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Abstract We shall prove a multiplicity result for semilinear elliptic problems with a super-
critical nonlinearity of the form,

{−�u = |u|p−2u + μ|u|q−2u, x ∈ �

u = 0, x ∈ ∂�
(1)

where � ⊂ R
n is a bounded domain with C2-boundary and 1 < q < 2 < p. As a

consequence of our results we shall show that, for each p > 2, there exists μ∗ > 0 such that
for each μ ∈ (0, μ∗) problem (1) has a sequence of solutions with a negative energy. This
result is already known for the subcritical values of p. In this paper, we shall extend it to the
supercritical values of p as well. Our methodology is based on a new variational principle
established by one of the authors that allows one to deal with problems beyond the usual
locally compactness structure.
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1 Introduction

In this paper we consider the semilinear elliptic problem
{−�u = u|u|p−2 + μu|u|q−2, in �,

u = 0, on ∂�,
(2)

where � ⊂ R
n is a bounded domain with C2-boundary, μ ∈ R

+ and 1 < q < 2 < p. This
problem has received a lot of attention since being first investigated by Ambrosetti et al. [2].
Using the method of sub-super solutions, it is proved in [2] that there exists � > 0 such that
(2) has a positive solution uμ for 0 < μ ≤ �. The importance of their results lies in the fact
that p can be arbitrarily large. If in addition p < 2∗ := 2n/(n − 2), then solutions of (2)
correspond to critical points of the functional

I (u) = 1

2

∫
�

|∇u|2 − 1

p

∫
�

|u|pdx − μ

q

∫
�

|u|qdx, (3)

defined on H1
0 (�), and hence variational methods may be applied. In this case a second

positive solution uμ exists for 0 < μ ≤ � as shown in [2], Theorem 2.3. Moreover, there
exists � > 0 such that for every 0 < μ < � problem (2) has infinitely many solutions
{uμ, j } j∈N satisfying I (uμ, j ) < 0, and there exist infinitely many solutions {uμ, j } j∈N sat-
isfying I (uμ, j ) > 0. In fact, they showed that there exists an additional pair of solutions
(which can change sign) for all 0 < μ < μ∗ with μ∗ possibly smaller than � (see also
Ambrosetti et al. [1] and references therein). Their method relied on the standard methods
in the critical point theory.
Over the years, the study for the number of positive solutions were furthered by many authors
including [5,14,15,19]. It was indeed established that if 1 < q < 2 < p < 2∗ then there
exists μ∗ > 0 such that for 0 < μ < μ∗, there are exactly two positive solutions of (2),
exactly one positive solution for μ = μ∗ and no positive solution exists for μ > μ∗, when
� is the unit ball in R

n .
In [2,7] the existence of solutions with negative energy has also been proved in the critical
case p = 2∗ provided μ > 0 is small enough.

Also, Bartsch and Willem [3] showed that for the subcritical case μ∗ = ∞ and I (uμ, j ) →
0 as j → ∞. In addition they proved that a sequence of solutions {uμ, j } with a positive
energy also exists for μ ≤ 0. Furthermore, Wang [20] proved that the solutions uμ, j not only
tend to 0 energetically but also uniformly on �. Wang even dealt with more general classes
of nonlinear functions fμ(u) instead of just u|u|p−2 + μu|u|q−2. The variational structure
and the oddness of the nonlinearity, however, are essential to obtain infinitely many solutions
{uμ, j } and {uμ, j } for the subcritical case.

Our main objective in this paper is to prove multiplicity results without imposing any
growth condition on the nonlinearity u|u|p−2. We shall now state our result in this paper
regarding positive solutions of (2).

Theorem 1.1 Let � ⊂ R
n be a bounded domain with C2-boundary and assume that 1 <

q < 2 < p. Then there exists μ∗ > 0 such that for each μ ∈ (0, μ∗) problem (2) has at least
one positive solution u ∈ W 2,n(�) with a negative energy.

