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Abstract Index theory revealed its outstanding role in the study of periodic orbits of Hamil-
tonian systems and the dynamical consequences of this theory are enormous. Although the
index theory in the periodic case is well-established, very few results are known in the case of
homoclinic orbits of Hamiltonian systems. Moreover, to the authors’ knowledge, no results
have been yet proved in the case of heteroclinic and halfclinic (i.e. parametrized by a half-
line) orbits. Motivated by the importance played by these motions in understanding several
challenging problems in Classical Mechanics, we develop a new index theory and we prove at
once a general spectral flow formula for heteroclinic, homoclinic and halfclinic trajectories.
Finally we show how this index theory can be used to recover all the (classical) existing
results on orbits parametrized by bounded intervals.
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Introduction

Several central problems in Classical Mechanics involve unbounded trajectories of a phase
flow or, more generally, of a one-parameter family of phase flows. Hamiltonian PDE’s,
e.g. reaction–diffusion equations in one space dimension, such as fifth-order Kortweg–De-
Vries (KdV), nonlinear Schrödinger (NLS) or longwave–shortwave resonance (LW–SW)
equations, have the property that their steady part is a finite-dimensional Hamiltonian system.
For these Hamiltonian systems, solitary wave solutions can be characterised as homoclinic
and heteroclinic orbits, namely solutions parametrized by the whole real line and joining a
saddle point to itself in the former case, two different saddle points in the latter case. In this
respect, the spectral problem associated with the linearization around a given homoclinic
motion leads to a one-parameter family of linear Hamiltonian systems.

Central configurations in the N -body problem with a general singular α-homogeneous
weak self-interacting potential (including the gravitation case) give rise to special asymptotic
solutions (e.g. homographic as well as a class of colliding or parabolic motions) that represent
an interesting class of motions parametrized by unbounded intervals for which the index
theory developed in this paper could be successfully employed. (We refer the reader to [8,22]
and references therein). In the classical case of orbits parametrized by bounded intervals (for
instance in the study of periodic orbits) spectral flow formulas have been recently used in order
to tackle challenging linear stability problems. (We refer the interested reader to [6,7,19–21]
and references therein). Except these results in which an index theory for homoclinic motions
was developed, we only mention the paper [11], where the authors assigned a geometrical
index to any unbounded motion of a Hamiltonian system, and [33] where a suitable spectral
flow formula for a one-parameter family of Hamiltonian systems under homoclinic boundary
conditions was proved.

Two are the main ingredients of the index theory developed in this paper. The first one
is essentially based on a symplectic invariant known in literature as Maslov index, which,
roughly speaking, counts algebraically the intersections between a (continuous) curve of
Lagrangian subspaces � and a transversally oriented sub-variety (the singular Maslov cycle
�(L0)) of a fixed Lagrangian subspace L0 in the Lagrangian Grassmannian manifold. A
strictly related notion that we essentially consider, is the Maslov index for (ordered) pairs of
Lagrangian paths. (Cf. Sect. 3, [10,24,31] and reference therein) (Fig. 1).

The second key ingredient is a well-known topological invariant termed spectral flow.
The spectral flow is an integer-valued homotopy invariant for paths of selfadjoint Fredholm
operators that was introduced by Atiyah, Patodi and Singer in [2] in their investigation of
index theory on manifolds with boundary. Roughly speaking, it counts the net number of
eigenvalues which pass through the zero in the positive direction when the parameter travels

Fig. 1 �(L0) is the Maslov
cycle (or train) with vertex L0.
The (red) curve � represents a
smooth path of Lagrangian
subspaces. The black curve inside
the cycle �(L0) represents the
(singular) higher codimensional
stratum (color figure online)
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along the whole interval. Otherwise stated is the integer given by the number of negative
eigenvalues that becomes positive minus the number of positive that become negative when
the parameter runs along the whole interval. A related notion that we shall use is that of
ε-spectral flow (cf. [10] and references therein), denoted by ε-sf which counts the number
of eigenvalues λ crossing the line λ = ε > 0 with sign. Due to its central importance in
the (symplectic) Sturm theory (cf. [5]), in the study of conjugate and focal points along
geodesics in semi-Riemannian manifolds (cf. [17,26,27,29] and references therein), as well
as grading the Floer complex in Floer homology (cf. [3] and references therein), only to
mention very few of them, the literature on the subject is very broad. Among all of them we
found particularly interesting and elegant at the same time the following papers that represent
our basic references: [9,10,12,24,28,32,35]. Quoting the masterpiece of V.I. Arnol’d [4], the
idea behind the spectral flow formula can be masterfully resumed by the following few lines

[…] It turned out that there appeared in the asymptotic formulas certain integers,
reflecting homological properties of curves on surfaces of the phase space and closely
related to the Morse indices of the corresponding variational problems.

This deep sentence essentially summarizes the content of this paper in the case of Hamiltonian
systems and motions parametrized by (un)bounded intervals. So far, several constructions of
the Maslov index and related indices (e.g the Maslov-type, the Conley–Zehnder, Hörmander
or four-fold, Kashiwara or triple, Leray and Wall index, just to mention only a few of them)
were constructed. We refer to [10,23,31] and references therein for an exhaustive account on
the subject. In the present paper, we shall use the construction given in [10] (cf. also [31]),
where the authors associate a Maslov index to any ordered pair of continuous (and piecewise
smooth) paths of Lagrangian subspaces, by assigning an integer which heuristically counts
algebraically (namely with signs and multiplicities) the number of non-trivial intersections
between the paths of Lagrangian subspaces.

The paper is organized as follows. Section 1 is devoted to describe the problem, to introduce
the building blocks of the index theory constructed in the paper as well as to state and to give
an account of the ideas behind the proof of the main results. Section 2 is dedicated to recall
as well as to describe the main properties of the Maslov index for pairs as well as of the
spectral flow for paths of closed selfadjoint Fredholm operators, which are behind the notion
of the geometrical and spectral index, respectively. Section 3, which represents the core of
the paper, is devoted to prove the main results stated in Sect. 1 whose proofs are scattered
along the whole of section.

1 Description of the problem and main results

The goal of this section is to introduce the dynamical framework in order to describe the
problem as well as the main definitions and ingredients of the index theory both in the
unbounded and bounded case. We conclude this section by stating the main results and
discussing the principal consequences of the index theory constructed in the paper.

1.1 Index theory for unbounded orbits

Given the C 2-Hamiltonian function H : R×R
2n → R, we start to consider the Hamiltonian

system
w′(t) = J ∇H

(
t, w(t)

)
, t ∈ R (1.1)
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Fig. 2 On the left is sketched a
heteroclinic connection w

between the two saddle points p
and q. The (red) punctured curve
represents the unstable manifold
of the point p and the (blue)
dashed curve represents the
stable manifold of the point q. On
the right is drawn a homoclinic
orbit at p (color figure online)

w
p

q

w
p

where ′ denotes the derivative with respect to the (time) t variable, ∇ the gradient with respect
to the second variable and where J is the standard complex structure

J =
[

0 −In
In 0

]
.

We assume that p, q ∈ R
2n are two restpoints (or equilibria) for the Hamiltonian vectorfield;

thus in particular

∇H(t, p) = ∇H(t, q) = 0 ∀ t ∈ R.

In the rest of the paper, we always assume that they are hyperbolic, in the sense that the
spectrum of the Hessian matrix of H at p and q is off the imaginary axis, namely

σ
(
D2H(·, p)) ∩ iR = σ

(
D2H(·, q)

) ∩ iR = ∅.

