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Abstract We study the question of uniqueness of minimizers of the weighted least gradient
problem

min

{∫
�

|Dv|a : v ∈ BVloc(�\S), v|∂� = f

}
,

where
∫
�

|Dv|a is the total variation with respect to the weight function a and S is the set
of zeros of the function a. In contrast with previous results, which assume that the weight
a ∈ C1,1(�) and is bounded away from zero, here a is only assumed to be continuous, and
is allowed to vanish and also be discontinuous in certain subsets of �. We assume instead
existence of a C1 minimizer. This problem arises naturally in the hybrid inverse problem
of imaging electric conductivity from interior knowledge of the magnitude of one current
density vector field, where existence of a C1 minimizer is known a priori.
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1 Introduction

Consider the following weighted least gradient problem

min

{∫
�

a|Du| : u ∈ BV (�), u|∂� = f

}
, (1)

where � is a bounded open set in R
n (n ≥ 2) with connected Lipschitz boundary ∂�, a

is a bounded non-negative function, and f ∈ C(∂�). This problem was first studied for
the case a ≡ 1 in [17,19], where existence of a unique minimizer was proved under the
assumption that f is continuous and ∂� has positive mean curvature on a dense subset of
∂� (see the precise hypotheses (3.1) and (3.2) in [17]). As in [6], these assumptions on ∂�

are needed in the existence proofs but not for the uniqueness arguments. In [6] it has recently
been proved that, if a ∈ C1,1(�) is positive and bounded away from zero and f ∈ C(∂�),
then the weighted least gradient problem (1) has at most one minimizer in BV (�). The
counterexample to uniqueness in [6] for a ∈ C1,α(�), 0 < α < 1, shows that the regularity
a ∈ C1,1(�) is sharp in general. The assumption a > 0 in � is also crucial for the results in
[6].

In contrast with the results in [6,17], here we present uniqueness results that take into
account the regularity of an existing minimizer. The main contribution of this paper is to
show that if existence is known a priori, then the assumptions on the weight function a can
be considerably weakened. The uniqueness result in this paper is based on a calibration
argument and takes into account a priori existence of a C1 minimizer. The following theorem
is a consequence of a more general result (Theorem 1.2 below) that will be proved in Sect. 3.

Theorem 1.1 Let � ⊂ R
n be a bounded Lipschitz domain with connected boundary, f ∈

C1(∂�), and a ∈ C(�). If a > 0 in � and (7) has a minimizer u ∈ C1(�) with |∇u| > 0 in
�, then u is the unique minimizer of (1) in BV (�).

Our motivation comes from a hybrid inverse problem in medical imaging, which concerns
determining the conductivity of a body from knowledge of the magnitude a = |J | (in �)
of one current density vector field J generated by imposing the voltage f on ∂�, see [12].
The interior data |J | can be obtained non-invasively via a magnetic resonance technique
pioneered in [7]. In [12] this problem was reduced to the weighted least gradient problem
(1), by showing that the voltage potential is a minimizer. More precisely, assume � ⊂ R

n is
made of conductive materials with conductivity σ . If the voltage f is imposed on ∂�, then
the corresponding voltage potential u is the solution of the following conductivity equation

{∇ · σ∇u = 0, in �,

u = f. on ∂�
(2)

Let J = −σ∇u be the current density generated by imposing the voltage f on ∂�. Then the
voltage potential u is a minimizer of the the weighted least gradient problem

min

{∫
�

|J | |∇u|dx : u ∈ BV (�), u|∂� = f

}
,

(see Proposition 1.2 in [12] and the density argument of Proposition 3 in [15]). More generally,
if � also contains perfectly conducting and insulating inclusions UP and UI . Then the
corresponding voltage potential u is the unique solution of the following equation
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ · σ∇u = 0, in �\UP ∪ UI ,

∇u = 0, in UP ,

u|+ = u|−, on ∂(UP ∪ UI),∫
∂UP j σ ∂u

∂ν
|+ds = 0, j = 1, 2, . . . ,

∂u
∂ν

|+ = 0, on UI ,

u|∂� = f,

(3)