This result, however, is already known in [2]. Here we shall provide a different approach
based on variational principles on convex closed sets. The next result concerns with the
multiplicity of solutions for the super-critical case.
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Theorem 1.2 Let � ⊂ R
n be a bounded domain with C2-boundary and assume that 1 <

q < 2 < p. Then there exists μ∗ > 0 such that for each μ ∈ (0, μ∗) problem (2) has
infinitely many distinct nontrivial solutions in W 2,n(�) with a negative energy.

As there is no upper bound for p in Theorem 1.2, thus, this theorem will be an extension
of a similar result by Ambrosetti et al. [2] to the supercritical case.

Remark 1.3 Note that the term u|u|p−2 can be substituted by any super-linear odd function
f that behaves like f (u) = u|u|p−2 around u = 0 and around u = +∞. The oddness of
f is not required in Theorem 1.1, however, f has to be positive on (0,∞). We would also
like to remark that the parameter μ∗ is the same in both Theorems 1.1 and 1.2. Finally, it is
worth noting that there exists � ∈ (0,∞) such that problem (2) does not have any positive
solution for λ > � (see Theorem 2.1 in [2]).

We shall be proving Theorems 1.1 and 1.2 by making use of a new abstract variational
principle established recently in [12,13] (see also [10,11] for some other new variational
principles and [4] for an application in super-critical Neumann problems). To be more specific,
let V be a reflexive Banach space, V ∗ its topological dual and let K be a non-empty convex
and weakly closed subset of V . Assume that � : V → R∪{+∞} is a proper, convex, lower
semi-continuous function which is Gâteaux differentiable on K. The Gâteaux derivative of
� at each point u ∈ K will be denoted by D�(u). The restriction of � to K is denoted by
�K and defined by

�K (u) =
{

�(u), u ∈ K ,

+∞, u /∈ K .
(4)

For a given functional � ∈ C1(V, R) denote by D� ∈ V ∗ its derivative and consider the
functional IK : V → (−∞,+∞] defined by

IK (u) := �K (u) − �(u).

According to Szulkin [18], we have the following definition for critical points of IK .

Definition 1.4 A point u0 ∈ V is said to be a critical point of IK if IK (u0) ∈ R and if it
satisfies the following inequality

〈D�(u0), u0 − v〉 + �K (v) − �K (u0) ≥ 0, ∀ v ∈ V, (5)

where 〈., .〉 is the duality pairing between V and its dual V ∗.

We shall now recall the following variational principle established recently in [12].

Theorem 1.5 Let V be a reflexive Banach space and K be a non-empty convex and weakly
closed subset of V . Let � : V → R ∪ {+∞} be a convex, lower semi-continuous function
which is Gâteaux differentiable on K and let � ∈ C1(V, R). If the following two assertions
hold:

(i) The functional IK : V → R∪ {+∞} defined by IK (u) := �K (u)−�(u) has a critical
point u0 ∈ V as in Definition 1.4, and;

(ii) there exists v0 ∈ K such that D�(v0) = D�(u0) in the following sense

�(v) − �(v0) ≥ 〈D�(u0), v − v0〉 , ∀ v ∈ V, (6)
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Then u0 ∈ K is a solution of the equation

D�(u) = D�(u), (7)

in the following sense

�(v) − �(u0) ≥ 〈D�(u0), v − u0〉 , ∀ v ∈ V .

For the convenience of the reader, by choosing the functions �, � and the convex set
K in lines with problem (2), we shall provide a proof to a particular case of Theorem 1.5
applicable to this problem.

In the next section we shall recall some preliminaries from convex analysis, critical point
theory and Elliptic regularity theory. Section 3 is devoted to the proof of Theorems 1.1 and
1.2.

2 Preliminaries

In this section we recall some important definitions and results from convex analysis [6] and
partial differential equations [8].

