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Abstract Given a compact Riemannian manifold M , we consider a warped product manifold
M̄ = I×hM , where I is an open interval inR. For a positive function ψ defined on M̄ , we gen-
eralize the arguments in Guan et al. (Commun. Pure Appl. Math. 68(8):1287–1325, 2015) and
Ren and Wang (On the curvature estimates for Hessian equations, 2016. arXiv:1602.06535),
to obtain the curvature estimates for Hessian equations σk(κ) = ψ(V, ν(V )). We also obtain
some existence results for the starshaped compact hypersurface � satisfying the above equa-
tion with various assumptions.
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1 Introduction

Assume that �n is a hypersurface in a Riemannian manfold M̄n+1. The Weingarten curvature
equation is given by
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σk(κ(X)) = ψ(X), ∀ X ∈ �,

where X is the position vector field of the hypersurface � in M̄n+1 and σk is the kth elementary
symmetric function.

Finding closed hypersurfaces with prescribed Weingarten curvature in Riemannian man-
ifolds attracts many authors’ interest. Such results were obtained for the case of prescribing
mean curvature by Bakelman and Kantor [10,11] and by Treibergs and Wei [46] in the
Euclidean space, for the case of prescribing Gaussian curvature by Oliker [41], and for
general Weingarten curvatures by Aleksandrov [1–7], Firey [19], Caffarelli et al. [17]. For
Riemannian manifolds, some results have been obtained by Li and Oliker [37] for the unit
sphere, Barbosa et al. [13] for space forms, Jin and Li [34] for the hyperbolic space, Andrade
et al. [8] for warped product manifolds, Li and Sheng [36] for the Riemannain manifold
equipped with a global normal Gaussian coordinate system.

For the hypersurface � in the Euclidean space R
n+1, the Weingarten curvature equation

in general form is defined by

σk(κ(X)) = ψ(X, ν(X)), ∀ X ∈ �,

where ν(X) is the normal vector field along the hypersurface �. In many cases, the curvature
estimates are the key part for the above prescribed curvature problems. Let us give a brief
review. When k = 1, curvature estimate comes from the theory of quasilinear PDEs. If
k = n, curvature estimate in this case for general ψ(X, ν) was due to Caffarelli et al. [15].
Ivochkina [32,33] considered the Dirichlet problem of the above equation on domains in R

n ,
and obtained C2 estimates there under some extra conditions on the dependence of f on
ν. C2 estimate was also proved for equation of prescribing curvature measures problem in
[25,27]. If the function ψ is convex with respect to the normal ν, it is well known that the
globalC2 estimate has been obtained by Guan [21]. Recently, Guan et al. [30] obtained global
C2 estimates for a closed convex hypersurface � ⊂ R

n+1 and then solved the long standing
problem (1.2). In the same paper [30], they also proved the estimate for starshaped 2-convex
hypersurfaces by introducing some new auxiliary curvature functions. Li et al. [35] substitute
the convex by (k + 1)- convex for any k Hessian equations. In [42], Ren and the third author
completely solved the case k = n − 1, that is the global curvature estimates of n − 1 convex
solutions for n − 1 Hessian equations. In [45], Spruck–Xiao extended 2-curvature equations
in [30] to space forms and gave a simple proof if the hypersurface in the Euclidean space. We
also note the recently important work on the curvature estimates and C2 estimates developed
by Guan [22] and Guan et al. [31].

These type of equations and estimates with generalized right hand sides appear some
new geometric applications recently, which will be mentioned in detail in the following.
Phong et al. [38,39], generalized the Fu–Yau’s equations, which is a complex 2-Hessian
equation depending on gradient term on the right hand side. In [39,40], they obtained their
C2 estimates using the idea of [30]. Guan and Lu [28] considered the curvature estimate for
isometric embedding system in general Riemannian manifolds, which is also a 2-Hessian
equation depending on the normal vector field. The estimates in [30] are applied in [14,47]
too.

Let (Mn, g′) be a compact Riemannian manifold and I be an open interval in R. The
warped product manifold M̄ = I ×h M is endowed with the metric

ḡ2 = dt2 + h2(t)g′, (1.1)
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where h : I −→ R
+ is a positive differential function. Given a differentiable function

z : M −→ I , its graph is defined as the hypersurface

� = {X (u) = (z(u), u)|u ∈ M}.
For the Weingarten curvature equation in general form

σk(κ(V )) = f (κ(V )) = ψ(V, ν(V )), ∀V ∈ �, (1.2)

where V = h
∂

∂t
is the position vector field of hypersurface � in M̄ , σk is the kth elementary

symmetric function, ν(V ) is the inward unit normal vector field along the hypersurface �

and κ(V ) = (κ1, . . . , κn) are principal curvatures of hypersurface � at V . Given t−, t+ with
t− < t+, we define the annulus domain M̄+− = {(t, u) ∈ M̄|t− ≤ t ≤ t+}.

In this article, we will generalize the results in [30,42] to the hypersurfaces in warped
product manifolds. The main results of this paper are the followings:

Theorem 1.1 Let Mn be a compact Riemannian manifold and M̄ be the warped product
manifold with the metric (1.1). Assume that h is a positive differential function and h′ > 0.
Suppose that ψ satisfies

(a) ψ(t, u, ν(u)) > Ck
n (κ(t))k for t ≤ t−,

(b) ψ(t, u, ν(u)) < Ck
n (κ(t))k for t ≥ t+,

(c) ∂t
(
hkψ(V, ν)

) ≤ 0 for t− < t < t+,

where κ(t) = h′(t)/h(t) and Ck
n is the combinatorial numbers. Then there exists a unique

differentiable function z : Mn → I solve the Eq. (1.2) for k = 2 and k = n− 1 whose graph
� is contained in the interior of the region M̄+− .

For the convex hypersurface in any warped product manifolds, we obtain the global cur-
vature estimates.

Theorem 1.2 Suppose� −→ M̄n+1 is a convex compact hypersurface satisfying curvature
Eq. (1.2) for some positive function ψ(V, ν) ∈ C2(�), where � is an open neighborhood of
unit normal bundle of M in M̄n+1 × S

n. Then there is a constant C depending only on n, k,
|z|C1 , inf ψ and ‖ψ‖C2 , such that

max
u∈M κi (u) ≤ C. (1.3)

Since the second fundamental form does not satisfy Codazzi properties for hypersurfaces
in warped product manifolds in general, the constant rank theorem is still unknown. Thus,
the above estimates only can imply the existence results in the sphere.

Theorem 1.3 Let M̄ be the sphere with sectional curvature λ > 0 which means the metric
ḡ of M̄ is defined by (1.1), where function h is defined by

h(t) = sin
√

λt√
λ

. (1.4)

Suppose that ψ satisfies

(a) ψ(t, u, ν(u)) > κ(t) for t ≤ t−,
(b) ψ(t, u, ν(u)) < κ(t) for t ≥ t+,
(c) (ψ−1/k)i j + λψ−1/kgi j ≥ 0, for any ν,
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where κ(t) = h′(t)/h(t) = √
λ cot(

√
λt) and t+ < π/2. Then there exists a differentiable

function z : S
n → I solve the Eq. (1.2) for any k whose graph � is a strictly convex

hypersurface and is contained in the interior of the region M̄+− .

The paper is organized as follows. In Sect. 2, we fix notations and recall some basic
formulas for geometric and analytic preliminaries, including the detailed description of the
problem. In Sect. 3, the gradient estimates of (1.2) are presented. In Sect. 4, the curvature
estimates are proved for the starshaped 2-convex hypersurfaces. In Sects. 5 and 6,C2 estimates
are obtained for convex and (n−1)-convex hypersurface in the warped product manifold M̄ .
In the last section, we derive the constant rank theorem and existence results .