A heteroclinic connection between p and q is a solution of Eq. (1.1) satisfying the following
asymptotic (boundary) conditions

lim
t→−∞ w(t) = p and lim

t→+∞ w(t) = q.

In the particular case in which the orbit is asymptotic both in the past and in the future to the
same equilibrium point, namely

lim|t |→+∞ w(t) = p
(

or lim|t |→+∞ w(t) = q
)
,

we shall refer to w as homoclinic solution at p (or q), respectively (Fig. 2).
The other class of unbounded motions that we introduce, are termed future halfclinic

solutions (resp. past halfclinic solutions). Let L be a Lagrangian subspace and let H :
[0,+∞) × R

2n → R be a C 2-function. A future halfclinic solution at q is a solution of the
asymptotic boundary value problem (Fig. 3)

{
w′(t) = J ∇H

(
t, w(t)

)
, t ∈ (0,+∞)

w(0) ∈ L and limt→+∞ w(t) = q.

Analogously, if H : (−∞, 0] × R
2n → R is of class C 2, we define a past halfclinic

solution at p as a solution of the following asymptotic boundary value problem
{

w′(t) = J ∇H
(
t, w(t)

)
, t ∈ (−∞, 0)

limt→−∞ w(t) = p and w(0) ∈ L .
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Fig. 3 A past halfclinic orbit
(solid green line) between p and
L and a future halfclinic orbit
(dashed blue line) between L and
q (color figure online)

q

p
w

L w

By linearizing Eq. (1.1) along the h-clinic solution w (where h- stands for hetero or homo-
or half), we end-up with the following linear Hamiltonian system

{
z′(t) = J B(t) z(t), t ∈ R

limt→+∞ z(t) = 0 and limt→−∞ z(t) = 0

in the heteroclinic/homoclinic case and with
{
z′(t)= J B(t) z(t), t ∈ [0,+∞)

z(0)∈ L and limt→+∞ z(t)=0

(

resp.

{
z′(t) = J B(t) z(t), t ∈ (−∞, 0]
limt→−∞ z(t) = 0 and z(0) ∈ L

)

in the future (resp. past) halfclinic case. Denoting by γτ the matrix solution of the Hamiltonian
initial value problem given in Eq. (1.1) such that γτ (τ ) = I , we recall the stable and the
unstable subspaces are respectively given by

Es(τ )=
{

v ∈ R
2n

∣∣∣∣ lim
t→+∞ γτ (t) v=0

}
and Eu(τ ) :=

{
v ∈ R

2n
∣∣∣∣ lim
t→−∞ γτ (t) v=0

}
.

Let us now consider the constant solutions of the Hamiltonian system given in Eq. (1.1) at
the restpoints p, q . Denoting by B(−∞) and by B(+∞) the linearization of ∇H at (the
constant solutions) p and q respectively, we get

z′(t) = J B(±∞) z(t), t ∈ R

and, by the hyperbolicity assumption on p and q , we get σ
(
J B(±∞)

) ∩ iR = ∅. We let
S(t) := J B(t), S(±∞) := J B(±∞), and we set

Es(±∞) :=
{

v ∈ R
2n

∣∣∣∣ lim
t→+∞ exp

(
t S(±∞)

)
v = 0

}
and

Eu(±∞) :=
{

v ∈ R
2n

∣∣∣∣ lim
t→−∞ exp

(
t S(±∞)

)
v = 0

}
.

The invariant stable and unstable subspaces defined above are Lagrangian subspaces (cf.,
for instance, [11,33] and references therein) and the following convergence result holds:

lim
τ→+∞ Es(τ ) = Es(+∞) and lim

τ→−∞ Eu(τ ) = Eu(−∞).

(Cf. [1, Proposition 1.2]). Following authors in [10] to each ordered pair of Lagrangian paths

τ 
−→ (
Es(τ ), Eu(−τ)

)
, τ 
−→ (

Es(τ ), L
)

and finally τ 
−→
(
L , Eu(−τ)

)
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we can assign an integer known as Maslov index of the pair μCLM which heuristically counts
the nontrivial intersections (with sign) between the paths defining the pair when the parameter
τ varies (Cf. Sect. 2, for the definition).

Remark 1.1 Several constructions for the Maslov index are available in the literature, but in
this paper we essentially follows the ones given by authors in [4,10,24,31] and especially by
Cappell, Lee & Miller in [10].

Inspired by [13], we are now ready to associate to any h-clinic solution, the geometrical
index.

Definition 1.2 We define the geometrical index of the

• heteroclinic or homoclinic orbit w, as the integer given by

ι(w) := −μCLM
(
Es(τ ), Eu(−τ); τ ∈ [0,+∞)

)
;

• future halfclinic orbit w between L and q , as the integer given by

ι(w) := −μCLM
(
Es(τ ), L; τ ∈ [0,+∞)

)
;

• past halfclinic orbit w between p and L , as the integer defined by

ι(w) := −μCLM
(
L , Eu(−τ); τ ∈ [0,+∞)

)
.

Let now H : [0, 1] × R × R
2n → R be a continuous map such that Hλ := H(λ, ·, ·) :

R×R
2n → R is of class C 2 for all λ ∈ [0, 1] and its derivatives depend continuously on λ.

We consider the one-parameter family of Hamiltonian systems

w′(t) = J ∇Hλ

(
t, w(t)

)
, t ∈ R. (1.2)

For each λ ∈ [0, 1], let pλ, qλ ∈ R
2n such that

∇Hλ

(
t, pλ

) = ∇Hλ

(
t, qλ

) = 0, ∀ (λ, t) ∈ [0, 1] × R

we assume that they are hyperbolic restpoints and let us denote by wλ the heteroclinic
connection between pλ and qλ. Furthermore, let λ 
→ Lλ be a continuous path of Lagrangian
subspaces and we denote by wλ the past halfclinic connection between pλ and Lλ and by
wλ the future halfclinic connection between Lλ and qλ. By linearizing Eq. (1.2) along the
h-clinic solution wλ we get the following linear Hamiltonian system

{
z′(t) = J Bλ(t) z(t) t ∈ R

limt→+∞ z(t) = 0 and limt→−∞ z(t) = 0
(1.3)

in the heteroclinic/ homoclinic case and
{
z′(t)= J Bλ(t) z(t) t ∈ [0,+∞)

z(0)∈ Lλ and limt→+∞ z(t)=0

(

resp.

{
z′(t)= J Bλ(t) z(t) t ∈ (−∞, 0]
limt→−∞ z(t)=0 and z(0)∈ Lλ

)

(1.4)

in the future (resp. past) halfclinic case. Denoting by γ(τ,λ) the matrix solution of the Hamil-
tonian system given in Eq. (1.2), such that γ(τ,λ)(τ ) = I , we recall the stable and the unstable
subspaces are respectively given by
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Es
λ(τ ) :=

{
v ∈ R

2n
∣
∣
∣
∣ lim
t→+∞ γ(τ,λ)(t) v = 0

}
and

Eu
λ(τ ) :=

{
v ∈ R

2n
∣
∣
∣
∣ lim
t→−∞ γ(τ,λ)(t) v = 0

}
.