Let V be a real Banach space and V ∗ its topological dual and let 〈., .〉 be the pairing
between V and V ∗. The weak topology on V induced by 〈., .〉 is denoted by σ(V, V ∗). A
function � : V → R is said to be weakly lower semi-continuous if

�(u) ≤ lim inf
m→∞ �(um),

for each u ∈ V and any sequence um approaching u in the weak topology σ(V, V ∗). Let
� : V → R ∪ {∞} be a proper (i.e. Dom(�) = {v ∈ V ; �(v) < ∞} �= ∅) convex
function. The subdifferential ∂� of � is defined to be the following set-valued operator: if
u ∈ Dom(�), set

∂�(u) = {u∗ ∈ V ∗; 〈u∗, v − u〉 + �(u) ≤ �(v) for all v ∈ V }
and if u /∈ Dom(�), set ∂�(u) = ∅. If � is Gâteaux differentiable at u, denote by D�(u)

the Gâteaux derivative of � at u. In this case ∂�(u) = {D�(u)}.
Let I be a function on V satisfying the following hypothesis:

(H): I = � − �,where � ∈ C1(V, R) and � : V → (−∞,+∞] is proper, convex and
lower semi-continuous.

Definition 2.1 A point u ∈ V is said to be a critical point of I if u ∈ Dom(�) and if it
satisfies the inequality

〈D�(u), u − v〉 + �(v) − �(u) ≥ 0, ∀ v ∈ V, (8)

where D�(u) stands for the derivative of � at u.

Note that a function satisfying (8) is indeed a solution of the inclusion D�(u) ∈ ∂�(u).

Proposition 2.2 If I satisfies (H), then each local minimum of I is necessarily a critical
point of I .
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Proof Let u be a local minimum of I . Using the convexity of �, it follows that for all small
t > 0,

0 ≤ I
(
(1 − t)u + tv

) − I (u) = �
(
u + t (v − u)

) − �(u) + �
(
(1 − t)u + tv

) − �(u)

≤ �
(
u + t (v − u)

) − �(u) + t (�(v) − �(u)) .

Dividing by t and letting t → 0+ we obtain (8). ��
The critical point theory for functions of the type (H) was established by Szulkin [18].

According to [18], say that I satisfies the compactness condition of Palais-Smale type pro-
vided,
(PS): If {um} is a sequence such that I (um) → c ∈ R and

〈D�(um), um − v〉 + �(v) − �(um) ≥ −εm‖v − um‖V , ∀ v ∈ V, (9)

where εm → 0, then {um} possesses a convergent subsequence.

In the following we recall an important result about critical points of even functions of the
type (H). We shall begin with some preliminaries. Let � be the collection of all symmetric
subsets of V \{0} which are closed in V . A nonempty set A ∈ � is said to have genus k
(denoted γ (A) = k) if k is the smallest integer with the property that there exists an odd
continuous mapping h : A → R

k\{0}. If such an integer does not exist, γ (A) = ∞. For the
empty set ∅ we define γ (∅) = 0.

Proposition 2.3 Let A ∈ �. If A is a homeomorphic to Sk−1 by an odd homeomorphism,
then γ (A) = k.

Proof and a more detailed discussion of the notion of genus can be found in [16,17].
Let  be the collection of all nonempty closed and bounded subsets of V . In  we introduce
the Hausdorff metric distance ([9], §15, VII), given by

dist (A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}
.

The space (, dist) is complete ([9], §29, IV). Denote by � the sub-collection of  consisting
of all nonempty compact symmetric subsets of V and let

� j = cl{A ∈ � : 0 /∈ A, γ (A) ≥ j} (10)

(cl is the closure in �). It is easy to verify that � is closed in , so (�, dist) and (� j , dist)
are complete metric spaces. The following Theorem is proved in [18].

Theorem 2.4 Suppose that I : V → (−∞,+∞] satisfies (H) and (PS), I (0) = 0 and �,
� are even. Define

c j = inf
A∈� j

sup
u∈A

I (u).

If −∞ < c j < 0 for j = 1, . . . , k, then I has at least k distinct pairs of nontrivial critical
points by means of Definition 2.1.