2 Preliminaries

2.1 Warped product manifold M̄

Let Mn be a compact Riemannian manifold with the metric g′ and I be an open interval
in R. Assuming h : I −→ R

+ is a positive differential function and h′ > 0, the manifold
M̄ = I ×h M is called the warped product if it is endowed with the metric

ḡ2 = dt2 + h2(t)g′. (2.1)

In the section, we use Latin lower case letters i, j, . . . to refer to indices running from 1
to n and a, b, . . . to indices from 0 to n − 1. The Einstein summation convention is used
throughout the paper.

The metric in M̄ is denoted by 〈·, ·〉. The corresponding Riemannian connection in M̄ will
be denoted by ∇̄. The usual connection in M will be denoted ∇′. The curvature tensors in M
and M̄ will be denoted by R and R̄, respectively.

Let e1, . . . , en−1 be an orthonormal frame field in M and let θ1, . . . , θn be the associated
dual frame. The connection forms θi j and curvature forms �i j in M satisfy the structural
equations

dθi =
∑

j

θi j ∧ θ j , θi j = −θ j i , (2.2)

dθi j −
∑

k

θik ∧ θk j = �i j = −1

2

∑

k,l

Ri jklθk ∧ θl . (2.3)

An orthonormal frame in M̄ may be defined by ēi = (1/h)ei , 1 ≤ i ≤ n−1, and ē0 = ∂/∂t .
The associated dual frame is then θ̄i = hθi for 1 ≤ i ≤ n − 1 and θ̄0 = dt . A simple
computation permits to obtain

Lemma 2.1 On the leaf Mt , the curvature satisfies

R̄i jk0 = 0 (2.4)

and the principle curvature is given by

κ(t) = h′(t)/h(t) (2.5)

where the inward unit normal −ē0 = −∂/∂t is chosen for each leaf Mt .
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2.2 Hypersurfaces in the warped product manifold M̄

Given a differentiable function z : M −→ I , its graph is defined by the hypersurface

� = {X (u) = (z(u), u)|u ∈ M} (2.6)

whose tangent space is spanned at each point by the vectors

Xi = h ēi + zi ē0, (2.7)

where zi are the components of the differential dz = ziθ i . The unit vector field

ν = 1
√
h2 + |∇′z|2

(
n∑

i=1

zi ēi − hē0

)

(2.8)

is an unit inner normal vector field to �. Here, |∇′z|2 = zi zi is the squared norm of ∇′z =
zi ei . The components of the induced metric in � is given by

gi j = 〈Xi , X j 〉 = h2δi j + zi z j (2.9)

The second fundamental form of � with components (ai j ) is determined by

ai j = 〈∇̄X j Xi , ν〉 = 1
√
h2 + |∇′z|2

( − hzi j + 2h′zi z j + h2h′δi j
)

where zi j are the components of the Hessian ∇′2z = ∇′dz of z in M .
Now we choose the coordinate systems such that {E0 = ν, E1, . . . , En} is an orthonormal

frame field in some open set of � and {ω0, ω1, . . . , ωn} is its associated dual frame. The
connection forms {ωi j } and curvature forms {�i j } in � satisfy the structural equations

dωi −
∑

j

ωi j ∧ ω j = 0, ωi j + ω j i = 0,

dωi j −
∑

k

ωik ∧ ωk j = �i j = −1

2

∑

k,l

Ri jklωk ∧ ωl .

The coefficients ai j of the second fundamental form are given by Weingarten equation

ωi0 =
∑

j

ai j ω j .

The covariant derivative of the second fundamental form ai j in � is defined by
∑

k

ai jk ωk = dai j +
∑

l

ail ωl j +
∑

l

al j ωli ,

∑

l

ai jkl ωl = dai jk +
∑

l

al jk ωli +
∑

l

ailk ωl j +
∑

l

ai jl ωlk .

The Codazzi equation is a commutation formula for the first order derivative of ai j given by

ai jk − aik j = −R̄0i jk (2.10)

and the Ricci identity is a commutation formula for the second order derivative of ai j given
by
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Lemma 2.2 Let X̄ be a point of � and {E0 = ν, E1, . . . , En} be an adapted frame field
such that each Ei is a principal direction and ωk

i = 0 at X̄ . Let (ai j ) be the second quadratic
form of �. Then, at the point X̄ , we have

allii =aiill − alm (amiail − amlaii ) − ami (amiall − amlali )

+ R̄0i il;l − 2aml R̄miil + ail R̄0i0l + all R̄0i i0

+ R̄0lil;i − 2ami R̄mlil + aii R̄0l0l + ali R̄0li0.

(2.11)

In particular, we have

aii11 −a11i i = a11a
2
i i −a2

11aii +2(aii −a11)R̄i1i1 +a11 R̄i0i0 −aii R̄1010 + R̄i1i0;1 − R̄1i10;i .
(2.12)

2.3 Two functions η and τ

Define the functions τ : � → R and η : � → R by

τ = −h〈ν, ē0〉 = −〈V, ν〉 and η = −
∫

h dt, (2.13)

where V = hē0 = h
∂

∂t
is the position vector field and ν is the inner unit normal. Then we

have

Lemma 2.3 [8] The gradient vector fields of the functions η and τ are

∇Ei η = −h〈ē0, Ei 〉Ei , (2.14)

∇Ei τ = −
∑

j

∇E j ηai j , (2.15)

and the second order derivative of τ and η are given by

∇2
Ei ,E j

η = τai j − h′gi j , (2.16)

∇2
Ei ,E j

τ = −
∑

k

τaikak j + h′ai j −
∑

k

aik j∇Ekη

= −τ
∑

k

aikak j + h′ai j −
∑

k

(ai jk + R̄0i jk)∇Ekη. (2.17)

2.4 Basic formulae

Assume that � −→ M̄ is the graph defined as the hypersurface � whose points are the
form X (u) = (z(u), u) with u ∈ M . This graph is diffeomorphic with M and may be
globally oriented by an unit normal vector field ν for which it holds that 〈ν, ∂t 〉 < 0. Let
κ = (κ1, . . . , κn) be the vector whose components κi are the principal curvatures of �, that
is, the eigenvalues of the second fundamental form B = (〈∇̄i E j , ν〉) in �.

The elementary symmetric function of order k (1 ≤ k ≤ n) of κ = (κ1, . . . , κn) is defined
as following

σk =
∑

i1<···<in

κi1 . . . κin . (2.18)

Let �k be the connected component of {κ ∈ R
n |σm > 0,m = 1, . . . , k} containing the

positive cone {κ ∈ R
n |κ1, . . . , κn > 0}.
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Definition 2.4 A positive function z ∈ C2(Mn) is said to be admissible for the operator σk
if for the corresponding hypersurface � = {(z(u), u)|u ∈ Mn}, at every point of � with the
normal as in (2.8), the principal curvatures κ = (κ1, . . . , κn) are in �k .

Lemma 2.5 ([9,12,16,20,44]) Let F be a C2 symmetric function defined in some open set
of Sym(n), where Sym(n) is the set of all n×n symmetric matrices. For any symmetric matrix
(bi j ), there holds

Fi j,klbi j bkl =
∑

i, j

∂2 f

∂κi∂κ j
bii b j j +

∑

i �= j

fi − f j
κi − κ j

b2
i j ,

where the second term on the right-hand sidemust be interpreted as a limit whenever κi = κ j .

Lemma 2.6 [25,30] Assume that k > l, W = (wi j ) is a Codazzi tensor which is in �k .

