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Abstract It is a well known fact that in R
n a subset of minimal perimeter L among all sets

of a given volume is also a set of maximal volume among all sets of the same perimeter L .
This is called the reciprocity principle for isoperimetric problems. The aim of this note is to
prove this relation in the case where the class of admissible sets is restricted to the subsets
of some subregion G � R

n . Furthermore, we give a characterization of those (unbounded)
convex subsets of R

2 in which the isoperimetric problem has a solution. The perimeter that
we consider is the one relative to R

n .

Mathematics subject classification 49Q20

1 Introduction

In its classical form, the isoperimetric problem asks for the maximal area which can be
enclosed by a curve of given length. In modern mathematical terms, the task is to determine
a measurable subset of R

n which has maximal Lebesgue measure A among all sets of a
given perimeter L ∈ [0,∞). Assuming the existence of a solution, Steiner in the first half
of the nineteenth century showed by means of elementary geometric arguments that in R

2

the only possible candidate for a solution is the circle of perimeter L (which has already
been suspected since antiquity). However, the existence part turns out to require a more
subtle reasoning. In nowadays mathematics, it is usually treated in the framework of the
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theory of convex sets (see [13]), of Caccioppoli sets (i.e. sets of finite perimeter, see [8] for
a compact introduction to the topic) or integral rectifiable currents (see, e.g., [16]). While
the first method relies on an a priori establishment of the convexity of a solution, the second
approach is based on a reformulation of the problem: it is easy to see by a scaling argument
that a set in R

n which maximizes volume to a given perimeter is also a set with minimal
perimeter among all sets of the respective volume. Some authors refer to this connection
between the two problems as “reciprocity” (see, e.g. [6,9]). The situation is different if we
restrict our class of admissible sets to those which lie inside a proper subset G � R

n . Then
the classical arguments via convexity and scaling may fail depending on the geometry of G
and it is no longer clear that a volume maximizing subset with given perimeter occurs as a
solution of the reciprocal “minimal-perimeter”-problem. The second type of problem, i.e.
finding sets of minimal perimeter of a given volume inside a subset of R

n is well addressed
in the literature, ranging from existence results (which is clear if G is bounded, see [4],
Theorem 1.2.2) up to results concerning the regularity of the boundary and convexity (see,
e.g., [10,12,19–21] and [18]). In [3], Besicovitch investigated volume maximal subsets under
the additional assumption of convexity, thereby avoiding the difficulties about the existence
question. The authors, not being experts in this field, do not claim that all results concerning
the reciprocity to be completely new, but as we did not find anything about it after an extensive
literature research, we decided to give the proof here.

Actually, our considerations evolved from the following simple question (which is similar
to the problem considered in [2]): given the stripe G = R × [0, 1] in R

2 and L > π , what
is the shape of an area maximizing subset E ⊂ G with perimeter L , or, if you prefer a more
colloquial phrasing: what is the shape of the table with the largest surface area that fits inside a
narrow room of rectangular layout under the condition that a given number of persons should
be able to take a chair? (Obviously, in order to provide space for the chairs we then have to
solve the problem in an inner parallel set of the room). It turns out that a solution exists in
form of a rectangle with two semicircles of radius 1/2 attached to two opposing sides (which
might be the reader’s intuitive guess).

2 Notation and statement of the results

By a subregion of R
n , we mean a subset G ⊂ R

n (n ≥ 2) such that

G is open and Ln(∂G) = 0 (∗)

(Ln denoting Lebesgue’s measure), i.e. an open continuity set of Lebesgue’s measure. For
an arbitrary Ln-measurable set E and an open set F ⊂ R

n we define the perimeter of E in
F by

Per(E; F) := sup

{∫
E

divϕ dx : ϕ ∈ C1
0(F, R

n), |ϕ| ≤ 1

}
.

If F = R
n , then we write for short Per(E) instead of Per(E; R

n).

Remark 2.1 Note that Per(E) is allowed to take the value +∞. If Per(E) is finite, then it
is well known (cf. [1]) that the characteristic function χE , viewed as an element of L1(Rn),
is a function of bounded variation, i.e. χE has a distributional derivative DχE in form of a
Radon measure of finite total mass. If Per(E; K ) is finite for any open subset K � R

n , then
we say that E has locally finite perimeter, or that E is a Caccioppoli set (cf. [11]). Note that
if two sets E and F differ only by a Lebesgue null set, then their perimeters coincide.
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We consider the following pair of problems:

{
Given L ∈ [0, Per(G)), find a subset E ⊂ G

with Per(E) = L and such that Ln(E) is maximal

}
(P)

and the corresponding “reciprocal” problem

{
Given A ∈ [0,Ln(G)), find a subset E ⊂ G

with Ln(E) = A and such that Per(E) is minimal.