We shall now recall some notations and results from the theory of Sobolev spaces and
Elliptic regularity required in the sequel. Here is the general Sobolev embedding theorem in
Wk,p(�) (see Lemma 7.26 in [8]).

Theorem 2.5 Let � be a bounded C0,1 domain in R
n. Then,
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(i) If kp < n, the space Wk,p(�) is continuously imbedded in Lt∗(�), t∗ = np
(n−kp) , and

compactly imbedded in Lq(�) for any q < t∗.
(ii) If 0 ≤ m < k − n

p < m + 1, the space Wk,p(�) is continuously imbedded in Cm,α(�),

α = k − n
p − m, and compactly imbedded in Cm,β(�) for any β < α.

The following inequality is proved in ([8], Lemma 9.17).

Lemma 2.6 Let � be a bounded C1,1 domain in R
n and let the operator L = ai j (x)Di j u+

bi (x)Diu + c(x)u be strictly Elliptic in � with coefficients ai j ∈ C(�), bi , c ∈ L∞(�),
with i, j = 1, . . . , n and c ≤ 0. Then there exists a positive constant C (independent of u)
such that

‖u‖W 2,p(�) ≤ C‖Lu‖L p(�),

for all u ∈ W 2,p(�) ∩ W 1,p
0 (�), 1 < p < ∞.

Here is a direct consequence of Lemma 2.6.

Corollary 2.7 Let � be a bounded C1,1 domain in R
n . Assume that p ≥ 2. Then there exist

constants �1 and �2 such that

�1‖u‖W 2,p(�) ≤ ‖�u‖L p(�) ≤ �2‖u‖W 2,p(�),

for all u ∈ W 2,p(�) ∩ H1
0 (�).

Proof Since p ≥ 2, it is easily seen that W 2,p(�) ∩ H1
0 (�) = W 2,p(�) ∩ W 1,p

0 (�). Thus,
the existence of �1 follows from Lemma 2.6. The existence of �2 follows from the definition
of the Sobolev space W 2,p(�). ��

3 Proofs and further comments

We shall need some preliminary results before proving Theorems 1.1 and 1.2 in this section.
We shall consider the Banach space V = H1

0 (�)∩ L p(�) equipped with the following norm

‖u‖ := ‖u‖H1
0 (�) + ‖u‖L p(�).

Note that the duality pairing between V and its dual V ∗ is defined by

〈u, u∗〉 =
∫

�

u(x)u∗(x) dx, ∀ u ∈ V, ∀u∗ ∈ V ∗.

Let I : V → R be the Euler–Lagrange functional corresponding to (2),

I (u) = 1

2

∫
�

|∇u|2dx − 1

p

∫
�

|u|pdx − μ

q

∫
�

|u|qdx .

To make use of Theorem 1.5, we shall first define the function � : V → R by

�(u) = 1

p

∫
�

|u|pdx + μ

q

∫
�

|u|qdx,

Note that � ∈ C1(V ; R). Define � : V → R by

�(u) = 1

2

∫
�

|∇u|2dx .
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The restriction of � to a convex and weakly closed subset K (to be introduced later) of V is
denoted by �K and defined by

�K (u) =
{

�(u), u ∈ K ,

+∞, u /∈ K ,
(11)

Finally, let us introduce the functional IK : V → (−∞,+∞] defined by

IK (u) := �K (u) − �(u), (12)

which is of the form (H). Note that IK is indeed the Euler–Lagrange functional corresponding
to (2) restricted to K . Here is a simplified version of Theorem 1.5 applicable to problem (2).

Theorem 3.1 Let V = H1
0 (�) ∩ L p(�), and let K be a convex and weakly closed subset of

V . If the following two assertions hold:

(i) The functional IK : V → R ∪ {+∞} defined in (12) has a critical point ū ∈ V as in
Definition 2.1, and;

(ii) there exists v̄ ∈ K such that −�v̄ = D�(ū) = ū|ū|p−2 + μū|ū|q−2 in the weak sense,
i.e., ∫

�

∇v̄.∇η dx =
∫

�

D�(ū)η dx, ∀ η ∈ V .

