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Abstract In this paper, we generalize the no-neck result of Qing and Tian (in Commun
Pure Appl Math 50:295–310, 1997) to show that there is no neck during blowing up for the
n-harmonic flow as t → ∞. As an application of the no-neck result, we settle a conjecture
of Hungerbühler (in Ann Scuola Norm Sup Pisa Cl Sci 4:593–631, 1997) by constructing an
example to show that the n-harmonic map flow on an n-dimensional Riemannian manifold
blows up in finite time for n ≥ 3.

Mathematics Subject Classification 58E20 · 53C43

1 Introduction

Let M be an n-dimensional Riemannian manifold without boundary, and let N be another
m-dimensional compact Riemannian manifold without boundary (isometrically embedded
into R

L ). In local coordinates, a smooth Riemannian metric g of M can be represented by

g = gi j dxi ⊗ dx j ,

where (gi j ) is a positive definitive symmetric n × n matrix. The volume element of (M; g)
is defined by

dv = √|g|dx with |g| = det (gi j ).
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For a map u : M → N ⊂ R
L , the n-energy functional of u is defined by

En(u; M) = 1

n

∫

M
|∇u|n dv,

where |∇u| is the gradient norm given by

|∇u(x)|2 =
∑

α,i, j

gi j (x)
∂uα

∂xi

∂uα

∂x j

with (gi j ) = (gi j )−1 the inverse matrix of (gi j ). A C1-map u from M to N is said to be an
n-harmonic map if u is a critical point of the n-energy functional; i.e. it satisfies

1√|g|
∂

∂xi

[
|∇u|n−2gi j

√|g| ∂

∂x j
u

]
+ |∇u|n−2A(u)(∇u,∇u) = 0 in M, (1.1)

where A is the second fundamental form of N .
In 1964, Eells and Sampson [9] investigated the existence problem of harmonic maps in a

homotopic class; i.e. “Given a smooth map u0 : M → N , is there a harmonic map u, which
is homotopic to u0?” (see [8]).

For the target manifold N with non-positive sectional curvature, Eells and Sampson [9]
proved the first existence result of harmonic maps in a homotopic class by introducing the
“heat flow method”. The heat flow method transforms the existence problem to an evolution
problem. Since then, questions on existence and regularity of harmonic maps and their flows
have been attracted a great attention (see [8]). One of the key components of the heat flow
method for answering the Eells–Sampson question is to prove existence of a global solution
to the harmonic map flow. In 1975, Hamilton [11] proved local existence of the heat flow
of harmonic map; i.e. the solutions of the heat flow of harmonic map exists locally. If the
solution exists only in a finite interval [0, Tmax ) with Tmax < ∞ and cannot be extended any
further, then we say that the solution blows up in finite time Tmax . In the two dimensional case
(i.e. n = 2), Struwe [26] proved global existence of a unique weak solution to the harmonic
map flow, where the solution is smooth except for a finite set of point singularities. In 1989,
Coron and Ghidaglia [4] constructed the first example to show that for n ≥ 3, the harmonic
map heat flow from Sn into Sn blows up in finite time. However, when n = 2, the Dirichlet
energy E2 on the 2-dimensional manifold is conformally invariant on its critical dimension.
In addition, Hélein [12] proved that any weak harmonic map from surfaces is smooth. Thus,
it was widely believed during the time that the harmonic map heat flow would not blow up
in finite time on the 2-dimension manifold. In 1992, Chang et al. [1] made a breakthrough
by constructing a counter-example that harmonic map heat flow on S2 can blow up in finite
time.

In higher dimensions (i.e. n > 2), En is also conformally invariant on the n-dimensional
manifold M . Motivated by the Eells–Sampson question on harmonic maps, one can ask
whether a given map from an n-dimensional manifold to another manifold can be deformed
into an n-harmonic map. Related to this question, Hungerbühler [17] studied the n-harmonic
flow in the following setting:

∂u

∂t
= 1√|g|

∂

∂xi

[
|∇u|n−2gi j

√|g| ∂

∂x j
u

]
+ |∇u|n−2A(u)(∇u,∇u) (1.2)

and generalized the result of Struwe [26] by proving that there exists a global weak solution
u : M×[0,+∞) → N of (1.2) with initial value u0 such that u ∈ C1,α(M×(0,+∞)\{�k×
Tk}Lk=1) for a finite number of times {Tk}Lk=1 and a finite number of singular closed sets
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Finite time blowup of the n-harmonic flow on n-manifolds Page 3 of 24 9

�k ⊂ M for k = 1, . . . , L with an integer L , depending only M and u0. However, it is still
unknown whether the singular set �k of the flow (1.2) at the singular Tk is finite. In order to
sort out this issue, the second author [13] introduced a rectified n-harmonic map flow from
an n-dimensional from M to N and proved existence of a global solution, which is regular
except for a finite number of points, of the rectified n-harmonic map flow.

Based on the fundamental result of Chang et al. [1] for n = 2, it is an interesting question
whether the n-harmonic flow (1.2) blows up in finite time for n ≥ 3. Supported by some
numerical evidence, Hungerbühler ([16,17]) conjectured the phenomenon of finite time blow-
up of the n-harmonic flow for n ≥ 3. Later, Chen et al. [2] followed the method of Chang–
Ding–Ye to construct an example that the n-harmonic flow (1.2) blows up in finite time for
n = 3. However, due to the nonlinearity and degeneracy of the n-harmonic maps, they [2]
also pointed out that their proofs could not be applied to the cases when n > 3. Therefore,
the conjecture of Hungerbühler for n > 3 has remained open since then.

On the other hand, Qing and Tian [24] suggested a program to prove the finite time blow-
up of the harmonic map flow for n = 2 through an application of the no-neck result for the
harmonic map flow as t → ∞ and constructing a special target manifold N with a proper
topology. Recently, Chen and Li [3] verified the Qing-Tian program by constructing a special
target manifold N with a proper topology to show that the harmonic map flow blows up at
finite time for n = 2. Later, Liu and Yin [20] successfully applied this idea to construct a
proper manifold N to show that the bi-harmonic maps flow on 4-manifolds blows up at finite
time.

In this paper, we apply the Qing-Tian program to confirm the conjecture of Hungerbühler
on the n-harmonic map flow. Firstly, we define:

Definition 1.1 u is said to be a regular solution to then-harmonic map flow (1.2) in M×(0, T ]
if u ∈ C0(M × (0, T ]; N ) with T ≤ ∞ is a solution of (1.2) satisfying

∫ T

0

∫

M

∣∣∣∇
(
|∇u| n−2

2 ∇u
)∣∣∣

2 + |∇u|2n dv dt ≤ C(T ).

We generalize the no-neck result of Qing and Tian [24] to the n-harmonic map flow as
follow:

Theorem 1 Let u be a regular solution to the flow (1.2) in M × [0,∞) with initial value
u0 ∈ C1(M, N ). For a sequence ti → ∞, there is a sub-sequence, still denoted by ti , such
that as ti → ∞, u(x, ti ) converges to an n-harmonic map u∞ in C1,α

loc

(
M\{x1, . . . , x L }, N)

for some positive α < 1, where u∞ can be extended to C1,α(M, N ). Moreover, we have

i. (Energy identity) There are a finite number of n-harmonic mapsωk,l (also called bubbles)
on Sn for k = 1, . . . , L and l = 1, . . . , Jk such that

lim
ti↗∞ En(u(·, ti ); M) = En(u∞; M) +

L∑

k=1

Jk∑

l=1

En(ωk,l; Sn).

ii. (No-neck result) There is no neck between the limiting map and bubbles;
i.e. the image

u∞(M) ∪
⋃

k,l

ωk,l(S
n)

is a connected set.
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One of the fundamental rules for bubble blowing is the bubble-neck decomposition. During
the bubbling procedure, the energy identity implies that the energy is conserved. This means
that the loss of energy under the limiting process can be recovered by the energy of a finite
number of bubbles. Readers can refer to the pioneering work on the energy identity by Jost
[18], Parker [22] regarding the harmonic maps from surfaces and by Ding and Tian [6] for
the harmonic map flow. For n-harmonic maps with n ≥ 3, the isolated singularities are
removable due to Duzaar and Fuchs [7] and the energy identity was provided by Wang and
Wei [27] for a sequence of approximate n-harmonic maps. In particular, one can use the
standard blow-up argument as in Ding and Tian [6] to reduce the multiple bubble problem to
the single bubble case. See more details for the bubble-neck decomposition of n-harmonic
maps in [13]. These results allow us to construct the bubbling argument in the setting of the
n-harmonic maps.