}
(P∗)

Then we have the following result:

Theorem 2.1 (Reciprocity) Let G ⊂ R
n be a subregion in the sense of (∗), L ∈ [0, Per(G))

and A ∈ [0,Ln(G)).

(i) If E ⊂ G is a solution of problem (P), then E has minimal perimeter among all subsets
of G which have the same volume Ln(E).

(ii) If F ⊂ G is a solution of problem (P∗), then F has maximal volume among all subsets
of G which have the same perimeter Per(F).

Note that Theorem 2.1 does not say anything about the existence of a solution of problem
(P). What it does say, however, is that any solution of (P) occurs as a solution of (P∗)
and vice versa. If we additionally assume G to be bounded, the existence of a solution of
problem (P∗) follows easily: let (Fk)k∈N be a perimeter minimizing sequence of subsets in
G with Ln(Fk) = A. Then the corresponding sequence of characteristic functions (χFk ) is
bounded in some space BV (BR(0)), where R > 0 is large enough s.t. G � BR(0). By the
BV-compactness Theorem (cf Theorem 3.23 in [1]), there is a function f ∈ BV (BR(0))

such that (at least for a subsequence)

χFk → f in L1(Rn) and |Df |(BR(0)) ≤ lim inf
k→∞ Per(Fk).

Since (after possibly passing to another subsequence) χFk → f a.e., f is (up to a set of
measure zero) the characteristic function of the set E = {x ∈ G : f (x) = 1}, which
therefore is a solution of problem (P∗). Of course this “direct method” fails if we apply it
to a volume maximizing sequence (Ek)k∈N of subsets with fixed perimeter Per(Ek) = L ,
since the limit set E ⊂ G will in general not satisfy Per(E) = L . Instead, we can use the
reciprocity principle to show the existence of a solution of problem (P):

Theorem 2.2 (Existence in bounded subregions) Let G ⊂ R
n be a subregion in the sense of

(∗) which is additionally bounded. Then it holds:

(i) For all L ∈ [0, Per(G)) problem (P) admits a solution.
(ii) If L > Per(G), then problem (P) does not have a solution.

Remark 2.2 Note that in the case “L = Per(G) < ∞”, the set G itself is a trivial solution of
(P).
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Our last result concerns the existence of solutions of problem (P) in unbounded subregions.
In general, isoperimetric sets do not necessarily exist for arbitrary choices of L ∈ [0, Per(G))

as the following example shows:

x

y

G

Example 2.1 Consider G :=
{
(x, y) ∈ R

2 : −1 < x < 1, y ≥ x2

1−x2

}
(see the picture

above) and choose L = 2π . Then (P) does not have a solution in G: by comparison with
the sequence of maximal disks with center (0, n) inside G (n ∈ N), we see that the area of
a solution of (P) would be π . But by the isoperimetric inequality in R

2, this can only be
attained by a circle of radius 1, which does not exist in G.

However, in two dimensions we can give a complete characterization of the convex sub-
regions in which (P) can be solved for any choice of L ∈ [0, Per(G)):

Theorem 2.3 (Existence in convex subregions) Let G ⊂ R
2 be open and convex and define

r(G) := sup
{
r ∈ [0,∞) : ∃x ∈ G such that Br (x) ⊂ G

}
.

Then, if either

(i) r(G) = ∞ or
(ii) r(G) = max

{
r ∈ [0,∞) : ∃x ∈ G such that Br (x) ⊂ G

}
,

problem (P) admits a solution for any L ∈ [0, Per(G)), which in addition is convex.

Remark 2.3 If G is a bounded convex subregion, then the existence of a maximal disk in G,
i.e. a disk of radius r(G) (also called incircle, or inball in dimensions n ≥ 3) follows from
general principles, cf. Corollary 16.2 in [13].