Then ū ∈ K is a weak solution of the equation

− �u = u|u|p−2 + μu|u|q−2. (13)

Proof Since ū is a critical point of I (u) = �K (u) − �(u), it follows from Definition 2.1
that

�K (v) − �K (ū) ≥ 〈D�(ū), v − ū〉, ∀ v ∈ V, (14)

where 〈D�(ū), v − ū〉 = ∫
�
D�(ū)(v − ū) dx . Thus, the inequality (14) translates to

1

2

∫
�

|∇v|2dx − 1

2

∫
�

|∇ū|2dx ≥
∫

�

D�(ū)(v − ū) dx, ∀ v ∈ K . (15)

It also follows from (i i) in the theorem that there exists v̄ ∈ K such that −�v̄ = D�(ū) in
the weak sense, i.e., ∫

�

∇v̄.∇η dx =
∫

�

D�(ū)η dx, ∀ η ∈ V . (16)

Thus, by substituting η = ū − v̄ in the latter equality one gets∫
�

∇v̄.∇(ū − v̄) dx =
∫

�

D�(ū)(ū − v̄) dx . (17)

Now by substituting v = v̄ in (15) and taking into account the equality (17) we obtain that

1

2

∫
�

|∇v̄|2dx − 1

2

∫
�

|∇ū|2dx ≥
∫

�

D�(ū)(v̄ − ū) dx =
∫

�

∇v̄.∇(v̄ − ū)dx . (18)

On the other hand, it follows from the convexity of � that

1

2

∫
�

|∇ū|2dx − 1

2

∫
�

|∇v̄|2dx ≥
∫

�

∇v̄.∇(ū − v̄) dx . (19)
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Taking into account inequalities (18) and (19) we obtain that

1

2

∫
�

|∇v̄|2dx − 1

2

∫
�

|∇ū|2dx =
∫

�

∇v̄.∇(v̄ − ū) dx . (20)

This indeed implies that ∫
�

|∇v̄ − ∇ū|2dx = 0,

from which we obtain v̄ = ū for a.e. x ∈ �. Therefore, the result follows from the equality
(16). ��

We shall use Theorem 3.1 to prove our main results in Theorems 1.1 and 1.2. The convex
subset K of V required in Theorem 1.2 is defined as follows

K (r) := {
u ∈ V : ‖u‖W 2,n(�) ≤ r

}
,

for some r > 0 to be determined later. Also, the convex set K required in the proof of
Theorem 1.1 consists of all non-negative functions in K (r) for some r > 0.

Lemma 3.2 Let r > 0 be fixed. The set

K (r) := {
u ∈ V : ‖u‖W 2,n(�) ≤ r

}
,

is weakly closed in V .

Proof Let {um} be a sequence in K (r) such that um ⇀ u weakly in V . It follows that, up
to a subsequence, um(x) → u(x) for a.e. x ∈ �. On the other hand, since {um} ⊂ K (r) we
have that ‖um‖W 2,n(�) ≤ r for all m ∈ N. Thus, we can conclude that {um} is bounded in
W 2,n(�). Going if necessary to a subsequence, there exists u ∈ W 2,n(�) such that um ⇀ u
weakly in W 2,n(�) and um(x) → u(x) for a.e. x ∈ �. It then implies that u(x) = u(x) for
a.e. x ∈ � and therefore um ⇀ u weakly in W 2,n(�). It now follows from the weak lower
semi-continuity of the norm in W 2,n(�) that

‖u‖W 2,n(�) ≤ lim inf
m→∞ ‖um‖W 2,n(�) ≤ r.

Thus u ∈ K (r). ��
To apply Theorem 3.1, we shall need to verify both conditions (i) and (ii) in this Theorem.