Denote α = 1

k − l
. Then, for h = 1, . . . , n, we have the following inequality,

−σ
pp,qq
k

σk
(W )wpphwqqh + σ

pp,qq
l

σl
(W )wpphwqqh

≥
(

(σk(W ))h

σk(W )
− (σl(W ))h

σl(W )

)(
(α − 1)

(σk(W ))h

σk(W )
− (α + 1)

(σl(W ))h

σl(W )

)
. (2.19)

Furthermore, for any δ > 0, we have

−σ
pp,qq
k (W )wpphwqqh +

(
1 − α + α

δ

) (σk(W ))2
h

σk(W )

≥ σk(W )(α + 1 − δα)

[
(σl(W ))h

σl(W )

]2

− σk

σl
(W )σ

pp,qq
l (W )wpphwqqh . (2.20)

3 Gradient estimates

In this section, we follow the ideas of [17,27] to derive C1 estimates for the height function
z. In other words, we are looking for a lower bound of the support function τ . Firstly, we
need the following technical assumption:

∂

∂t
(h(t)kψ(V, ν)) ≤ 0, where V = h(t)

∂

∂t
. (3.1)

Lemma 3.1 Let � be a graph in M̄ = I ×h M satisfying (1.2), (3.1) and let z be the height
function of�. If h has positive lower and upper bounds, then there is a constant C depending
on the minimum and maximum values of z such that

|∇z| ≤ C. (3.2)

Proof Set χ(z) = − ln(τ )+γ (−η(t)), where γ is a single variable function to be determined
later. Assume that χ achieve its maximum value at point u0. We claim that V is parallel to
its normal ν at u0 if we choose a suitable γ . We will prove it by contradiction. If not, we can
choose a local orthonormal basis {Ei }ni=1 such that 〈V, E1〉 �= 0, and 〈V, Ei 〉 = 0, i ≥ 2.
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Obviously, V = 〈V, E1〉 E1 + 〈V, ν〉 ν. At point u0, by the maximum principle we have

0 = ∇Ei χ(z) = −∇Ei τ

τ
− γ ′∇Ei η, (3.3)

0 ≥ ∇2
Ei ,Ei

χ(z)

= −∇2
Ei ,Ei

τ

τ
+ |∇Ei τ |2

τ 2 − γ ′∇2
Ei ,Ei

η + γ ′′|∇Ei η|2. (3.4)

From (2.15), (2.17) and (3.3), we have

0 ≥ − ∇2
Ei ,Ei

τ

τ
+ |∇Ei τ |2

τ 2 − γ ′∇2
Ei ,Ei

η + γ ′′|∇Ei η|2

= − 1

τ

(−τailali + h′aii − (aiil + R̄0i il)ηl
) + (

γ ′′ + (γ ′)2) η2
i − γ ′ (τaii − h′gii

)
.

(3.5)
By (2.15) and (3.3), we get

a11 = τγ ′, ai1 = 0, i ≥ 2. (3.6)

Therefore, it is possible to rotate the coordinate system such that {Ei }ni=1 are the principal
curvature directions of the second fundamental form (ai j ), i.e. ai j = aiiδi j , which means

that (σ
i j
k ) is also diagonal. By multiplying σ i i

k in the inequality (3.5) both sides and taking
sum on i from 1 to n, one gets from (3.5) and (3.6)

0 ≥ σ i i
k a2

i i − 1

τ
h′σ i i

k aii + 1

τ
σ i i
k (aiil + R̄0i il)ηl + (

γ ′′ + (γ ′)2) σ i i
k η2

i

− γ ′
(

τσ i i aii − h′
n∑

i=1

σ i i
k

)

= σ i i
k a2

i i + 1

τ
σ i i
k aii1η1 + 1

τ
σ i i
k R̄0i i1η1 + (

γ ′′ + (γ ′)2) σ 11
k η2

1

+ γ ′h′
n∑

i=1

σ i i
k − γ ′τkψ − 1

τ
h′kψ

(3.7)

where Fii aii = kψ is used. Differentiating Eq. (1.2) with respect to E1 we obtain

σ i i
k aii1 = dVψ(∇E1V ) − a11dνψ(E1). (3.8)

Putting (3.6) and (3.8) into (3.5) yields

0 ≥ σ i i
k a2

i i + 1

τ

(
dVψ(∇E1V ) − a11dνψ(E1)

)
η1 + 1

τ
σ i i
k R̄0i i1η1

+ (
γ ′′ + (γ ′)2) σ 11

k η2
1 + γ ′h′

n∑

i=1

σ i i
k − γ ′τkψ − 1

τ
h′kψ

= σ i i
k a2

i i − 1

τ

(
kh′ψ + 〈V, E1〉dVψ(∇E1V )

)
+ γ ′dνψ(E1)〈V, E1〉 + 1

τ
σ i i
k R̄0i1i 〈V, E1〉

+ (
γ ′′ + (γ ′)2) σ 11

k 〈V, E1〉2 − kγ ′τψ + γ ′h′
n∑

i=1

σ i i
k . (3.9)
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Since V = 〈V, E1〉E1 + 〈V, ν〉ν, we have

dVψ(V, ν) = 〈V, E1〉dVψ(∇E1V ) + 〈V, ν〉dVψ(∇νV ). (3.10)

Putting (3.10) into (3.9) gets

0 ≥ σ i i
k a2

i i − 1

τ

(
kh′ψ + dVψ(V, ν)

) + γ ′dνψ(E1)〈V, E1〉 + 1

τ
σ i i
k R̄0i1i 〈V, E1〉

+ (
γ ′′ + (γ ′)2) σ 11

k 〈V, E1〉2 − kγ ′τψ + γ ′h′
n∑

i=1

σ i i
k + dVψ(∇νV )

≥ σ i i
k a2

i i + (
γ ′′ + (γ ′)2) σ 11

k 〈V, E1〉2 + γ ′h′
n∑

i=1

σ i i
k + 1

τ
σ i i
k R̄0i1i 〈V, E1〉

+ γ ′dνψ(E1)〈V, E1〉 − kγ ′τψ + dVψ(∇νV ),

(3.11)

where we use the assumption (3.1). Choosing the function γ (t) = α

t
for a positive constant

α, we have

γ ′(t) = − α

t2 , γ ′′(t) = 2α

t3 . (3.12)

By (3.6) and the choice of function γ , we have a11 ≤ 0. Thus, the Newton–Maclaurin
inequality implies

σ 11
k ≥ σk−1 ≥ k

(n − k + 1)(k − 1)
(Ck

n )
1
k ψ

k−1
k . (3.13)

Therefore by the previous three inequalities, we have

0 ≥ σ 11
k a2

11 +
(

α2

t4 + 2α

t3

)
σ 11
k 〈V, E1〉2 − α

t2 h
′

n∑

i=1

σ i i
k + 1

τ
σ i i
k R̄0i1i 〈V, E1〉

− α

t2 dνψ(E1)〈V, E1〉 + α

t2 kτψ + dVψ(∇νV ).

(3.14)

Since V = 〈V, E1〉 E1 + 〈V, ν〉 ν, one can find that V ⊥ Span{E2, . . . , En}. On the other
hand, E1, ν ⊥ Span{E2, . . . , En}. It is possible to choose coordinate systems such that
ē1 ⊥ Span{E2, . . . , En}, which implies that the pair {V, ē1} and {ν, E1} lie in the same plane
and

Span{E2, . . . , En} = Span{ē2, . . . , ēn}.
Therefore, we can choose E2 = ē2, . . . , En = ēn . The vector ν and E1 can decompose into

ν =〈ν, ē0〉ē0 + 〈ν, ē1〉ē1 = −τ

h
ē0 + 〈ν, ē1〉ē1,

E1 =〈E1, ē0〉ē0 + 〈E1, ē1〉ē1.

For (2.4) and V = 〈V, E1〉 E1 + 〈V, ν〉 ν, we obtain

R̄0i1i = R̄(ν, Ei , E1, Ei )

= −τ

h
〈E1, ē0〉R̄(ē0, ēi , ē0, ēi ) + 〈ν, ē1〉〈E1, ē1〉R̄(ē1, ēi , ē1, ēi )

= −τ

h
〈E1, ē0〉R̄(ē0, ēi , ē0, ēi ) − τ

〈ν, ē1〉2

〈E1, V 〉 R̄(ē1, ēi , ē1, ēi )

= τ

(
− 1

h
〈E1, ē0〉R̄(ē0, ēi , ē0, ēi ) − 〈ν, ē1〉2

〈E1, V 〉 R̄(ē1, ēi , ē1, ēi )

)
.

