α − 1)y

]
y + 1 > 0. (5.2)

Note k + p − 1 = k + k(α−1)
α

= k 2α−1
α

and the denominator is always positive when
α < 2. Inequality (5.2) is equivalent to say the quadratic form

Q(y) = α(α − 1)
{
(k − 1)[n + kα(α − 1) + (n + kα)(α − 1)y] + (n + kα)[1 + (α − 1)y]}y

+ k(2α − 1)[1 + (α − 1)y][n + kα(α − 1) + (n + kα)(α − 1)y] > 0.
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By regrouping,

Q(y) = k(3α − 1)(α − 1)2(n + kα)y2

+ k(α − 1){α[n + (k − 1)α(α − 1) + α] + (2α − 1)(2n + kα2)}y

+ k(2α − 1)[n + kα(α − 1)].
By computation, we see that when 0 < α − 1 is close to 0, i.e., p̄ is sufficiently small,

Q(−1) > 0 and Q′(−1) > 0 and Q′′(y) > 0 for y ∈ [−1, 1].
Therefore when p − 1 ≤ p̄, we have Q(y) is positive for y ∈ [−1, 1].

In conclusion, for 0 < p − 1 small, we construct a globally defined function u which is a

solution of σk(∇2
i j u+uδi j ) = u p−1 f with a smooth, positive function f with (∇2 f − 1

k+p−1 +
f − 1

k+p−1 I ) > 0. However, u has a zero. 
�
In this example, (∇2u + ugSn ) is not of full rank at some point. This implies that for

such f , the Gauss map fails to be regular and the convex body with support function u is
not C2. However, in the next section we will show that the solution to the PDE (1.2) for
k+1

2 ≤ p < k + 1 is always C2 when f is C2.

6 C2 estimate for p ≥ k+1
2

To prove Theorem 1.2, we consider the following perturbed equation

σk(∇2u + (u + ε)gSn ) = u p−1 f, (6.1)

for ε > 0.
First of all, we prove the following existence for an auxilliary equation below.

Proposition 6.1 For any v ∈ C4(Sn) with v > 0 and f ∈ C4(Sn), there exists a unique
solution u ∈ C5,α(Sn) (0 < α < 1) with (∇2u + vgSn ) ∈ �k , which we denote by T f (v), to

σk(∇2u + vgSn ) = u p−1 f. (6.2)

Moreover, there exists some constant C, depending on n, k, p − 1, α, ‖v‖C4 , ‖ f ‖C4 , min v,

min f , such that

‖u‖C5,α ≤ C.

Proof Step 1 A priori estimate for (6.2).
Let u(x0) = min u. Then(

n

k

)
vk(x0) ≤ σk(∇2u + vgSn )(x0) = u(x0)

p−1 f (x0).

It follows that u ≥ u(x0) ≥ c > 0. Similarly, we have u ≤ C .
Denote wi j = ui j + vδi j . Note that wi iss = wssii + 2wi i − 2wss − vi i + vss for any

i, s. For C2 estimate, we can apply the same argument as in the proof of Proposition 4.2 to
tr(w) = 
u + nv. Once we get the C2 estimate and the positive lower bound of u, (6.2)
is uniformly elliptic. By the Evans–Krylov and the Schauder theory, we have higher order
estimate.

Step 2 Existence and uniqueness for (6.2).

123



69 Page 18 of 23 P. Guan, C. Xia

To prove the uniqueness, let u and ũ be two solutions. Then the difference h = u − ũ
satisfies ai j (x)hi j + c(x)h = 0, where ai j (x) is an elliptic operator and c(x) < 0. Thus
h ≡ 0 by strong maximum principle.

We use continuity method to prove the existence. We set f0 := 1
v p−1 σk(∇2v + vgSn ) and

ft = (1−t) f0+t f . Consider (6.2) with f = ft . It is easy to see u0 ≡ v is the unique solution
to (6.2) for f = f0. Next, the kernel of the linearized operator Lut is trivial and self-adjoint.
Thus the openness follows from standard implicit function theorem. The closeness follows
from the a priori estimates in Step 1. Therefore, we have the existence of (6.2) via continuity
method. 
�

Next we show the existence for the perturbed Eq. (6.1).

Proposition 6.2 Let ε > 0 and k+1
2 ≤ p < k + 1. There exists a solution u ∈ C4(Sn) with

(∇2u + (u + ε)gSn ) ∈ �k to (6.1). Moreover, there exist some positive constants cε and Cε ,
depending on n, k, p − 1, ‖ f ‖C4 , min f and ε, such that

u ≥ cε and ‖u‖C5,α ≤ Cε .