In order to provide an example to show that the n-harmonic flow can blow up in finite
time, the key step is to generalize the no-neck result of Qing and Tian [24]. However, those
no-neck results in [19] and [24] heavily rely on a key estimate in Ding–Tian’s work (Lemma
2.1, [6]) which only works for the case of harmonic maps. To settle this open problem, we
generalize the Ding–Tian estimate to the context of n-harmonic maps (Lemma 3.1) and then
apply it to prove the no-neck property for the n-harmonic map flow.

Secondly, we apply Theorem 1 to prove the main result of this paper:

Theorem 2 Let X be any closed manifold of dimension m > n with nontrivial πn(X), and
let N = X #Tm be the connected sum of X with the torus Tm. Then there are infinitely many
initial maps u0 : Sn → N such that the n-harmonic map flow (1.2) with initial value u0

blows up in finite time.

Besides the finite time blow-up result on the harmonic map flow by Chen and Li [3],
another related evolution problem to the n-harmonic map flow is the bi-harmonic map flow
on 4-dimensional manifolds. Liu and Yin in [21] established the no-neck result of a sequence
of biharmonic maps. Later, Liu and Yin [20] generalized the no-neck result to a sequence
of approximate biharmonic maps. By combining the no-neck result with a construction of
a proper target manifold, they introduced a concept of width of bi-harmonic maps in the
covering space to show that the bi-harmonic map flow blows up in finite time. These results
provide a skeleton for the proof of Theorem 2.

This paper is organized as follows. In Sect. 2, we show asymptotical behavior of the
solution of the n-harmonic flow as t → ∞. In Sect. 3, we generalize Ding–Tian’s estimate
and apply it to prove the no-neck result for the n-harmonic flow. In Sect. 4, we construct an
example to prove Theorem 2 and settle the Hungerbühler conjecture.

2 some estimates and asymptotic behavior of the n-harmonic map flow

In order to study asymptotic behavior of the n-harmonic map flow, we begin with some basic
estimates. We recall some results from [17] on the n-harmonic map flow.

Lemma 2.1 Let u(t) be a regular solution to the n-harmonic map flow (1.2) in M × [0, T ]
with initial value u(0) = u0. Then for each s with 0 < s ≤ T , we have

∫

M

1

n
|∇u(s)|n dv +

∫ t

0

∫

M

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dv dt ≤
∫

M

1

n
|∇u0|n dv.
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Finite time blowup of the n-harmonic flow on n-manifolds Page 5 of 24 9

Lemma 2.2 Let u be a regular solution to the n-harmonic map flow (1.2). Let η be a cut-off
function in Br such that η = 1 in B r

2
, |∇η| ≤ C

r and |η| ≤ 1 in Br . Then we have
∫

Br
|∇u|2nηn dv

≤ C

(∫

Br
|∇u|n dv

) 2
n
∫

Br

(|∇2u|2 |∇u|2n−4 ηn + |∇u|n |∇η|n) dv. (2.1)

and
∫

Br
|∇2u|2|∇u|2n−4ηn dv

≤ C
∫

Br
|∇u|2nηn + |∇u|n(ηn + |∇η|n) dv. (2.2)

Proof By using the Hölder and Sobolev inequalities, we have
∫

Br
|∇u|2nηn dv =

∫

Br
|∇u| (|∇u|2n−1ηn

)
dv

≤
(∫

Br
|∇u|n dv

) 1
n
(∫

Br

(|∇u|2n−1ηn
) n
n−1 dv

) n−1
n

≤ C

(∫

Br
|∇u|n dv

) 1
n
∫

Br
|∇(|∇u|2n−1ηn)| dv

≤ C

(∫

Br
|∇u|n dv

) 1
n
∫

Br

(|∇2u| |∇u|2n−2 ηn + |∇u|2n−1|∇η| ηn−1) dv. (2.3)

By Young’s inequality, we have

(∫

Br
|∇u|n dv

) 1
n
∫

Br
|∇2u| |∇u|2n−2 ηn dv

≤
(∫

Br
|∇u|n dv

) 2
n
∫

Br
|∇2u|2 |∇u|2n−4 ηndv + 1

2

∫

Br
|∇u|2n ηndv. (2.4)

Similarly, we have
∫

Br
|∇u|2n−1|∇η| ηn−1 dv =

∫

Br
|∇u|n |∇u|n−1|∇η| ηn−1 dv

≤ C
∫

Br
|∇u|n |∇η|nηn−1 dv + C

∫

Br
|∇u|2nηn−1 dv. (2.5)

Combining (2.3), (2.4) with (2.5), we have
∫

Br
|∇u|2nηn dv

≤ C

(∫

Br
|∇u|n dv

) 2
n
∫

Br

(|∇2u|2 |∇u|2n−4 ηn + |∇u|n |∇η|n) dv. (2.6)

Using the Ricci identity, we have

∇k∇l
(|∇u|n−2∇u

) = ∇l∇k
(|∇u|n−2∇u

)+ RM#
(|∇u|n−2∇u

)
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9 Page 6 of 24 L. H.-N. Cheung, M.-C. Hong

with the Riemannian curvature RM . Integrations by parts twice yield that

∫

Br

〈∇k(|∇u|n−2∇ku),∇l(|∇u|n−2∇lu)
〉
ηn dv

= −
∫

Br

〈∇l∇k(|∇u|n−2∇ku), |∇u|n−2∇l u
〉
ηn dv

−
∫

Br

〈∇k(|∇u|n−2∇ku), |∇u|n−2∇lu
〉∇lη

n dv

=
∫

Br

〈∇l(|∇u|n−2∇ku),∇k(|∇u|n−2∇lu)
〉
ηn dv

+
∫

Br

〈
RM#(|∇u|n−2∇ku), |∇u|n−2∇l u

〉
ηn dv

+
∫

Br

〈∇l(|∇u|n−2∇ku), |∇u|n−2∇l u
〉∇kη

n dv

−
∫

Br

〈∇k(|∇u|n−2∇ku), |∇u|n−2∇lu
〉∇lη

n dv.

Note that
∫

Br

〈∇l(|∇u|n−2∇ku),∇k(|∇u|n−2∇lu)
〉
ηn dv

=
∫

Br

∑
|∇u|2n−4|∇lku|2 ηn + 〈∇l(|∇u|n−2)∇ku,∇k(|∇u|n−2)∇l u

〉
ηn dv

+ 2
∫

Br

〈∇l(|∇u|n−2)∇ku, |∇u|n−2∇klu
〉
ηn dv

≥
∫

Br
(|∇u|2n−4|∇2u|2 + |∇k(|∇u|n−2)∇ku|2)ηn dv

+ 2(n − 2)

∫

Br
|∇u|n−4|∇|∇u||2ηn dv. (2.7)

Combining (2.6) with (2.7), this implies

∫

Br
|∇2u|2|∇u|2n−4ηn dv

≤
∫

Br
|∇ · (|∇u|n−2∇u)|2ηn dv + C

∫

Br
|∇u|2n−2ηn−2(η2 + |∇η|2) dv

≤ C
∫

Br
|∇u|2nηn + |∇u|n(ηn + |∇η|n) dv. (2.8)

We finish the proof by combining (2.6) with (2.8). �

Lemma 2.3 There exists a sufficiently small constant ε1 > 0 such that if u is a regular
solution of (1.2) on B2R0 (x0) × [t0 − 2Rn

0 , t0
]
satisfying

sup
t0−2Rn

0 ≤t≤t0

∫

B2R0 (x0)

|∇u(x, t)|n dv < ε1,

123



Finite time blowup of the n-harmonic flow on n-manifolds Page 7 of 24 9

we have
∫ t0

t0−2Rn
0

∫

BR0 (x0)

∣∣∇2u
∣∣2 |∇u|2n−4 + |∇u|2n dvdt

< C sup
t0−2Rn

0 ≤t≤t0

∫

B2R0 (x0)

|∇u(x, t)|n dv

for some constant C > 0.