Remark 2.4 If we additionally demand G to satisfy the so called “great circle condition”
from [18] (i.e. there exists an inball B ⊂ G and a hyperplane H ⊂ R

n , containing the center
of B, such that ∂B ∩ H ⊂ ∂G), then Theorem 3.31 in [18] together with our Lemma 5.1
suffices to establish the assertion of Theorem 2.3 in arbitrary dimensions n ≥ 3 (cf. also
Remark 5.1 at the end of the proof of Theorem 2.3). It is an open question if one can drop
the great circle condition in this context.

Remark 2.5 We would like to emphasize at this point that in contrast to e.g. [14] we consider
the perimeter of sets relative to R

n .

Remark 2.6 (i) The existence of a solution in the case r(G) = ∞ in form of a disk is clear.
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(ii) As Example 2.1 shows, the theorem above gives a sharp characterization of the convex
sets in R

2 in which (P) (and thus, by Theorem 2.1 (P∗)) can be solved.
(iii) Theorem 2.3 particularly applies to our example of a “maximal table in a narrow room”

from the introduction. By Theorem 3.31 in [18], we further obtain that the solution of
(P∗) in the stripe S = R × [0, 1] is the convex hull of two incircles, i.e. has the shape
of a “stadium” (compare also *1.4.3 on p. 5 in [5]):

3 Proof of Theorem 2.1

We start with part i). Let L ∈ [0, Per(G)) be given and let E ⊂ G have maximal volume
A = Ln(E) among all subsets of G with perimeter L . Assume that there is another subset
E ′ ⊂ G with Ln(E ′) = A and Per(E ′) = L ′ < L = Per(E). Due to Per(E ′) < Per(G), it
must hold

Ln(G − E ′) > 0.

Thus, by Lebesgue’s density Theorem (see [7], Corollary 3 on p. 45) there exists a point
x0 ∈ G − E ′ for which

lim
ρ↓0

Ln
(
Bρ(x0) ∩ (G − E ′)

)
Ln(Bρ(x0))

= 1

and therefore

lim
ρ↓0

Ln
(
Bρ(x0) ∩ E ′)

Ln(Bρ(x0))
= 0.

Now choose ρ0 > 0 so small that

Per(Bρ0(x0)) <
L − L ′

2
and Ln(Bρ0(x0) ∩ E ′) <

1

2
Ln(Bρ(x0))

and consider the set

Ẽ := E ′ − Bρ0(x0).

Then it holds

Per(Ẽ) ≤ Per(E ′) + Per(Bρ0(x0)) < L ′ + L − L ′

2
< L .

Set L̃ := L − Per(Ẽ) and note that

L̃ >
L − L ′

2
> Per(Bρ0(x0)).

Therefore, we can choose a compact subset C � Bρ0(x0) such that

Ln(C) >
1

2
Ln(Bρ0(x0)) and Per(C) = L̃.
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But then the set Ê := Ẽ ∪ C satisfies

Per(Ê) = Per(Ẽ) + Per(C) = L = Per(E)

as well as

Ln(Ê) = Ln(Ẽ) + Ln(C) > Ln(E),

which contradicts the volume maximality of the subset E .
We proceed with the proof of part (ii). Let A ∈ [0,Ln(G)) be given and let F ⊂ G have

minimal perimeter L = Per(F) among all subsets of G with volume A = Ln(F). Assume
that there is another subset F ′ with Per(F ′) = L and Ln(F ′) = A′ > A. For α ∈ R consider
the half space

Hα := {
x ∈ R

n : x · en ≥ α
}
,

where en := (0, . . . , 0, 1)T and define the function

h : R → R, α �→ Ln(F ′ ∩ Hα).

Since by Lebesgue’s theorem on dominated convergence

h(α) =
∫
F ′

χHα dx = lim
n→∞

∫
F ′

χHαn
dx for any sequence αn → α,

the function h is continuous and

lim
α→−∞ h(α) = A′ and lim

α→∞ h(α) = 0.

Thus, by the intermediate value Theorem, there exists α0 ∈ R with h(α0) = A.

Lemma 3.1 With α0 and Hα as above, it holds

Per(F ′ ∩ Hα0) < Per(F ′) = L .

Thus, we see that the set F ′ ∩ Hα0 contradicts the perimeter minimality of the set F . It
remains to give a proof of the above assertion.

Proof of the lemma Without loss of generality we may assume α0 = 0. Set

H+ := {
x ∈ R

n : x · en > 0
}
,

H0 := {
x ∈ R

n : x · en = 0
}
,

H− := {
x ∈ R

n : x · en < 0
}
.