Let us now consider the constant solutions of the Hamiltonian system given in Eq. (1.2) at
the restpoints pλ, qλ. By linearizing along them and denoting by Bλ(−∞) and by Bλ(−∞)

the linearization of ∇Hλ along the (constant solutions) pλ and qλ respectively, we get

z′(t) = J Bλ(±∞) z(t), t ∈ R

and, by the hyperbolicity of pλ and qλ, for each λ ∈ [0, 1], σ
(
J Bλ(±∞)

) ∩ iR = ∅. We let
Sλ(t) := J Bλ(t) and Sλ(±∞) := J Bλ(±∞). Let us consider the continuous two-parameters
family of Hamiltonian matrices S : [0, 1] × R → Mat (2n,R) and assume that:

(H1) There exists two continuous paths that will be denoted by λ 
→ Sλ(+∞) and λ 
→
Sλ(−∞) such that

Sλ(+∞) = lim
t→+∞ S(λ, t) and Sλ(−∞) = lim

t→−∞ S(λ, t), λ ∈ [0, 1]

uniformly with respect to λ. Moreover for every λ ∈ [0, 1] the matrices Sλ(±∞) are
hyperbolic.

We set

Es
λ(±∞) :=

{
v ∈ R

2n
∣∣∣∣ lim
t→+∞ exp

(
t Sλ(±∞)

)
v = 0

}
and

Eu
λ(±∞) :=

{
v ∈ R

2n
∣∣∣∣ lim
t→−∞ exp

(
t Sλ(±∞)

)
v = 0

}
.

Under the assumption (H1), the invariant stable and unstable subspaces defined above are
Lagrangian subspaces (cf. Lemma 3.1) and by invoking [1, Proposition 1.2], the following
convergence result holds

lim
τ→+∞ Es

λ(τ ) = Es
λ(+∞) and lim

τ→−∞ Eu
λ(τ ) = Eu

λ(−∞).

To the linearized Hamiltonian system given in Eqs. (1.3) and (1.4), we associate respec-
tively the closed selfadjoint Fredholm operators

Aλ := −J
d

dt
− Bλ(t) : D(Aλ) ⊂ L2(R;R2n) → L2(R;R2n) and

A+
λ := −J

d

dt
− Bλ(t) : D(A+

λ ) ⊂ L2([0,+∞);R2n) → L2([0,+∞);R2n)

(
resp. A−

λ := −J
d

dt
− Bλ(t) : D(A−

λ ) ⊂ L2((−∞, 0];R2n) → L2((−∞, 0];R2n)

)

(1.5)

where D(Aλ) = W 1,2(R;R2n) and D(A±
λ ) = W±

λ for

W+
λ := {

u ∈ W 1,2([0,+∞);R2n)
∣∣ u(0) ∈ Lλ

}
and

W−
λ := {

u ∈ W 1,2((−∞, 0];R2n)
∣∣ u(0) ∈ Lλ

}
.
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Denoting byCF sa(V ) the space of all closed selfadjoint Fredholm operators on the (real sep-
arable) Hilbert space V , we have three well-defined families of closed selfadjoint Fredholm
operators

A : [0, 1] → CF sa(L2(R,R2n)
)

and

A+ : [0, 1] → CF sa(L2([0,+∞),R2n)
)

(
resp. A− : [0, 1] → CF sa(L2((−∞, 0],R2n)

))
.

It is easy to check that A, A+, A− are actually (gap) continuous. Now, if pλ, qλ are two
families of hyperbolic restpoints and wλ is a heteroclinic between them, we define the spectral
index of wλ as minus the spectral flow of A (cfr. Sect. 2.2), i.e.

ispec(wλ; λ ∈ [0, 1]) := − sf(Aλ; λ ∈ [0, 1])
and analogously if L ∈ C 0

([0, 1];�(n)
)

and wλ is either a future halfclinic between Lλ

and p (resp. a past halfclinic between qλ and Lλ), we define the spectral index of wλ as the
negative spectral flow of the paths A+ (resp. A−); thus

ispec(wλ) := − sf(A+
λ ; λ ∈ [0, 1]) (

resp. ispec(wλ) := − sf(A−
λ ; λ ∈ [0, 1])).

(Cf. Sects. 2 and 3 for further details). Under this notation, the main result of this paper reads
as follows.

Theorem 1 (Index Theorem for families of h-clinic orbits) Let pλ, qλ be two hyperbolic
restpoints of theHamiltonian systemgiven inEq. (1.2) and letwλ be a heteroclinic connection
between them. Under the previous notation and if (H1) holds, we get

(heteroclinic/homoclinic case )

ispec(wλ; λ ∈ [0, 1]) = ι(w1) − ι(w0) + μCLM
(
Es

λ(+∞), Eu
λ(−∞); λ ∈ [0, 1]).

Let L ∈ C 0
([0, 1];�(n)

)
and let wλ either a future halfclinic solution between Lλ and qλ

or a past halfclinic solution between pλ and Lλ. Under the previous notation and if (H1) is
fulfilled, then we have

(future halfclinic case)

ispec(wλ; λ ∈ [0, 1]) = ι(w1) − ι(w0) + μCLM
(
Es

λ(+∞), Lλ; [0, 1])

(past halfclinic case)

ispec(wλ; λ ∈ [0, 1]) = ι(w1) − ι(w0) + μCLM
(
Lλ, E

u
λ(−∞); [0, 1]).

Remark 1.3 A few comments on the proof of Theorem 1 are in order. The idea behind the
spectral flow formulas in the heteroclinic/homoclinic and halfclinic cases relies on the fact
that either the path A or the paths A± (defined in Eq. (1.5)) are stratum-homotopic to the
real first order selfadjoint elliptic operator

D(Eu
λ(0), Es

λ(0))φ := −J
dφ

dt
(1.6)

on the domain Wλ := {
u ∈ W 1,2([a, b];R2n)

∣∣ u(a) ∈ Eu
λ(0), u(b) ∈ Es

λ(0)
}

and one of
the main ingredient of the proof (scattered all along the whole of Sect. 3) is based on the
ε-spectral flow as well as on [10, Theorem 0.4] which will be crucial in our arguments. It is
worth noticing that the crucial role of the operator given in Eq. (1.6) could be traced back to
the works by Floer [14–16] and few years later to Yoshida [34].
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0

Fig. 4 A sketch of the stable (blue rectangle on the right) and unstable subspace (red rectangle on the left)
parameter spaces (color figure online)

Remark 1.4 We observe that in the case of future and past halfclinic orbits, the pairs of paths
of Lagrangian subspaces to be considered are E = (

Es
λ(0), Lλ

)
and E = (

Lλ, Eu
λ(0)

)
.

As direct application of Theorem 1, in the special case of a (single) Hamiltonian system, we
get a spectral flow formula for a homoclinic and future/past halfclinic orbits in terms of the
relative Morse index. (Cf. We refer the interested reader to Sect. 3 for the proof).

Corollary 1 (Index Theorem for homoclinic orbits of Chen and Hu) Let H ∈ C 2
(
R ×

R
2n,R

)
be a Hamiltonian function, p be a hyperbolic restpoint,w be a (homoclinic) solution

of the Hamiltonian system
{

w′ = J∇H
(
t, w(t)

)
, t ∈ R

lim|t |→+∞ w(t) = p.

We set B(t) := D2H
(
t, z(t)

)
and B∗ respectively the linearization of ∇H along the homo-

clinic orbit z and along the constant solution p and we assume that

lim
z→p

D2H
(
t, z

) = B∗

uniformly with respect to t ∈ R. Then, we have

irel

(
−J

d

dt
− B∗,−J

d

dt
− B(t)

)
= ι(w)

where we denoted by irel the relative Morse index(cf. Definition 2.10).

An analogous result holds in the halfclinic case.

Corollary 2 (Index Theorem for halfclinic orbits) Let H ∈ C 2
([0,+∞) × R

2n,R
)
(resp.

H ∈ C 2
(
(−∞, 0] × R

2n,R
)
be a Hamiltonian function, q be a hyperbolic restpoint,

L ∈ �(n) and w be a future (resp. past) halfclinic solution of the Hamiltonian system
{

w′ = J∇H
(
t, w(t)

)
, t ∈ [0,+∞)

w(0) ∈ L and limt→+∞ w(t) = q

(

resp.

