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Abstract In this paper we give sharp conditions on K (x) and f (u) for the existence of
strictly convex solutions to the boundary blow-up Monge–Ampère problem

M[u](x) = K (x) f (u) for x ∈ �, u(x) → +∞ as dist(x, ∂�) → 0.

Here M[u] = det (uxi x j ) is the Monge–Ampère operator, and � is a smooth, bounded, strictly
convex domain in R

N (N ≥ 2). Further results are obtained for the special case that � is a
ball. Our approach is largely based on the construction of suitable sub- and super-solutions.

Mathematics Subject Classification 34B18 · 34B15 · 34A34

1 Introduction

We consider the boundary blow-up problem for the Monge–Ampère equation

M[u] = K (x) f (u) in �, u = +∞ on ∂�, (1.1)
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where M[u] = det (uxi x j ) is the Monge–Ampère operator, � is a smooth, bounded, strictly
convex domain in R

N (N ≥ 2), and K (x), f (u) are smooth positive functions. The boundary
blow-up condition u = +∞ on ∂� means

u(x) → +∞ as dist(x, ∂�) → 0.

Such problems were studied by Cheng and Yau [4,5] with f (u) an exponential function of
u, due to their applications in geometry. The case f (u) = u p (p > 0) and K (x) is a smooth
positive function over � was considered by Lazer and McKenna [12], and it is proved that
in such a case (1.1) has a strictly convex solution if p > N , and there is no such solution for
0 < p ≤ N . Further results can be found in [7,10,13–15,21,22].

In this paper, we aim to find sharp conditions on K (x) and f (u) for the existence of a
strictly convex solution to (1.1) with K (x) and f (u) chosen from a much larger class of
functions than those considered in [12]. More precisely, we will seek sharp conditions for
the existence problem for functions K (x) and f (u) which satisfy

(K): K ∈ C∞(�) and K (x) > 0 in �;
(f) : there exists η ∈ R

1 ∪ {−∞} such that

(i) f ∈ C∞(η,∞) is positive and strictly increasing in (η,∞),
(ii) if η ∈ R

1 then additionally f (η) := lims→η f (s) = 0.

To simplify notation, we write +∞ as ∞. Let us note that a function K (x) satisfying (K)

need not be bounded away from 0 or ∞ near ∂�. Examples of functions f (u) satisfying (f)
clearly include

a + ebu(a ≥ 0, b > 0), ku p(k, p > 0).

Although various sufficient conditions on K (x) and f (u) satisfying (K) and (f), respec-
tively, have been found for the existence of solutions to (1.1), none of them is known to be
sharp, in the sense that the sufficient condition is also necessary.

For example, suppose that K ∈ C∞(�) is positive (and hence satisfying (K)), and f
satisfies (f). Then it follows from Matero [13] and Mohammed [14] that

• (1.1) has a strictly convex solution if in addition f satisfies1

∫ ∞
[F(s)]−1/(N+1)ds < ∞; (1.2)

• (1.1) has no strictly convex solution if
∫ ∞

f (s)−1/Nds = ∞. (1.3)

Here

F(s) =
∫ s

η

f (t)dt if η ∈ R
1, F(s) =

∫ s

0
f (t)dt if η = −∞,

and
∫ ∞

�(s)ds < ∞ (= ∞) means that
∫ ∞

M
�(s)ds < ∞ (= ∞) for all large positive M.

1 As explained below, when η ∈ R
1, the condition (1.2) alone is actually not sufficient.
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If we take f (u) satisfying (f) and f (u) = uN (log u)α for all large u, then it is easily
checked that f (u) satisfies neither (1.2) nor (1.3) when α ∈ (N , N + 1].

On the other hand, the known results for (1.1) show a clear similarity to that of the
corresponding semilinear boundary blow-up problem

�u = K (x) f (u) in �, u = ∞ on ∂�. (1.4)

By the arguments of Keller [11] and Osserman [16], it is easily checked (see, for example,
section 6.1 in [8]) that if K ∈ C∞(�) is positive, and f satisfies (f), then (1.4) has a solution
if and only if ∫ ∞

[F(s)]−1/2ds < ∞. (1.5)

It will follow from Theorem 1.1 of this paper that, if K ∈ C∞(�) is positive, and
f satisfies (f), then (1.2) is also a necessary condition for (1.1) to have a strictly convex
solution. Moreover, we will show that, in the case η ∈ R

1, (1.2) alone does not guarantee the
existence of a strictly convex solution to (1.1); one needs to require additionally∫

η+
[F(s)]−1/(N+1)ds = ∞. (1.6)

Here
∫
η+ �(s)ds = ∞ means that

∫ η+ε

η

�(s)ds = ∞ for all small positive ε.

Let us observe that if f (u) = u p with p > 0, then (1.2) is equivalent to p > N , and (1.6) is
equivalent to p ≥ N .

We would like to emphasize that for (1.4), condition (1.5) is sufficient for the existence
problem, whether or not η = −∞; but for (1.1), in the case η �= −∞, the condition (1.2)
alone is not enough and the extra condition (1.6) is required to guarantee the existence of a
strictly convex solution to (1.1). (See Theorem 1.4 for details on the necessity of (1.6).) This
difference between the two boundary blow-up problems (1.1) and (1.4) seems overlooked in
several previous works, and this paper appears to be the first to notice and demonstrate such
a difference.

The first main result of this paper is the following.

Theorem 1.1 Suppose that K (x) satisfies (K) and K ∈ L∞(�). Suppose that f (u) satisfies
(f), and when η ∈ R

1, it satisfies additionally (1.6). Then (1.1) has a strictly convex solution
if and only if (1.2) holds.

Next we consider more general K (x). Mohammed [14] proved that if K (x) satisfies (K)

and is such that the Dirichlet problem

M[u] = K (x) in �, u = 0 on ∂�, (1.7)

has a strictly convex solution, then (1.1) has a strictly convex solution if f satisfies (f) and
(1.2)2.

In [3], Cheng and Yau showed that problem (1.7) has a strictly convex solution if for some
δ > 0 and C > 0,

0 < K (x) < Cd(x)δ−N−1 in �, where d(x) := dist(x, ∂�).

2 See footnote 1.
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In [15], Mohammed proved that (1.7) has no strictly convex solution if

K (x) ≥ Cd(x)−N−1 in � for some C > 0.

These results have been improved by Yang and Chang [21] who showed that for K (x)
satisfying (K),

(i) (1.7) has no strictly convex solution if

K (x) ≥ Cd(x)−N−1(− ln d(x))−N near ∂� for some C > 0;
(ii) (1.7) has a strictly convex solution if

K (x) ≤ Cd(x)−N−1(− ln d(x))−q near ∂� for some q > N and C > 0.

The second main result of this paper is a correction of the existence result in [14].

Theorem 1.2 Suppose that K (x) satisfies (K) and is such that (1.7) has a strictly convex
solution. Suppose that f (u) satisfies (f), and when η ∈ R

1, it satisfies additionally (1.6).
Then (1.1) has a strictly convex solution if (1.2) holds.