Proof Lemma 2.3 was proved by Hungerbühler by using an extension of the Ladyzhenskaya–
Solonnikov–Nikolaevna inequality (see Lemma 5 of [12]). Herewith, we would like to give
a slightly different approach by using Lemma 2.2.

Multiplying (1.2) by φn∇ · (|∇u|n−2∇u) and using Lemma 2.2 by choosing a sufficiently
small ε1 in above inequalities yields that

∫

B2R0 (x0)

∣∣∇ · (|∇u|n−2 ∇u)
∣∣2 φn dv

≤ 1

2

∫

B2R0 (x0)

∣∣∇ · (|∇u|n−2∇u)
∣∣2 φn dv + C

∫

B2R0 (x0)

(∣∣∣∣
∂u

∂t

∣∣∣∣

2

+ |∇u|2n
)

φn dv

≤ 3

4

∫

B2R0 (x0)

∣∣∇ · (|∇u|n−2∇u)
∣∣2 φn dv + C

(
1 + 1

Rn
0

)∫

B2R0 (x0)

|∇u|n dv

+C
∫

B2R0 (x0)

∣∣∣∣
∂u

∂t

∣∣∣∣

2

dv.

Together with Lemma 2.2, we obtain
∫

BR0 (x0)

|∇u|2n + |∇2u|2|∇u|2n−4 dv

≤ C
∫

B2R0 (x0)

(R−n
0 + 1)|∇u|n +

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dv

≤ C(R−n
0 + 1)En(u0) + C

∫

B2R0 (x0)

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dv. (2.9)

�
Lemma 2.4 Let u be a regular solution to (1.2). Then there exists a positive constant ε1 such
that if for some R0 > 0 the inequality

sup
t0−2Rn

0 ≤t≤t0

∫

B2R0 (x0)

|∇u(x, t)|n dv < ε1

holds, we have

sup
[t0−Rn

0 ,t0]×BR0 (x0)

|∇u|n dv ≤ CR−n
0 ,

where C depending on M is a constant independent of R0.

Proof The proof is due to Hungerbühler in [17] for R0 = 1. If R0 �= 1, one can prove it by
a re-scaling argument. �
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9 Page 8 of 24 L. H.-N. Cheung, M.-C. Hong

Lemma 2.5 Let u : M → N be a regular solution to the Eq. (1.2). Then there is a small
constant ε1 > 0 such that if the inequality

sup
t0−Rn

0 ≤t≤t0

∫

B2R0 (x0)

|∇u(x, t)|n < ε1,

holds for some positive R0, then ‖u‖C1,α([t0− 1
2 R

n
0 ,t0]×BR0 (x0)) is bounded by a constant depend-

ing on E(u0) and R0.

Proof As pointed out by Hungerbühler in [17], we can apply the result of DiBenedetto-
Friedman [5] to obtain a bound of ‖u‖C1,α([t0− 1

2 R
n
0 ,t0]×BR0 (x0)). �

Lemma 2.6 (Local energy inequality under small condition) Let u be a regular solution of
(1.2) on B2R0 (x0) × [0, T ]. There exists a sufficiently small constant ε1 > 0 such that if

sup
t0−T≤t≤t0

∫

B2R0 (x0)

|∇u(x, t)|n < ε1,

then we have for every x ∈ BR (x0), any R ≤ R0 and any two constants τ and s in (t0 −T, t0]
∫

BR(x0)

|∇u|n(·, s) dv ≤
∫

B2R(x0)

|∇u|n(·, τ ) dv + C
∫ τ

s

∫

B2R(x0)

|∂t u|2 dv dt

+ C

(
(τ − s)

Rn

∫

B2R(x0)

|∇u|n dv

∫ τ

s

∫

B2R(x0)

|∂t u|2 dv dt

)1/2

for some constant C.

Proof Let φ be a cut-off function with support in B2R0(x0) such that φ = 1 in BR0(x0),
|∇φ| ≤ CR−1

0 and |φ| ≤ 1 in B2R0(x0). Multiplying (1.2) by φn∂t u, we have
∫

B2R0 (x0)

|∂u
∂t

|2φn dv =
∫

B2R0 (x0)

〈
∇ · (|∇u|n−2∇u),

∂u

∂t

〉
φn dv

= −
∫

B2R0 (x0)

〈
|∇u|n−2∇u,

∂∇u

∂t
φn + ∂u

∂t
φn−1∇φ

〉
dv

≥ − 1

n

d

dt

∫

B2R0 (x0)

|∇u|nφn dv − C
∫

B2R0 (x0)

|∇u|n−1|∂u
∂t

|φn−1|∇φ| dv.

Note
∫

B2R0 (x0)

|∇u|n−1
∣∣∣∣
∂u

∂t

∣∣∣∣φ
n−1 |∇φ| dv

≤
(∫

B2R0 (x0)

∣∣∣∣
∂u

∂t

∣∣∣∣

2

φn dv

)1/2 (∫

B2R0 (x0)

|∇u|2n−2 φn−2 |∇φ|2 dv

)1/2

since
∫

B2R0 (x0)

|∇u|2n−2φn−2 |∇φ|2 dv ≤ C
∫

B2R0 (x0)

|∇u|2nφn + |∇u|n |∇φ|n dv.

Therefore, the claim is proved. �
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Proposition 2.1 Let u be a regular solution to (1.2) in M×[0,∞). For a sequence ti → ∞,
there is a sub-sequence, still denoted by ti → ∞, such that u(·, ti ) converges to an n-
harmonic maps u∞ locally in C1,α(M\{x1, . . . , x J }; N ) with some positive α < 1, where
u∞ can be extended regularly on M.

Proof By Lemma 2.1, we know that
∫∞

0

∫
M |∂t u|2 dvdt is finite, so we may choose

a sub-sequence {ti } such that as ti → ∞, ∂t u(·, ti ) → 0 strongly in L2(M) and∫ ti
ti−1

∫
M |∂t u(·, t)|2 dv dt → 0. Moreover, there is a constant ε0 > 0 such that the singular

points {x1, . . . , x J } are defined by the condition

lim sup
ti→∞

En(u(ti ); BR(xk)) ≥ ε0

for any R ∈ (0, 2R0] with some fixed R0 > 0.
For each x0 ∈ M\{x1, . . . , x J }, there is a sufficiently small R0 > 0 such that B2R0(x0) ⊂

M\{x1, . . . , x J } and for all i ,
∫

B2R0 (x0)

|∇u(x, ti )|n dv < ε0 ≤ ε1

2
,

where ε1 is the constant defined in Lemma 2.6.
By Lemma 2.6, we have for any s ∈ [ti − 2Rn

0 , ti ] and for sufficiently large i
∫

BR0 (x0)

|∇u|n(·, s) dv ≤
∫

B2R0 (x0)

|∇u|n(·, ti ) dv + C
∫ ti

ti−1

∫

B2R0 (x0)

|∂t u|2 dv dt

+ C

(
(ti − s)

Rn
0

∫

B2R0 (x0)

|∇u|n dv

∫ ti

ti−1

∫

B2R0 (x0)

|∂t u|2 dv dt

)1/2

< ε1.

By Lemma 2.4, we have

sup
t∈[ti−Rn

0 ,ti ], x∈BR0 (x0)

|∇u|n(x, t) dv ≤ CR−n
0 .