where UP ∩ UI = ∅ and UP = ⋃
j=1 UP j is the partition of UP into open connected

components (see the appendix in [10] for more details). Moreover, if σ ∈ Cα(�\UP ∪ UI),
f ∈ C1,α(∂�), and the boundaries of UP , UI , and � are regular enough, then it follows from
standard elliptic regularity results that u ∈ C1(�̄\(UP ∪UI)). Under certain assumptions, it
is shown in Theorem 2.1 in [10] (see also the density argument of Proposition 3 in [15])
that the solution of the Eq. (3) is a minimizer of (1), where a is the magnitude of the
corresponding current density vector field. Once u is determined, the shape and locations of
perfectly conducting and insulation inclusion and the conductivity outside of the inclusions
can be uniquely identified. Thus existence is known a priori, and the main issue is to prove
uniqueness for the variational problem. Indeed if the conductivity to be recovered is Cα ,
then the assumption of Theorems 1.1 and 1.2 are naturally satisfied in our practical setting.
See [9,10,13,15] for further results on this problem with only partial data, with insulating
or highly conductive inclusions, reconstruction algorithms, and stability, and also [14] for a
review. From the point of view of this original application, the uniqueness result in [6] does
not apply to the case of embedded insulated and perfectly conductive inclusions described
in [10], where the weight a is merely continuous and may vanish in �.

The uniqueness results presented here yield global convergence in minimization schemes
based on compactness (e.g. [15]) and allow for extending stability results based on the
Fredholm’s alternative (e.g. in [8]) to the case of vanishing interior data.

Throughout the paper we assume that � ⊂ R
n is a bounded open set with connected

Lipschitz boundary ∂� and f is continuous on ∂�. The following assumptions concern the
most general class of weights a we allow. Let I ⊂⊂ � be an open set (possibly empty)
with finitely many C1 connected components with finite perimeter, each of which is C1-
diffeomorphic with a ball. In addition, in two dimensions I is assumed to have at most one
such component. We assume that a = 0 in I, a ∈ C(�\I), and that a may have at most
countable many zeros in �\I. In other words, the set of zeros

S := {x ∈ � : a(x) = 0} (4)

satisfy
S̄ = I ∪ �, (5)

where � is a countable set of points in �\I. Note that we do not assume that a vanishes on
∂I. Note also that a may be discontinuous at points on ∂I.

Definition 1 Let � ⊂ R
n be a bounded Lipschitz domain with connected boundary. We

define BVloc(�\S) to be the space of all functions u ∈ L1(�) such that

u ∈ BV (�\S′) for all open sets S′ with S′ ⊃⊃ S.

Recall the following definition from [2]: For any u ∈ BVloc(�\S) the total variation of u
(with respect to the weight a) in � is defined as∫

�

|Du|a = sup
b∈Ba

∫
�

u∇ · b dx, (6)
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where

Ba := {
b ∈ L∞(�;Rn) : ∇ · b ∈ Ln(�), supp(b) ⊂⊂ �, |b| ≤ a a.e. in �

}
.

This paper considers the question of uniqueness of solutions of the weighted least gradient
problem

min

{∫
�

|Dv|a : v ∈ BVloc(�\S), v|∂� = f

}
, (7)

where the boundary condition is in the sense of the trace of functions in BV (�). Note that,
since a ≡ 0 in the open set I, then

∫
�

|Dv|a is independent of v|I .
Our main uniqueness result assumes the existence of a minimizer u ∈ C1(�\I) of (7),

whose set of singularities (possibly empty) satisfy

P := {x ∈ �\I : |∇u| = 0} is the union of countably many C1-path-connected sets. (8)

Now we are ready to state the more general result of this paper.

Theorem 1.2 Let � ⊂ R
n be a bounded Lipschitz domain with connected boundary, f ∈

C1(∂�). Assume that the set of zeros of a satisfy the hypothesis (5) and a ∈ C(�\I). If
(7) has a minimizer u ∈ C1(�\I) that satisfies (8), then u is the unique minimizer of (7) in
BVloc(�\S).

Theorem 1.1 follows from the above theorem by taking S = ∅. We state other special
cases in the next corollaries.

Corollary 1.3 Let � ⊂ R
n be a bounded Lipschitz domain with connected boundary, f ∈

C1(∂�), and a ∈ C(�) with a countable set S of zeros. If (7) has a minimizer u ∈ C1(�)

with a countable set of critical points, then u is the unique minimizer of (7) in BVloc(�\S).

Corollary 1.4 Let � ⊂ R
n be a bounded Lipschitz domain with connected boundary, f ∈

C1(∂�), and a ∈ C(�). If S satisfies (4) and the least gradient problem (7) has a minimizer
u ∈ C1(�) such that

{x ∈ � : |∇u(x)| = 0},
is the closure of an open set, then u is the unique minimizer of (7) in BVloc(�\S).

In the original application in [10], one interprets the open subsets of {x ∈ � : |∇u(x)| = 0}
in whicha > 0 as perfect conductors. To illustrate a simple case with one perfectly conducting
inclusion, consider the following example from [18].