Remark 1.3 (i) Let us note that when K satisfies the conditions in Theorem 1.1, by the
above mentioned results, (1.7) always has a strictly convex solution. Hence Theorem
1.2 gives a better existence result than Theorem 1.1.

(ii) We suspect that (1.2) is also a necessary condition for (1.1) to have a strictly convex
solution under the conditions of Theorem 1.2, but we have failed to find a proof.

The theorem below indicates that without the extra condition (1.6) in Theorems 1.1 and
1.2 in the case η ∈ R

1, (1.1) may have no strictly convex solution.

Theorem 1.4 Let � be a smooth, bounded, strictly convex domain in R
N , N ≥ 2. Suppose

K satisfies (K) and f satisfies (f) with η ∈ R
1. If f satisfies (1.2) but not (1.6), i.e.,∫ ∞

[F(s)]− 1
N+1 ds < ∞ and

∫
η+

[F(s)]− 1
N+1 ds < ∞, (1.8)

then, for each K∗ > 0 there exists R0 > 0 depending on K∗, f and N, such that (1.1) has
no strictly convex solution on � if �K∗ := {x ∈ � : K (x) ≥ K∗} contains a ball of radius
R > R0.

Our next result gives conditions on K (x) guaranteeing existence and non-existence of
strictly convex solutions to (1.7), which are more general than the ones obtained by Yang
and Chang [21] mentioned above.

For a positive function p(t) in C1(0,∞) satisfying p′(t) < 0 and limt→0+ p(t) = ∞, to
distinguish its behavior near t = 0 we set P(τ ) = ∫ 1

τ
p(t)dt . We say such a function p(t) is

of class P f ini te if ∫
0+

[P(τ )] 1
N dτ < ∞,

and is of class P∞ if ∫
0+

[P(τ )] 1
N dτ = ∞.

It is easy to check that if p(t) = t−N−1(− ln t)−q for small t > 0, then for q > N one
can extend p(t) to a function of class P f ini te, while for q ≤ N , one can extend p(t) to a
function of class P∞.

123



Sharp conditions for the existence of boundary blow-up… Page 5 of 24 30

Theorem 1.5 Suppose that K (x) satisfies (K). Then

(i) (1.7) has no strictly convex solution if there exists a function p(t) of class P∞ such
that K (x) ≥ p(d(x)) near ∂�;

(ii) (1.7) has a strictly convex solution if there exists a function p(t) of class P f ini te such
that K (x) ≤ p(d(x)) near ∂�.

Moreover, in case (ii) above, if we define

ω0(t) :=
∫ t

0
(N P(τ ))

1
N dτ for t ∈ (0, b), (1.9)

then (1.7) has a strictly convex solution u ∈ C∞(�) ∩ C(�) such that

− l0 ω0(d(x)) ≤ u(x) < 0 in � for some l0 > 0. (1.10)

Remark 1.6 It is interesting to know what happens to (1.1) if K (x) is such that (1.7) has
no strictly convex solution. We will examine some such cases for the radially symmetric
situation, and show that (1.1) may have infinitely many strictly convex solutions or no such
solution, depending on the behavior of f ; see Theorems 5.3 and 5.4 for details.

Remark 1.7 The blow-up rate and uniqueness of solutions are not considered in this paper,
and will be discussed in future work. Using more recent regularity results on Monge–Ampère
equations in [1,18,20], the smoothness requirements in (K) and (f) can be considerably
relaxed; we leave the details to the interested reader.

The rest of the paper is organized as follows. In Sect. 2 we collect some known results to
be used in the subsequent sections. Section 3 is devoted to the proof of Theorem 1.5, while
Sect. 4 gives the proof of Theorems 1.1 and 1.2. In Sect. 5, we consider radial solutions and
discuss the cases mentioned in Remark 1.6. Section 6 is devoted to the proof of Theorem 1.4.

2 Some preliminary results

In this section, we collect some results for the convenience of later use and reference.

Lemma 2.1 (Lemma 2.1 of [12]) Let � be a bounded domain in R
N , N ≥ 2, and let

uk ∈ C2(�) ∩ C(�) for k = 1, 2. Let f (x, u) be defined for x ∈ � and u in some interval
containing the ranges of u1 and u2 and assume that f (x, u) is strictly increasing in u for all
x ∈ �. Suppose

(i) the matrix (u1
xi x j ) is positive definite in �,

(ii) M[u1](x) ≥ f (x, u1(x)), ∀x ∈ �,

(iii) M[u2](x) ≤ f (x, u2(x)), ∀x ∈ �,

(iv) u1(x) ≤ u2(x), ∀x ∈ ∂�.

Then u1(x) ≤ u2(x) in �.

Remark 2.2 From the proof in [12], it is easily seen that the condition “ f (x, u) is strictly
increasing in u for all x ∈ �” in Lemma 2.1 can be relaxed to “ f (x, u) is nondecreasing in
u for all x ∈ �” provided that one of the inequalities in (ii) and (iii) is replaced by a strict
inequality. This observation will be used later in the paper.
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Lemma 2.3 (Proposition 2.1 of [7]) Let u ∈ C2(�) be such that the matrix (uxi x j ) is
invertible for x ∈ �, and let g be a C2 function defined on an interval containing the range
of u. Then

M[g(u)] = M[u]
{
[g′(u)]N + [g′(u)]N−1g′′(u)(∇u)T B(u)∇u

}
, (2.1)

where AT denotes the transpose of the matrix A, B(u) denotes the inverse of the matrix
(uxi x j ), and

∇u = (ux1 , ux2 , . . . , uxN )T .

The following interior estimate for derivatives of smooth solutions of Monge–Ampère
equations is a simple variant of Lemma 2.2 in [12], which follows from [17,19].

Lemma 2.4 Let � be a bounded domain in R
N , N ≥ 2, with ∂� ∈ C∞. Let η ∈

[−∞,+∞) and f ∈ C∞(� × (η,∞)) with f (x, u) > 0 for (x, u) ∈ � × (η,∞).
Let u ∈ C∞(�) be a solution of the Dirichlet problem{

M[u](x) = f (x, u), x ∈ �,

u(x) = c = constant, x ∈ ∂�,
(2.2)

with η < u(x) < c in �. Let �′ be a subdomain of � with �′ ⊂ � and assume that
η < a ≤ u(x) ≤ b for x ∈ �′ and let k ≥ 1 be an integer. Then there exists a constant C
which depends only on k, a, b, bounds for the derivatives of f (x, u) for (x, u) ∈ �′ × [a, b],
and dist(�′, ∂�) such that

||u||Ck (�′) ≤ C.

The existence result below is a variant of Lemma 2.3 in [12], which is a special case of
Theorem 7.1 in [2].

Lemma 2.5 Let � be a strictly convex, bounded domain in R
N , N ≥ 2, with ∂� ∈ C∞.

Let f (x, u) be a positive C∞ function on � × (η, c], where c > η ≥ −∞. If there exists a
function u∗ ∈ C2(�), which is convex on �, such that u∗ > η and{

M[u∗](x) ≥ f (x, u∗(x)), x ∈ �,

u∗(x) = c, x ∈ ∂�,

then there exists a solution u of (2.2) with u ∈ C∞(�) and u strictly convex. Moreover,
u(x) ≥ u∗(x) on �.