Proof Step 1 A priori estimate for (6.1).
From the equation, u > 0 automatically. Let u(x0) = min u, then

(
n

k

)
εk ≤ σk(∇2u + (u + ε)gSn )(x0) = u(x0)

p−1 f (x0).

A positive lower bound u ≥ cε follows. One may follow the same argument in the previous
section to prove the C1 and the C2 estimate depending on cε . We remark that for these
arguments one needs only assume (∇2u + (u + ε)gSn ) ∈ �k , see Remark 4.1.

Step 2 Existence for (6.1).
We use the degree theory to prove the existence. Denote by ft = (1 − t)

(n
k

)
(1 + ε)k + t f

for t ∈ [0, 1]. For any ω ∈ C4(Sn) and ft we consider

σk(∇2u + (eω + ε)gSn ) = u p−1 ft (x). (6.3)

From Proposition 6.1, there exists a unique positive solution T ft (e
ω + ε) to (6.3). Define an

operator

T̃t : C4 → C5,α

ω �→ log T ft (e
ω + ε).

It follows from the a priori estimate in Proposition 6.1 that T̃t is compact.
It is easy to see that ω is a fixed point of T̃t , i.e., ω = T̃t (ω), if and only if u = eω is a

solution to (6.1) with (∇2u + (u + ε)gSn ) ∈ �k . Therefore, by using the a priori estimates in
Proposition 6.2, we see that any fixed point of T̃t is not on the boundary of

SK = {ω ∈ C4 : ‖ω‖C4 ≤ K }
when K is sufficient large, depending on ε.

By the degree theory, deg(I − T̃t , SK , 0) is well defined and independent of t .
Claim For t = 0, u0 ≡ 1 is the unique solution to (6.1) with f = f0 and the linearized

operator Lu0 at u0 ≡ 1 is injective.
To show this claim, we need the a priori estimate from Propositions 6.3 and 6.4 below,

where we assume p ≥ k+1
2 .
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First, there is no other solutions of (6.1) near u0 ≡ 1. The linearized operator for the
Eq. (6.1) at u0 ≡ 1 is given by

Lu0ρ = σ
i j
k ((1 + ε)gSn )(∇2

i jρ + ρgi j ) − (p − 1) f0ρ

= (1 + ε)k−1
(

n − 1

k − 1

)
(
ρ + nρ) − (p − 1)

(
n

k

)
(1 + ε)kρ.

Since the first eigenvalue of 
 on S
n is n, we see that the kernel of Lu0 is trivial, namely,

Lu0 is injective. Thus the assertion follows by the implicit function theorem.
Second, for ε > 0 small, there exist no other solutions than u0 ≡ 1. Suppose there are

εl → 0 and non-constant solutions ul for each εl . By the a priori estimate independent of ε

by Propsitions 6.3 and 6.4, there is a subsequence, still denote by {ul}, with ul → ũ in C1,α ,
where ũ ∈ C1,1(Sn) is a solution of the un-perturbed Eq. (1.2) with f = f0. It follows from
the previous step that ul is uniformly away from u0 ≡ 1, so ũ is not the constant 1, which
contradicts to the uniqueness of (1.2).

Third, for any ε > 0 such that u > 0 solves (6.1) with f = f0, the uniqueness is true.
This follow immediately from previous two steps. We finish the proof of the claim.

We turn back to the proof of the existence. Since Lu0 is injective, the derivative T̃0
′
in C4 is

injective. The degree can be computed as deg(I −T0, SK , 0) = (−1)β where β is the number
of eigenvalues of T̃0

′
greater than one. In any case deg(I −Tt , SK , 0) = deg(I −T0, SK , 0) =

(−1)β is not equal to zero. Therefore we have the existence for (6.1) for any t ∈ [0, 1], in
particular for t = 1. The assertion follows. 
�

We now show the a priori estimate independent of ε. The arguments in the proof for C1

estimate in previous section yield the C1 estimate for solutions to (6.1).

Proposition 6.3 Let ε ≥ 0. Let u be a solution to (6.1) with (∇2u + (u + ε)gSn ) ∈ �k .
Then there exists some positive constant C, depending on n, k, p, min f and ‖ f ‖C1 , but
independent of ε, such that

‖u‖C1 ≤ C.

Next, we show that, in the case k+1
2 ≤ p < k + 1, Eq. (6.1) admits a C2 estimate

independent of ε.