Example 1.5 Let D = {x ∈ R2 : x2 + y2 < 1} be the unit disk, f (x, y) = x2 − y2, and
P = (− 1√

2
, 1√

2
) × (− 1√

2
, 1√

2
). It is shown in [18] (see also [10] for a different proof) that

u =

⎧⎪⎨
⎪⎩

2x2 − 1, if |x | ≥ 1√
2
, |y| ≤ 1√

2
,

0, if (x, y) ∈ P,

1 − 2y2, if |x | ≤ 1√
2
, |y| ≥ 1√

2

is a minimizer of the least gradient problem

min

{∫
D

|∇u|dx, u ∈ BV (D), and u|∂D = f

}
. (9)

It is easy to see that u satisfies the assumptions of Corollary 1.4 with S = I = ∅ and
P = (− 1√

2
, 1√

2
) × (− 1√

2
, 1√

2
). Hence u is the only minimizer in BV (�).
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To understand the main ideas of the proofs in Sects. 2 and 3, one can keep in mind the
example above and assume S = I = ∅ at the first reading, to avoid some of the technicalities.

2 Preliminaries

In this section we recall and present some preliminary results that will be used in the following
sections. First we recall a useful representation formula from [2]. For u ∈ BV (�)∫

A
|Du|a =

∫
A
h(x, vu)|Du|, (10)

where
h(x, vu) = |Du| − ess sup

b∈Ba

(b · vu)(x) f or |Du| − a.e. x ∈ � (11)

and vu denotes the Radon–Nikodym derivative

vu(x) = d Du

d |Du| . (12)

In particular, if u ∈ BV (�), and the coefficient a is continuous in the Borel measurable
subset A ⊂ �, then ∫

A
|Du|a =

∫
A
a|Du|, (13)

as shown in [2]. The following lemma provides an extension of this formula.

Lemma 2.1 Let � ⊂ R
n be a bounded open region with Lipschitz boundary. Suppose that

u is a minimizer of (7) and satisfies the assumptions of Theorem 1.2. Then∫
�

|Du|a =
∫

�

a|∇u|dx .

Proof Since, a ∈ C(�\(I ∪ P)). Hence by [2, Proposition 7.1] we have that

h(x, vu) =
{
a(x) in �\I ∪ P
0 in I.

(14)

Thus it follows from (10) that∫
�

|Du|a =
∫

�\I∪P
a|∇u| =

∫
�

a|∇u|dx .

��
Let ν denote the outer unit normal vector to ∂� and

X := {b ∈ L∞(�;Rn) : ∇ · b ∈ Ln(�)}.
Then for every b ∈ X there exists a unique function [b · ν] ∈ L∞

Hn−1(∂�) such that∫
∂�

[b · ν]udHn−1 =
∫

�

u∇ · bdx +
∫

�

b · ∇udx, ∀u ∈ C1(�). (15)

Moreover, for u ∈ BV (�) and b ∈ X , the linear functional u �→ (b · Du) gives rise to a
Radon measure on �, and∫

∂�

[b · ν]udHn−1 =
∫

�

u∇ · bdx +
∫

�

(b · Du), ∀u ∈ BV (�), (16)
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see [1,3] for a proof. We will need the following generalization of (16) in the proof of our
uniqueness result.

Lemma 2.2 Let S be as defined in (5) and b ∈ Ba. If u ∈ L∞(�) and
∫
�

|Du|a < ∞, then
∫

∂�

[b · ν]udHn−1 =
∫

�

u∇ · bdx +
∫

�

(b · Du), (17)

for some unique function [b · ν] in L∞
Hn−1(∂�).

Proof By hypothesis (5) S has finite perimeter in �. Define the set

D := ∂S ∩ S.

There exists a sequence Di of open subsets of � with uniformly bounded perimeter such
that Di+1 ⊂ Di and u ∈ BV (Di ) for all i ∈ N, and ∩∞

i=1Di = D. Now choose a sequence
of cut-off functions ϕi such that ϕ ≡ 0 on Di , ϕ ≡ 1 on the compliment of an open set
D′

i ⊃⊃ Di with limi−→∞ Hn(D′
i ) = Hn(D), and

∫
�

|Dϕi | < c for all i . Indeed ϕi could
be chosen to be smooth approximations of the characteristic functions χDc

i
in BV (Rn) and

c proportional to the perimeter of Di . Then ϕi u ∈ BV (�) and hence by (16)∫
∂�

[b · ν]ϕi udHn−1 =
∫

�

ϕi u∇ · bdx +
∫

�

(b · D(ϕi u))