To verify condition (i) in Theorem 1.1 we simply find a minimizer of IK for some weakly
compact and convex subset K of V, and in Theorem 1.2 we shall make use of the abstract
Theorem 2.4 to find a sequence of solutions. However, condition (ii) in Theorem 3.1 seems
to be rather identical for both Theorems 1.1 and 1.2. Let us first proceed with condition (ii)
in Theorem 3.1. In fact, our plan is to show that if u ∈ K (r) then for appropriate choices of
r, there exists v ∈ K (r) such that −�v = D�(u). We shall do this in a few lemmas.

Lemma 3.3 Let � ⊂ R
n be a bounded domain and assume that 1 < q < 2 < p. Let d1

and d2 be the best constants in the imbeddings W 2,n(�) ↪→ Ln(p−1)(�) and W 2,n(�) ↪→
Ln(q−1)(�), respectively. Then

‖D�(u)‖Ln(�) ≤ C1r
p−1 + μC2r

q−1, ∀ u ∈ K (r),

where C1 = d p−1
1 and C2 = dq−1

2 .
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Proof By the definition of D�(u) we have

‖D�(u)‖Ln(�) = ∥∥u|u|p−2 + μu|u|q−2
∥∥
Ln(�)

≤ ∥∥u|u|p−2
∥∥
Ln(�)

+ μ
∥∥u|u|q−2

∥∥
Ln(�)

≤ ‖u‖p−1
Ln(p−1)(�)

+ μ‖u‖q−1
Ln(q−1)(�)

.

By Theorem 2.5 the space W 2,n(�) is compactly imbedded in Ln(p−1) and Ln(q−1). Thus,

‖D�(u)‖Ln(�) ≤ C1‖u‖p−1
W 2,n(�)

+ μC2‖u‖q−1
W 2,n(�)

.

It follows from u ∈ K (r) that

‖D�(u)‖Ln(�) ≤ C1r
p−1 + μC2r

q−1,

as desired. ��
By a straightforward computation one can easily deduce the following result.

Lemma 3.4 Let 1 < q < 2 < p. Assume that C1 and C2 are given in Lemma 3.3. Then
there exists μ∗ > 0 with the following properties.

1. For each μ ∈ (0, μ∗), there exist positive numbers r1, r2 ∈ R with r1 < r2 such that
r ∈ [r1, r2] if and only if C1r p−1 + μC2rq−1 ≤ r.

2. For μ = μ∗, there exists one and only one r > 0 such that C1r p−1 + μC2rq−1 = r.
3. For μ > μ∗, there is no r > 0 such that C1r p−1 + μC2rq−1 = r.

Remark 3.5 Since the Sobolev spaceW 2,n(�) is compactly embedded into L p(�), we obtain
that

V ∩ W 2,n(�) = H1
0 (�) ∩ W 2,n(�).

It also follows from Corollary 2.7 that u → ‖�u‖Ln(�) is an equivalent norm on H1
0 (�) ∩

W 2,n(�). For the rest of the paper, we shall then consider this norm, i.e., for each u ∈
H1

0 (�) ∩ W 2,n(�),

‖u‖W 2,n(�) = ‖�u‖Ln(�).

We are now in the position to state the following result addressing condition (i i) in
Theorem 3.1.

Lemma 3.6 Let� ⊂ R
n be a bounded domain with C2-boundary and assume that 1 < q <

2 < p. We also assume that μ∗ > 0 is given in Lemma 3.4 and μ ∈ (0, μ∗). Let r1, r2 be
given in part (1) of Lemma 3.4. Then for each r ∈ [r1, r2] and each u ∈ K (r) there exists
v ∈ K (r) such that the following equation holds in the weak sense,

− �v = u|u|p−2 + μu|u|q−2. (21)

In particular, v ∈ W 2,n(�) ∩ H1
0 (�) and Eq. (21) holds pointwise for a.e. x ∈ �.