(3.15)
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The third equality comes from 0 = 〈V, ē1〉. From (3.6), (3.13) and (3.15), (3.14) becomes

0 ≥ α2σ 11
k (τ 2(γ ′)2 + α2

t4 〈V, E1〉2) − C1ασk−1 − C2α|dνψ(e1)| − |dVψ(∇νV )|
≥ Cα2|V |2σ 11

k − C1ασ 11
k − C2α|dνψ(e1)| − |dVψ(∇νV )|

where C,C1,C2 depends on k, n, the C0 bound of h and the curvature R̄. Thus, we have a
contradiction when α is large enough. Hence, V is parallel to the normal ν which implies the
lower bound of τ . ��

4 C2 estimates for σ2

In this section, we study the solution of the following normalized equation

F(b) =
(
n
2

)(−1/2)

σ2(κ(a))1/2 = f (κ(ai j )) = ψ(V, ν). (4.1)

Now we can prove the C2 estimate for 2-convex hypersurfaces.

Theorem 4.1 With the assumption of Theorem 1.1, there is a constant C depending only on
n, k, t−, t+, the C1 bound of z and |ψ̄ |C2 , such that

max
u∈M |κi (u)| ≤ C. (4.2)

Proof Define the function

W (u, ξ) = e−βη B(ξ, ξ)

τ − a
(4.3)

where τ ≥ 2a and β is a large constant to be chosen, ξ is a tangent vector of � and B is
the second fundamental form. Assume that W is achieved at X0 = (z(u0), u0) along ξ , and
we may choose a local orthonormal frame E1, . . . , En around X0 such that ξ = E1 and
ai j (X0) = κiδi j , where κ1 ≥ κ2 ≥ . . . ≥ κn are the principal curvatures of � at u0. Thus at
u0, ln W = ln a11 − log (τ − a) − βη has a local maximum. Therefore,

0 = a11i

a11
− ∇iτ

τ − a
− βηi , (4.4)

and

0 ≥ a11i i

a11
−

(
a11i

a11

)2

− ∇i iτ

τ − a
+

( ∇iτ

τ − a

)2

− βηi i . (4.5)

Multiplying Fii both sides in (4.5) and using (2.14)–(2.17), we have

0 ≥ 1

κ1
Fii a11i i − 1

κ2
1

Fii (a11i )
2 − 1

τ − a
Fiiτi i + Fii

(
τi

τ − a

)2

− βFiiηi i

= 1

κ1
Fii a11i i − 1

κ2
1

Fii (a11i )
2 + τ

τ − a
Fiiκ2

i − h′

τ − a
ψ̄

+ 1

τ − a

∑

l

Fii (aiil + R̄0i il)ηl

+
∑

i

Fii
(

κiηi

τ − a

)2

− βτψ̄ + h′β
n∑

i=1

Fii .

(4.6)
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The Ricci identity (2.11) yields

Fii aii11 − Fii a11i i = a11F
ii a2

i i − a2
11F

ii aii + 2Fii (aii − a11)R̄i1i1

+ a11 F
ii R̄i0i0 − Fii aii R̄1010

+ Fii R̄i1i0;1 − Fii R̄1i10;i
≥ −C1κ

2
1 − C2κ1

∑

i

Fii ,

(4.7)

for sufficiently large κ1. Inserting (4.7) into (4.6), one gives

0 ≥ 1

κ1
Fii aii11 − 1

κ2
1

Fii (a11i )
2 + τ

τ − a
Fiiκ2

i + 1

τ − a

∑

l

Fii (aiil + R̄0i il)ηl

+
∑

i

Fii
(

κiηi

τ − a

)2

− C1κ1 + (h′β − C2)
∑

i

Fii − C3(β).

(4.8)

Taking covariant derivative with respect to the equation (4.1) yields

Fii aii j = ψ̄V (∇E j V ) − a jl ψ̄ν(El). (4.9)

Taking covariant derivative with respect to the Eq. (4.9) again yields

Fii aii11 + Fi j,klai j1akl1 = ψ̄VV (∇E1V,∇E1V ) + 2a1l ψ̄V ν(∇E1V, El)

− a1l1ψ̄ν(El) + a1ka1l ψ̄νν(El , El)

≥ −C(1 + κ2
1 ) − a1l1ψ̄ν(El)

= −C(1 + κ2
1 ) − (a11l − R̄01l1)ψ̄ν(El)

≥ −C(1 + κ2
1 + βκ1) − a11l ψ̄V (El).

(4.10)

where we have used the Codazzi equation in the last equality, (4.4) and the bound of the
curvature of the ambient manifold in the last inequality.

We also have

1

κ1

∑

l

a11l ψ̄V (El) −
∑

l

ηl

τ − a
Fii aiil =

∑

l

βηl ψ̄V (El) −
∑

l

ηl

τ − a
ψ̄V (∇E j V ).

(4.11)

Combining the inequality (4.10) and (4.11), (4.8) gives

0 ≥ 1

κ1

(
−Fi j,klai j1akl1

)
− 1

κ2
1

Fii (a11i )
2 + τ

τ − a
Fiiκ2

i

+
n∑

i=1

Fii
(

κiηi

τ − a

)2

− C1κ1 + (h′β − C2)
∑

i

Fii − C3(β)

(4.12)

In the following, we consider two cases.
Case 1 We suppose that κn ≤ −θκ1 for some positive constant θ to be chosen later. In this
case, using the concavity of F , we discard the term − 1

κ1
Fi j,klai j1akl1.
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By Young’s inequality and (4.4), we have

1

κ2
1

Fii |a11i |2 ≤ (1 + ε−1)β2Fii |ηi |2 + (1 + ε)

(τ − a)2 F
ii |τi |2

≤ C4(1 + ε−1)β2
∑

i

Fii + (1 + ε)

(τ − a)2 F
ii |τi |2

(4.13)

for any ε > 0, where we have used |∇η| ≤ C . From (4.12) and (4.13), we obtain

0 ≥ − C1κ1 − C3(β) +
(

τ

τ − a
− C5ε

)
Fiiκ2

i + (
h′β − C2 − C4(1 + ε−1)β2) ∑

i

Fii

≥ − C̄(κ1 + β) + C6

n∑

i=1

Fiiκ2
i − C7β

2
∑

i

Fii .

(4.14)
Since F11 ≤ F22 ≤ · · · ≤ Fnn and κn ≤ −θκ1, we get

n∑

i=1

Fiiκ2
i ≥ Fnnκ2

n ≥ 1

n
θ2

∑

i

Fiiκ2
1 .

Hence,

0 ≥ −C̄(κ1 + β) +
(
C6

1

n
θ2κ2

1 − C7β
2
) ∑

i

Fii . (4.15)

Since
∑

i F
ii ≥ 1 for sufficiently large κ1, the inequality (4.15) clearly implies the bound of

κ1 from above.
Case 2 In this case, we assume that κn ≥ −θκ1. Hence, κi ≥ κn ≥ −θκ1. We then group
the indices {1, ..., n} into two sets I = { j : F j j ≤ 4F11} and J = { j : F j j > 4F11}. Using
(4.4), we can infer

1

κ2
1

∑

i∈I
Fii |a11i |2 ≤C1(1 + ε−1)β2F11 + (1 + ε)

(τ − a)2 F
ii |τi |2 (4.16)

for any ε > 0. Therefore it follows from (4.12) that

0 ≥ − C1κ1 − C3(β) − 1

κ1
Fi j,klai j1akl1 +

(
τ

τ − a
− C5ε

)
Fiiκ2

i

+ (
h′β − C2

) ∑

i

Fii − 1

κ2
1

∑

i∈J

Fii (∇i a11)
2 − C4(1 + ε−1)β2F11.

(4.17)

Using Lemma (2.5) and the Codazzi’s equation, one gets

− 1

κ1
Fi j,klai j1akl1 ≥ − 2

κ1

∑

j∈J

f1 − f j
κ1 − κ j

(
a1 j1

)2 = − 2

κ1

∑

j∈J

f1 − f j
κ1 − κ j

(
a11 j − R̄01 j1

)2
.