Then using Lemma 2.5, there is a uniform bound of ‖u(·, ti )‖C1,α(B 1
2 R0

(x0)), so u(x, ti ) con-

vergence to u∞ in C1,β(B 1
2 R0

) and hence in C1,β
loc (M\{x1, . . . , x J }) with β < α, where

u∞ ∈ C1,β
loc (M\{x1, . . . , x J }) is an n-harmonic map. By the removable singularities of an

n-harmonic map, u∞ can be extended to C1,α(M). �

3 No neck result between the limiting map and bubbles as t → ∞
In this section, we generalize the no-neck result of Qing and Tian [24] to the case of the
n-harmonic flow. As suggested by Struwe [26] and Qing [23], the existence of solutions of
the heat flow for harmonic maps can be proved by a method of “Palais-Smale sequences”
with tension fields τ(u) ∈ L2. In the context of n-harmonic maps, the tension field τ(u) of
u is defined as follows:

τ(u) := 1√|g|
∂

∂xi

[
|∇u|n−2gi j

√|g| ∂

∂x j
u

]
+ |∇u|n−2A(u)(∇u,∇u), (3.1)

where A is the second fundamental form of N .
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If τ(u) = 0, u is an n-harmonic map. When τ(u) ∈ L2(M) and u satisfies an extra
smoothness assumption in (3.1), we define u to be a regular approximated n-harmonic map
as follow (see [27] for details):

Definition 3.1 We define a map u ∈ W 1,n(M; N )∩C0(M; N ) to be a regular approximated
n-harmonic map if it satisfies the following conditions:

1. ∇
(
|∇u| n−2

2 ∇u
)

∈ L2(M);

2. There exist ε > 0, α ∈ (0, 1) and C > 0 depending only on M , N and ‖τ(u)‖L2 such
that for any B2r ∈ M and En(u; B2r ) ≤ ε, then

u ∈ Cα(Br ; N ) and [u]Cα(Br (x)) ≤ C.

Let {ui } be a sequence of regular approximated n-harmonic maps with uniform bounds of
En(ui ) and ‖τ(ui )‖L2(M). Wang and Wei [27] proved that {ui } converges to an n-harmonic

map u∞ strongly in W 1,q
loc

(
M\{x1, . . . , x L }) for any q < 2n, where u∞ can be extended to

C1,α(M). By reducing multi bubbles into a single bubble, they proved that there are a finite
number of n-harmonic maps ωk,l on Sn with k = 1, . . . , L and l = 1, . . . Jk such that

lim
ti↗∞ En(ui ; M) = En(u∞; M) +

L∑

k=1

Jk∑

l=1

En(ωk,l , S
n).

Then we have

Theorem 3 Let {ui } be the sequence of regular approximated n-harmonicmapswith uniform
bounds of En(ui ) and ‖τ(ui )‖L2(M), and let ωk,l be the above bubbles. Then there is no neck
between the limiting map u∞ and bubbles ωk,l ;
i.e. the image

u∞(M) ∪
⋃

k,l

ωk,l(S
n)

is a connected set.

We begin with the following ε-regularity estimate for approximated n-harmonic maps. In
particular, we generalize the Ding–Tian estimate (see [6], Lemma 2.1), which is a crucial
estimate to the proof of no-neck result.

Lemma 3.1 For n ≥ 2, let u ∈ W 1,n(M, N ) ∩ C0(M, N ) be an approximated n-harmonic
map. Then there exists a small constant ε > 0 such that if En(u, Br ) ≤ ε then

‖u‖
osc
(
B r

2

) ≤ C

(∫

Br
|∇u|n dv

) 1
2(n−1) + Cr

n
2(n−1)

(∫

Br
|τ(u)|2 dv

) 1
2(n−1)

. (3.2)

Proof Let φ be a cut-off function in C∞
0 (Br ) with φ ≡ 1 in Br

2
and |∇φ| ≤ Cr−1 and

set ū = 1
|B 3

4 r
|
∫
B 3

4 r
u dv. For a sufficient small a > 0, we apply Theorem 7.17 in [10] with

p = 2n(n−1)
n−2+a > n, γ = 1 − n

p , and the Poincaré inequality to obtain
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‖u‖osc(B r
2
) = sup

x,y∈B r
2

|u(x) − u(y)| ≤ 2 sup
x∈B 3

4 r

|(u(x) − u) φ(x) |

≤ Cr1− n−2+a
2(n−1)

⎛

⎝
∫

B 3
4 r

|∇[(u − u) φ]| 2n(n−1)
n−2+a dv

⎞

⎠

n−2+a
2n(n−1)

≤ Cr
n−a

2(n−1)

⎛

⎝
∫

B 3
4 r

|∇u(x)| 2n(n−1)
n−2+a dv

⎞

⎠

n−2+a
2n(n−1)

+ Cr
n−a

2(n−1)

⎛

⎝
∫

B 3
4 r

|(u(x) − u)∇φ| 2n(n−1)
n−2+a dv

⎞

⎠

n−2+a
2n(n−1)

≤ Cr
n−a

2(n−1)

⎛

⎝
∫

B 3
4 r

|∇u| 2n(n−1)
n−2+a dv

⎞

⎠

n−2+a
2n(n−1)

= Cr
n−a

2(n−1)

⎛

⎝
∫

B 3
4 r

∣∣| ∇u|n−2∇u
∣∣

2n
n−2+a dv

⎞

⎠

n−2+a
2n

1
(n−1)

. (3.3)

By using the Sobolev–Poincaré inequality on B1 (page 174 in [10]), we have for p < n
(∫

B1

| f − fB1 |p
∗
dv

)1/p∗

≤ C

(∫

B1

|∇ f |p dv

)p

.

Choosing p = 2n
n+a < 2 such that q = 2n

n−2+a = np
n−p = p∗ and re-scaling from B1 to Br

and using Hölder’s inequality, we have

(
r (n−1)q

rn

∫

Br

∣∣ |∇u|n−2 ∇u
∣∣q dv

) 1
q

≤ C

(
r2n

rn

∫

Br

∣∣∇(|∇u|n−2 ∇u)
∣∣2 dv

)1/2

+ C

r

∫

Br
|∇u|n−1 dv. (3.4)

By the Hölder inequality, we have

(
1

r

∫

Br
|∇u|n−1 dv

) 1
n−1 ≤ C

⎛

⎝
∫

B 3
4 r

|∇u|n dv

⎞

⎠

1
n

.

Then substituting (3.4) into (3.3), we obtain

‖u‖osc(B r
2
) ≤ Cr

n−a
2(n−1)

⎛

⎝
∫

B 3
4 r

∣∣ | ∇u|n−2 ∇u
∣∣q dv

⎞

⎠

1
q

1
(n−1)

≤ Cr
n−a

2(n−1) r
n

q(n−1)
−1r

n
2(n−1)

(∫

Br

∣∣∇(|∇u|n−2 ∇u)
∣∣2 dv

) 1
2(n−1)

+ Cr
n−a

2(n−1) r
n

q(n−1)
−1
(

1

r

∫

Br
|∇u|n−1 dv

) 1
n−1
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= Cr
n

2(n−1)

⎛

⎝
∫

B 3
4 r

∣∣∇(|∇u|n−2 ∇u)
∣∣2 dv

⎞

⎠

1
2(n−1)

+ C

(
1

r

∫

Br
|∇u|n−1 dv

) 1
n−1

≤ C

⎛

⎝rn
∫

B 3
4 r

∣∣∇(|∇u|n−2 ∇u)
∣∣2 dv

⎞

⎠

1
2(n−1)

+ C

⎛

⎝
∫

B 3
4 r

|∇u|n dv

⎞

⎠

1
n

(3.5)

by noting that n−a
2(n−1)

+ n
q(n−1)

− 1 = 0 with q = 2n
n−2+a .

Multiplying (3.1) by ∇ · (|∇u|n−2∇u) ηn , we have
∫

Br
|∇ · (|∇u|n−2∇u)|2ηn dv ≤

∫

Br
|∇ · (|∇u|n−2∇u)|(τ (u) + C |∇u|n)ηn dv.