{
w′ = J∇H

(
t, w(t)

)
, t ∈ (−∞, 0]

limt→−∞ w(t) = p resp. w(0)

)

.

Under the assumptions of Corollary 1, we have in both cases

irel

(
−J

d

dt
− B∗,−J

d

dt
− B(t)

)
= ι(w).
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1.2 A new index theory on bounded domains

This subsection is devoted to provide a new spectral flow formula for Hamiltonian systems
defined on bounded intervals. Let L , M ∈ �(n), a, b ∈ R and H : [a, b] × R

2n → R be a
C 2-function and let w be a solution of the Hamiltonian system

{
w′(t) = J∇H

(
t, w(t)

)
, t ∈ (a, b)

w(a) ∈ L and w(b) ∈ M.
(1.7)

We denote by γa the (fundamental) matrix-valued solution γa : [a, b] → Sp (2n,R) of the
Hamiltonian system given in Eq. (1.7)

{
γ ′
a(t) = S(t) γa(t), t ∈ [a, b]

γa(a) = I.

For any c ∈ (a, b) we consider the ordered pair of Lagrangian paths pointwise defined by
(
W (c), V (c)

)

where
W (c) := γa(c)γ

−1
a (b)M and V (c) := γa(c)L .

Let α : [a, b] → [c, b] be a positive affine reparametrization of the interval [c, b] (with the
same orientation) whilst the function β : [a, b] → [a, c] is a negative affine reparametrization
of the interval [a, c] (with the opposite orientation).

Definition 1.5 Under the previous notation, we define the geometrical index of the solution
w of the Hamiltonian system given in Eq. (1.7) as follows

ιb(w) := μCLM
(
W

(
β(τ)

)
, V

(
α(τ)

); τ ∈ [a, b]
)
.

Remark 1.6 It is worth noticing that Definition 1.5 is new in the case of orbits parametrized
by bounded intervals. In fact, it is standard (cfr. [5,32], for instance) in this case to define the
geometrical index of the solution w of the Hamiltonian system given in Eq. (1.7) as follows

μCLM
(
M, γa(t)L; τ ∈ [a, b]).

However, we will prove in Lemma 3.10 that these two integers coincide. In this way we are
able to recover all the existing results.

Let now H : [0, 1] × [a, b] × R
2n → R be a continuous map such that Hλ := H(λ, ·, ·) :

[a, b] × R
2n → R is of class C 2 for all λ ∈ [0, 1] and its derivatives depend continuously

on λ. As before, for each λ ∈ [0, 1], let λ 
→ Lλ and λ 
→ Mλ be two paths of Lagrangian
subspaces. We consider the one-parameter family of Hamiltonian systems

{
w′(t) = J ∇Hλ

(
t, w(t)

)
, t ∈ (a, b)

w(a) ∈ Lλ and w(b) ∈ Mλ

(1.8)

and for each λ ∈ [0, 1], we denote by wλ the bounded solution of the Hamiltonian system
given in Eq. (1.8) between Lλ and Mλ. By linearizing Eq. (1.8) along wλ, we get the following
linear Hamiltonian system

{
z′(t) = J Bλ(t) z(t), t ∈ (a, b)

z(a) ∈ Lλ and z(b) ∈ Mλ.
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We denote by W 1,2([a, b]; Lλ, Mλ) the Sobolev space defined by

W 1,2([a, b], Lλ, Mλ) := {
z ∈ W 1,2([a, b];R2n)

∣
∣ z(a) ∈ Lλ and z(b) ∈ Mλ

}

and for each λ ∈ [0, 1], we define the operators

Tλ := −J
d

dt
− Bλ(t) : W 1,2([a, b]; L , M) ⊂ L2([a, b],R2n) −→ L2([a, b],R2n).

It is well-known that for each λ ∈ [0, 1], Tλ is a closed unbounded selfadjoint Fredholm
operator in L2([a, b],R2n) having domain W 1,2([a, b]; Lλ, Mλ) (cf. [18], for instance) and
hence it remains well-defined (gap continuous) path of closed selfadjoint Fredholm operators

T : [0, 1]  λ 
−→ Tλ ∈ CF sa(L2([a, b],R2n)).

We define ispec(T ) := − sf(Tλ; λ ∈ [0, 1]).
Theorem 2 (Spectral flow formula for bounded orbits) Under the previous notation, we
have

ispec(T ) = ιb(w1) − ιb(w0) + μCLM
(
M, L; [0, 1]). (1.9)

In the special case in which the Lagrangian boundary conditions are independent on λ as
direct consequence of the nullity property of the μCLM index (cf. Sect. 2) the third term in the
(RHS) of Eq. (1.9), vanishes identically.

Corollary 1.7 In the assumption of Theorem 2, if (Lλ, Mλ) ≡ (L , M) ∈ �(n)×�(n), then
we have

ispec(T ) = ιb(w1) − ιb(w0).

Remark 1.8 We conclude the overview of the main results of this paper by stressing the fact
that, with this approach, we are able to get at once the spectral flow formulas for solutions
parametrized by a half-line, on the whole real line or by a bounded interval, by establishing in
the last case a precise and net way to relate this new definition to the classical one. It is worth
mentioning that the definition of the Maslov index given in this paper, is very flexible and it
agrees also in the unbounded case, with the definition given by authors in [11, Definition 1,
pag.592] and in [8,22]. A big effort for the readability of the paper was made by trying on
the one-hand to shorten as much as possible all proofs by avoiding standard details; on the
other hand we attempt to be clear and to add precise references to the existing literature as
much as possible. The paper is structured as follows. In Sect. 2 we quickly recap the basic
definitions and properties of the spectral flow and of the Maslov index. In Sect. 3 which is
the core of the paper, we prove a general spectral flow formula for a one-parameter family of
Hamiltonian systems. As direct application we prove a new index theorems for homoclinic
and half-clinic motions and we finally recover all the existing results in the case of orbits
parametrized on bounded intervals.

2 Maslov index and spectral flow

This Section is devoted to recall the basic definitions and properties of the Maslov index
for pairs of Lagrangian subspaces and of the spectral flow for paths of closed selfadjoint
Fredholm operators. Our basic references for the material contained in this section are [10,
24,35] and [9] and references therein.

123



167 Page 12 of 24 X. Hu, A. Portaluri

2.1 The Maslov index for pairs of Lagrangian paths

Let (R2n, ω) be the standard symplectic space where ω is the (standard) symplectic form
given by

ω(u, v) := 〈Ju, v〉 for J :=
(

0 −In
In 0

)

where In denotes the identity matrix. We denote by �(n) the set of all Lagrangian subspaces
of (R2n, ω) and we refer to as the Lagrangian Grassmannian of (R2n, ω). It is well-known
that the Lagrangian Grassmannian is a real compact and connected analytic 1

2n(n + 1)-
dimensional submanifold of the Grassmannian manifold of all n-dimensional subspaces in
R

2n . For a, b ∈ R with a < b, we denote by P([a, b];R2n) the space of all ordered pairs of
continuous maps of Lagrangian subspaces

L : [a, b]  t 
→ L(t) := (
L1(t), L2(t)

) ∈ �(n) × �(n)

equipped with the compact-open topology. Following authors in [10] we recall the definition
of the Maslov index for pairs of Lagrangian subspaces, that will be denoted by μCLM. (In
the notation, CLM stands for Cappell, Lee and Miller). Loosely speaking, given the pair
L = (L1, L2) ∈ P([a, b];R2n), this index counts with signs and multiplicities the number
of instants t ∈ [a, b] that L1(t) ∩ L2(t) �= {0}.
Definition 2.1 The CLM-index is the unique integer valued function

μCLM : P([a, b];R2n)  L 
−→ μCLM(L; [a, b]) ∈ Z

satisfying the Properties I–VI given in [10, Section 1].