Let � be a smooth, bounded, strictly convex domain in R
N , by Theorem 1.1 of [2], there

exists u0 ∈ C∞(�) which is the unique strictly convex solution to

M[u0] = 1 in �, u0 = 1 on ∂�.

Set z(x) := 1 − u0(x). Then z(x) > 0 in � and it is the unique strictly concave solution to

(−1)N M[z] = 1 in �, z = 0 on ∂�. (2.3)

Since (zxi x j ) is negative definite on �, its trace is negative, that is �z < 0, and hence one
can apply the Hopf boundary lemma to conclude that |∇z| > 0 for x ∈ ∂�. It follows that
there exist positive constants b1 and b2 such that

b1d(x) ≤ z(x) ≤ b2d(x) for x ∈ �. (2.4)
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3 Proof of Theorem 1.5

3.1 Proof of part (i)

Suppose that there exists a function p(t) of class P∞ such that K (x) ≥ p(d(x)) near ∂�.
We want to show that (1.7) has no strictly convex solution.

We first note that by replacing p(t) by cp(t) with c a suitable small positive constant,
we may assume that K (x) ≥ p(d(x)) in �. Secondly, we may modify p(t) for large t and
assume that p(t) = c0e−t for some positive constant c0 and all large t , say t ≥ M0. Thirdly,
with p(t) modified as above, if we define

P̃(τ ) =
∫ ∞

τ

p(t)dt,

then we still have ∫
0+

[P̃(τ )] 1
N dτ = ∞. (3.1)

Moreover,

P̃(t) = c0e
−t , P̃(t)/p(t) = 1 for t ≥ M0, P̃(t)/p(t) → 0 as t → 0. (3.2)

We now define

σ(t) =
∫ ∞

t
(N P̃(τ ))

1
N dτ for t > 0. (3.3)

By (3.1) we have lim
t→0+ σ(t) = ∞. From (3.3) we obtain

(−1)N−1(σ ′(t))N−1σ ′′(t) = p(t), − σ ′(t)
σ ′′(t)

= N P̃(t)

p(t)
. (3.4)

Define

v(x) = lσ(cz(x)) − L , x ∈ �,

where l, L , c are positive constants and z(x) is the same as in (2.3). By (2.1), (2.3) and (3.4),
we have

M[v] = l N M[cz]
{
[σ ′(cz)]N + σ ′′(cz)[σ ′(cz)]N−1(∇(cz))T B(cz)∇(cz)

}

= (−lc)N
{
[σ ′(cz)]N + cσ ′′(cz)[σ ′(cz)]N−1(∇z)T B(z)∇z

}

= (lc)N p(cz)
{

− σ ′(cz)
σ ′′(cz)

− c(∇z)T B(z)∇z
}

= (lc)N p(cz)
{N P̃(cz)

p(cz)
− c(∇z)T B(z)∇z

}
.

By (3.2), we see that supt>0 N P̃(t)/p(t) = C0 < ∞. Hence, since (∇z)T B(z)∇z is
continuous over �, there exists m0 > 0 such that

N P̃(cz)

p(cz)
− c(∇z)T B(z)∇z ≤ C0 + cm0 for x ∈ �.

Therefore

M[v] ≤ (C0 + cm0)(lc)
N p(cz) in �.
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Since z(x) ≥ b1d(x) by (2.4) and p(t) is decreasing, if we choose c = 1/b1 then

p(cz(x)) ≤ p(d(x)) ≤ K (x) for x ∈ �.

We may then choose l > 0 sufficiently small to obtain

M[v] < K (x) for x ∈ �.

Suppose by way of contradiction that (1.7) has a strictly convex solution u. With c and
l chosen as above, since v(x) → ∞ as x → ∂� and u(x) → 0 as x → ∂�, we may use
Remark 2.2 (over �δ := {x ∈ � : d(x) > δ} for all small δ > 0) to conclude that v ≥ u in
�. Since L > 0 is arbitrary in the definition of v, this clearly is a contradiction. The proof of
part (i) of Theorem 1.5 is thus complete.

3.2 Proof of part (ii)

We modify p(t) and define P̃(τ ) as in the proof of part (i) above, and analogously we still
have ∫

0+
[P̃(τ )] 1

N dτ < ∞. (3.5)

Set

ω(t) :=
∫ t

0
(N P̃(τ ))

1
N dτ for t > 0. (3.6)

For l, c positive constants to be determined, and z(x) as given in (2.3), we define

w(x) = −lω(cz(x)) for x ∈ �.

Then

(ω′(t))N−1ω′′(t) = −p(t),
ω′(t)
ω′′(t)

= −N P̃(t)

p(t)
,

and by (3.5), w(x) → 0 as d(x) → 0. Moreover, for any ξ = (ξ1, . . . , ξN ) ∈ R
N and

x ∈ �,

∑
i, j

wxi x j ξiξ j = −lc2ω′′(cz)
( ∑

i

zxi ξi
)2 + lcω′(cz)

∑
i, j

(−z)xi x j ξiξ j ≥ σ0|ξ |2

for some σ0 > 0, since ω′ > 0, ω′′ < 0 and −z(x) is strictly convex. It follows that w(x) is
strictly convex in �.

By similar calculations to those for M[v] in the proof of part (i) we obtain

M[w] = (lc)N p(cz)
{N P̃(cz)

p(cz)
− c(∇z)T B(z)∇z

}
.

Since (zxi x j ) is negative definite for x ∈ �, so is its inverse B(z). Since |∇z| > 0 near
∂�, we obtain

−(∇z)T B(z)∇z > 0 for x ∈ � near ∂�.

For x ∈ �,

N P̃(cz(x))

p(cz(x))
> 0
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and it is bounded away from 0 for x ∈ � outside any neighborhood of ∂�. Hence there exists
δ0 > 0 depending on c such that

N P̃(cz)

p(cz)
− c(∇z)T B(z)∇z ≥ δ0 for x ∈ �. (3.7)

It follows that

M[w] ≥ δ0(lc)
N p(cz) in �.

We may now choose c = 1/b2 and use z(x) ≤ b2d(x) to deduce

p(cz(x)) ≥ p(d(x)) ≥ K (x) in �.

Therefore, for all large l > 0 we have

M[w] > K (x) for x ∈ �.

We now fix c and l as above, and for εn > 0 decreasing to 0 define

�n := {x ∈ � : w(x) < −εn}.
Then consider the problem

M[u] = K (x) in �n, u = 1 on ∂�n . (3.8)

We observe that �n is also a level set of z(x) and hence is strictly convex and smooth. Since
K (x) > 0 on �n , and wn(x) := w(x) + 1 + εn satisfies

M[wn] = M[w] > K (x) in �n, wn = 1 on ∂�n,

and wn is convex in �n , we can apply Lemma 2.5 to conclude that (3.8) has a strictly convex
solution un and it satisfies un(x) ≥ wn(x) > w(x) + 1 in �n . Since un = 1 on ∂�n , the
strict convexity of un implies un(x) < 1 in �n . Hence, due to �n ⊂ �n+1 for n ≥ 1, we
have un = 1 > un+1 on ∂�n . For every ε ∈ (0, 1 − max∂�n un+1), we have

M[(1 − ε)un] = (1 − ε)N K (x) < K (x) = M[un+1] in �n, (1 − ε)un ≥ un+1 on ∂�n .