=
∫

�

ϕi u∇ · bdx +
∫

�

(b · Dϕi )u +
∫

�

ϕi (b · Du) (18)

for all b ∈ B and i ∈ N. Note that u ∈ L∞(�) and |b| ≤ a a.e. in �. It follows from the
continuity of a in D ⊂ S = {x ∈ � : a(x) = 0} that limi→∞ ‖ b ‖L∞(D′

i \Di )
→ 0. Hence

∣∣∣∣
∫

�

(b · Dϕi )u

∣∣∣∣ ≤
∫
D′
i \Di

|(b · Dϕi )u| ≤
∫
D′
i \Di

|Dϕi | ‖ u ‖∞‖ b ‖L∞(D′
i \Di )

−→ 0,

as i −→ ∞. Since I ⊂⊂ � and � [defined in (4)] is countable, by letting i −→ ∞ in (18)
we obtain (17). ��

The next two results yield a calibration which will be used in the uniqueness proof.
Suppose a ∈ L2(�) and fix v f ∈ H1(�) with v f |∂� = f . Consider the weighted least
gradient problem

(P) inf
v∈H1

0 (�)

∫
�

a|∇v + ∇v f |dx .

In [9] it is shown that the dual problem to (P) is

(D) max
{
< ∇v f , b >: b ∈ L2(�;Rn), |b(x)| ≤ a(x) a.e. and ∇ · b ≡ 0

}
.

Let v(P) and v(D) be the optimal values of the primal and dual problems. It is shown in
[9] that v(P) = v(D) and the dual problem (D) has an optimal solution. The following
proposition is an immediate consequence of Proposition 2.1 and Corollary 2.3 in [9].

Proposition 2.1 Let a ∈ L2(�) be a non-negative function and v f ∈ H1(�) with v f |∂� =
f . Then the optimal values of the primal problem (P) and dual problem (D) are equal, and
the dual problem (D) has an optimal solution J with∇ · J ≡ 0 in�. Moreover, if v ∈ H1

0 (�)

is an optimal solution of the primal problem (P), then
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J (x) = a(x)
∇(v(x) + v f (x))

|∇(v(x) + v f (x))| if |∇(v(x) + v f (x))| �= 0,

for all x ∈ �.

The following result is an immediate consequence of Proposition 2.1.

Corollary 2.3 Let � ⊂ R
n be a bounded Lipschitz domain and assume that assumptions of

Theorem 1.2 are satisfied. Then there exists an optimal solution J ∈ L2(�;Rn) of the dual
problem (D) such that ∇ · J ≡ 0 in �, |J | ≤ a a.e. in �. Moreover

J (x) =
{
a(x) ∇u

|∇u| if |∇u| �= 0
0 if |∇u| = 0,

(19)

where u is the solution of (7) described in the statement of Theorem 1.2.

3 Uniqueness of the minimizers

In this section we prove Theorem 1.2. To understand the main ideas of the proofs in this
section one may assume S = I = ∅ at first reading.

Let u be the minimizer of the weighted least gradient problem (7) assumed in the statement
of Theorem 1.2, and suppose u∗ ∈ BVloc(�\S) is another minimizer. We will show that
u = u∗ a.e. in �\S. We will prove Theorem 1.2 in four steps. First (Step I) we prove that
∇u
|∇u| = vu

∗
Du∗-a.e. in �\I ∪ P , where vu

∗
is the Radon–Nikodym derivative in (12). In

Step II we prove that almost every level set of u∗ is also a level set of u. In Step III , we prove
that almost every level set of u∗ reaches ∂�. Finally in Step IV , we show that on almost every
level set of u∗, u and u∗ take the same values and therefore u = u∗ a.e. in �\S.

Step I. First notice that u∗ is bounded above and below almost everywhere. Indeed if we
define

ū(x) =
⎧⎨
⎩
u∗(x) if m f ≤ u∗(x) ≤ M f

M f if u∗(x) > M f ,

m f if u∗(x) < m f ,

(20)

where M f and m f are the maximum and minimum values of f on ∂�, then ū ∈ BVloc(�\S)

and ∫
�

|Dū|a ≤
∫

�

|Du∗|a . (21)

Moreover the inequality is strict if {x ∈ � : u∗(x) > M f } or {x ∈ � : u∗(x) < m f } has
positive measure. Therefore we have range(u∗) = range( f ).

Next we prove that

∇u

|∇u| = dDu∗

d|Du∗|
|Du∗| − a.e. in �\I ∪ P .