Due to Ln(F ′ ∩ H0) = 0, we have Per(F ′) = Per
(
(F ′ ∩ H+) ∪ (F ′ ∩ H−)

)
. Let further

χ+, χ− ∈ L1(H0) be the trace of χF ′∩H+ and χF ′∩H− in H0, respectively, in the sense of BV -
functions. (Note that these exist by Theorem 3.77 in [1] and are summable w.r.t. Hn−1 H0

since F ′ ∩ H+ and F ′ ∩ H− have finite perimeter in R
n). Then it holds

Per(F ′) = Per(F ′; H+) + Per(F ′; H−) +
∫
H0

|χ+ − χ−| dHn−1

as well as

Per(F ′ ∩ H+) = Per(F ′; H+) +
∫
H0

|χ+| dHn−1.
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It therefore follows

Per(F ′ ∩ H+) ≤ Per(F ′; H+) + Per(F ′; H−) +
∫
H0

|χ+ − χ−| dHn−1

+
∫
H0

|χ−| dHn−1 − Per(F ′; H−)

= Per(F ′) −
[

Per(F ′; H−) −
∫
H0

|χ−| dHn−1
]

.

It thus remains to show that Per(F ′; H−)− ∫
H0

|χ−| dHn−1 > 0. Note that due to our choice
of α0 in Lemma 3.1 it holds

Ln(F ′ ∩ H−) = A′ − A > 0.

In [15], Theorem 19.15 it is shown that the following constrained isoperimetric problem in
the half space,

“minimize Per(S; H−) among all sets S ⊂ H− with Ln(S) = v

and Per(S; H0) = σ ′′

for some given v > 0, σ ≥ 0 is solved by the segment of a ball BR
(
(0, . . . , 0, xn)

)
, where

R, xn ≥ 0 are such that Ln(BR ∩ H−) = v and Hn−1(BR ∩ H0) = σ . But for a ball which
intersects H− in a set of positive measure it is surely true that Per(BR; H−)−Per(BR; H0) >

0. Hence, choosing

v = A′ − A, σ =
∫
H0

|χ−| dHn−1

we infer that Per(F ′; H−) − ∫
H0

|χ−| dHn−1 > 0. ��

4 Proof of Theorem 2.2

(i) We start with the observation that the so called isoperimetric profile of G, i.e. the function

l : [0,Ln(G)) → R, l(A) := inf
{
Per(E) : E ⊂ G with Ln(E) = A

}
is well-defined for any open subset G ⊂ R

n . Our further proof relies on the following
properties of the function l on bounded subregions, which might be well known in the more
general context of compact Riemannian manifolds (see, e.g., [17]):

Lemma 4.1 Let G ⊂ R
n be a bounded subregion and let l : [0,Ln(G)) → R be defined as

above. Then it holds

(a) The function l is strictly increasing,
(b) l is continuous,
(c) l maps the interval [0,Ln(G)) bijectively to the interval [0, Per(G)).

Before we prove the lemma, let us see how it applies to the proof of Theorem 2.2. Assume
that L ∈ [0, Per(G)) is given. Then, by part (c) of the Lemma there is A ∈ [0,Ln(G)

such that l(A) = L . Let E ⊂ G be a subset with Ln(E) = A and Per(E) = l(A) = L
(which exists due to the boundedness of G). Then E has maximal volume among all subsets
with perimeter L , because the existence of any set with strictly larger measure and the same
perimeter L would be in contradiction to the monotonicity of l from part (a). Hence E is a
solution of problem (P).
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Proof of the lemma (a) Let 0 ≤ A < A′ < Ln(G). Since G is bounded, we find subsets E
and E ′ of G of volume A and A′, such that Per(E) = L(A) and Per(E ′) = L(A′). Then,
as in Lemma 3.1 from the previous section, we can choose a real number α0 such that the
intersection of E ′ with the half space Hα0 has volume A. But, as it was shown in Lemma
3.1, it then follows

L(A) ≤ Per(E ′ ∩ Hα) < Per(E ′) = L(A′).

(b) Let A ∈ [0,Ln(G)) be arbitrary and let (Ak)k∈N be a sequence in [0,Ln(G)) which
converges to A from below. From the monotonicity of L, we infer that the limit of L(Ak)

exists and satisfies lim
k→∞L(Ak) ≤ L(A). Let Ek ⊂ G be such that Per(Ek) = L(Ak). By

the BV-compactness property (Theorem 3.23 in [1]) there is a subset E ⊂ G such that
(at least for a subsequence)

χEk → χE in L1(G) and Per(E) ≤ lim inf
k→∞ Per(Ek) = lim

k→∞ Per(Ek).