Hence we can use Remark 2.2 to deduce

un+1(x) ≤ (1 − ε)un(x) for x ∈ �n, n ≥ 1.

Letting ε → 0 we obtain

w(x) + 1 < un+1(x) ≤ un(x) for x ∈ �n, n ≥ 1.

It follows that

u0(x) := lim
n→∞ un(x) exists for x ∈ �,

and w(x) + 1 ≤ u0(x) ≤ 1 in �.
By Lemma 2.4, for positive integers n and k, there exists C = Cn,k independent of m

such that

‖um‖Ck (�n)
≤ C for all m > n.

It follows that the convergence un → u0 also holds in Ck
loc(�) for every k ≥ 1, and

u0 ∈ C∞(�), is strictly convex in �, and satisfies

M[u0] = K (x) in �, u0 = 1 on ∂�.
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Clearly u(x) := u0(x) − 1 is a strictly convex solution to (1.7). Moreover,

u(x) ≥ w(x) = −lω(cz(x)) ≥ −lω(d(x)) for x ∈ �.

It is easily seen that with ω0(t) defined by (1.9), there exists ε0 > 0 small such that

ε0ω(d(x)) ≤ ω0(d(x)) for x ∈ �.

We thus obtain u(x) ≥ −l0 ω0(d(x)) in � with l0 = l/ε0. Since u(x) = 0 on ∂� and u(x)
is strictly convex, we have u(x) < 0 in �. Now part (ii) of Theorem 1.5 is also proved.

4 Proof of Theorems 1.1 and 1.2

4.1 Proof of Theorem 1.2 for the case η ∈ R
1

We will need the following lemma whose proof uses results in Sect. 5.1.

Lemma 4.1 Suppose that D is a bounded domain in RN and K ∈ C∞(D) is positive on D.
Suppose that f satisfies (f) with η > −∞, (1.2) and (1.6). Then for any δ > 0 there exists
a strictly convex function u ∈ C∞(D) such that

M[u] ≥ K (x) f (u), η + δ > u(x) > η in D.

Proof By replacing f (t) with f (t + η) and u with u − η, we may assume that η = 0. Let
K∗ := maxx∈D K (x), and for ε > 0 define

Tε :=
∫ ∞

ε

{
(N + 1)K∗[F(t) − F(ε)]

}−1/(N+1)

dt.

Since

[
F(t) − F(ε)

]−1/(N+1) ≤
[

1

2
F(t)

]−1/(N+1)

for all large t,

by (1.2) we see that∫ ∞ {
(N + 1)K∗[F(t) − F(ε)]}−1/(N+1)

dt < ∞.

We also have

F(t) − F(ε) ≥ f (ε)(t − ε) for t > ε.

It follows that ∫
ε+

{
(N + 1)K∗[F(t) − F(ε)]}−1/(N+1)

dt < ∞.

Hence Tε is a finite positive number for any ε > 0.
On the other hand, due to (1.6) and

[
F(t) − F(ε)

]−1/(N+1)
>

[
F(t)

]−1/(N+1) for t > ε,

we have

Tε >

∫ ∞

ε

[
(N + 1)K∗F(t)

]−1/(N+1)
dt → ∞ as ε → 0.
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Therefore we can choose ε0 > 0 sufficiently small such that

Tε > R
2N
N+1 for ε ∈ (0, ε0],

where R > 0 is chosen such that D ⊂ BR := {x ∈ R
N : |x | < R}.

For ε ∈ (0, ε0], we define v(r) = vε(r) by
∫ v(r)

ε

{
(N + 1)K∗[F(t) − F(ε)]}−1/(N+1)

dt = R
N−1
N+1 r, r ∈ (0, Rε),

with

Rε := TεR
− N−1

N+1 > R.

It is easily checked that v is smooth in (0, Rε),

v(0) = ε, v′(0) = 0, v′(r) > 0 for r ∈ (0, Rε), v(r) → ∞ as r → Rε

and

(v′)N−1v′′ = RN−1K∗ f (v) ≥ r N−1K∗ f (v) for r ∈ (0, R].
Moreover, since

R
N−1
N+1 r >

∫ v(r)

ε

{
(N + 1)K∗F(t)

}−1/(N+1)
dt,

by (1.6) we deduce

v(r) → 0 uniformly for r ∈ [0, R] as ε → 0. (4.1)

Since v′′(0) = ∞, to obtain a smooth function u with the required properties we consider
the initial value problem

(u′)N−1u′′ = r N−1K∗ f (u) for r > 0, u(0) = ε/2, u′(0) = 0.

By Lemmas 5.1 and 5.2 we see that u(r) is defined for r ∈ [0, R] and ε/2 < u(r) < v(r)
for r ∈ (0, R), u′′(r) > 0 for r ∈ [0, R]. Thus

M[u(|x |)] = K∗ f (u(|x |)) in BR .

In particular, u(|x |) is a strictly convex function in C∞(BR), u(|x |) ≥ ε/2 in BR and

M[u(|x |)] = K∗ f (u(|x |)) ≥ K (x) f (u(|x |)) in D.

By (4.1), for any δ > 0 by shrinking ε > 0 further we have 0 < u(|x |) ≤ v(|x |) < δ for
x ∈ D ⊂ BR . This completes the proof. ��

We are now ready to prove the existence of a strictly convex solution to (1.1). We will
follow the ideas in the proof of Theorem 3.1 of Mohammed [14], but will make use of
Lemma 4.1 above to correct the mistakes there.

Without loss of generality, we again assume that η = 0. Due to (1.2), we can use Lemma
2.1 of [9] to obtain

lim
t→∞

F(t)1/(N+1)

f (t)1/N
= 0.
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It follows that

γ (t) := −
∫ ∞

t
[ f (s)]−1/Nds is finite for all t > 0.

Moreover, γ (t) is strictly increasing and γ (t) → 0 as t → ∞.
Let u∗(x) be a strictly convex solution of (1.7). Since u∗(x) < 0 in � and u∗(x) = 0 on

∂�, for all large positive integer k, say k ≥ k0,

�k := {x ∈ � : u∗(x) < γ (k)}
is a smooth strictly convex subdomain of �, and

�k ⊂ �k+1 for k ≥ k0, � = ∪∞
k=k0

�k .

Let wk be the strictly convex function obtained in Lemma 4.1 with D = �k satisfying

M[wk] ≥ K (x) f (wk), k > wk(x) > 0 in �k .

Set

εk = min
x∈�k

wk(x), k ≥ k0.

We now let f̃k(t) be a function satisfying (f) with η = −∞ and f̃ (t) = f (t) for t ≥ εk .
Then we consider the problem

M[u] = K (x) f̃k(u) in �k, u = k on ∂�k . (4.2)

By Theorem 7.1 of [2], (4.2) has a unique strictly convex solution zk when K (x) f̃ (u) is
replaced by K (x) f̃ (k). It follows that

M[zk] = K (x) f̃k(k) > K (x) f̃k(zk) in �k, zk = k on ∂�k .