Proposition 6.4 Let ε ≥ 0. Assume k+1
2 ≤ p < k + 1. Let u be a solution to (6.1) with

(∇2u + (u + ε)gSn ) ∈ �k . Then there exists a nonnegative constant α = α(p − 1, k, n)

depending only on p, k, n with α(p − 1, k, n) > 0 if k+1
2 < p, and there is some positive

constant C depending on n, k, p − 1, min f and ‖ f ‖C2 , but independent of ε, such that
∥∥∥∥∇2u

uα

∥∥∥∥
C0

≤ C.

Proof For k = 1, the standard theory of linear elliptic PDE gives us the C2 estimate. Hence
we consider k ≥ 2. In the following proof we denote by W ε

u = ∇2u +(u +ε)I . It is sufficient

to prove the upper bound of σ1(W ε
u )

uα since W ε
u ∈ �2.

Let y0 ∈ S
n be a maximum point of |∇u|2

u1+α . Then

∇|∇u|2(y0) = (1 + α)|∇u|2 ∇u

u
(y0).
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It follows that

(∇2u + (u + ε)I )

uα
· ∇u(y0) =

(
(1 + α)|∇u|2

2u1+α
+ (u + ε)

uα

)
∇u(y0).

Thus
(

(1+α)|∇u|2
2u1+α + (u+ε)

uα

)
(y0) is an eigenvalue of (∇2u+(u+ε)I )

uα (y0). Since W ε
u ∈ �2, we

have

max
(1 + α)|∇u|2

2u1+α
= (1 + α)|∇u|2

2u1+α
(y0)

≤
(

(1 + α)|∇u|2
2u1+α

+ (u + ε)

uα

)
(y0)

≤ σ1(W ε
u )

uα
(y0) ≤ max

σ1(W ε
u )

uα
. (6.4)

Let x0 be a maximum point of σ1(W ε
u )

uα and by a choice of local frame and a rotation of
coordinates we assume gi j = δi j and W ε

u is diagonal at x0. By the maximal condition, at x0,

∇σ1 = ασ1
∇u

u
,

∇2σ1

σ1
− ∇2uα

uα
≤ 0.

In the following we compute at x0. Assuming 0 ≤ α ≤ 1, and using Ricci’s identity,

0 ≥ σ i i
k [ (σ1)i i

σ1
− αuii

u
− α(α − 1)

u2
i

u2 ]

≥ σ i i
k

(W ε
i iss + W ε

ss − nW ε
i i )

σ1
− αk

σk

u
+ (n + 1 − k)ασk−1

= 
σk − σ
i j,lm
k W ε

i js W ε
lms − nkσk

σ1
− αk

σk

u
+ (n + 1 − k)(1 + α)σk−1. (6.5)

From the Eq. (6.1), we have


σk = (p − 1)u p−2
u f + (p − 1)(p − 2)u p−3|∇u|2 f

+ 2(p − 1)u p−2∇u∇ f + u p−1
 f

= (p − 1)u p−2σ1 f + (p − 1)(p − 2)u p−3|∇u|2 f

+ 2(p − 1)u p−2∇u∇ f + (1 − n(p − 1))u p−1
 f. (6.6)

Since ∇σ1 = ασ1
∇u
u , σk = u p−1 f and ∇σk = (p − 1)u p−2 f ∇u + u p−1∇ f , we deduce

from (2.4) in Lemma 2.2 that

− σ
i j,lm
k W ε

i js W ε
lms ≥ −βu p−1−2|∇u|2 f + c1u p−2∇u∇ f + c2u p−1 |∇ f |2

f
, (6.7)

where c1, c2 are constants under control and

β = (p − 1 − α)
(k − 2)(p − 1) + kα

k − 1
. (6.8)

It follows from (6.6) and (6.7) that


σk − σ
i j,lm
k W ε

i js W ε
lms

≥ (p − 1)u p−2σ1 f + [(p − 1)(p − 2) − β] u p−3|∇u|2 f

+ c1u p−2∇u∇ f − Cu p−1 (6.9)
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where C depends on k, p, n, ‖ f ‖C2 and min f .
By (6.5) and (6.9),

0 ≥ (p − 1 − kα)u p−1−1 f + (n + 1 − k)(1 + α)σk−1

+ [(p − 1)(p − 2) − β] u p−3|∇u|2 f + (c1 + 2(p − 1))u p−2∇u∇ f − Cu p−1

σ1
(6.10)