Now if lim
k→∞L(Ak) < L(A), then the set E would satisfy Ln(E) = A and Per(E) <

L(A), which contradicts the definition of L(A).
Let now (Ak) converge to A from above and let ε > 0 be given. Let E ⊂ G be such that
Ln(E) = A and Per(E) = L(A). Since Ln(G − E) > 0, Lebesgue’s density theorem
implies the existence of a point x0 ∈ G − E for which

lim
ρ↓0

Ln(Bρ(x0) ∩ E)

Ln(Bρ(x0))
= 0.

Choose ρ0 > 0 so small that Ln(Bρ(x0) ∩ E) < 1
2Ln(Bρ(x0)) and such that

Per(Bρ0(x0)) < ε. Consider the set

E ′ := E ∪ Bρ0(x0).

Then it holds

Ln(E ′) := A′ > A and Per(E ′) ≤ Per(E) + Per(Bρ0(x0)) ≤ L(A) + ε.

Thus, if we choose N ∈ N large enough such that Ak < A′ for all k > N , it follows
from the monotonicity of L that

L(A) ≤ L(Ak) ≤ L(A′) ≤ L(A) + ε,

and b) of Lemma 4.1 is proved.
(c) Having established parts (a) and (b), it suffices to prove L(A) → Per(G) as A → Ln(G).

But this follows easily from the lower semicontinuity of the perimeter with respect to
L1-convergence: let Ak → Ln(G) in [0,Ln(G)) and choose Ek with Per(Ek) = L(Ak).
Then χEk → χG in L1(Rn) and therefore

Per(G) ≤ lim inf
k→∞ Per(Ek) = lim inf

k→∞ L(Ak) ≤ Per(G).

��
We now come to the proof of (ii). Let L > Per(G) be given. Assume that E ⊂ G has

maximal volume among all subsets of perimeter L . Let x0 ∈ G be some point and choose
r > 0 such that Br (x0) ⊂ G. For any k ∈ N, let Ck � Br/k(x0) denote a compact subset
with perimeter Per(Ck) = L − Per(G) and consider the sequence

Ek := G − Ck
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of subsets of G. Then Per(Ek) = Per(G) + Per(Ck) = L and Ln(G − Ek) → 0 for
k → ∞. Therefore it must hold Ln(E) = Ln(G) and thus Ln(G − E) = 0. But then
Per(E) = Per(G) = Per(G) in contradiction to our assumption that E solves (P) for
L > Per(G). ��

5 Proof of Theorem 2.3

Let G ⊂ R
2 be an open convex set and let w.l.o.g. B1(0) ⊂ G be a maximal disk in G. We

may assume L > 2π (since otherwise the disk BL/(2π)(x) ⊂ B1(0) would be a trivial solution
of problem (P)) as well as Per(G) = ∞ (since otherwise diam(G) ≤ 1

2 Per(G) < ∞ and
existence in bounded subregions is clear by Theorem 2.2). For k ∈ N we define

Gk := G ∩ [−k, k] × [−k, k],
which is a convex and bounded subset of R

2. Let

A := sup
{L2(E) : E ⊂ G, Per(E) = L

} ≤ L2

4π
.

We claim the following:

Lemma 5.1 Choose k ∈ N large enough such that Per(Gk) > L and let Ek ⊂ Gk be sets
of maximal area among all subsets of Gk with perimeter L (note that such a set exists by
Theorem 2.2 i)). Then

lim
k→∞L2(Ek) = A,

i.e. (Ek) is an area-maximizing sequence in G.

Proof of the lemma Let ε > 0 be given. Choose a subset F ⊂ G of perimeter L , for which
L2(F) > A − ε

2 and k0 ∈ N large enough, such that

L2(F) − L2(F ∩ [−k0, k0] × [−k0, k0]
)

<
ε

2
.

We set Fk0 := F ∩ [−k0, k0] × [−k0, k0]. Then, since intersecting F with a square is the
same as intersecting F gradually with four half spaces, Lemma 3.1 yields

Per(Fk0) := L ′ ≤ Per(F) = L .