Lemma 3.1 Suppose that the assumptions of Theorem 1.2 are satisfied and u is theminimizer
of (7) assumed in the statement of Theorem 1.2. If u∗ is another minimizer of (7), then

∇u

|∇u| = vu
∗ |Du∗| − a.e. in �\I ∪ P.

123



6 Page 8 of 14 A. Moradifam et al.

Proof It follows from the definition of h(x, vu
∗
) that

h(x, vu
∗
) ≥ J · vu

∗
, |Du∗| − a.e. in �,

where J is the solution of the dual problem (D) in Corollary 2.3. Hence∫
�

|Du∗|a =
∫

�

h(x, vu
∗
)|Du∗| ≥

∫
�

J · vu
∗ |Du∗|

=
∫

�

J · Du∗ =
∫

∂�

J · ν f dHn−1

=
∫

�

∇u · Jdx =
∫

�

|J ||∇u|

=
∫

�

|Du|a =
∫

�

|Du∗|a,

where the third and fifth equalities follow form Lemmas 2.2 and 2.1, respectively. Therefore

h(x, vu
∗
) = J · vu

∗
, |Du∗| − a.e. in �.

Since a is continuous in �\I ∪ P , as in (14) we have

J · vu
∗ = h(x, vu

∗
) = a(x), |Du∗| − a.e. in �\I ∪ P. (22)

Since |vu∗ | = 1 and |J | ≤ a, |Du∗| − a.e. in �\I ∪ P , we get

J

|J | = vu
∗
, |Du∗| − a.e. in �\I ∪ P.

On the other hand |∇u| �= 0 |Du∗|-a.e. on �\I ∪ P . Hence it follows from Corollary 2.3
that

∇u

|∇u| = J

|J | = vu
∗
, |Du∗| − a.e. in �\I ∪ P.

The proof is now complete. ��
Step II For λ ∈ range(u∗), let

Eλ = {x ∈ �\I : u∗(x) ≥ λ}
and define

E ′
λ :=

{
x ∈ R

n : lim
r→0

H(B(r, x) ∩ Eλ)

H(B(r))
= 1

}
. (23)

By changing u∗ in a set of measure zero, we may assume that Eλ = E ′
λ. Throughout this

paper we shall always assume that Eλ = E ′
λ. We also define

Z = {x ∈ �\I : u(x) ∈ � ∪ P}, (24)

where � is defined in (4) and P is the set of critical points of u satisfying (8). Notice that if
x /∈ Z, then |∇u(x)| > 0.

Let � be the set of all λ ∈ range(u∗) such that every connected component � of ∂Eλ with
� ∩ Z = ∅ is a C1 hypersurface. In the next lemma we prove that

H1(range(u∗)\�) = 0. (25)
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Lemma 3.2 Assume that the assumptions of Theorem 1.2 are satisfied and u is the corre-
sponding minimizer of (7). Let u∗ ∈ BVloc(�\S) be another minimizer and� be a connected
component of ∂Eλ for some λ ∈ range(u∗). Then for almost every λ ∈ range(u∗) one and
only one of the following statements hold:

(i) � ⊂ Z.
(ii) � ∩ Z = ∅, � is a C1 hypersurface, and u is constant on �.

Proof By the co-area formula we have

0 =
∫

�\I∪P
ϕ

[ ∇u

|∇u| − vu
∗
]

|Du∗| =
∫ ∞

0

∫
∂∗Eλ∩(�\I∪P)

ϕ

[ ∇u

|∇u| − vu
∗
]
dHn−1dλ

(26)

for every smooth vector field ϕ, where ∂∗Eλ is the reduced boundary of Eλ. Therefore
∇u
|∇u| = vu

∗
, Hn−1 − a.e. in ∂∗Eλ ∩ (�\I ∪ P) for almost every λ ∈ range(u∗). Since

|DχEλ | is the (n − 1)−dimensional Hausdorff measure restricted to ∂∗Eλ (see Chapter 4 in
[4]), for almost every λ ∈ range(u∗) the generalized normal ν(x) exists for |DχEλ | − a.e.
x ∈ ∂Eλ ∩ (�\I ∪ P) and coincides there with the continuous vector field ∇u

|∇u| .
Now let x ∈ ∂Eλ ∩ �\I ∪ P such that x /∈ Z. Since Z is closed, there exists ε > 0

such that Bε(x) ∩ Z = ∅. By Theorem 4.8 in [4], ∂Eλ ∩ Bε(x) can be represented as
the graph of a Lipschitz continuous function g. Thus the derivative of g coincides almost
everywhere with a continuous function and therefore g must be C1. Hence we conclude
that if x ∈ [∂Eλ ∩ (�\I ∪ P)]\Z , then ∂Eλ is a C1 hyperspace near x for almost every
λ ∈ range(u∗).