(4.18)

Following the argument in [34], we may verify that choosing θ = 1

2
it holds that for all

j ∈ J ,

− 2

κ1

f1 − f j
κ1 − κ j

≥ f j
κ2

1

= F j j

κ2
1

. (4.19)
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Combining (4.17), (4.18) and (4.19), we obtain

0 ≥ − C1κ1 − C3(β) − 2
1

κ2
1

∑

j∈J

F j j a11 j R̄01 j1 +
(

τ

τ − a
− C5ε

)
Fiiκ2

i

+ (
h′β − C2

) ∑

i

Fii − C4(1 + ε−1)β2F11

≥ − C̄(κ1 + β) + C6

n∑

i=1

Fiiκ2
i + (

h′β − C
) ∑

i

Fii − C7β
2F11

≥(C8(h
′β − C2) − C1)κ1 + (C6κ

2
1 − C7β

2)F11 − C̄3(β),

(4.20)

by choosing ε small and sufficiently large κ1. Here we also used (4.4) and

n∑

i=1

Fii ≥ Cκ1.

For β > 0 sufficiently large, we may obtain an upper bound for κ1 by (4.20). ��

Remark 4.2 The similar idea also has been used in [18,23,43].

5 A global C2 estimate for convex hypersurfaces in the warped product
space

In this section, following the arguments in [30], we can obtain C2 estimates of convex
solutions for the curvature Eq. (1.2) in �, namely, proving Theorem 1.2.

Define the following auxiliary function,

� = 1

2
ln P(κ) − N log τ − βη, (5.1)

where P(κ) = κ2
1 + · · · + κ2

n = ∑n
i, j=1 a

2
i j , and N , β are two constants to be determined

later.
We assume that � achieves its maximum value at X0 ∈ �. By a proper rotation, we may

assume that (ai j ) is a diagonal matrix at the point, and a11 ≥ a22 . . . ≥ ann .
At x0, covariant differentiate � twice,

0 = �i =
∑

l, j al j al ji

P
− N

τi

τ
− βηi =

∑
l κlalli
P

+ N
aiiηi

τ
− βηi = 0, (5.2)

and

0 ≥ �i i

≥ 1

P

⎛

⎝
∑

l

κlalli i +
∑

l

a2
lli +

∑

p �=q

a2
pqi

⎞

⎠ − 2

P2

(
∑

l

κlalli

)2

− N
τi i

τ
+ N

τ 2
i

τ 2 − βηi i

= 1

P

[
∑

l

κl (aiill − alm (amiail − amlaii ) − ami (amiall − amlali )

+R̄0i il;l − 2aml R̄miil + ail R̄0i0l + all R̄0i i0
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+R̄0lil;i − 2ami R̄mlil + aii R̄0l0l + ali R̄0li0
) +

∑

l

a2
lli +

∑

p �=q

a2
pqi

⎤

⎦

− 2

P2

(
∑

l

κlalli

)2

+ N

τ

∑

l

aiilηl − Nh′

τ
κi + Nκ2

i + N

τ 2 κ2
i η2

i

+N

τ

∑

l

R̄0i ilηl + β(h′δi i − τκi ).

Multiplying σ i i
k both sides gives

0 ≥ 1

P

[
∑

l

κl

(
σ i i
k aiill − σ i i

k alm (amiail − amlaii ) − σ i i
k ami (amiall − amlali )

+ σ i i
k R̄0i il;l − 2σ i i

k aml R̄miil + σ i i
k ail R̄0i0l + σ i i

k all R̄0i i0 + σ i i
k R̄0lil;i

−2σ i i
k ami R̄mlil + σ i i

k aii R̄0l0l + σ i i
k ali R̄0li0

)

+
∑

l

σ i i
k a2

lli +
∑

p �=q

σ i i
k a2

pqi

⎤

⎦

− 2

P2 σ i i
k

(
∑

l

κlalli

)2

+ N

τ

∑

l

σ i i
k aiilηl − Nh′

τ
k f + Nσ i i

k κ2
i + N

τ 2 σ i i
k κ2

i η2
i

+ N

τ

∑

l

σ i i
k R̄0i ilηl + β

(

h′ ∑

i

σ i i
k − τk f

)

≥ 1

P

⎡

⎣
∑

l

κlσ
i i
k aiill + k f

∑

l

κ3
l − C(1 + κ2

1 )
∑

i

σ i i
k +

∑

l

σ i i
k a2

lli +
∑

p �=q

σ i i
k a2

pqi

⎤

⎦

− 2

P2 σ i i
k

(
∑

l

κlalli

)2

+ N

τ

∑

l

σ i i
k aiilηl + (N − 1)σ i i

k κ2
i

+ (C1β − C2N )
∑

i

σ i i
k − C(β, N ).

(5.3)
Now covariant differentiate the Eq. (1.2) twice,

σ i i
k aii j = dVψ(∇ j V ) + dνψ(∇ jν) = h′dVψ(E j ) − a jldνψ(El), (5.4)

and

σ i i
k aii j j + σ

pq,rs
k apq j ars j

= dVψ(∇ j j V ) + d2
Vψ(∇ j V,∇ j V ) + 2dV dνψ(∇ j V,∇ jν)

+d2
ν ψ(∇ jν,∇ jν) + dνψ(∇ j jν).

= −h′′

h
η j dVψ(E j ) + h′a j j dVψ(ν) + (h′)2d2

Vψ(E j , E j )

−2h′a j j dV dνψ(E j , E j ) + a2
j j d

2
ν ψ(E j , E j )
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−
∑

l

al j j dνψ(El) − a2
j j dνψ(ν)

≥ −C − Cκ2
j −

∑

l

al j j dνψ(El), (5.5)

where the Schwarz inequality is used in the last inequality.
Since

− σ
pq,rs
k apqlarsl = −σ

pp,qq
k applaqql + σ

pp,qq
k a2

pql , (5.6)

it follows from (5.2) and (5.4), and Codazzi equation (2.10) implies

1

P

∑

l, j

κ j al j j dνψ(El) =N

τ

∑

j

σ i i
k aii jη j − Nh′

τ

∑

j

dVψ(E j )η j + β
∑

j

η j dνψ(E j )

− 1

P

∑

l, j

κ j R̄0 jl j dνψ(El).

(5.7)
Denote

Ai = κi

P

(

K (σk)
2
i −

∑

p,q

σ
pp,qq
k appi aqqi

)

, Bi = 2
∑

j

κ j

P
σ

j j,i i
k a2

j j i ,

Ci = 2
∑

j �=i

σ
j j
k

P
a2
j j i , Di = 1

P

∑

j

σ i i
k a2

j j i , Ei = 2σ i i
k

P2

⎛

⎝
∑

j

κ j a j j i

⎞

⎠

2

.

By (5.4) and (5.7), we can infer

0 ≥ 1

P

⎡

⎣
∑

l

κl

⎛

⎝−C − Cκ2
l − K (σk)

2
l + K (σk)

2
l − σ

pp,qq
k applaqql + 2

∑

j �=l

σ
ll, j j
k a2

l jl

⎞

⎠

+k f
∑

l

κ3
l +

∑

l

σ i i
k a2

lli + 2
∑

j �=i

σ i i
k a2

i j i

⎤

⎦

− 2

P2 σ i i
k

(
∑

l

κlalli

)2

+ (N − 1)σ i i
k κ2

i

+ (C1β − C2N − C3)
∑

i

σ i i
k − C(β, N ) − C4

κ1
.