Now, using Young’s inequality, we have
∫

Br
|∇ · (|∇u|n−2∇u)|2ηn dv ≤ C

∫

Br
(|τ(u)|2 + |∇u|2n)ηn dv.

Using Lemma 2.2 again, it yields that
∫

B 3
4 r

|∇u|2n + |∇2u|2|∇u|2n−4 dv ≤ C
∫

Br
(1 + r−n)|∇u|n + |τ(u)|2 dv.

Therefore

⎛

⎝rn
∫

B 3
4 r

|∇u|2n + |∇2u|2|∇u|2n−4 dv

⎞

⎠

1
2(n−1)

≤ C

(∫

Br
|∇u|n + rn |τ(u)|2 dv

) 1
2(n−1)

≤ C

(∫

Br
|∇u|n dv

) 1
2(n−1) + Cr

n
2(n−1)

(∫

Br
|τ(u)|2 dv

) 1
2(n−1)

.

We finish the proof by putting these estimates together. �

To analyze the behavior of approximated n-harmonic maps on the neck region, we need
the following Pohozaev type inequality, which was proved in [27]:

Lemma 3.2 For n ≥ 2, let u ∈ W 1,n(M, N ) ∩ C1,α(M, N ) to be a regular approximated
n-harmonic map with tension field τ(u) ∈ L2(M). Then, for any ball Br ⊂ M, we have

∫

∂Br
|∇u|n ds ≤ C(n)

(∫

∂Br
|∇T u|n ds +

∫

Br
|τ(u)| |∇ u| dv

)
, (3.6)

where ∇T u is the tangential gradient on the boundary ∂Br .

Proof For completeness, we sketch the proof here. Multiplying (3.1) by x ·∇u and integrating
over Br , we have
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∫

Br
〈τ(u), x · ∇u〉 dv

= 1

n

∫

Br

〈
x , ∇(|∇ u|)n 〉 dv +

∫

Br
|∇u|n dv − r

∫

∂Br
|∇u|n−2

∣∣∣∣
∂u

∂r

∣∣∣∣

2

ds

= r

n

∫

∂Br
|∇u|n ds − r

∫

∂Br
|∇u|n−2

∣∣∣∣
∂u

∂r

∣∣∣∣
2

ds,

where we use the fact that
∫

Br

〈
x , ∇(|∇ u|)n 〉 dv = r

∫

∂Br
|∇u|n ds − n

∫

Br
|∇u|n dv

and |∇u|2 = ∣∣ ∂u
∂r

∣∣2 + |∇T u|2 .

Rearranging the inequality and by adding (n−1)
∫
∂Br

|∇u|n−2 |∇T u|2 ds to the both sides
we have

(n − 1)

∫

∂Br
|∇u|n ds ≤ n

∫

Br
|τ(u)||∇u| dv + n

∫

∂Br
|∇u|n−2 (|∇T u|2) ds.

Then the claim follows from using Young’s inequality. �

Now we prove Theorem 3.

Proof By using the standard bubbling arguments as in [6] and [27], one can reduce multiple
bubbles to a single bubble. We assume that 0 is the single blowing up point of {ui } and there
is only one bubble in B1. Then, we follow the approach of [24] and [19] to extend the no-neck
result to the case of the n-harmonic map flow.

Suppose rn R = 2− jn and δ = 2− j0 for any j0 < j < jn . Then, we denote

L j = min{ j − j0, jn − j} and Pj,t = B2t− j \B2−t− j for t ∈ (0, L j ].

For sufficiently large i , we assume that

En(ui , B21− j \B2− j ) ≤ ε2(n−1), for any j0 ≤ j ≤ jn . (3.7)

Let

hi, j,t (2
±t− j ) = 1

|Sn−1|
∫

Sn−1
ui (2

±t− j , θ) dθ

and

hi, j,t (r) = hi, j,t (2
t− j ) +

(
hi, j,t (2

−t− j ) − hi, j,t (2
t− j )

) ln(2−t+ j r)

−2t ln 2
. (3.8)

Note that the tangential derivative of hi, j,t (r) is zero in n-dimensional spherical coordinates.
Therefore, the Laplace operator can be reduced to the following form:

�hi, j,t = d2 hi, j,t
d2r

+ n − 1

r

dhi, j,t
dr

,
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which yields that

div(|∇hi, j,t |n−2 ∇ hi, j,t ) =
∣∣∣∣
d hi, j,t
dr

∣∣∣∣
n−2 (d2 hi, j,t

d2r
+ n − 1

r

dhi, j,t
dr

)

+ n − 2

2

∣∣∣∣
d hi, j,t
dr

∣∣∣∣

n−4 dhi, j,t
dr

d

dr

∣∣∣∣
dhi, j,t
dr

∣∣∣∣

2

= (n − 1)

∣∣∣∣
d hi, j,t
dr

∣∣∣∣

n−2 (d2 hi, j,t
d2r

+ 1

r

d hi, j,t
dr

)

= 0.

This implies that hi, j,t (r) is also a symmetric n-harmonic map for r ∈ [2−t− j , 2t− j ]. By the
well-know result of the n-Laplace operator, we note that

∫

Pj,t

|∇(ui − hi, j,t )|n dv

≤ C
∫

Pj,t

〈
(|∇ui |n−2 ∇ui − |∇hi, j,t |n−2 ∇hi, j,t ), ∇(ui − hi, j,t )

〉
dv.

for some constant C > 0.
By integration by parts, we have

∫

Pj,t

〈
(|∇ui |n−2 ∇ui − |∇hi, j,t |n−2 ∇hi, j,t ), ∇(ui − hi, j,t )

〉
dv.

= −
∫

Pj,t

〈
div(|∇ui |n−2 ∇ui ), (ui − hi, j,t )

〉
dv

+
∫

∂Pj,t

〈
(|∇ui |n−2(ui )r − |∇hi, j,t |n−2(hi, j,t )r ), (ui − hi, j,t )

〉
dv

=
∫

Pj,t

〈(
A(ui )(∇ ui ,∇ui )|∇u|n−2 + τ(ui )

)
, (ui − hi, j,t )

〉
dv

+
∫

∂Pj,t

〈(|∇ui |n−2(ui )r − |∇hi, j,t |n−2(hi, j,t )r
)
, (ui − hi, j,t )

〉
dv.

By Lemma 3.1, we obtain

‖ui − hi, j,t‖C0(Pj,t )
≤ ‖ui − hi, j,t (2

j−t )‖C0(Pj,t )
+ ‖ui − hi, j,t (2

− j−t )‖C0(Pj,t )

≤ 2‖ui‖osc(Pj,t )

≤ C

(∫

Pj−1,t∪Pj,t∪Pj+1,t

|∇u|n
) 1

2(n−1)

+ C (2t− j+1)
n

2(n−1)

(∫

B2t− j+1

|τ(u)|2
) 1

2(n−1)

≤ C

(
ε + δ

n(t+1)
2(n−1)

)
≤ Cε. (3.9)
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By (3.9), we have

∫

Pj,t

|∇(ui − hi, j,t )|n dv

≤ C
∫

Pj,t

〈|∇ui |n−2 ∇ui − |∇hi, j,t |n−2 ∇hi, j,t , ∇(ui − hi, j,t )
〉
dv

≤ C
∫

Pj,t

〈
(A(ui )(∇ ui ,∇ui ) |∇u|n−2 + τ(ui )), (ui − hi, j,t )

〉
dv

+ C
∫

∂Pj,t

〈|∇ui |n−2 (ui )r , (ui − hi, j,t )
〉
ds

≤ C

(

ε

∫

Pj,t

|∇ui |n dv + ε‖τ(ui )‖L2(Pj,t )
2(t− j) n2

)

+ C
∫

∂Pj,t

|∇ui |n−2 |(ui )r | |ui − hi, j,t | ds

= C(ε(I1 + 2(t− j) n
2 ) + I2),

where we set

I1 := f j (t) =
∫

Pj,t

|∇ui |n dv and I2 :=
∫

∂Pj,t

|∇ui |n−2 |(ui )r | |ui − hi, j,t | ds.