Next we show that u is constant on every C1 connected open subset of � of ∂Eλ ∩
(�\I ∪ P). Let γ : (−ε,+ε) → � be an arbitrary C1 curve. Then

d

dt
u(γ (s)) = |∇u(γ (s))|ν(γ (s)).γ ′(s) = 0,

because either |∇u(γ (s))| = 0 or ν(γ (s)).γ ′(s) = 0 on �. Thus u is constant along γ

and hence u is constant on �. Therefore it follows from continuity of u and the definition
of the set Z that, for almost every λ ∈ range(u∗), if � �⊂ Z is a connected component of
∂Eλ ∩ (�\I ∪ P), then � is a C1 hypersurface, u is constant on �, and � ∩ Z = ∅. The
proof is now complete. ��
Step III We show next that every connected component of ∂Eλ intersects the boundary ∂�.

Proposition 3.1 Assume that the assumptions of Theorem 1.2 are satisfied and u is the
corresponding minimizer of (7). Suppose �λ is a C1 connected component of ∂Eλ = ∂{x ∈
�\I : u∗(x) > λ} and �λ ∩ Z = ∅. Then

�λ ∩ ∂� �= ∅.

Proof Assume �λ ∩ ∂� = ∅. Then one of the followings statements hold:

(I) �λ is a manifold without boundary in �\I.
(II) �λ ∩ ∂I �= ∅.

Case I Assume that �λ is a manifold without boundary in �. Then, since ∂� is connected,
∂�∪�λ is a compact manifold with two connected components. By the Alexander
duality theorem for ∂�∪�λ (see, e.g., Theorem 27.10 in [5]) we have thatRn\(∂�∪
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�λ) is partitioned into three open connected components:Rn = (Rn\�)∪O1 ∪O2.
Since �λ ⊂ � we have O1 ∪ O2 = �\�λ and then ∂Oi ⊂ ∂� ∪ �λ, for i = 1, 2.
We claim that at least one of the ∂O1 or ∂O2 is in �λ. Assume not, i.e. for i = 1, 2,
∂Oi ∩ ∂� �= ∅. Since ∂� is connected (by assumption) we have that O1 ∪O2 ∪ ∂�

is connected which implies that O1 ∪ O2 ∪ (Rn\�) is also connected. Again by
applying the Alexander duality theorem for �λ ⊂ R

n , we have that Rn\�λ has
exactly two open connected components, one of which is unbounded: Rn\�λ =
O∞ ∪ O0. Since O1 ∪ O2 ∪ (Rn\�) is connected and unbounded, we have that
O1 ∪ O2 ∪ (Rn\�) ⊂ O∞, which leaves O0 ⊂ R

n\(O1 ∪ O2 ∪ (Rn\�)) ⊂ �λ.
This is impossible since O0 is open and �λ is a hypersurface. Therefore either ∂O1

or ∂O2 or both lie in �λ.
Assume ∂O1 ⊂ �λ. We claim that u is constant in O1. Indeed, by Lemma 3.2,
u = c on �λ for some c. Hence the new map ũ defined by

ũ :=
{
u, x ∈ �\O1,

c, x ∈ O1,

is in BVloc(�\S) and decreases the energy, which contradicts the minimality of u.
Therefore u = c in O1. This is a contradiction since we have assumed �λ ∩Z = ∅.

Case II Suppose �λ ∩ ∂I �= ∅. We first consider the dimensions n ≥ 3. Let

ε∗ := min

{
min
i �= j

dist(Ii , I j ), min
i

dist(Ii , ∂�)

}
,

where Ii , 1 ≤ i ≤ m, are the open connected components of the set I. For any
0 < ε < ε∗ : define

Iε = {x ∈ � : dist(x, I) < ε}.
Then Iε is an open set with the same number of disjoint open connected components
as I. Now let �ε

λ = �λ\Iε which we know is C1 on �\Iε . Since ∂�ε
λ ⊂ ∂Iε and

∂Iε\∂�ε
λ is open, each connected component of ∂�ε

λ is the boundary of an open
set in ∂Iε with connected boundary. Suppose M is a connected component of ∂�ε

λ.
Then M ⊂ ∂Iε

i for some 1 ≤ i ≤ m, Iε
i is C1-diffeomorphic image of the unit ball

for ε small, and M is an orientable manifold without boundary in ∂Iε . Therefore it
follows from Alexander’s duality theorem that

∂Iε
i \M = V1 ∪ V2,

where V1, V2 are disjoint open connected (with respect to the topology of ∂Iε) sets.
Since �ε