(5.8)
From the Codazzi equation ai ji = aii j − R̄0i j i and the Cauchy–Schwarz inequality, we have

2
∑

j �=l

σ
ll, j j
k κla

2
l jl =2

∑

j �=l

σ
ll, j j
k κl

(
all j − R̄0l jl

)2

≥(2 − δ)
∑

j �=l

κlσ
ll, j j
k a2

ll j − Cδ

∑

j

σ
j j
k

=(2 − δ)
∑

j �=l

κlσ
ll, j j
k a2

ll j − Cδ

∑

j �=l

κlσ
ll, j j
k ,
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and

2
∑

j �=i

σ i i
k a2

i j i = 2
∑

j �=i

σ
i i, j j
k

(
aii j − R̄0i j i

)2 ≥(2 − δ)
∑

j �=i

σ i i
k a2

i i j − Cδ

∑

i

σ i i
k ,

where δ is a small constant to be determined later and Cδ is a constant depending on δ.
Therefore, we obtain

0 ≥ 1

P

[
∑

l

κl
(−C − Cκ2

l − K (σk)
2
l

) + k f
∑

l

κ3
l

]

+ (N − 1)σ i i
k κ2

i +
(
C1β − C2N − C3 − Cδ

1

P

) ∑

i

σ i i
k − C(β, N ) − C4

κ1

+
(

1 − δ

2

) ∑

i

(Ai + Bi + Ci + Di − Ei ) + δ

2

∑

i

(Ai + Di )

− δ

2

2

P2 σ i i
k

(
∑

l

κlalli

)2

.

(5.9)

According to the proof of Lemma 4.2, Lemma 4.3 and Corollary 4.4 in [30], we have the
following alternatives. There exist positive numbers δ2, δ3 . . . , δn depending only on k, n,
such that either

κi > δiκ1,∀ 2 ≤ i ≤ n,

or

Ai + Bi + Ci + Di − Ei ≥ 0,∀ 1 ≤ i ≤ n.

Thus, in the following, the proof will be divided into two cases.
Case (A): There exists some 2 ≤ i ≤ k−1, such that κi ≥ δiκ1 and κi+1 ≤ δi+1κ1. Choosing
K sufficiently large, we have Ai is positive by Lemma 2.6 . By the above alternatives, we
can infer

∑

i

(Ai + Bi + Ci + Di − Ei ) ≥ 0.

From (5.2) and Cauchy–Schwarz inequality, we have

σ i i
k

(
1

P2

∑

l

κlalli

)2

=σ i i
k

(
N

τ
κi − β

)2

η2
i ≤ C5

(

N 2σ i i
k κ2

i + β2
∑

i

σ i i
k

)

. (5.10)

Inserting (5.10) into (5.9), we get

0 ≥ 1

P

[
∑

l

κl
(−C − Cκ2

l − K (σk)
2
l

) + k f
∑

l

κ3
l

]

+ N

(
1

2
− C5δN

)
σ i i
k κ2

i +
(
N

2
− 1

)
σ i i
k κ2

i

+
(
C1β − C2N − C3 − Cδ

1

P
− C5δβ

2
) ∑

i

σ i i
k − C(β, N ) − C4

κ1

≥ − 1

P

(
C(K ) + C(K )κ3

1

) + C6

(
N

2
− 1

)
κ1
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+ N

(
1

2
− C5δN

)
σ i i
k κ2

i +
(
C1β − C2N − C3 − Cδ

1

P
− C5δβ

2
)

×
∑

i

σ i i
k − C(β, N ) − C4

κ1

≥
(

1

2
C6N − C(K )

)
κ1 + N

(
1

2
− C5δN

)
σ i i
k κ2

i

+
(
C1β − C2N − C3 − Cδ

1

P
− C5δβ

2
) ∑

i

σ i i
k − C(β, N ) − C4

κ1
, (5.11)

where we have used σ i i
k κ2

i ≥ c0κ1. Now let us choose these constants carefully. Firstly,
choose N such that

C(K ) + 1 ≤ 1

2
C5N , and N ≥ 4.

Secondly, choose β such that

C1β − C2N − C3 − 3 ≥ 0.

Thirdly, choose the constant δ satisfying

max{N 2, β2} ≤ (2C5δ)
−1.

At last, take sufficiently large κ1 satisfying

Cδ

P
≤ 1.

Otherwise we are done. Finally, κ1 has upper bound by (5.11).
Case(B): If the Case(A) does not hold. That means κk ≥ δkκ1. Since κl ≥ 0, we have,

σk ≥ κ1κ2 . . . κk ≥ δk−1
k κk

1 .

This implies the bound of κ1.

6 A global curvature estimate for (n− 1) convex hypersurfaces

For the functions τ and η, we employ the following auxiliary function which is introduced
firstly in [30],

� = log log P − N ln(τ ) − βη,

where P =
∑

l
eκl and {κl}nl=1 are the eigenvalues of the second fundamental form.

We may assume that the maximum of � is achieved at some point X0 ∈ �. After rotating
the coordinates, we may assume the matrix (ai j ) is diagonal at that point, and we can further
assume that a11 ≥ a22 . . . ≥ ann . Denote κi = aii .

Covariant differentiating the function � twice at X0, we have

0 = �i = Pi
P log P

− N
τi

τ
− βηi = 1

P log P

∑

l

eκl alli + N
ai jη j

τ
− βηi , (6.1)
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and

0 ≥ �i i

= Pii
P log P

− P2
i

P2 log P
− P2

i

(P log P)2 − N
τi i

τ
+ N

τ 2
i

τ 2 − βηi i

= 1

P log P

⎡

⎣
∑

l

eκl alli i +
∑

l

eκl a2
lli +

∑

α �=γ

eκα − eκγ

κα − κγ

a2
αγ i −

(
1

P
+ 1

P log P

)
P2
i

⎤

⎦

+N

τ

∑

l

aiilηl − Nh′

τ
κi + Nκ2

i + N

τ 2 κ2
i η2

i + N

τ

∑

l

R̄0i ilηl − β(τκi − h′δi i )

= 1

P log P

[
∑

l

eκl
(
aiill − alm (amiail − amlaii ) − ami (amiall − amlali ) + R̄0i il;l

−2aml R̄miil + ail R̄0i0l + all R̄0i i0 + R̄0lil;i − 2ami R̄mlil + aii R̄0l0l + ali R̄0li0
)

+
∑

l

eκl a2
lli +

∑

α �=γ

eκα − eκγ

κα − κγ

a2
αγ i −

(
1

P
+ 1

P log P

)
P2
i

⎤

⎦

+N

τ

∑

l

aiilηl − Nh′

τ
κi + Nκ2

i + N

τ 2 κ2
i η2

i + N

τ

∑

l

R̄0i ilηl − β(τκi − h′δi i ).

Contract with σ i i
n−1,

0 ≥ σ i i
n−1�i i

= 1

P log P

[
∑

l

eκlσ i i
n−1aiill + (n − 1)ψ

∑

l

eκl κ2
l − σ i i

n−1κ
2
i

∑

l

eκl κl

− C(1 + κ1)P
∑

i

σ i i
n−1 +

∑

l

σ i i
n−1e

κl a2
lli

+
∑

α �=γ

eκα − eκγ

κα − κγ

σ i i
n−1a

2
αγ i −

(
1

P
+ 1

P log P

)
σ i i
n−1P

2
i

⎤

⎦

+ N

τ

∑

l

σ i i
n−1aiilηl − 1

τ
(n − 1)Nh′ψ + Nσ i i

n−1κ
2
i

+ N

τ 2 σ i i
n−1κ

2
i η2

i + N

τ

∑

l

σ i i
n−1 R̄0i ilηl − (n − 1)βτψ + h′β

∑

i

σ i i
n−1.

(6.2)

Inserting (5.4), (5.5) into (6.2), we obtain

0 ≥ σ i i
n−1�i i

≥ 1

P log P

[
∑

l

eκl
(−C − Cκ2

1 − K (σn−1)
2
l + K (σn−1)

2
l − σ

pq,rs
n−1 apqlarsl

)

−
∑

l, j

eκl a jlldνψ(E j ) + (n − 1)ψ
∑

l

eκl κ2
l − σ i i

n−1κ
2
i

∑

l

eκlκl

− C(1 + κ1)P
∑

i

σ i i
n−1 +

∑

l

σ i i
n−1e

κl a2
lli
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+
∑

α �=γ

eκα − eκγ

κα − κγ

σ i i
n−1a

2
αγ i −

(
1

P
+ 1

P log P

)
σ i i
n−1P

2
i

⎤

⎦

+ N

τ

∑

l

σ i i
n−1aiilηl + Nσ i i

n−1κ
2
i + N

τ 2 σ i i
n−1κ

2
i η2

i + (h′β − C)
∑

i

σ i i
n−1 − C(β, N ).