Remark 2.2 Authors in [10] defined their index in any (finite-dimensional) real or complex
symplectic vector space. A different approach can be conceived by using the charts of the
differential atlas of �(n) and the fundamental groupoid along the lines given by authors in
[17].

It is worth mentioning that there is a very efficient way to compute μCLM through the
so-called crossing forms as shown by authors in [24,31]. We also observe that in the special
case in which one Lagrangian path of the pair is constant, the μCLM-index is closely related to
the (relative) Maslov index μRS, defined by authors in the celebrated paper [31]. As proved
in [24, Theorem 3.1], if L = (L1, L2) ∈ P([a, b];R2n), then the following relation holds

μCLM(L1, L2; [a, b]) = μRS(L2, L1; [a, b]) − 1

2

(
h12(b) − h12(a)

)

where h12(t) := dim L1(t) ∩ L2(t). (Cf. [24, Theorem 3.1] for further details).

Properties of the CLM-index.
For the sake of the reader we list some properties of the μCLM index that we shall frequently

use along the paper.

• (Stratum homotopy relative to the ends) Given a continuous map

L : [0, 1]  s 
→ L(s) ∈ P([a, b];R2n) where L(s)(t) := (
L1(s, t), L2(s, t)

)

such that dim
(
L1(s, a)∩L2(s, a)

)
and dim

(
L1(s, b)∩L2(s, b)

)
are both constant, then

μCLM
(
L(0); [a, b]) = μCLM

(
L(1); [a, b]).
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• (Path additivity) Let a, b, c ∈ R with a < b < c. If L := (L1, L2) ∈ P([a, c];R2n),
then

μCLM(L; [a, c]) = μCLM(L; [a, b]) + μCLM(L; [b, c]).
• (Nullity) Given L = (L1, L2) ∈ P([a, b];R2n) such that dim

(
L1(t ∩ L2(t)

)
is inde-

pendent on t and L1(t) ∩ L2(t) varying continuously, then

μCLM(L; [a, b]) = 0.

• (Reversal) Let L = (L1, L2) ∈ P([a, b];R2n). Denote the same path travelled in the
reverse direction in P([−b,−a];R2n) by L̂(s) = (

L1(−s), L2(−s)
)
. Then

μCLM(L̂; [−b,−a]) = −μCLM(L; [a, b]).
2.2 The spectral flow for paths of closed selfadjoint Fredholm operators

Given the separable real Hilbert space V , we denote by Csa(V ) the set of all (closed) densely
defined and selfadjoint operators T : D(T ) ⊂ V → V and by CF sa(V ) the space of all
closed selfadjoint and Fredholm operators equipped with the graph distance topology (or gap
topology), namely the topology induced by the gap metric dG(T1, T2) := ‖P1 − P2‖L (V )

where Pi is the projection onto the graph of Ti in the product space V × V and L (V )

denotes the Banach space of all bounded and linear operators. Let T ∈ CF sa(V ) and for
a, b /∈ σ(T ), we set

P[a,b](T ) := �
(

1

2π i

∫

γ

(
λ − TC

)−1
d λ

)

where γ is the circle of radius b−a
2 around the point a+b

2 . We recall that if [a, b] ⊂ σ(T )

consists of isolated eigenvalues of finite type then

rge P[a,b](T ) = E[a,b](T ) :=
⊕

λ∈[a,b]
ker(λ − T );

(cf. [18, Section XV.2], for instance) and 0 either belongs to the resolvent set of T or it is an
isolated eigenvalue of finite multiplicity. The next result allow us to define the spectral flow
for continuous paths in CF sa(V ).

Proposition 2.3 Let T0 ∈ CF sa(V ) be fixed. There exists a positive real number a /∈ σ(T0)

and an open neighborhoodN ⊂ CF sa(V ) of T0 in the gap topology such that ±a /∈ σ(T )

for all T ∈ N and the map

N  T 
−→ P[−a,a](T ) ∈ L (V )

is continuous and the projection P[−a,a](T ) has constant finite rank for all t ∈ N .

Proof For the proof of this result we refer the interested reader to [9, Proposition 2.10]. ��
Let now A : [a, b] → CF sa(V ) be a continuous path. As direct consequence of

Proposition 2.3, for every t ∈ [a, b] there exists a > 0 and an open connected neigh-
bourhood Nt,a ⊂ CF sa(V ) of A(t) such that ±a /∈ σ(T ) for all T ∈ Nt,a , the map
Nt,a ∈ T 
−→ P[−a,a](T ) ∈ L (V ) is continuous and hence the rank of P[−a,a](T ) does
not depends on T ∈ Nt,a . Now let us consider the open covering of the interval I given by
the pre-images of the neighbourhoods Nt,a through A and by choosing a sufficiently fine
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partition of the interval [a, b] having diameter less than the Lebesgue number of the cover-
ing, we can find a =: t0 < t1 < . . . < tn := b, operators Ti ∈ CF sa(V ) and positive real
numbers ai , i = 1, . . . , n in such a way the restriction of the path A on the interval [ti−1, ti ]
lies in the neighborhood Nti ,ai and hence the dim E[−ai ,ai ](At ) is constant for t ∈ [ti−1, ti ],
i = 1, . . . , n.

Definition 2.4 The spectral flow of A on the interval [a, b] is defined by

sf(A; [a, b]) :=
N∑

i=1

dim E[0,ai ](Ati ) − dim E[0,ai ](Ati−1) ∈ Z.

Remark 2.5 The spectral flow as given in Definition 2.4 is well-defined (in the sense that it is
independent either on the partition or on the ai ) and only depends on the continuous path A.
(Cf. [9, Proposition 2.13] and references therein). We also refer the interested reader to [33]
for the analogous properties in the case of selfadjoint Fredholm operators on fixed domains.

Remark 2.6 Definition 2.4 is formally analogous to the definition of the spectral flow of a
continuous path of selfadjoint bounded Fredholm operators introduced by author in [28].

Properties of the Spectral Flow.
For the sake of the reader we list some properties of the spectral flow that we shall

frequently use in the paper.

• (Stratum homotopy relative to the ends) Given a continuous map

Ā : [0, 1] → C 0([a, b];CF sa(V )
)

where Ā(s)(t) := Ās(t)

such that dim ker Ās(a) and dim ker Ās(b) are both independent on s, then

sf( Ā0
t ; t ∈ [a, b]) = sf( Ā1

t ; t ∈ [a, b]).
• (Path additivity) If A1, A2 ∈ C 0

([a, b];CF sa(V )
)

are such that A1(b) = A2(a), then

sf(A1
t ∗ A2

t ; t ∈ [a, b]) = sf(A1
t ; t ∈ [a, b]) + sf(A2

t ; t ∈ [a, b])
where ∗ denotes the usual catenation between the two paths.

• (Nullity) If A ∈ C 0
([a, b]; GL(V )

)
, then sf(At ; t ∈ [a, b]) = 0;

• (Reversal)Denote the same path travelled in the reverse direction inCF sa(V ) by Â(t) =
A(−t). Then

sf(At ; t ∈ [a, b]) = − sf( Ât ; t ∈ [−b,−a]).
There is an efficient way to compute the spectral flow, through what are called crossing
forms. Let us consider a C 1-path, which always exists in the homotopy class (relative to
the ends) and let Pt be the orthogonal projector from V to E0

(At
)
, the kernel of At . When

E0
(At0

) �= {0} we term the instant t0 a crossing instant. In this case we defined the crossing
operator �(A, t0) as

�(A, t0) := Pt0
∂

∂t
Pt0 : E0

(At0

) → E0
(At0

)
.