λ can be extended to a C1 hypersurface �λ inside Iε\I, we can extend �ε
λ

inside Iε
i to obtain a C1 hypersurface H ε

λ such that

H ε
λ ∩ (�\Iε) = �ε

λ ∩ (�\Iε)

and ∂(H ε
λ ∩ Iε) = M . Repeating this argument for other connected components of

∂�ε
λ leads to aC1 orientable hypersurfaceSε

λ with no boundary such that ∂�∩Sε
λ =

∅ and Sε
λ ∩ (�\Iε) = ∂�ε

λ. Now apply Alexander’s duality theorem to get the
partition

R
n\Sε

λ = Oε
0 ∪ Oε∞,
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where Oε
0 and Oε∞ are open subsets of Rn and Oε∞ is unbounded. If ε′ < ε, then

�ε
λ ⊂ �ε′

λ and Iε′ ⊂ Iε . Hence

Iε\Ōε
0 ⊂ Iε′ \Ōε′

0 .

Now let

O = ∪0<ε<ε∗
(Iε\Ōε

0

)
.

Then O is open and ∂O ⊂ �λ ∪ Ī. We claim that u is constant in O . Indeed by
Lemma 3.2, u = c on �λ for some constant c. Define

ũ :=
{
u, x ∈ �\O,

c, x ∈ O.
(27)

Then ũ ∈ BVloc(�\S) which contradicts the minimality of u. Hence u is constant
in O which is a contradiction because we have assumed �λ ∩ Z = ∅.

Now assume n = 2. Since �λ ∩ ∂� = ∅ and I has only one connected component,
there exists two distinct point a, b ∈ �̄λ ∩ ∂I such that

∂I\{a, b} = V1 ∪ V2.

Note that �λ ∪V1 is a continuous closed curve in R
2. By the Jordan Curve Theorem

there exists a bounded open set O such that ∂O = �λ ∪ V1. Define ũ by (27), then
with a similar argument we reach a contradiction. In both cases (I) and (II) the
contradiction follows from the assumption that �λ ∩ ∂� = ∅. ��

Step IV Since f ∈ C1(∂�), f can be extended to a function inC1(Rn\�)∩BV (Rn\�). We
will denote the extension of f to �c by f , again. We will also denote the continuous
extension of u∗ to R

n with u∗ = f on �c by u∗ again. Define

Fλ = {x ∈ R
n\Ī : u∗(x) ≥ λ}

and let the corresponding F ′
λ be defines as (23).

Remark 3.3 Let � ⊂ range(u∗) be the set defined by Lemma 3.2 and λ ∈ �. By Lemma
3.2 every connected component of ∂F ′

λ ∩ (�\Z) is a C1 hypersurface. Since Fλ ∩ (�\Z)

differs from F ′
λ ∩ (�\Z) on a set of measure zero, we may assume that Fλ ∩ (�\Z) is open.

The proof of the following lemma is very similar to that of Theorem 3.7 in [17]. We
include the proof for the convenience of the reader.

Lemma 3.4 Let � be a bounded domain with connected Lipschitz boundary. If x ∈ ∂∗Fλ ∩
∂�, where ∂∗Fλ is the reduced boundary of Fλ, and

lim
r→0

−
∫
Br (x)∩�

|u∗(y) − f (x)|dy = 0,

then λ = f (x).
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Proof Assume f (x) < λ. Then

0 = lim
r→0

1

|Br (x) ∩ �|
(∫

Br (x)∩�∩{u∗<λ}
|u∗(y) − f (x)|dy

+
∫
Br (x)∩�∩{u∗≥λ}

|u∗(y) − f (x)|dy
)

≥ lim sup
r→0

1

|Br (x) ∩ �|
∫
Br (x)∩�∩{u∗≥λ}

|u∗(y) − f (x)|dy

≥ (λ − f (x)) lim sup
r→0

|Br (x) ∩ � ∩ {u∗ ≥ λ}|
|Br (x) ∩ �| .

Consequently

lim sup
r→0

|Br (x) ∩ � ∩ {u∗ ≥ λ}|
|Br (x) ∩ �| = 0.

On the other hand since f is the trace of u∗ ∈ BV (Rn\�) on ∂�, with a similar argument
we conclude that

lim sup
r→0

|Br (x) ∩ (Rn\�) ∩ {u∗ ≥ λ}|
|Br (x) ∩ (Rn\�)| = 0.