Therefore we can apply Lemma 2.5 to conclude that (4.2) has a strictly convex solution
uk ∈ C∞(�k). Since wk is strictly convex and

M[wk] ≥ K (x) f (wk) = K (x) f̃k(wk) in �k, wk < k = uk on ∂�k,

by Lemma 2.1 we deduce uk ≥ wk in �k and in particular, uk ≥ εk in �k . Hence f̃k(uk) =
f (uk) in �k and

M[uk] = K (x) f (uk) in �k, uk = k on ∂�k .

Following [14] we define

vk(x) = γ (uk(x) + ε) for x ∈ �k and small positive constant ε.

This is now well-defined since γ (t) is defined for t ≥ 0 and uk(x) + ε > 0 in �k . The same
calculation as in [14] yields

M[vk] < K (x) = M[u∗] in �k .

Since u∗ = γ (k) = γ (uk) < vk on ∂�k , by Remark 2.2 we obtain

u∗(x) ≤ vk(x) = γ (uk(x) + ε) in �k .

Letting ε → 0 we obtain
u∗(x) ≤ γ (uk(x)) for x ∈ �k . (4.3)
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Although it is unclear whether the inverse function γ −1 is defined over the entire range of
u∗, by the choice of k0 and the convexity of u∗(x) we know that γ −1(u∗(x)) is defined over
� \ �k0 . We thus obtain from (4.3) that

γ −1(u∗(x)) ≤ uk(x) for x ∈ �k \ �k0 . (4.4)

Since

uk = k = γ −1(u∗) ≤ uk+1 on ∂�k for k ≥ k0.

By Lemma 2.1 we obtain

uk+1(x) ≥ uk(x) for x ∈ �k, k ≥ k0.

Combining this with (4.4), we see that there exists c0 > 0 such that

uk(x) ≥ c0 for x ∈ �k, k ≥ k0.

Fix m ≥ k0. Since K is C∞ and positive over �m+1, by Lemma 2.2 of [14] there exists
h ∈ C∞(�m+1) such that un ≤ h in �m+1 for all n ≥ m + 1. Therefore there exists Cm > 0
such that

un(x) ≤ Cm for x ∈ �m, n ≥ m + 1.

This implies that, for every x ∈ �,

u(x) := lim
n→∞ un(x) exists

and

um(x) ≤ u(x) ≤ Cm for x ∈ �m, m ≥ k0.

As we also have un(x) ≥ c0 > 0 in �m for n ≥ m + 1, and for such n, �m ⊂ �n ,

0 < dist(�m, ∂�m+1) ≤ dist(�m, ∂�n) < dist(�m, ∂�),

we are in a position to apply Lemma 2.4 to conclude that, for any fixed integer k ≥ 1, there
exists a constant C = Ck,m independent of n such that for all n > m,

‖un‖Ck (�m ) ≤ C.

It follows that the convergence un(x) → u(x) holds in Ck
loc(�) for every k ≥ 1, and

u ∈ C∞(�). Moreover, for x ∈ �,

M[u](x) = lim
n→∞ M[un](x) = K (x) lim

n→∞ f (un(x)) = K (x) f (u(x)).

Since each un is strictly convex, u(x) is strictly convex in �. By (4.4) we obtain u(x) ≥
γ −1(u∗(x)) on � \ �k0 , which clearly implies u = ∞ on ∂�. Thus u is a strictly convex
solution of (1.1).

4.2 Proof of Theorem 1.2 for the case η = −∞

This case can be proved by a simple modification of the above proof for the case η ∈ R
1.

Indeed, it is much simpler; we just follow everything there except that we do not need to
modify f to f̃k in (4.2), and hence (1.6) and Lemma 4.1 are not required.
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4.3 Proof of Theorem 1.1

The sufficiency part already follows from Theorem 1.2. So only the necessity part requires a
proof. Assume, contrary to the assertion of the theorem, that there exists c0 > 0 such that

G(t) :=
∫ t

c0

[(N + 1)F(τ )]− 1
N+1 dτ → ∞ as t → ∞,

and (1.1) has a strictly convex solution u. We aim to derive a contradiction.
Denote by g(t) the inverse of G(t), i.e.,

∫ g(t)

c0

[(N + 1)F(τ )]− 1
N+1 dτ = t, ∀t > 0. (4.5)

Then

g(0) = c0, lim
t→∞ g(t) = ∞

and

g′(t) = [(N + 1)F(g(t))] 1
N+1 , g′′(t) = f (g(t))

[(N + 1)F(g(t))] N−1
N+1

,

(g′(t))N−1g′′(t) = f (g(t)),
g′(t)
g′′(t)

= [(N + 1)F(g(t))] N
N+1

f (g(t))
.

Take x0 ∈ R
N \ � so there exists d0 > 0 such that |x − x0| ≥ d0 for x ∈ �. Then define

y(x) := 1

2
|x − x0|2 for x ∈ �.

Clearly

[∇ y(x)]T = x − x0, (yxi x j ) is the identity matrix, and M[y] = 1.

For c > 0 define

w(x) := g (cy(x)) , x ∈ �.

By (2.1) we obtain, for x ∈ �,

M[w] = M[cy]
{[
g′(cy)

]N + (g′(cy))N−1g′′(cy)(∇(cy))T B(cy)∇(cy)
}

= cN (g′(cy))N−1g′′(cy)
{
g′(cy)
g′′(cy)

+ c|x − x0|2
}

> f (w)cN+1d2
0 ,

where we have used

g′(cy(x))
g′′(cy(x))

> 0, |x − x0| ≥ d0 for x ∈ �.

We thus obtain, in view of K ∈ L∞(�),

M[w] > K (x) f (w) in �

provided that c is chosen large enough.
Fix x1 ∈ � and by further enlarging c if necessary we may assume that

w(x1) > u(x1) and M[w] > K (x) f (w) in �.
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Since u(x) → ∞ as d(x) → 0, while w(x) is continuous on �, there exists an open
connected set D such that

x1 ∈ D, D ⊂ �, u(x) < w(x) in D and u(x) = w(x) on ∂D.

On the other hand, since

M[u] = K (x) f (u) in D and w = u on ∂D,

and the matrix (wxi x j ) is positive definite on D (since y(x) is strictly convex in � and
g′, g′′ > 0), we can apply Lemma 2.1 to conclude that w(x) ≤ u(x) in D. This contradiction
completes our proof.

5 Further results for radial solutions

If K (x) is such that (1.7) has no solution, in general it is difficult to find sharp conditions on
f (u) such that (1.1) has a solution. In this section, we consider such a situation in the special
case that � is a ball and K = K (|x |) is radially symmetric. Our approach in this section is
motivated by ideas in [6].