Using the fact that d 2x
dx = ln 2(2x ), this implies

f ′
j (t) = ln 2

(
2t− j

∫

{2t− j }×Sn−1
|∇ui |n ds + 2−t− j

∫

{2−t− j }×Sn−1
|∇ui |n ds

)
.

By the Poincaré inequality and Hölder’s inequality, we have

I2 =
∫

∂Pj,t

(|∇ui |n−2 |(ui )r |) |ui − hi, j,t | ds

≤
∫

{2t− j }×Sn−1
|∇ui |n−1|ui − hi, j,t | ds +

∫

{2−t− j }×Sn−1
|∇ui |n−1|ui − hi, j,t | ds

≤
(∫

{2t− j }×Sn−1
(|∇ui |n−1)

n
n−1 ds

) n−1
n
(∫

{2t− j }×Sn−1
|ui − hi, j,t |n ds

) 1
n

+
(∫

{2−t− j }×Sn−1
(|∇ui |n−1)

n
n−1 ds

) n−1
n
(∫

{2−t− j }×Sn−1
|ui − hi, j,t |n ds

) 1
n

≤
(∫

{2t− j }×Sn−1
(|∇ui |)n ds

) n−1
n
(∫

{2t− j }×Sn−1
|ui − hi, j,t |n ds

) 1
n

+
(∫

{2−t− j }×Sn−1
(|∇ui |)n ds

) n−1
n
(∫

{2−t− j }×Sn−1
|ui − hi, j,t |n ds

) 1
n

≤ C f ′
j (t). (3.10)
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Note that hi, j,t is the average of ui over Sn−1. Then we can estimate the tangential energy
by

∫

Pj, t

|∇T ui |n dv ≤
∫

Pj,t

(|(ui − hi, j,t )r |2 + |∇T ui |2
) n

2 dv

=
∫

Pj,t

|∇(ui − hi, j,t )|n dv

≤ C(ε I1 + 2(t− j) n
2 + I2). (3.11)

By Lemma 3.2, given a regular approximated n-harmonic map ui , for all r ∈ [λn R, δ], we
have ∫

∂Br
|∇ui |n ds ≤ C(n)

(∫

∂Br
|∇T ui |n ds +

∫

Br
|τ(ui )| |∇ui | dv

)
. (3.12)

Integrating (3.12) in r from r = 2−t− j to r = 2t− j , using Hölder’s inequality and (3.11),
we obtain

f j (t) =
∫

Pj,t

|∇ui |n dv

≤ C

(∫

Pj, t

|∇T ui |n dv +
∫ 2t− j

2−t− j
‖τ(ui )‖L2(Br ) ‖∇ui‖L2(Br ) dr

)

≤ C(ε(I1 + 2(t− j) n
2 ) + I2)) + C

∫ 2t− j

0
‖τ(ui )‖L2(Br ) ‖∇ui‖Ln(Br )r

n−2
2 dr

≤ C(ε I1 + 2(t− j) n
2 + I2) ≤ C(ε f j (t) + 2(t− j) n

2(n−1) ) + C f ′
j (t). (3.13)

Let λn = n
2(n−1)

ln 2. Choosing ε sufficiently small in (3.13), we have

0 ≤ f ′
t (t) − 1

C
f j (t) + Ceλn(t− j).

Now, assuming that λn > 1
C for a sufficiently large C , it implies

0 ≤
(
e− t

C f j (t)
)′ + Ceλn(t− j) e− t

C . (3.14)

Integrating (3.14) in t over [2, L j ], this gives

f j (2) ≤ C

(
e

−L j
C f j (L j ) + e−λn j e

(
λn− 1

C

)
L j

)

≤ C

(
e

−L j
C f j (L j ) + e−λn j e

− j
C

)
, (3.15)

where we note that

Pj = B21− j \B2− j , Pj−1 ∪ Pj ∪ Pj+1 = B22− j \B2−1− j and f j (2) =
∫

Pj, 2

|∇ui |n dv.
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Applying Lemma 3.1 on Pj , we have

‖ui‖osc(Pj ) ≤ C

(∫

Pj−1∪Pj∪Pj+1

|∇ui |n dv

) 1
2(n−1)

+ (2− j )
n

2(n−1) C

(∫

B22− j

|τ(ui )|2 dv

) 1
2(n−1)

≤ C( f
1

2(n−1)

j (2) + e−λn j ). (3.16)

For j ≥ L j , under the assumption (3.7) at the beginning of the proof, we can choose a
small δ such that f j (L j ) ≤ ε2(n−1) and (3.15) yields that

f
1

2(n−1)

j (2) ≤ C

(
e

−L j
C f j (L j ) + e−λn j e

(
λn− 1

C

)
L j

) 1
2(n−1)

≤ C

(
e

−L j
C ε + e

− j
C

)
. (3.17)

Substituting (3.17) into (3.16) and summing over j0 ≤ j ≤ jn , we have

‖ui‖osc(B2δ\B2 rn R) ≤
jn∑

j= j0

‖ui‖osc(Pj )

≤ C
jn∑

j= j0

(
(e− L j

C ε + e
− j
C ) + e−λn j

)

≤ C

⎛

⎝
∞∑

i=0

e− i
C ε +

∞∑

j= j0

e
− j
C

⎞

⎠

≤ C
(
ε + δ

1
C

)
.

Since

‖ui‖osc(Bδ\B2rn R) = sup
x,y∈Bδ\B2rn R

|ui (x) − ui (y)|

is controlled by δ, this implies that

u(B1) ∪ ω1(R
n)

is a connected set. Thus, there is no neck between the limiting map and the bubbles for regular
approximated n-harmonic maps with tension fields bounded in L2. �

Now we complete the proof of Theorem 1.

Proof of Theorem 1 We briefly describe the procedure of “bubble blowing” by following
the idea from Ding and Tian [6]. First, we recall that the removable singularity theorem of
n-harmonic maps [7]. Moreover, recall the the gap theorem: there is a constant εg > 0 such
that if u is an n-harmonic map on Sn satisfying

∫
Sn |∇u|n < εg , then u is a constant on Sn .

Let u(x, t) be a regular solution of the n-harmonic flow in M × [0,∞). As ti → ∞, it
was showed in Proposition 2.1 that a subsequence of ui := u(ti ) converges to an n-harmonic
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map u∞ locally in C1,α(M\{x1, . . . , x L }). Furthermore, there is a constant ε0 > 0 such that
the singular points (energy concentration points) {xk} are defined by the condition

lim sup
ti→∞

En(u(ti ); BR(xk)) ≥ ε0

for any R ∈ (0, R0], with some fixed R0 > 0.
Let x1 be a singular point. Then we find sequences x1

i → x1 such that

∣∣∇u(x1
i )
∣∣ = max

BR0 (x1)
|∇u(x, ti )| , r1

i = 1
∣∣∇u(x1

i )
∣∣ → 0.