Therefore

lim
r→0

|Br (x) ∩ {u∗ ≥ λ}|
|Br | = 0

and hence x /∈ ∂∗Eλ which is a contradiction. Similarly f (x) > λ leads to a contradiction.
Thus f (x) = λ. ��

Proposition 3.2 Assume that the assumptions of Theorem 1.2 hold, and let u∗ be a the
corresponding minimizer of (7). Then for almost every λ ∈ �

u(∂Fλ ∩ (�\Z)) = {λ},
where � and Z are defined by (25) and (24), respectively.

Proof In view of Remark 3.3 and Proposition 3.1, we may assume that Fλ ∩ (�\Z) is open
and every connected component of ∂Fλ ∩ (�\Z) is a C1 hypersurface intersecting ∂�.
Now let � be a connected component of ∂Fλ ∩ (�\Z). By Proposition 3.1, �̄ ∩ ∂� �= ∅.
Let x0 ∈ �̄ ∩ ∂� �= ∅. Since x0 /∈ Z, |∇u(x0)| > 0. On the other hand, note that if
x0 ∈ �̄ ∩ ∂�\∂∗Fλ, then x0 is not a regular point of the function u∗ ∈ BV (Rn), i.e. u∗ is
discontinuous at x0, which is not of jump type (see §4.4 in [16] for a precise definition of
regular point of BV functions). Since the set of points which are not regular points of u∗ has
(n − 1)−dimensional measure zero (see §4.5 [16]), for almost every λ ∈ � and Hn−2-a.e.
x0 ∈ �̄ ∩ ∂�, x0 ∈ ∂∗Fλ ∩ ∂�. Thus by Lemma 3.4 we conclude that u(�) = {λ}. ��

It is now straightforward to deduce uniqueness from the results established above. To make
the argument rigorous it helps to work with super level sets of the solutions as in [6,17]. Note
however that we do not rely on maximum principles for minimum surfaces that are at the
core of the uniqueness proofs in [6,17].
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Proof of Theorem 1.2 First we prove that u∗ = u a.e. in �\(Z ∪ Ī). Suppose this is not true,
then without loss of generality we may assume that there exists α > 0 such that

Hn(N ) > 0,

where

N := {x ∈ �\(Z ∪ Ī) : u∗(x) ≥ u(x) + α},
because otherwise the function f in (7) can be replaced by − f . Let

λ∗ = sup

{
λ : Hn({x ∈ �\(Z ∪ Ī) : u(x) ≥ λ} ∩ N ) ≥ Hn(N )

2

}
.

Since u ∈ L1(�\Ī), λ∗ < ∞. For 0 < β < 1 define

E1 = {x ∈ �\(Z ∪ Ī) : u∗(x) ≥ λ∗ + (1 − β)α}.
By Lemma 3.2 and Proposition 3.1 there exists 0 < β < 1 such that λ∗ + (1 − β)α ∈ �.
Also it follows from the definition of λ∗ that Hn(K ) > 0, where

K := {x ∈ �\(Z ∪ Ī) : λ∗ − βα < u(x) < λ∗} ∩ N .

Now let E2 = {x ∈ �\(Z∪Ī) : u(x) ≥ λ∗}. It is easy to see that K ⊂ E1\Ē2 ⊂ �\(Z∪Ī).
On the other hand by Remark 3.3 we may assume that E1 is open and hence E1\Ē2 is a
non-empty open set. Also

∂(E1\Ē2) ⊂
(
∂E1 ∩ Ec

2

)
∪ (E1 ∩ ∂E2)

and in particular, ∂(E1\Ē2) ⊂ ∂E1 ∪ ∂E2. Notice that ∂(E1\Ē2) �⊂ ∂E2, because otherwise
u = λ∗ in E1\Ē2 which is in contradiction with the assumption E1\Ē2 ⊂ (�\Z). Let

x0 ∈ ∂(E1\Ē2).

Then x0 ∈ ∂E1 ∩ Ec
2. By Proposition 3.2 we have

u(x0) ∈ u(∂E1) = {λ∗ + (1 − β)α}. (28)

On the other hand

u(x0) ∈ u(Ec
2) ⊂ (−∞, λ∗]

which is in contradiction with (28). Hence u∗ = u a.e. in �\(Z ∪ Ī).
To finish the proof let � be a connected component of Z. Since, int(u(Z)) = ∅, u is

continuous, u = u∗ in �\(Z ∪ Ī), and u∗ minimizes (7), u = u∗ a.e. in �. The proof is now
complete. ��

Remark 3.5 Note that in domension n = 2, if the number of components of I is bigger
than one, then there may exists level curves going from one component to the other, and not
intersecting ∂�. So the uniqueness argument fails. In higher dimensions this can not happen.
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