So we consider the problem{
M[u] = K (|x |) f (u), x ∈ B,

u = ∞, x ∈ ∂B,
(5.1)

where B is a ball in R
N (N ≥ 2). For simplicity, and without loss of generality, we assume

that B is the unit ball.
By a direct calculation, it is seen (and well-known) that if v = v(r) (r = |x |) is a radially

symmetric solution of (5.1), then{
(v′)N−1v′′ = r N−1K (r) f (v), r ∈ (0, 1),

v′(0) = 0, v(1) = ∞.
(5.2)

In the radially symmetric setting, the smoothness requirements for K and f can be greatly
relaxed. We assume that K and f satisfy, respectively

(K1) : K ∈ C([0, 1)) and K (r) > 0 in [0, 1);
(f1) : for some η ∈ R

1 ∪ {−∞}, f (s) is locally Lipschitz continuous in (η,∞), positive
and increasing for s > η.

5.1 The initial value problem and a comparison result

For v0 > η, consider the following initial value problem,{
(v′)N−1v′′ = r N−1K (r) f (v), r ∈ (0, 1),

v(0) = v0, v′(0) = 0.
(5.3)

Lemma 5.1 Assume that K satisfies (K1) and f satisfies (f1). Then for every v0 > η, (5.3)
has a unique solution v(r) over a maximal interval of existence [0, a) ⊂ [0, 1). Moreover,
v′ > 0 in (0, a), v′′ > 0 in [0, a) and v(r) → ∞ as r → a if a < 1.

Proof We first show that (5.3) has a unique solution defined over [0, δ] for δ > 0 sufficiently
small. It is easy to see that (5.3) is equivalent to the following integral equation

v(r) = v0 +
∫ r

0

[∫ s

0
NtN−1K (t) f (v(t))dt

]1/N

ds. (5.4)
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Let E = C([0, δ]) with δ > 0 small to be specified, and define T : E → E by

(T v)(r) = v0 +
∫ r

0

[∫ s

0
NtN−1K (t) f (v(t))dt

]1/N

ds.

We are going to show that if δ > 0 is sufficiently small, then T is a contraction mapping on
a suitable subset of E and hence has a unique fixed point, which gives a unique solution to
(5.3) over [0, δ].

Let K∗ = max
r∈[0,1/2] K (r), k∗ = min

r∈[0,1/2] K (r) and

Bδ(v0) = {v ∈ E : ‖v − v0‖E < δ}.
Fix δ1 ∈ (0, 1/2) such that v0 − δ1 > η, and let L be the Lipschitz constant of the function
f (u) over [v0 − δ1, v0 + δ1]:

| f (v1) − f (v2)| ≤ L|v1 − v2| for v1, v2 ∈ [v0 − δ1, v0 + δ1].
Then

m := f (v0 − δ1) ≤ f (v) ≤ M := Lδ1 + f (v0) for v ∈ [v0 − δ1, v0 + δ1].
Clearly there exists δ2 ∈ (0, δ1) sufficiently small such that

1

2
δ2(K∗M)

1
N < δ for δ ∈ (0, δ2].

We prove that T (Bδ(v0)) ⊂ Bδ(v0) for every δ ∈ (0, δ2]. Indeed, for such δ and any
v ∈ Bδ(v0), we have

|T v − v0| =
∫ r

0

[∫ s

0
NtN−1K (t) f (v(t))dt

]1/N

ds

≤
∫ r

0

[∫ s

0
NtN−1K∗Mdt

]1/N

ds

= 1

2
δ2(K∗M)

1
N < δ for r ∈ [0, δ].

Hence T (Bδ(v0)) ⊂ Bδ(v0) for every δ ∈ (0, δ2].
Next we show that T is a contraction mapping on Bδ(v0) for all small δ > 0. We first

observe that, by the mean value theorem, for δ ∈ (0, δ2] and v1, v2 ∈ Bδ(v0),

J (s) :=
[∫ s

0
NtN−1K (t) f (v1(t))dt

]1/N

−
[∫ s

0
NtN−1K (t) f (v2(t))dt

]1/N

= 1

N

[∫ s

0
NtN−1K (t)

[
θ f (v1) + (1 − θ) f (v2)]dt

] 1
N −1

∫ s

0
NtN−1K (t)

[
f (v1) − f (v2)

]
dt,

with θ = θ(s) ∈ (0, 1). Therefore, for s ∈ [0, δ],

|J (s)| ≤ 1

N

[∫ s

0
NtN−1k∗mdt

] 1
N −1

·
∫ s

0
NtN−1K∗L‖v1 − v2‖Edt

= sN−1(k∗m)
1
N −1K∗L‖v1 − v2‖E .
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It follows that, for r ∈ [0, δ],

|(T v1)(r) − (T v2)(r)| = ∣∣
∫ r

0
J (s)ds

∣∣ ≤ δ2N−1(k∗m)
1
N −1K∗L‖v1 − v2‖E .

Hence T is a contraction mapping on Bδ(v0) if δ ∈ (0, δ2] is small enough such that

δ2N−1(k∗m)
1
N −1K∗L < 1.

We fix such a small δ > 0 and have thus proved that (5.3) has a unique solution defined for
r ∈ [0, δ]. Moreover, since

(v′)N−1v′′ = r N−1K (r) f (v) > 0 for r ∈ (0, δ], and v′(0) = 0,

we further have v′(r) > 0, v′′(r) > 0 for r ∈ (0, δ], and v′′(0) := limr→0 v′′(r) > 0.
To extend the solution v(r) to r > δ we let v′ = u and

U =
(
u
v

)
.

Then we consider the first order ODE system

U ′ =
(
r N−1K (r) f (v)

uN−1

u

)
=: F(r,U ), U (δ) =

(
v′(δ)
v(δ)

)
. (5.5)

By (K1) and (f1), F(r,U ) is locally Lipschitz continuous inU in the range u > 0 and v > η,
and continuous in r ∈ [0, 1). Hence (5.5) has a unique solution defined for r in a small
neighbourhood of δ. Clearly the v component of U satisfies

(v′)N−1v′′ = r N−1K (r) f (v) > 0, v(δ) > 0, v′(δ) > 0.

It follows that v′(r) > v′(δ), v′′(r) > 0 for r > δ. Hence the solution U (r) of (5.5) can
be extended to r > δ until r reaches 1 or until v(r) blows up to ∞. It follows that (5.3)
has a unique solution v(r) on some maximal interval of existence [0, a) with a ≤ 1, and
v(r) → ∞ as r → a if a < 1. The proof of the lemma is now complete. ��
Lemma 5.2 Assume that K satisfies (K1) and f satisfies (f1). If u1 and u2 are functions in
C1([0, a)) ∩ C2((0, a)) satisfying u1, u2 > η when η ∈ R

1,

(u′
1)

N−1u′′
1 ≤ r N−1K (r) f (u1), (u′

2)
N−1u′′

2 ≥ r N−1K (r) f (u2) for r ∈ (0, a),

and u′
1(0) = u′

2(0) = 0, u1(0) < u2(0). Then u1(r) < u2(r) for r ∈ [0, a).