From the proof of Reciprocity Theorem 2.1, we see that on the bounded subregion Gk the
function

ak : [0, Per(Gk)) → R, L �→ sup
{L2(E) : E ⊂ Gk, Per(E) = L

}
is the inverse of the corresponding function

Lk : [0,L2(Gk)) → R, A �→ inf
{
Per(E) : E ⊂ Gk, L2(E) = A

}
and thus, by Lemma 4.1, it is strictly increasing. Therefore we have

L2(Ek0) = ak0(L) ≥ ak0(L
′) ≥ L2(Fk0) ≥ A − ε.

The result now follows since the sequence L2(Ek) is increasing. ��
Lemma 5.2 The sets Ek from Lemma 5.1 are convex. In particular, diam(Ek) ≤ L

2 for all
k ∈ N.
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Proof of the lemma By Theorem 1.1, each set Ek is also a solution of the corresponding
reciprocal problem in the convex and bounded set Gk . Convexity of the Ek thus follows
from quoting Theorem 3.24 in [18] (see also Remark 3.25). For a plane convex set E , the
inequality diam(E) ≤ Per(E)

2 is a triviality. (Note that this is wrong in R
n for n ≥ 3). ��

The further idea of the proof is the following: in a convex set G, which contains a maximal
disk, i.e. a disk of radius r(G), any bounded convex subset E ⊂ G has a translate E ′ (i.e.
E ′ = E + p for some p ∈ R

2) such that E ′ intersects the maximal disk (see Lemma 5.3
below). Hence we may assume that the sets Ek from Lemma 5.1 all lie within some set GK

for a fixed integer K > L + 1. Let now E ⊂ GK be a set of maximal area among all subsets
of GK which have perimeter L . Then L2(E) ≥ L2(Ek) for all k ∈ N and by Lemma 5.1, the
constant sequence (E) is seen to be an area-maximizing sequence of subsets in G. Hence E
is a solution of the problem (P) in G. It remains to prove the following result on convex sets:

Lemma 5.3 Let K ⊂ R
2 be a closed convex set and B ⊂ K any maximal disk in K . Then

every convex subset C ⊂ K has a translate in K which intersects B, i.e. there exists p ∈ R
2

such that

p + C ⊂ K and (p + C) ∩ B �= ∅.

Proof of the lemma We may assume that B = B1(0) and that C ∩ B = ∅. Let H ⊂ R
2 be

a common line of support of both B and C , i.e. H is a line which intersects B as well as C
and such that B,C lie in the same of the two halfspaces which are separated by H (see the
picture below).

B
C H

Such a line H can always be found by taking a line of support at any boundary point of
the convex hull conv(B ∪ C), which neither lies on ∂B nor on ∂C . W.l.o.g. we may assume
that H is the line y = −1. Then we claim that C lies completely within the stripe

S := {
(x, y) ∈ R

2 : |y| ≤ 1
}
.

Indeed, let a ∈ H ∩ C and assume that there exists a point b ∈ C − S. Note that due to
the convexity of C and our assumption B ∩ C = ∅, the line ab does not intersect B. Let K ′
be the convex hull of the disk B and the points a, b. Due to convexity, we have K ′ ⊂ K .
Furthermore, we see that B cannot be a maximal disk in K ′: since ε := dist(B, ab) > 0,
we can translate B by ε

2 in x direction, so that the shifted disk B ′ intersects the boundary
of K ′ only in the point (ε/2,−1). Due to b /∈ S, B ′ has positive distance to ∂K ′ − H and
can therefore not be maximal in K ′ (see the picture below), which is in contradiction to our
assumption.
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︸ ︷︷ ︸

ε/2

B′

a

b

S

x

y

It follows that C ⊂ S. Let d := dist(B,C). Then, by the convexity of K the translate

C − (d + 1)

(
1
0

)

lies inside K and intersects B, as claimed. ��
Remark 5.1 We would like to thank the referee for making us aware of the following fact:
if the convex set C in the proof of Lemma 5.3 is unbounded, then, by connecting points in
{0}×[−1, 1] with points (x, y) for increasing values of |x |, one sees that either the half stripe
[0,∞) × [0, 1] or (−∞, 0] × [0, 1] must be contained in C . In particular, an isoperimetric
subregion can be moved to lie inside this half stripe, which implies that it has the shape
depicted in Remark 2.6 iii). Similar arguments show that an unbounded convex set in R

n

for n ≥ 3, which satisfies the “great circle condition” (cp. Remark 2.6), coincides (up to a
bounded part) with a spherical (half) cylinder, so that any isoperimetric subregion must be the
convex hull of two inballs in this cylinder by Theorem 3.31 in [18]. Note that this is false in
general if the great circle condition is dropped (take, as an example, the set [0, 1]×[0, 1]×R

in R
3).