We term the crossing instant t0 regular if the crossing operator �(A, t0) is non-degenerate.
In this case we define the signature simply as

sgn
(
�(A, t0)

) := dim E+
(
�(A, t0)

) − dim E−
(
�(A, t0)

)
,
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where E+
(
�(A, t0)

)
(resp. E−

(
�(A, t0)

)
) denote the positive (resp. negative) spectral space

of the operator �(A, t0). We assume that all the crossings are regular. Then the crossing
instants are isolated (and hence on a compact interval are in a finite number) and the spectral
flow is given by the following formula

sf(At ; t ∈ [a, b]) =
∑

t0∈S∗
sgn

(
�(A, t0)

) − dim E−
(
�(A, a)

) + dim E+
(
�(A, b)

)

where S∗ := S ∩ (a, b) and S denotes the set of all crossings.

Remark 2.7 One can prove that there exists ε0 > 0 sufficiently small such that sf(At ; t ∈
[a, b]) = sf(At +ε I ; t ∈ [a, b]) (where I denotes the identity operator on V ) for ε ∈ [0, ε0];
furthermore for almost every such ε the path t 
→ At + ε I has regular crossings. We refer
the interested reader to [11,19,33] and references therein.

Given the continuous path A : [a, b] → CF sa(V ), we denote by Aε the path Aε :
[a, b]  t 
→ At ∈ CF sa(V ) pointwise defined by

Aε
t := At − ε I, t ∈ [a, b].

Lemma 2.8 There exists ε > 0 sufficiently small, such that

sf(At ; t ∈ [a, b]) = sf(Aε
t ; t ∈ [a, b]) − dim ker Aa + dim ker Ab.

Proof We start by observing that, since Aa, Ab ∈ CF sa(V ), then 0 belongs to the resolvent
set of Aa and Ab or it is an isolated eigenvalue of finite multiplicity. Thus we can choose
ε > 0 smaller than every non-zero eigenvalue of Aa and Ab and we define the family

Ãε : R → CF sa(V ) as Ãε(t, s) := At − sε I

where R := [a, b] × [0, 1]. Being the rectangle topologically trivial and by invoking the
homotopy property of the spectral flow, it follows that the spectral flow of the path obtained
by restricting Ãε to the boundary of R is zero. Thus by the path additivity property of the
spectral flow, we have

sf( Ãε(t, 0); t ∈ [a, b]) = sf( Ãε(t, 1); t ∈ [a, b]) + sf( Ã(a, s); s ∈ [0, 1])
− sf( Ã(b, s); s ∈ [0, 1]).

Since by the choice of ε the paths s 
→ Ã(a, s) and s 
→ Ã(b, s) have no crossing instants
other than, possibly, the initial or the final, we get

sf(At ; t ∈ [a, b]) = sf(Aε
t ; t ∈ [a, b]) − dim ker Aa + dim ker Ab

This conclude the proof. ��
As direct consequence of Lemma 2.8, we are entitled to give the following definition.

Definition 2.9 We term ε-spectral flow of the path A and we denote it by sfε(At ; t ∈ [a, b]),
the spectral flow (as given in definition 2.4) of the path Aε : [a, b] → CF sa(V ); i.e.

sfε(At ; t ∈ [a, b]) := sf(Aε
t ; t ∈ [a, b]).

By Definition 2.9 and Lemma 2.8, we get the following

sf(At ; t ∈ [a, b]) = sfε(At ; t ∈ [a, b]) − dim ker Aa + dim ker Ab.

In particular if the endpoints of A are invertible, they coincide. We close this Section by
recalling the relation between the spectral flow and another integer known in literature as
relative Morse index.

123



167 Page 16 of 24 X. Hu, A. Portaluri

Definition 2.10 ([35, Definition 2.8]). Let A, B ∈ CF sa(V ) and we assume that B is A-
compact (namely compact in the graph norm topology of A). Then the relative Morse index
of the pair A, A + B is defined by

irel(A, A + B) = − sf( Ã; [a, b])
for Ã := A + B̃ and where B̃ is any continuous curve of A-compact operators such that
B̃(a) = 0 is the null operator and B̃(b) = B.

Remark 2.11 We observe that in the aforementioned paper the authors considered the more
general case of bounded Fredholm operators in Banach spaces. However the extension to the
case considered above presents no difficulties.

3 A spectral flow formula for families of Hamiltonian systems

The scope of this Section which is the core of the paper is twofold: on one hand we construct
an index theory and we prove a new spectral flow formula for a one-parameter family of
(linear) Hamiltonian systems defined on unbounded intervals; on the other hand we recover
the well-known index theory in the case of bounded intervals.

We start by associating to the family of Hamiltonian systems a

• geometrical index defined in terms of the μCLM-index of a suitable pair of Lagrangian
paths defined in terms of the invariant (stable and unstable) subspaces and encoding the
symplectic properties of the solution space;

• spectral index will be given in terms of the spectral flow of a path of first order elliptic
operators and it is devoted to detect the analytic properties of the arising path of closed
selfadjoint Fredholm operators.

We start by recalling that T ∈ Mat (2n,R) is termed hyperbolic if its spectrum does not
meet the imaginary axis. In this case, the spectrum of a hyperbolic operator T consists of
two isolated closed components (one of which may be empty)

σ(T ) ∩ { z ∈ C | �(z) < 0 } and σ(T ) ∩ { z ∈ C | �(z) > 0 } .

Let R2n = V−(T ) ⊕ V+(T ) be the corresponding T -invariant splitting of R2n into closed
subspaces, given by the spectral decomposition with projections P−(T ) and P+(T ). So

σ
(
T |V−(T )

) = σ(T ) ∩ { z ∈ C | �(z) < 0 } and

σ
(
T |V+(T )

) = σ(T ) ∩ { z ∈ C | �(z) > 0 } .

Given the one-parameter family of Hamiltonian systems

z′(t) = Sλ(t) z(t) t ∈ R (3.1)

we define the two-parameter family of matrix-valued maps γ(τ,λ) : R → Mat (2n,R)

parametrized by (τ, λ) ∈ R×[0, 1] as the fundamental solutions of the Hamiltonian systems
given in Eq. (3.1), namely the matrix solutions of the following Cauchy problem

{
γ ′
(τ,λ)(t) = Sλ(t)γ(τ,λ)(t), t ∈ R

γ(τ,λ)(τ ) = I
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where Sλ(t) := S(λ, t). We recall that the stable and unstable spaces of the Hamiltonian
system given in Eq. (3.1) are respectively given by

Es
λ(τ) :=

{
v ∈ R

2n
∣∣∣
∣ lim
t→+∞ γ(τ,λ)(t)v = 0

}
and Eu

λ(τ) :=
{

v ∈ R
2n

∣∣∣
∣ lim
t→−∞ γ(τ,λ)(t)v = 0

}
.

(3.2)
Let us define the asymptotic Hamiltonian systems

z′(t) = Sλ(±∞) z(t) t ∈ R

and as before we define the stable and unstable spaces as follows

Es
λ(±∞) :=

{
v ∈ R

2n
∣
∣
∣
∣ lim
t→+∞ exp

(
t Sλ(±∞)

)
v = 0

}
and

Eu
λ(±∞) :=

{
v ∈ R

2n
∣
∣
∣
∣ lim
t→−∞ exp

(
t Sλ(±∞)

)
v = 0

}
. (3.3)

By invoking [1, Proposition 1.2], the assumption (H1), implies the following convergence
result on the invariant manifolds

lim
τ→+∞ Es

λ(τ ) = Es
λ(+∞) and lim

τ→−∞ Eu
λ(τ ) = Eu

λ(−∞) (3.4)

where the limit is uniform with respect to the parameter λ in the gap (metric) topology of the
Grassmannian manifold.