In the neighborhood BR0(x
1) of the singularity x1, we define the rescaled map

u1
i (x) = u(x1

i + r1
i x, ti ). (3.18)

Then the rescaled map u1
i satisfies

(r1
i )n

∂u

∂t
= 1√|g|

∂

∂xi

[
|∇u|n−2gi j

√|g| ∂u

∂x j

]
+ |∇u|n−2A(u)(∇u, u). (3.19)

Now, u1
i converge to u1,∞ locally in R

n as i → ∞, and u1,∞ can be extended to a nontrivial
n-harmonic map on Sn (see [7]). We call ũ1,∞ to be the first bubble, which satisfies

En(u1,∞;Rn) = lim
R→∞ lim

ti→∞ En(u
1
i ; BR(0)) = lim

R→∞ lim
ti→∞ En(ui ; BRr1

i
(x1)). (3.20)

At each singular point xk , there are finitely many blow-up points xk,li and bubbles {ωk,l}Jkl=1

on R
n (see details in [13]); i.e. at each k, there are sequences xk,li → pk,l for some pk,land

rk,li → 0 with limi→∞
rk,li

r k,l−1
i

= ∞ such that passing to a subsequence, uk,li (x) := ui (x
k,l
i +

rk,li x) converges to ωk,l , where ωk,l is an n-harmonic map in R
n . These mean that there are

finite numbers ri,k , finite points xk,li , positive constants Rk,l , δk,l and finitely many number
of non-trivial n-harmonic maps ωk,l on R

n such that

lim
i→∞ En(ui ; M)

= En

(
u∞; M\{xk}Lk=1

)
+

L∑

k=1

Jk∑

l=1

En(ωk,l;Rn)

+
L∑

k=1

Jk∑

l=1

lim
Rk,l→∞ lim

δk,l→0
lim
i→∞ En(u

k,l
i ; Bδk,l

∖
BRk,l r

k,l
i

(xk,li )). (3.21)

Moreover, at each neck region Bδk,l \BRk,l r
k,l
i

(xk,li ) in (3.21), for all i sufficiently large, we

have ∫

B2r \Br (xk,li )

|∇uk,l,i |ndv ≤ ε (3.22)

for all r ∈ (
Rk,l r

k,l
i

4 , 2δk,l), where ε is a fixed constant to be chosen sufficiently small. In fact,
(3.22) is a crucial observation by Ding and Tian [6]. This implies that the neck energy can be
controlled during bubbling procedure by reducing multiple bubbles to a single bubble case,
which leads to the proof of the energy identity for harmonic maps in [6]. For the case of
n-harmonic maps, we complete the proof of the energy identity by using a result of Wang
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and Wei (see Theorem B of [27]) . Now, we can choose a subsequence of time ti → ∞ such
that limi→∞

∥∥ ∂u
∂t (·, ti )

∥∥
L2(M)

is bounded. This completes a proof of Theorem 1 by using
Theorem 3. �

4 Finite-time blow-up of the n-harmonic map flow

As an application of the “no-neck” result, we will construct an example that the n-harmonic
flow with initial value u0 blows up in finite time. The proof here is to use similar ideas in
[20]. Due to that there are several modifications for the case of n-harmonic maps, we give a
proof for completeness here.

4.1 Width of n-harmonic maps in the covering space

We follow the geometric setting as in Sections 3–4 of [20] to construct an example of finite
time blowup of the n-harmonic flow. The idea is to construct a proper target manifold N such
that we can find infinitely many initial maps u0 : Sn → N such that the n-harmonic flow
blows up in finite time.

For m > n, let the target manifold N = X # Tm be the connected sum of X with the torus
Tm . Here X is a closed m-dimensional manifold with nontrivial πn(X). Thus, there exists a
smooth map h : Sn → X such that it is not homotopic to a constant map. Note that N can
be separated into N1 and N2 by an embedding sphere Sm−1 ⊂ N . In particular, N\N1 and
N\N2 are homeomorphic to X and Tm respectively. For each l = 0, 1, 2, . . ., let Ul denote
a small neighborhood of pl , which is diffeomorphic to a m-dimensional ball and V ⊂ X
denotes an open set which is diffeomorphic to a ball.

R
m is the universal cover of Tm withG = Z

m as the covering transformations group. Now,
for any point p0 ∈ R

m , its orbit under the transformation group G is the set {pl}∞l=0 ⊂ R
m .

LetU0 be a small ball inRm and its orbit under the transformation group G is a family of balls
{Ul}∞l=0 ⊂ R

m . Now, we can find a cover of N by modifying R
m . For each l = 0, . . . ,∞,

we remove the small ball Ul from R
m for l = 1, 2, . . . by adding a copy of X\V , which we

identify ∂Ul by the boundary of X\V . We denote by Xl the copy of X\V through ∂Ul . This
new complete and non-compact manifold is denoted by Ñ and the transformation group G
act naturally on Ñ . Let Ñ to be a cover of N and g̃ be the corresponding lift metric.

For a continuous map u : Sn → N , we define its “width” of u in a set S ⊂ Sn−1 through
its lift map ũ in the covering space (Ñ , g̃) by

W(u; S) := sup
x,y∈S

d
(Ñ , g̃) ( ũ(x), ũ(y) ) . (4.1)

We begin with the following lemma that gives an upper bound for the width.

Lemma 4.1 (Boundedwidth lemma) If u : Rn → N is an n-harmonicmapwith En(u) < C1

for a constant C1 > 0, there exists a constant C2, depending only on C1 and N such that the
W(u; Sn) < C2.

Proof We prove this by contradiction. Suppose that the statement is not true. Then we can
find a sequence of n-harmonic maps {ui }∞i=1 with their energy bounded by the constant C1

such that their width W(ui ; Sn) can not be bounded as i → ∞.
According the above bubble-neck decomposition, as ti → ∞, it was showed in

Proposition 2.1 that a subsequence of ui converges to an n-harmonic map u∞ locally in
C1,α(M\{x1, . . . , x L }).
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At each singular point xk , there are sequences xk,li → pk,l for some pk,land rk,li → 0

with limi→∞
rk,li

r k,l−1
i

= ∞ such that passing to a subsequence, uk,li (x) := ui (x
k,l
i + rk,li x)

converges to ωk,l , where ωk,l is an n-harmonic map in R
n . These mean that there are finite

numbers ri,k , finite points xk,li , positive constants Rk,l , δk,l and finitely many number of

non-trivial n-harmonic maps ωk,l on R
n . Moreover, at each neck region Bδk,l \BRk,l r

k,l
i

(xk,li )

in (3.21), for all i sufficiently large, we have

∫

B2r \Br (xk,li )

|∇uk,l,i |ndv ≤ ε (4.2)

for all r ∈ (
Rk,l r

k,l
i

4 , 2δk,l), where ε is a fixed constant to be chosen sufficiently small. Then

lim
i→∞ W (ui ; Sn) = lim

i→∞ sup
x,y∈Sn

d
(Ñ , g̃) ( ũi (x), ũi (y) )

≤ lim
δ→0

lim
i→∞ W

(
ui ; Sn\ ∪L

k=1 Bδ(xk)
)

+ lim
δk,l→0

lim
i→∞

L∑

k=1

J̃k∑

l̃=1

W (uk,l̃i ; BRk,l̃
(0)\ ∪Lk,l̃

j=1 Bδk,l (x
k, j
i ))

+
L∑

k=1

Jk∑

l=1

lim
Rk,l→∞ lim

δk,l→0
lim
i→∞ W (uk,li ; Bδk,l \BRk,l r

k,l
i

(xk,li )), (4.3)

where we note that {xk,li }Jkl=1 = ∪ J̃k
l̃=1

{xk, ji }Lk,l̃
j=1 is the set of totally blowing points and that

Lk,l̃ may not exist (This corresponds to the case of a single bubble).
Now we will estimate the width of the above region of bubbling, the neck domain

and the base separately. Let ũk,li denote the lift of uk,li . Since uk,li → ωk,l locally in

C1,α(Rn\{pk, j }Jlj=1), the lift ũk,li convergence to the lift ω̃k,l in the covering space with
lift metric g̃ as well, so

lim
δk,l→0

lim
i→∞ sup

x∈Rn\∪Jk
l=1Bδk,l (x

k,l
i )}

d
(Ñ , g̃)

(
ũk,li , ω̃k,l(x)

)
= 0.

By the triangle inequality, we have

lim
δk,l→0

lim
i→∞

L∑

k=1

Jk∑

l=1

W
(
uk,li ;Rn\ ∪Jk

l=1 Bδk,l (x
k,l
i )
)

≤
L∑

k=1

Jk∑

l=1

W(ωk,l;Rn).