Proof If u1 < u2 in [0, a) does not hold, then due to u1(0) < u2(0), there exists r ∈ (0, a)

such that u1(r) = u2(r) and u1(r) < u2(r) for r ∈ [0, r). Since u1 and u2 satisfy (5.4) with
the equality sign replaced by inequalities, by the monotonicity of f , we have the following
contradiction:

u1(r) ≤ u1(0) +
∫ r

0

[∫ s

0
NrN−1K (r) f (u1(r))dr

]1/N

ds

< u2(0) +
∫ r

0

[∫ s

0
NrN−1K (r) f (u2(r))dr

]1/N

ds

≤ u2(r).

The proof is complete. ��
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5.2 Multiplicity and non-existence results for (5.2)

We examine two cases where K is such that (1.7) has no strictly convex solution.
The theorem below looks at a case with such a function K where f does not satisfy (1.2)

and (5.2) has infinitely many solutions.

Theorem 5.3 Suppose that K satisfies (K1), and there exist constants d1, d2 > 0 and a
function p(t) of class P∞ such that

d1 p(1 − r) ≤ K (r) ≤ d2 p(1 − r) for all r < 1 close to 1.

Suppose that f satisfies (f1) and there exist constants α ∈ (0, N ) and c1, c2 > 0 such that

c1u
α ≤ f (u) ≤ c2u

α for u > 0.

Then (5.2) has infinitely many strictly convex solutions.

Proof It is obvious that y(r) = 1
2 (1 − r2) satisfies

{
(−1)N y′N−1y′′ = r N−1, r ∈ (0, 1),

y′(0) = 0, y(1) = 0.

We modify p(t) as in Sect. 3.1 and define σ(t) by (3.3). Then we set

w(r) := c
[
σ(y(r))

]N/(N−α) for r ∈ [0, 1) and some constant c > 0.

We calculate

w′ = cN

N − α
σα/(N−α)σ ′y′,

w′′ = cN

N − α
σα/(N−α)

[
σ ′y′′ + σ ′′(y′)2 + α

N − α

(σ ′)2

σ
(y′)2

]
.

(w′)N−1w′′ =
(

cN

N − α

)N

σ
Nα
N−α (σ ′)N−1σ ′′(y′)N−1y′′

[
σ ′

σ ′′ + (y′)2

y′′ + α

N − α

(σ ′)2

σσ ′′
(y′)2

y′′

]
.

Using

(σ ′(t))N−1σ ′′(t) = (−1)N−1 p(t),
σ ′(t)
σ ′′(t)

= −N P̃(t)

p(t)

and

y′ = −r, y′′ = −1,

we can simplify the above expression to obtain

(w′)N−1w′′ = cN−α

(
N

N − α

)N

wα p(y)r N−1�(r),

with

�(r) :=
[
N P̃(y)

p(y)
+ r2 + α

N − α

(σ ′)2

σσ ′′ r
2

]
.
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We have

σ ′(t)2

σ(t)σ ′′(t)
= [N P̃(t)] N+1

N

p(t)
∫ ∞
t [N P̃(τ )]1/Ndτ

=

∫ ∞

t
(N + 1)[N P̃(s)]1/N p(s)ds

∫ ∞

t

{
− p′(s)

∫ ∞

s
[N P̃(τ )]1/Ndτ + p(s)[N P̃(s)]1/N

}
ds

≤ (N + 1).

It follows that

0 ≤ α

N − α

σ ′(y)2

σ(y)σ ′′(y)
r2 ≤ M0 := α

N − α
(N + 1) for r ∈ [0, 1).

Since

lim
t→0

P̃(t)

p(t)
= 0 and so lim

r→1

P̃(y(r))

p(y(r))
= 0,

the function

�1(r) := N P̃(y(r))

p(y(r))
+ r2

is positive and continuous for r ∈ [0, 1) with �1(r) → 1 as r → 1. Therefore we can find
positive constants m1 < m2, depending on the function p, such that

m1 ≤ �1(r) ≤ m2 for r ∈ [0, 1).

It follows that

m1 ≤ �(r) ≤ m2 + M0 for r ∈ [0, 1).

Therefore

(w′)N−1w′′ ≤ cN−α

(
N

N − α

)N

wα p(y)r N−1(m2 + M0) for r ∈ [0, 1). (5.6)

(w′)N−1w′′ ≥ cN−α

(
N

N − α

)N

wα p(y)r N−1m1 for r ∈ [0, 1). (5.7)

Replacing p(t) by εp(2t) with ε > 0 sufficiently small, we may assume that

K (r) ≥ p((1 − r)/2) for r ∈ [0, 1).

Therefore, due to y(r) ≥ (1 − r)/2, we have

p(y(r)) ≤ p((1 − r)/2) ≤ K (r) for r ∈ [0, 1).

It then follows from (5.6) that

(w′)N−1w′′ ≤ cN−α

(
N

N − α

)N

wαK (r)r N−1(m2 + M0) for r ∈ [0, 1).

Hence if we take c = c̃1 > 0 small enough,

w1(r) := c̃1[σ(y(r))] N
N−α
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satisfies

(w′
1)

N−1w′′
1 ≤ r N−1K (r) f (w1) for r ∈ [0, 1).

Next we construct a function w2(r) that satisfies the reversed inequality. By replacing
p(t) with Mp(t), with M > 0 sufficiently large, we may assume that

p(1 − r) ≥ K (r) for r ∈ [0, 1).

Then, due to y(r) ≤ 1 − r , we have

p(y(r)) ≥ p(1 − r) ≥ K (r) for r ∈ [0, 1).

Thus by (5.7) (with σ(t) and m1 determined by this new function p(t)), we have

(w′)N−1w′′ ≥ cN−α

(
N

N − α

)N

wαK (r)r N−1m1 for r ∈ [0, 1),

and if we take c = c̃2 large enough,

w2(r) := c̃2[σ(y(r))] N
N−α

satisfies

w2(0) > w1(0), (w′
2)

N−1w′′
2 ≥ r N−1K (r) f (w2) for r ∈ [0, 1).

For any c ∈ (w1(0), w2(0)), let vc denote the unique solution of (5.3) with v0 = c. By
Lemma 5.2 we have w1(r) < vc(r) < w2(r) for r ∈ [0, 1) and such that vc(r) is defined.
Hence we can use Lemma 5.1 to see that vc(r) is defined for r ∈ [0, 1) and v′

c(r) > 0,
v′′
c (r) > 0 in (0, 1). Since w1(r) → ∞ as r → 1, we have vc(r) → ∞ as r → 1. Hence vc

is a strictly convex solution to (5.2). By varying c we thus obtain infinitely many solutions
to (5.2). The proof is complete. ��

The next theorem gives a case that K is such that (1.7) has no strictly convex solution, f
satisfies (1.2), and (5.2) has no solution.

Theorem 5.4 Suppose that f satisfies (f1) and there exist α > N and b > 0 such that

f (u) ≥ buα for all large u > 0.

Suppose that K satisfies (K1) and for some β ≥ N + 1, c > 0,

K (r) ≥ c(1 − r)−β for all r < 1 close to 1.

Then (5.2) has no solution.

Proof Suppose (5.2) has a solution v(r). Then v′(r) > 0 and v′′(r) > 0 in (0, 1). Choose
r0 ∈ ( 1

2 , 1) close to 1 such that

f (v(r)) ≥ bvα(r), K (r) ≥ c(1 − r)−β for r ∈ [r0, 1).