(6.3)

By (6.1) and (5.4), and the Codazzi equation (2.10), we have

1

P log P

∑

l, j

eκl a jlldνψ(E j ) =N

τ

∑

l

σ i i
n−1aiilηl − Nh′

τ

∑

l

dVψ(El)ηl

+ β
∑

j

η j dνψ(E j ) − 1

P log P

∑

l, j

eκl R̄0l jldνψ(E j ).

(6.4)
By using (5.6) and (6.3), we get

0 ≥ 1

P log P

[
∑

l

eκl
(−C − Cκ2

1 − K (σn−1)
2
l

) +
∑

l

eκi
(
K (σn−1)

2
i − σ

pp,qq
n−1 appi aqqi

)

+ 2
∑

l �=i

σ
i i,ll
n−1e

κl a2
lil + (n − 1)ψ

∑

l

eκl κ2
l − σ i i

n−1κ
2
i

∑

l

eκlκl

− C(1 + κ1)P
∑

i

σ i i
n−1 +

∑

l

σ i i
n−1e

κl a2
lli

+ 2
∑

l �=i

σ i i
n−1

eκl − eκi

κl − κi
a2
lil −

(
1

P
+ 1

P log P

)
σ i i
n−1P

2
i

⎤

⎦

+ Nσ i i
n−1κ

2
i + N

τ 2 σ i i
n−1κ

2
i η2

i + (βh′ − C)
∑

i

σ i i
n−1 − C(β, N ) − C

κ1
.

(6.5)

From the Codazzi equation (2.10) and Cauchy–Schwarz inequality, we have

2(alil)
2 =2(alli − R̄0lil)

2 ≥ (2 − δ)a2
lli − Cδ,

where δ is a small constant to be determined later. Denoting

Ai = eκi

⎛

⎝K (σn−1)
2
i −

∑

p �=q

σ
pp,qq
n−1 appi aqqi

⎞

⎠ , Bi = 2
∑

l �=i

σ
i i,ll
n−1e

κl a2
lli ,

Ci = σ i i
n−1

∑

l

eκl a2
lli ; Di = 2

∑

l �=i

σ ll
n−1

eκl − eκi

κl − κi
a2
lli , Ei = 1 + log P

P log P
σ i i
n−1P

2
i ,
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we have, by (6.5),

0 ≥
(

1 − 1

2
δ

)
1

P log P

[
Ai + Bi + Ci + Di − Ei

]
+ δ

2

1

P log P

∑

i

(Ai + Ci )

− δ

2

1 + log P

(P log P)2 σ i i
n−1P

2
i − Cδ

P ln P

∑

l �=i

σ
i i,ll
n−1e

κl − Cδ

P ln P

∑

l �=i

σ i i
n−1

eκl − eκi

κl − κi

+ (N − 1) σ i i
n−1κ

2
i + N

τ 2 σ i i
n−1κ

2
i η2

i + (
βh′ − C

) ∑

i

σ i i
n−1 − Cκ1 − C(β, N , K ) − C

κ1
.

(6.6)
By Schwarz inequality, we always have

P2
i =

(
∑

l

eκl alli

)2

≤ P
∑

l

eκl a2
lli ,

which implies

δ

2

1

P log P
Ci ≥ δ

2

log P

(P log P)2 σ i i
n−1P

2
i . (6.7)

We also have
∑

l �=i

σ
i i,ll
n−1e

κl ≤ P
∑

l �=i

σ
i i,ll
n−1 = 2P

∑

i

σ i i
n−2 = 6Pσn−3. (6.8)

We divided into several cases to compare with σn−2.
Case (A) If σn−2 ≥ σn−3, by (6.8), we have, for n ≥ 3,

Cδ

P log P

∑

l �=i

σ
i i,ll
n−1e

κl ≤ 3n2

(
Cδ

log P

∑

i

σ i i
n−1 + 1

)

. (6.9)

Case (B) If σn−2 ≤ σn−3, in �n−1 cone, since |κn | ≤ κ1/(n− 1) by the argument in [42], we
have

κ1 . . . κn−2 ≤ C0κ1 . . . κn−3,

which implies κn−2 ≤ C0. We further divide into two sub-cases to discuss for index l =
1, . . . , n.

Subcase (B1) If 2|κl | ≤ κ1, we have

eκl

P
≤ eκl−κ1 ≤ e− κ1

2 ≤
[

1

(n − 3)!
(κ1

2

)n−3
]−1

.

The last inequality comes from Taylor expansion. Thus, we have

Cδ

P log P
σ
i i,ll
n−1e

κl ≤ C1
Cδ

κ1
≤ 1,

for sufficiently large κ1.
Subcase (B2) For sufficiently large κ1, if 2|κl | ≥ κ1, by κn−2 ≤ C0, we have 1 ≤ l ≤ n−3.

In this case, we have

σ
i i,ll
n−1 ≤ C1κ1 . . . κl−1κl+1 . . . κn−2 ≤ κ1 . . . κl−1κlκl+1 . . . κn−2 ≤ σn−2.
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The middle inequality comes from 2κl ≥ κ1 ≥ 2C1 for sufficiently large κ1. Thus, we have

Cδ

P log P
σ
i i,ll
n−1e

κl ≤ Cδ

log P
σn−2.

Combining cases (B1) and (B2), we also have (6.9).
By mean value theorem, we have some ξ between in κi and κl satisfying

∑

l �=i

σ i i
n−1

eκl − eκi

κl − κi
=

∑

l �=i

σ i i
n−1e

ξ ≤ (n − 1)P
∑

i

σ i i
n−1. (6.10)

Hence, using the discussion in [42], we have

Ai + Bi + Ci + Di − Ei ≥ 0.

Thus, by (6.6), (7.6), (6.9), (6.10), we have

0 ≥ − δ

2

1

(P log P)2 σ i i
n−1P

2
i + δ

2

1

P log P

∑

i

Ai

+ (N − 1) σ i i
n−1κ

2
i + N

τ 2 σ i i
n−1κ

2
i η2

i

+
(

βh′ − C − Cδ

log P

) ∑

i

σ i i
n−1 − C(β, N , K ) − C

κ1
. (6.11)

From (6.1) and the Cauchy–Schwarz inequality, we have

δ

2
σ i i
n−1

P2
i

(P log P)2 = δ

2
σ i i
n−1

(
N

τ
κi − β

)2

η2
i ≤ Cδ

(

N 2σ i i
n−1κ

2
i + β2

∑

i

σ i i
n−1

)

.

(6.12)
Therefore, by Lemma 2.6, (6.11), (6.12), we obtain

0 ≥ (
N − 1 − CδN 2) σ i i

n−1κ
2
i +

(
βh′ − C − Cδ

log P
− Cδβ2

)

∑

i

σ i i
n−1 − C(β, N , K ) − C

κ1
.

(6.13)

Since σ i i
n−1κ

2
i ≥ C1κ1, we only need to choose the constants N , β, δ carefully. At first, we

take constant N satisfying

(N − n − 1)C1 − C(K ) ≥ 1.

Secondly, we choose constant β satisfying

βh′ − 2C − 2 ≥ C2β − 2C − 2 ≥ 0.

Thirdly, we let constant δ satisfying

max{CC1δN
2,Cδβ2} ≤ 1.

At last, we take sufficiently large κ1 satisfying

Cδ

log P
≤ Cδ

κ1
≤ 1.

Finally, by (6.13), we obtain the upper bound of κ1.
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7 The existence results

We are in the position to give the proof of the existence Theorems.