Lemma 3.1 If (H1) holds then the space Es
λ(τ ), (τ, λ) ∈ [0,+∞] × [0, 1], and Eu

λ(τ ),
(τ, λ) ∈ [−∞, 0] × [0, 1] defined in Eqs. (3.2)–(3.3) belong to �(n).

Proof If v,w : R → R
2n are non-trivial solutions of the differential equation z′−Sλ(t)z = 0

then ω
(
v(τ), w(τ)

)
is constant for all τ ∈ R. Moreover ω

(
v(τ), w(τ)

) = 0 if v(τ), w(τ) ∈
Eu

λ(τ ) or v(τ), w(τ) ∈ Es
λ(τ ), for some τ ∈ R. Thus Eu

λ(τ ) and Es
λ(τ ) are isotropic sub-

spaces of (R2n, ω). By taking into account (H1), Sλ(±∞) are hyperbolic matrices; thus in
particular Es

λ(+∞) = V−(
Sλ(+∞)

)
and Eu

λ(−∞) = V+(
Sλ(−∞)

)
are Lagrangian sub-

spaces. By the convergence result stated in Formula (3.4) and by taking into account that
the dimension is a continuous integer-valued function (and hence constant on the connected
components of the Grassmannian), we conclude the proof. ��
Lemma 3.2 For every τ ∈ R, we have

μCLM
(
Es

λ(0), Eu
λ(0)

) = μCLM
(
Es

λ(τ ), Eu
λ(τ )

)
.

Proof The proof relies on a very straightforward stratum homotopy argument. For, let us
consider the following homotopy.

h := (h1, h2) : [0, 1] × [0, 1] → �(n) × �(n), h(λ, s) = (
Es

λ((1 − s) · τ), Eu
λ((1 − s) · τ)

)
.

Since Eu
λ(τ ′) = γ(τ,λ)(τ

′)Eu
λ(τ ) and Es

λ(τ
′) = γ(τ,λ)(τ

′)Es
λ(τ ), for every τ ∈ R,

dim
(
Eu

λ(τ ) ∩ Es
λ(τ )

)
is independent on τ . By this argument and by the stratum homotopy

invariance property of the μCLM the thesis follows. This conclude the proof. ��
Let R− := [−∞, 0] × [0, 1], R+ := [0,+∞] × [0, 1] and let us define the continuous

two-parameter family of Lagrangian subspaces:

Eu : R− → �(n) defined by Eu(τ, λ) := Eu
λ(τ ) and

Es : R+ → �(n) defined by Es(τ, λ) := Es
λ(τ ).

123



167 Page 18 of 24 X. Hu, A. Portaluri

Being R± topologically trivial, it follows that the pair λ 
→ (
Es

λ(0), Eu
λ(0)

) ∈
P([0, 1];R2n), is stratum homotopic with respect pair of Lagrangian paths obtained by
concatenating the following three pairs of Lagrangian paths:

• [0,+∞)  t 
−→ (
Es

0(τ ), Eu
0 (−τ)

) ∈ �(n) × �(n);
• [0, 1]  λ 
−→ (

Es
λ(+∞), Eu

λ(−∞))
) ∈ �(n) × �(n);

• [0,+∞)  t 
−→ (
Es

1(−τ), Eu
1 (τ )

) ∈ �(n) × �(n).

In shorthand notation, we shall denote the concatenated path as follows

[0,+∞] × [0, 1]  (t, λ)


−→
(
Es

0(τ ) ∗ Es
λ(+∞) ∗ Es

1(−τ), Eu
0 (−τ) ∗ Eu

λ(−∞) ∗ Eu
1 (τ )

)

∈ �(n) × �(n).

Proposition 3.3 The following equality holds:

μCLM(Es
λ(0), Eu

λ(0); λ ∈ [0, 1]) = μCLM
(
Es

0(τ ), Eu
0 (−τ); τ ∈ [0,+∞)

)

+μCLM
(
Es

λ(+∞), Eu
λ(−∞); λ ∈ [0, 1]) − μCLM

(
Es

1(τ ), Eu
1 (−τ); τ ∈ [0,+∞)

)
.

Proof By the invariance of the μCLM index for stratum-homotopy and the additivity for
concatenation of paths (cf. [10, Properties II & III, pag.127], we have that

μCLM
(
Es

λ(0), Eu
λ(0); λ ∈ [0, 1])

= μCLM
(
Es

0(τ ) ∗ Es
λ(+∞) ∗ Es

1(−τ), Eu
0 (−τ) ∗ Eu

λ(−∞) ∗ Eu
1 (τ ); τ, λ ∈∈ [0, +∞)

∪[0, 1] ∪ (−∞, 0])

= μCLM
(
Es

0(τ ), Eu
0 (−τ); τ ∈ [0, +∞)

) + μCLM
(
Es

λ(+∞), Eu
λ(−∞); λ ∈ [0, 1])

+ μCLM
(
Es

1(−τ), Eu
1 (τ ); τ ∈ (−∞, 0]). (3.5)

(Cf. Fig. 4). By the reversal property of the μCLM-index given in Sect. 2 (cf. [10, Property X,
pag. 130]), we get that the last term in Eq. (3.5) can be written according to the following
expression

μCLM
(
Es

1(−τ), Eu
1 (τ ); τ ∈ (−∞, 0]) = −μCLM

(
Es

1(τ ), Eu
1 (−τ); τ ∈ [0,+∞)

)
. (3.6)

The conclusion is obtained by putting together Eqs. (3.5) and (3.6). ��
Let W := W 1,2(R,R2n) be the Sobolev space of all functions in L2(R,R2n) =: V having

derivatives in V . By standard regularity arguments it readily follows that any solution of the
boundary value problems given in Eq. (3.1) belongs to W . Now, for each λ ∈ [0, 1], we
define the operators

Aλ := −J
d

dt
− Bλ(t) : W ⊂ V −→ V.

By invoking [32, Theorem 2.1], it follows that for each λ ∈ [0, 1], Aλ is a closed unbounded
selfadjoint Fredholm operator in V having domain W and hence it remains a well-defined a
gap continuous path of closed selfadjoint Fredholm operators1

A : [0, 1] −→ CF sa(V) : λ 
−→ Aλ. (3.7)

Definition 3.4 We term spectral index of the family of Hamiltonian systems given in
Eq. (3.1), the integer ispec(A) defined as the spectral flow of the path given in (3.7); i.e.

ispec(A) := − sf(Aλ; λ ∈ [0, 1]).
1 Actually λ 
→ Aλ ∈ BF sa(W,V).

123



Index theory for heteroclinic orbits of Hamiltonian systems Page 19 of 24 167

For t1, t2 ∈ R with t1 < t2 be fixed and let us denote by Wλ,[t1,t2] the Sobolev space
defined by

Wλ,[t1,t2] := {
u ∈ W 1,2([t1, t2];R2n)

∣
∣ u(t1) ∈ Eu

λ(t1) and u(t2) ∈ Es
λ(t2)

}
.

Let us define the operators Aλ,[t1,t2] as the restriction to Wλ([t1, t2];R2n) of the operator Aλ.