Proof By standard methods we see that there exists v ∈ H1
0 (�) which satisfies

−�v = D�(u) = u|u|p−2 + μu|u|q−2. (22)

in the weak sense. Since the right hand side is an element in Ln(�), it follows from the
standard regularity results that v ∈ W 2,n(�) ∩ H1

0 (�) and (22) holds pointwise for a.e.
x ∈ �. Therefore,

‖�v‖Ln(�) = ‖D�(u)‖Ln(�).
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Thus, by Remark 3.5 we have that

‖v‖W 2,n(�) = ‖�v‖Ln(�) = ‖D�(u)‖Ln(�).

This together with Lemma 3.3 yield that

‖v‖W 2,n(�) ≤ C1r
p−1 + μC2r

q−1,

By Lemma 3.4, for each r ∈ [r1, r2] we have that C1r p−1 + μC2rq−1 ≤ r. Therefore,

‖v‖W 2,n(�) ≤ C1r
p−1 + μC2r

q−1 ≤ r,

as desired. ��
Proof of Theorem 1.1 Let μ∗ be as in Lemma 3.6 and μ ∈ (0, μ∗). Also, let r1 and r2 be as
in Lemma 3.6 and define

K := {
u ∈ K (r2); u(x) ≥ 0 a.e. x ∈ �

}
.

Step 1.We show that there exists u ∈ K such that IK (u) = infu∈V IK (u). Then by Proposition
2.2, we conclude that u is a critical point of IK .

Set β := infu∈V IK (u). So by definition of �K for every u /∈ K , we have IK (u) = +∞ and
therefore β = infu∈K IK (u). On the other hand, by Theorem 2.5, the Sobolev space W 2,n(�)

is compactly embedded in Lt (�) for all t > 1. It then follows that for every u ∈ K

�(u) = 1

p

∫
�

|u|pdx + μ

q

∫
�

|u|qdx
≤ c1‖u‖p

W 2,n(�)
+ c2‖u‖q

W 2,n(�)
≤ c1r

p + c2r
q ,

for some positive constants c1 and c2. Since �(u) is nonnegative, we have

IK (u) := �K (u) − �(u) ≥ − (
c1r

p + c2r
q) , ∀ u ∈ K .

So β > −∞. Now, suppose that {um} is a sequence in V such that IK (um) → β. So the
sequence {IK (um)} is bounded and we can conclude by the definition of IK that the sequence
{um} is bounded in W 2,n(�). Using standard results in Sobolev spaces, after passing to a
subsequence if necessary, there exists u ∈ K such that um ⇀ u weakly in W 2,n(�) and
strongly in V . Therefore, IK (um) → IK (u). So, IK (u) = β = infu∈V IK (u), and the proof
of Step 1 is complete.

Step 2. In this step we show that there exists v ∈ K such that −�v = u|u|p−2 +μu|u|q−2.

By Lemma 3.6 together with the fact that u ∈ K (r2) we obtain that there exists v ∈ K (r2)

such that −�v = u|u|p−2 + μu|u|q−2. To show that v ∈ K , we shall need to verify that
v is non-negative almost every where. But, this is a simple consequence of the maximum
principle and the fact that −�v = u|u|p−2 + μu|u|q−2 ≥ 0.

It now follows from Theorem 3.1 together with Step 1 and Step 2 that u is a solution of
the problem (2). To complete the proof we shall show that u is non-trivial by proving that
IK (u) = infu∈V IK (u) < 0.
Take 0 �= e ∈ K . For t ∈ [0, 1], we have that te ∈ K and therefore

IK (te) = 1

2

∫
�

|∇te|2dx − 1

p

∫
�

|te|pdx − μ

q

∫
�

|te|qdx

= tq
(
t2−q

2

∫
�

|∇e|2dx − t p−q

p

∫
�

|e|pdx − μ

q

∫
�

|e|qdx
)

.