Proof of Theorem 1.1 We use continuity method to solve the existence result. For parameter
0 ≤ s ≤ 1, according to [8,17], we consider the following family of functions

ψ s(V, ν) = sψ(t, u) + (1 − s)ϕ(t)σk(κ(t)).

where κ(t) = h′/h and ϕ is a positive function defined on I satisfying (i) ϕ > 0; (ii) ϕ(t) > 1
for t ≤ t−; (iii) ϕ(t) < 1 for t ≥ t+; and (iv) ϕ′(t) < 0. It is obvious that there exists a unique
point t0 ∈ (t−, t+) such that ϕ(t0) = 1. By [8], z = t0 is the unique hypersurface satisfying
problem (1.2) and one can check directly that ψ s also satisfies (a), (b), (c) in Theorem 1.1.
The height estimate can be easily obtained by comparison principle.

The openness and uniqueness are also similar to [17,30]. In view of Evans–Krylov theory,
we only need height, gradient and C2 estimates to complete the closeness part which has
been done in Sects. 3, 5 and 6. We complete our proof. ��

In what following, we discuss the constant rank theorem in space forms according to
[24,26,29]. We rewrite our Eq. (1.2) to be

F(a) = −σ
−1/k
k (a) = −ψ−1/k(X, ν). (7.1)

Proposition 7.1 Suppose the ambient space (M̄, ḡ) = (Sn+1, ḡ) is the spherewith themetric
defined by (1.1) and h(t) is given by (1.4). Suppose some compact hypersurface � satisfies
(7.1) and its second fundamental form is non-negative definite. Let X, Y be two vector fields
in the ambient space and ∇̄ be the covariant derivative of the ambient space. If the function
ψ locally satisfies

∇̄X ∇̄Y (ψ−1/k) + λψ−1/k ḡX,Y ≥ 0,

at any (u, z) ∈ �, then the hypersurface � is of constant rank.

Proof According to [24], suppose P0 is the point where the second fundamental form is of
the minimal rank l. Let O be some open neighborhood of P0. If O is sufficiently small, we can
pick some constant A as in [24]. Then we use the auxiliary function ϕ = σl+1(a)+ Aσl+2(a)

to establish a differential inequality.
Now we choose a local orthonormal frame {e1 . . . , en} in the hypersurface �. Since M̄ is

the sphere with sectional curvature λ, we obviously have

R̄abcd = λ(δacδbd − δadδbc).

By Lemma 2.2, we have

ϕ j = (σ i i
l+1 + Aσ i i

l+2)aii j ,

ϕ j j = (σ i i
l+1 + Aσ i i

l+2)aii j j + (σ
pq,rs
l+1 + Aσ

pq,rs
l+2 )apq j ars j

= (σ i i
l+1 + Aσ i i

l+2)[a j jii − aim(amja ji − amia j j ) − amj (amjaii − amiai j )

−2amiλ(δmjδi j − δmiδ j j ) + a jiλδ00δ j i + aiiλ(−δ00δ j j )

−2amjλ(δmjδi i − δmiδi j ) + a j jλδ00δi i − ai jλδ00δi j ] + (σ
pq,rs
l+1 + Aσ

pq,rs
l+2 )apq j ars j .

(7.2)
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Thus, we have

F j jϕ j j = F j j (σ i i
l+1 + Aσ i i

l+2)[a j jii + a2
i i a j j − a2

j j aii + λaiiδ j j − λa j jδi i ]
+F j j (σ

pq,rs
l+1 + Aσ

pq,rs
l+2 )apq j ars j

= (σ i i
l+1 + Aσ i i

l+2)[(−ψ−1/k)i i − λψ−1/kδi i ] − (σ i i
l+1 + Aσ i i

l+2)F
pq,rsapqi arsi

+F j j (σ
pq,rs
l+1 + Aσ

pq,rs
l+2 )apq j ars j . (7.3)

Since the second fundamental form still satisfies Codazzi property in space forms, the process
of dealing with the third order terms is same as [24], We also have

(ψ−1/k),i i = (ψ−1/k)i i − aii (ψ
−1/k)ν,

where the comma in the first term means taking covariant derivative with respect to the metric
of the ambient space. Thus, since the index i is a bad index, the third term is useless. We
have our results. ��

Now, we can prove Theorem 1.3.

Proof of Theorem 1.3 The proof also use the degree theory by modifying the proof in [30].
We consider the auxiliary equation

σk(κ(X)) = ψ s = (
sψ−1/k(X, ν) + (1 − s)ϕ̄−1/k)−k

, (7.4)

where ϕ̄ is defined by ϕ̄ = Ck
nϕκk(t). We claim that, for the sphere,

(ϕ̄−1/k),i j + λϕ̄−1/k ḡi j ≥ 0. (7.5)

where {ē0, . . . , ēn} is the local orthonormal frame on M̄ . If the claim holds, by our condition,
it is obvious that the ψ s satisfies condition (c) for parameter 0 ≤ s ≤ 1. By Proposition 7.1,
the strictly convexity is preserved along the flow ψ s .

Now, let’s discuss Claim (7.5). Define α(t) = (Ck
nϕ)1/k . Since ϕ̄ is some constant on

every slice, we have, for i, j = 1, . . . , n

(ϕ̄−1/k),i j = (ϕ̄−1/k)i j − ai j (ϕ̄
−1/k)t = −h2(t)κ(t)

α′(t)κ(t) + α(t)κ ′(t)
α2(t)κ2(t)

g′
i j

= −h2(t)
α′(t)κ(t) + α(t)κ ′(t)

α2(t)κ(t)
g′
i j .

Thus, in space forms, we have

h′′(t)
h(t)

= κ2(t) − 1

h2(t)
, κ ′(t) = h′′(t)

h(t)
− κ2(t) = − 1

h2(t)
.

Then, we have

(ϕ̄−1/k),i j = −h2(t)
α′(t)κ(t) + α(t)κ ′(t)

α2(t)κ(t)
g′
i j = α(t) − α′(t)h2(t)κ(t)

α2(t)κ(t)
g′
i j > 0,

since α′ < 0.
For the unit (namely, λ = 1) sphere, it is easy to see that

(ϕ̄−1/k)t t = ∂2(ϕ̄−1/k)

∂t2 = − ∂

∂t

α′(t)κ(t) + α(t)κ ′(t)
α2(t)κ2(t)

= ∂

∂t

α − α′ sin t cos t

α2 cos2 t
.
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Thus, we have

(ϕ̄−1/k)t t = 2α′ sin2 t − α′′ sin t cos t

α2 cos2 t
− α − α′ sin t cos t

α4 cos4 t[
(−2 cos t sin t)α2 + 2αα′ cos2 t

]

≥ 2α′ sin2 t

α2 cos2 t
+ 2

α − α′ sin t cos t

α2 cos4 t
cos t sin t

= 2α cos t sin t

α2 cos4 t
> 0,

if we require α′ < 0 and α′′ > 0. Thus, Claim (7.5) holds for unit sphere. Since it is rescaling
invariant, then (7.5) holds for any λ > 0.

Now we can give the requirements for functions ϕ(t) to satisfying α′ < 0 and α′′ > 0. It
is a straightforward calculation that

kαk−1α′ = Ck
nϕ

′ and kαk−1α′′ + k(k − 1)αk−2(α′)2 = Ck
nϕ

′′,

which implies that

ϕ′ < 0 and ϕϕ′′ >
k − 1

k
(ϕ′)2. (7.6)

We further need that (i) ϕ > 0; (ii) ϕ(t) > 1 for t ≤ t−; (iii) ϕ(t) < 1 for t ≥ t+. There is a
lot of functions satisfying (i) (ii) (iii) and (7.6), for example

ϕ(t) = exp(
t− + t+

2
− t).

Thus, the initial surfaces satisfy the condition of constant rank theorem and the height estimate
comes from comparison principle. The curvature estimate has been obtained in Sect. 5. The
rest part of this proof is similar to convex case in the Euclidean space, where we only need
to replace the constant rank theorem in [30] by Proposition 8.1 here. ��
Remark 7.2 In hyperbolic space, the problem is that the slice spheres do not satisfy the
constant rank theorem: Proposition 7.1. It may be an interesting problem to find some other
nontrivial initial family of hypersurfaces to satisfy Proposition 7.1.
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