Remark 5.2 We would like to note that the method described above probably applies to a
larger class of two-dimensional subregions G. We say that G ⊂ R

2 has the “translation
property”, if G contains a maximal disk B such that any connected subset E ⊂ G has a
translate E ′ = E + p in G which intersects B. An example of a non-convex set which has
the translation property is shown in the following picture:

y

x

y(x)= 1
x2

B

G

Then, if G is a subregion which has the translation property and, in addition, C1-smooth
boundary, we can repeat the argument from the proof of Theorem 2.3 for each connected
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component of an area maximizing sequence in G, which by [19] is C1-smooth as well.
However, it seems to be difficult to give a sharp characterization of sets having the translation
property in geometrical terms.

References

1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems.
Clarendon Press, Oxford (2000)

2. Besicovitch, A.: A variant of a classical isoperimetric problem. Q. J. Math. 20(1), 84–94 (1949)
3. Besicovitch, A.: Variants of a classical isoperimetric problem. Q. J. Math. 3(1), 42–49 (1952)
4. Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear

Differential Equations and Their Applications. Birkhäuser Boston, Boston (2006)
5. Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities. Grundlehren der mathematischen Wissenschaften.

Springer, Berlin (2013)
6. Courant, R., Hilbert, D.: Methoden der Mathematischen Physik: Erster Band. Springer, Berlin (2013)
7. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced

Mathematics. Taylor & Francis, New York (1991)
8. Fusco, N.: The stability of the isoperimetric inequality. In: Ball, J., Marcellini, P. (eds.) Vector-Valued

Partial Differential Equations and Applications: Cetraro, Italy 2013, pp. 73–123. Springer, Berlin (2017)
9. Giannessi, F.: Constrained Optimization and Image Space Analysis: Volume 1: Separation of Sets and

Optimality Conditions. Mathematical Concepts and Methods in Science and Engineering. Springer, New
York (2006)

10. Giusti, E.: The equilibrium configuration of liquid drops. J. Reine Angew. Math. 321, 53–63 (1981)
11. Giusti, E.: Minimal surfaces and functions of bounded variation, volume 80 of Monographs in Mathe-

matics. Birkhäuser, Basel (1984)
12. Gonzalez, E., Massari, U., Tamanini, I.: On the regularity of boundaries of sets minimizing perimeter

with a volume constraint. Indiana Univ. Math. J. 32, 25–37 (1983)
13. Lay, S.R.: Convex Sets and Their Applications. Dover books on mathematics series. Dover Publications,

New York (2007)
14. Leonardi, G.P., Ritoré, M., Vernadakis, E.: Isoperimetric inequalities in unbounded convex bodies. ArXiv

e-prints (2016). http://adsabs.harvard.edu/abs/2016arXiv160603906L
15. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric

Measure Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge
(2012)

16. Morgan, F.: Geometric Measure Theory: A Beginner’s Guide. Academic Press, Cambridge (2008)
17. Ritoré, M.: Continuity of the isoperimetric profile of a complete Riemannian manifold under sectional

curvature conditions. Rev. Mat. Iberoam. 33(1), 239–250 (2017)
18. Stredulinsky, E., Ziemer, W.: Area minimizing sets subject to a volume constraint in a convex set. J.

Geom. Anal. 7(4), 653–677 (1997)
19. Tamanini, I.: Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew.

Math. 334, 27–39 (1982)
20. Tamanini, I.: Variational problems of least area type with constraints. Annali dell’Università’ di Ferrara

34(1), 183–217 (1988)
21. Tamanini, I., Giacomelli, C.: Approximation of Caccioppoli sets, with applications to problems in image

segmentation. Annali dell’Università di Ferrara 35(1), 187–214 (1989)

123

http://adsabs.harvard.edu/abs/2016arXiv160603906L

	A reciprocity principle for constrained isoperimetric problems and existence of isoperimetric subregions in convex sets
	Abstract
	1 Introduction
	2 Notation and statement of the results
	3 Proof of Theorem 2.1
	4 Proof of Theorem 2.2
	5 Proof of Theorem 2.3
	References