123



Multiplicity results for elliptic problems with… Page 11 of 12 54

Since 1 < q < 2 < p, IK (te) is negative for t sufficiently small. Thus, we can conclude
that IK (u) = infu∈V IK (u) < 0. Thus, u is a non-trivial and non-negative solution of (2).
Finally, it follows from the strong maximum principle that u > 0 on �. ��
Proof of Theorem 1.2 Let μ∗ be as in Lemma 3.6 and μ ∈ (0, μ∗). Also, let r1 and r2 be
as in Lemma 3.6 and define K = K (r2). We first show that the functional IK has infinitely
many distinct critical points. To do this, we shall employ Theorem 2.4. It is obvious that the
function � is even and continuously differentiable. Also �K is a proper, convex and lower
semi-continuous even function. So (H) is satisfied. We now verify (PS). If IK (um) → c
for some c ∈ R, by definition of IK we can conclude that {um} is bounded in W 2,n(�).
Going if necessary to a subsequence, there exists some u ∈ W 2,n(�) ∩ H1

0 (�) such that
um ⇀ u weakly in W 2,n(�). Due to the compact imbeddings of W 2,n(�) ↪→ H1

0 (�) and
W 2,n(�) ↪→ L p(�) we obtain that um → u in V strongly. Thus, (PS) is satisfied.

For each k ∈ N, considering the definition of �k in (10), we define

ck = inf
A∈�k

sup
u∈A

I (u).

We shall now prove that −∞ < ck < 0 for all k ∈ N. To do this, let us denote by λ j

the jth eigenvalue of −� on H1
0 (�) (counted according to its multiplicity) and by e j a

corresponding eigenfunction satisfying
∫
�

∇ei .∇e j dx = δi j where δi j = 0 for i �= j and
δi i = 1. As in the proof of Theorem 1.1, we have that IK is bounded below. Thus ck > −∞
for each k ∈ N. Let

A :=
{
u = α1e1 + · · · + αkek : ‖u‖2

H1
0 (�)

= α2
1 + · · · + α2

k = ρ2
}
,

for small ρ > 0 to be determined. Then A ∈ �k because γ (A) = k by Proposition 2.3. Since
A is finite dimensional, all norms are equivalent on A. Thus, we can choose ρ small enough so
that A ⊆ K . Also, we can choose positive constants c1, c2 such that ‖u‖L p(�) > c1‖u‖H1

0 (�)

and ‖u‖Lq (�) > c2‖u‖H1
0 (�) for all u ∈ A. Therefore,

IK (u) = 1

2
‖u‖2

H1
0 (�)

− 1

p
‖u‖p

L p(�) − μ

q
‖u‖qLq (�)

≤ 1

2
ρ2 − 1

p
cp1 ρ p − μ

q
cq2ρq = ρq

(
1

2
ρ2−q − 1

p
cp1 ρ p−q − μ

q
cq2

)
.

Now we can choose ρ small enough such that IK (u) ≤ ρq
(

1

2
ρ2−q − 1

p
cp1 ρ p−q − μ

q
cq2

)
<

0 for every u ∈ A. It then follows that ck < 0. Thus, by Theorem 2.4, IK has has a sequence
of distinct critical points {uk}k∈N by means of Definition 2.1. Also, by Lemma 3.6, for each
critical point uk of IK there exists vk ∈ K such that −�vk = D�(uk). It now follows from
Theorem 3.1 that {uk} is a sequence of distinct solutions of (2) such that IK (uk) < 0 for each
k ∈ N. This completes the proof. ��

It is evident that Theorem 1.2 can be easily extended to p−laplacian problems similar to
the problem (2). Indeed, consider{−�pu = |u|s−2u + μ|u|q−2u, x ∈ �

u = 0, x ∈ ∂�
(23)

By using a similar argument as in the proof of Theorem 1.2 one can prove that, if 1 < q <

p < s then there exists μ∗ > 0 such that for each μ ∈ (0, μ∗) problem (23) has infinitely
many distinct nontrivial solutions with a negative energy. In our forthcoming project, we are
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investigating the existence of two positive solutions in Theorem 1.1 rather than just one. We
are also extending both Theorems 1.1 and 1.2 to the fractional laplacian case via the method
proposed in this manuscript.
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