Then for r ∈ [r0, 1), we have

(v′)N−1v′′ ≥ bcr N−1(1 − r)−βvα ≥ bc(1 − r0)
−βr N−1vα.

Set

c0 :=
[
bc(1 − r0)

N+1−βr N−1
0

] 1
α−N

123



Sharp conditions for the existence of boundary blow-up… Page 21 of 24 30

and

w(r) := c0v(r0 + (1 − r0)r), r ∈ [0, 1).

Then clearly

w(0) = c0v(r0) > 0, w′(0) = c0(1 − r0)v
′(r0) > 0

and with s = r0 + (1 − r0)r , r ∈ (0, 1),

(w′)N−1w′′ = cN0 (1 − r0)
N+1v′(s)N−1v′′(s)

≥ cN0 (1 − r0)
N+1bc(1 − r0)

−βsN−1vα(s)
≥ cN0 bc(1 − r0)

N+1−β(r0r)N−1vα(s)
= r N−1wα.

Since α > N , by [12], the problem
{

(W ′)N−1W ′′ = r N−1Wα, r ∈ (0, 1
2 ),

W ′(0) = 0, W ( 1
2 ) = ∞

has a positive, strictly convex solution W . We show next that w ≤ W in (0, 1/2). Indeed, the
function z(r) := w(r) − W (r) satisfies z′(0) > 0, z( 1

2 ) = −∞. Hence the maximum of
z(r) over (0, 1/2) is achieved at some r∗ ∈ (0, 1/2). It follows that z′(r∗) = 0, z′′(r∗) ≤ 0,
and so

0 < w′(r∗) = W ′(r∗), 0 < w′′(r∗) ≤ W ′′(r∗).

We thus obtain

(r∗)N−1wα(r∗) ≤ (w′(r∗))N−1w′′(r∗) ≤ (W ′(r∗))N−1W ′′(r∗) = (r∗)N−1Wα(r∗),

which leads to w(r∗) ≤ W (r∗), and hence w(r) ≤ W (r) in [0, 1/2), as we wanted.
From w(0) ≤ W (0) and the definition of w we obtain

v(r0) ≤
[
bc(1 − r0)

N+1−βr N−1
0

] 1
N−α

W (0).

Since α > N , β ≥ N + 1, it follows that

v(r0) ≤ (bc)1/(N−α)2(N−1)/(α−N )W (0) for all r0 ∈ (1/2, 1) close to 1.

But as a solution to (5.2), we have limr→1 v(r) = ∞. This contradiction completes the proof.
��

6 Proof of Theorem 1.4

Without loss of generality, and for simplicity of notation, we assume that η = 0. Due to
(1.8),

η0 :=
∫ ∞

0
[(N + 1)K∗F(τ )]− 1

N+1 dτ < ∞.

We denote

δ0 :=
[

η0(N − 1)

N + 1

] N+1
2N

, R0 := η0δ
− N−1

N+1
0 + δ0.
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We then define u0(r) for r ∈ [δ0, R0) by
∫ u0(r)

0
[(N + 1)K∗F(s)]− 1

N+1 ds = δ
N−1
N+1

0 (r − δ0).

It is easily checked that u0(r) satisfies
{

(u′
0)

N−1u′′
0 = δN−1

0 K∗ f (u0), u′
0(r) > 0 for r ∈ (δ0, R0),

u0(δ0) = u′
0(δ0) = 0, u0(R0) = ∞.

For δ ∈ (0, 1), consider the initial value problem
{

(v′)N−1v′′ = r N−1K∗ f (v) for r > 0,

v(0) = δ, v′(0) = 0.
(6.1)

By Lemma 5.1, (6.1) has a unique positive solution vδ(r) over a maximal interval of existence
[0, Rδ). We prove that Rδ ≤ R0.

If Rδ ≤ δ0, then clearly Rδ < R0. If Rδ > δ0, we will show that Rδ ≤ R0 and u0(r) <

vδ(r) for r ∈ (δ0, Rδ).
Since

(u′
0)

N−1u′′
0 = δN−1

0 K∗ f (u0) ≤ r N−1K∗ f (u0) for r ∈ (δ0, Rδ),

we have

u0(r) ≤
∫ r

δ0

[∫ s

δ0

NtN−1K∗ f (u0(t))dt

]1/N

ds for r ∈ (δ0, Rδ). (6.2)

We also have

vδ(r) = vδ(δ0) +
∫ r

δ0

[
(v′

δ(δ0))
N +

∫ s

δ0

NtN−1K∗ f (vδ(t))dt

]1/N

ds

>

∫ r

δ0

[∫ s

δ0

NtN−1K∗ f (vδ(t))dt

]1/N

ds, r ∈ (δ0, Rδ).

(6.3)

Assume by way of contradiction that there exists r ∈ (δ0, Rδ) ∩ (0, R0) such that u0(r) =
vδ(r). By u0(δ0) = 0 < vδ(δ0) and the continuity we can find a first such r , i.e., u0(r) = vδ(r)
and u0(r) < vδ(r) for r ∈ [δ0, r). From (6.2), (6.3) and the monotonicity of f we obtain

u0(r) ≤
∫ r

δ0

[∫ s

δ0

NtN−1K∗ f (u0(t))dt

]1/N

ds

<

∫ r

δ0

[∫ s

δ0

NtN−1K∗ f (vδ(t))dt

]1/N

ds

< vδ(r).

This contradiction shows that u0(r) < vδ(r) for r ∈ (δ0, Rδ) ∩ (δ0, R0), which implies
Rδ ≤ R0 since u0(R0) = ∞. We note that necessarily vδ(Rδ) = ∞.

Suppose that �K∗ contains a ball of radius R > R0; without loss of generality we may
assume that the ball is BR(0). We show by a contradiction argument that (1.1) has no strictly
convex solution over �. So suppose (1.1) has a strictly convex solution u over such a domain
�. Since Rδ ≤ R0 < R, we have BRδ (x0) ⊂ �K∗ if |x0| < R − R0. It follows that u(x) is
finite on ∂BRδ (x0). Since vδ(|x − x0|) → ∞ as x → ∂BRδ (x0), and

M[vδ(|x − x0|)] = K∗ f (vδ(|x − x0|)) ≤ K (x) f (vδ(|x − x0|)) in BRδ (x0),
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we may now use Lemma 2.1 to deduce

u(x) ≤ vδ(|x − x0|) in BRδ (x0).

It follows that

u(x0) ≤ vδ(0) = δ, ∀δ ∈ (0, 1).

Letting δ → 0, we deduce u(x0) ≤ 0. On the other hand, since η = 0 we also have u(x) ≥ 0
in �. Thus we must have

u(x) = 0 for all |x | < R − R0.

This is a contradiction to the assumption that u is strictly convex. The proof is complete. �

Remark 6.1 Let us note that the above proof actually shows that, under the assumptions of
Theorem 1.4, if �K ∗ contains a ball of radius R > R0, then there exists no strictly convex
function u ∈ C2(BR) satisfying

M[u] ≤ K (x) f (u), u(x) > η in BR .
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