Note that from (6.4) we have

σ1(W ε
u )

uα
(x0) = max

σ1(W ε
u )

uα
≥ (1 + α)|∇u|2

2u1+α
(x0). (6.11)

As u is bounded from above, we deduce from (6.10) and (6.11) that

0 ≥ min

{
(p − 1 − kα) + 2((p − 1)(p − 2) − β)

1 + α
, p − 1 − kα

}
u p−2 f

− C
u p− 3

2√
σ1

− C
u p−1

σ1
+ (n + 1 − k)(1 + α)σk−1. (6.12)

In view of (6.8), if p ≥ k+1
2 , we may choose α ≥ 0 such that p − 1 − kα ≥ 0 and

(p − 1 − kα) + 2((p − 1)(p − 2) − β)

1 + α

= 1

1 + α

(
2

k − 1
(p − 1)2 − (p − 1) + k − 5

k − 1
α(p − 1) − kα(1 + α) + 2k

k − 1
α2
)

≥ 0,

Moreover, if p > k+1
2 , α can be picked positive. By the Newton–Maclaurin inequality

σk−1 ≥ Cn,kσ
1

k−1
1 σ

k−2
k−1

k ,

it follows from (6.12),

0 ≥ (n + 1 − k)(1 + α)σ1σk−1 − Cu p− 3
2
√

σ1 − Cu p−1

≥ Cσ
1+ 1

k−1
1 (u p−1 f )

k−2
k−1 − Cu p− 3

2
√

σ1 − Cu p−1. (6.13)

Since p ≥ k+1
2 , we can choose α ≥ 0 such that (p−1) k−2

k−1 ≤ p− 3
2 −( 1

k−1 + 1
2 )α. Moreover,

if p > k+1
2 , α can be picked positive. By virtue of the uniform upper bound of u, we obtain

σ1
uα ≤ C . The proof is completed. 
�

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 For ε > 0, let uε be the solution of (6.1) with (∇2uε + (uε +ε)gSn ) ∈
�k . From the a priori C2 estimate independent of ε, there is a subsequence uεi → u in
C1,α for any α < 1. The bound gives u ∈ C1,1(Sn) and σk(∇2u + ugSn ) = u p−1 f with
(∇2u + ugSn ) ∈ �̄k .

We note that solution u is C2 continuous if p > k+1
2 . This follows from Proposition 6.4,

|∇2u(x)| ≤ Cuα(x),∀x ∈ S
n , because u ∈ C∞ away from the null set {u = 0} and ∇2u is

continuous at every point of {u = 0} when α > 0. 
�
We discuss a special case of equation (1.2) when k = 1. This is the equation corresponding

to the L p-Christoffel problem. In this case, equation is semilinear:


u(x) + nu(x) = u p−1(x) f (x), x ∈ S
n . (6.14)
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From the C1 estimate established for admissible solutions of Eq. (6.1) in the previous section
and standard semilinear elliptic theory, we immediately have

Theorem 6.1 For any positive function f ∈ C2(Sn) there exists a nonnegative solution u to
(6.14) with

‖u‖C2,α(Sn) ≤ C,

for some 0 < α < 1 and C depending on n, k, p, α, ‖ f ‖C2(Sn) and minSn f .

If condition (1.3) is imposed, one may obtain a sperically convex solution u. Though u ∈ C2,α ,
the corresponding hypersurface with u as its support function may not be in C1,1 as Wu may
degenerate on the null set of u. Equation (6.14) has variational structure, it is of interest to
develop corresponding potential theory as in the classical Christoffel problem [1,5].

To end this paper, we would like to raise the following two questions.

1. Using compactness argument as in [11], together with the a priori estimates in Proposi-
tion 4.2 and the Constant Rank Theorem 2.1, one can prove that if ‖ f ‖C2 +‖ 1

f ‖C0 ≤ M
and (1.3) holds, there exists a uniform positive constant C depending only on n, M such
that

Wu ≥ CgSn .

Is there a direct effective estimate of Wu from below under the same convexity condi-
tions, without use of the constant rank theorem?

2. Under the condition of evenness, a positive lower bound of u in Proposition 4.1 has
been derived via an ODE argument and a bound on ∇u which depends on ∇ f . In the
case of L p-Minkowski problem (i.e., k = n), one may obtain a bound of volume of
the associated convex body �u from below if f is positive. Is it possible to derive such
a priori a positive lower bound of V ol(�u) for solutions of Eq. (1.2) in general? This
would give a positive lower bound of u.
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