Similarly, we have

lim sup
i→∞

sup
x,y∈Rn\∪l

k=1Bδ(xk )

d
(Ñ , g̃) (ũi (x), ũi (y)) ≤ W(u∞).
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By the no-neck result in Theorem 1, we have

lim
Rk,l→∞ lim

δk,l→0
lim
i→∞ W (uk,li ; Bδk,l \BRk,l r

k,l
i

(xk,li )) = 0

These imply that

lim
i→∞ W (ui ; Sn) ≤W

(
u∞; Sn)+

L∑

k=1

Jk∑

l=1

W (ωk,l ;Rn),

which is contradicted with the assumption. This proves the claim. �
As a consequence, we have

Lemma 4.2 Let u be a regular solution to (1.2) in M×[0,∞)with initial value u0 satisfying
En(u0) < C1 for a constant C1 > 0. Then there is a sequence ti → ∞ such that u(·, ti )
converges to an n-harmonic maps u∞ in C1,α

loc (M\{x1, . . . , x L }). Moreover, there exists a
constant C3, depending only on C1, such that the

lim sup
i→∞

W(u(·, ti ); Sn) ≤ C3.

Proof By using Theorem 1, there exists a sequence ti → ∞ such that u(ti ) converges to an
n-harmonic map u∞ in C1,α(M\{x1, . . . , x L }) for some positive α < 1. Moreover, there are
a finite number of n-harmonic maps ωk,l on Sn with k = 1, . . . , L and l = 1, . . . , Jk . By
applying Lemma 4.1, we have

lim sup
i→∞

W(ui ; Sn) ≤ W(u∞; Sn) +
L∑

k=1

Jk∑

l=1

W(ωk,l; Sn) ≤ C3,

where C3 depends on C2 and total numbers of bubbles. �
With this bounded width lemma, we are now ready to construct the example of the n-

harmonic map flow with initial map u0 : Sn → N which blows up in finite time. The basic
idea is as follows: We construct an initial u0 : Sn → N which has finite energy. Then we see
if a map u′, which is homotopic to u0, could have a large width.

4.2 Proof of Theorem 2

Since X is a closed manifold of dimension m > n with nontrivial πn(X), we can find a
smooth map h : Sn → X such that

(a) h is non-subjective;
(b) h is not homotopic to any constant map;
(c) h(Sn) ⊂ X\V ;
(d) h maps the southern hemisphere of Sn to a point q ∈ X\V .

For each l = 0, 1, . . ., we denote hl : Sn → Xl ⊂ Ñ as a copy of h and ql ∈ Xl as a copy
of q , and also denote by Sp the south pole of Sn .

For any large constant K > 0, there is a sufficiently large l such that

d
(Ñ , g̃) (X0, Xl ) ≥ K .

Let q0 ∈ X0 and ql ∈ Xl be copies of q . Let � and � be two stereographic projections from
Sn to R

n given by
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�(x1, . . . , xn, xn+1) =
(

x1

1 − xn+1 , . . . ,
xn

1 − xn+1

)
, (4.4)

�(x1, . . . , xn, xn+1) =
(

x1

1 + xn+1 , . . . ,
xn

1 + xn+1

)
, (4.5)

which map the north pole Np and the south pole Sp of Sn to the infinity respectively.
In order to construct an initial map u0 : Sn → N , we define a map ũ0 : Sn → Ñ by

ũ0 =

⎧
⎪⎪⎨

⎪⎪⎩

h0(x), for x ∈ Sn\Bσ (Sp);
γ ◦ ϕ

(
log σ−log |x |

− log σ

)
, for x ∈ Bσ (Sp)\Bσ 2(Sp);

hl ◦ �−1 ◦ (
�(x)
σ 2/2

) for x ∈ Bσ 2(Sp).

(4.6)

Here γ : [0, 1] → Ñ is the shortest geodesics connecting q0 to ql in Ñ , and ϕ is a smooth
cut-off function on [0, 1] that satisfies:

(1) ϕ′ is non-negative and |ϕ| ≤ 1;
(2) ϕ(x) = 0, for x ∈ [0, 1

8

]
and ϕ(x) = 1 for x ∈ [ 7

8 , 1
] ;

(3) |ϕ′| ≤ C , where C is a constant.

Under the definition of ũ0, we can see ũ0|∂Bσ (Sp) = q0. Moreover, for small σ , the metric
was flattened out which gives ũ0|∂B

σ2 (Sp) = ql .
Given that we have g̃ as the pullback metric for the covering of (N , g), there exists an

isometric projection map π : Ñ → N . For sufficiently small σ , we can find a smooth
u0 : Sn → N defined by

u0 =

⎧
⎪⎪⎨

⎪⎪⎩

π ◦ h0(x), for x ∈ Sn\Bσ (Sp);
π ◦ γ ◦ ϕ

(
log σ−log |x |

− log σ

)
, for x ∈ Bσ (Sp)\Bσ 2(Sp);

π ◦ hl ◦ �−1 ◦ (
�(x)
σ 2/2

), for x ∈ Bσ 2(Sp).

(4.7)

Now we claim that there is a constant C1 depending on h0 such that

En(u0) < En(hl) + En(h0) + 1 = C1. (4.8)

Due to the fact that En(u) is conformally invariant, the energy En(u0) over Sn\Bσ (Sp) and
Bσ 2(Sp) for small σ can be bounded by

∫

Sn\Bσ (Sp)

|∇u0|n dv +
∫

B
σ2 (Sp)

|∇u0|n dv ≤ En(h0) + En(hl) + 1

2
. (4.9)

Now we have to check if the condition (4.8) is satisfied. We do this by estimating the
energy over Bσ (Sp)\Bσ 2(Sp), then compare it with (4.9).

Let L be the shortest distance between q0 and ql . Since γ is the shortest geodesics con-
necting q0 to ql in Ñ , there is a parametrization s̃ such that

∫ 1

0

∣∣(π ◦ γ )′
∣∣ ds̃ = d

(Ñ ,g̃)(q0, ql) = L ,
∣∣(π ◦ γ )′

∣∣ = L .

Therefore, we have

|∂r u0| ≤ |(π ◦ γ )′| |ϕ′| 1

r(− log σ)
≤ CL

r(− log σ)
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which gives us to estimate the energy of u0 on the annulus domain; i.e.
∫

Bσ \B
σ2

|∇u0|n dx ≤ C
∫ σ

σ 2
|∂r u0|n rn−1 dr

≤ CLn

(− log σ)n

∫ σ

σ 2

1

r
dr ≤ CLn

(− log σ)n−1 .

Therefore, the energy on the annulus domain Bσ \Bσ 2 can be controlled for any L with a
sufficiently small σ . Together with (4.9), we obtained an upper bound C1 for E(u0).

Now, for any u′ (with a lift ũ′) which is homotopic to u0, we claim that ũ′ intercepts with
X0 and Xl , which implies

W(u′; Sn) ≥ d
(Ñ , g̃) (X0, Xl ) ≥ K > C3.

We prove this claim by contradiction. Assume that ũ′ does not intercept with X0. Set a
continuous map π : Ñ → X so that π maps Ñ\X0 to a single point p ∈ X . Since u′∩X0 = ∅,
it follows thatπ ◦ ũ′ maps to pwhich is a constant map. However, considerπ ◦ ũ′ is homotopic
to π ◦ ũ0 which is homotopic to h0 as well. This contradicts with the property (b) of the
definition of h0. This shows that ũ′ must intercept with X0. By a similar argument, ũ′ must
intercept with Xl .

Assume that the n-harmonic map flow with initial value u0 does not blow up in finite
time. Let u(x, t) be a regular solution to the flow (1.2) in M × [0,∞) with initial value
u0 ∈ C1(M, N ). By Theorem 1, there is a sub-sequence ti such that as ti → ∞, u(x, ti )
converges to an n-harmonic map u∞ in C1,α

loc (M\{x1, . . . , x L }) for some positive α < 1.
Since ui := u(x, ti ) is homotopic to u0, we have

W(ui ; Sn) ≥ K > C3.

On the other hand, by Lemma 4.2, lim supi→∞ W(ui ; Sn) ≤ C3. This is a contradiction.
Therefore, we have constructed initial maps u0 : Sn → N such that the n-harmonic map
flow with initial value u0 must blow up in finite time. This completes a proof of Theorem 2.

�
Remark It is an interesting question whether the the heat flow for H -systems ([14]) on
n-manifolds blows up in finite time for n ≥ 3.
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