Proposition 3.5 For any t1, t2 ∈ R with t1 < t2 it follows that

1. for every λ ∈ [0, 1], Aλ,[t1,t2] is degenerate if and only if Aλ is degenerate; i.e.

dim ker Aλ,[t1,t2] = dim ker Aλ.

2. sf(Aλ,[t1,t2]; λ ∈ [0, 1]) = sf(Aλ; λ ∈ [0, 1]).

Proof (⇐) We start to prove that if Aλ is degenerate then Aλ,[t1,t2] is degenerate. For, we
assume that dim ker Aλ �= {0} and we recall that dim ker Aλ = dim

(
Eu

λ(τ ) ∩ Es
λ(τ )

)
for

some and hence for any τ ∈ R. Let 0 �= v ∈ Eu
λ(τ ) ∩ Es

λ(τ ). Let v ∈ Eu
λ(τ ) ∩ Es

λ(τ ) then in
particular v ∈ Eu

λ(t1) and v ∈ Es
λ(t2). Thus v ∈ Eu

λ(t1) ∩ Es
λ(t2) and hence v ∈ ker Aλ,[t1,t2]

and this conclude the proof of the first part.
(⇒) In order to prove this second implication it is enough to show that if Aλ,[t1,t2] is

non-degenerate then Aλ is non-degenerate.
For any t1 < t2, we start by observing that γt1,λ(t2)E

u
λ(t1) = Eu

λ(t2). Thus there exists
0 �= v(t1) ∈ Eu

λ(t1). We now define v(t) := γt1,λ(t)
(
v(t1)

)
and we observe that v(t2) ∈

Es
λ(t2). In conclusion the non trivial function

v(t) :=

⎧
⎪⎨

⎪⎩

γt1,λ(−t)
(
v(t1)

)
t � t1

γt1,λ(t)
(
v(t2)

)
t1 � t � t2

γt1+t2,λ(t)
(
v(t1)

)
t � t2

belongs to ker Aλ. This conclude the proof of the first statement.
The proof of the second statement relies on the very definition of the spectral flow (cf.

Definition 2.4). We start to choose a sufficiently small partition of the interval [0, 1], namely
0 := λ0 < · · · < λn := 1. Thus, we can find operators Ai and positive real numbers ai ,
i = 1, . . . , n in such a way the dimension of the spectral spaces E[−ai ,ai ](Aλ) is constant for
λ ∈ [λi−1, λi ]. Up to refine the partition we can also assume that also the dimension of the
spectral spaces E[−ai ,ai ](Aλ,[t1,t2]) is constant for λ ∈ [λi−1, λi ].

Moreover we assume E[−3ai ,3ai ](Aλ,[t1,t2]) = E[−ai ,ai ](Aλ,[t1,t2]) for λ ∈ [λi−1, λi ], that
is, no eigenvalues belongs to the interval (−3ai ,−ai )∪(ai , 3ai ). Let χ[t1,t2] be the character-
istic function of [t1, t2], and we denote Aλ,s,[t1,t2] := Aλ,[t1,t2] +sχ[t1,t2] I for s ∈ [0, 2ai ]. By
the homotopy property of spectral flow, from the fact that sf(Aλ,2ai ,[t1,t2]; [λi−1, λi ])) = 0
we have

sf(Aλ,[t1,t2]; λ∈[λi−1, λi ]))=sf(Aλi−1,s,[t1,t2]; s∈[0, 2 ai ])) − sf(Aλi ,s,[t1,t2]; s ∈ [0, 2 ai ]).

On the other hand, we let Aλ,s := Aλ + sχ[t1,t2] I for s ∈ [0, 2 ai ]. Similarly, we have

sf(Aλ; λ ∈ [λi−1, λi ])) = sf(Aλi−1,s; s ∈ [0, 2 ai ])) − sf(Aλi ,s; s ∈ [0, 2 ai ]).
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We also observe that, for λ ∈ [λi−1, λi ],

sf(Aλ,s,[t1,t2]; s ∈ [0, 2 ai ])) =
2 ai∑

s=0

dim ker(Aλ,s,[t1,t2]),

sf(Aλ,s; s ∈ [0, 2 ai ])) =
2 ai∑

s=0

dim ker(Aλ,s).

By arguing precisely as before, we can conclude that

dim ker(Aλ,s,[t1,t2]) = dim ker(Aλ,s)

and by this last equality immediately follows that

sf(Aλ; λ ∈ [λi−1, λi ]) = sf(Aλ,[t1,t2]; λ ∈ [λi−1, λi ]).
Summing up all over i = 0, . . . , n, we get the thesis. This conclude the proof. ��

For each λ ∈ [0, 1] and for some t0 ∈ R, we set

Xλ := {
u ∈ W 1,2([0, 1],R2n)

∣∣ u(0) ∈ Eu
λ(t0) and u(1) ∈ Es

λ(t0)
}

and we consider the elliptic selfadjoint first order differential operator

Dλ := D
(
Eu

λ(t0), E
s
λ(t0)

) : Xλ ⊂ L2([0, 1];R2n) → L2([0, 1];R2n) given by

Dλ := −J
d

dt
. (3.8)

Proposition 3.6 Let D be the path pointwise defined by Eq. (3.8). The following equality
holds

sf
(
Dλ; λ ∈ [0, 1]) = sf(Aλ; λ ∈ [0, 1]).

Proof Changing variable by setting s := (t − t1)/(t2 − t1) ∈ [0, 1] the operator Aλ,[t1,t2] can
be re-written as follows

Aλ,[t1,t2] = − 1

t2 − t1
J
d

ds
− Bλ

(
(t2 − t1)s + t1

) : Wλ ⊂ L2([0, 1];R2n) → L2([0, 1];R2n)

where
Wλ := {

u ∈ W 1,2([0, 1];R2n)
∣∣ u(0) ∈ Eu

λ(t1) and u(1) ∈ Es
λ(t2)

}
. (3.9)

We now define the operator

Ãλ,[t1,t2] := (t2 − t1)Aλ,[t1,t2] = −J
d

ds
− (t2 − t1)Bλ

(
(t2 − t1)s + t1

)
(3.10)

on the domain Wλ defined in Eq. (3.9) Let τ : [0, 1] → R be the (continuous) map defined
by τ(σ ) := t2 + (1 − σ)(t1 − t2) and let k : [0, 1] × [0, 1] → CF sa(L2([0, 1];R2n)) given
by

k(λ, σ ) := −J
d

ds
− (

t2 − τ(σ )
)
Bλ

(
τ(σ )

)
.

We observe that k(λ, 0) = Ãλ,[t1,t2] and k(λ, 1) = Dλ. Being t2 − t1 > 0 we get that

sf( Ãλ,[t1,t2]; λ ∈ [0, 1]) = sf(Aλ,[t1,t2]; λ ∈ [0, 1])
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and by using the second statement of Proposition 3.5 we get that sf( Ãλ∈[t1,t2]; λ ∈ [0, 1]) =
sf(Aλ; λ ∈ [0, 1]). Passing to the limit for (t2 − t1) → 0 in Eq. (3.10), the path Ã[t1,t2]
pointwise reduces to D. By the first statement of Proposition 3.5 immediately follows that
the homotopy is admissible since the dimension of the kernel of the map k is independent
on the homotopy parameter σ . By the stratum homotopy invariance of the spectral flow and
with respect to the endpoints the thesis readily follows. This conclude the proof. ��

As direct consequence of Proposition 3.6, we get

Proposition 3.7 If assumption (H1) holds, then

μCLM
(
Es

λ(0), Eu
λ(0); λ ∈ [0, 1]) = − sf(Aλ; λ ∈ [0, 1]).

Proof By invoking [10, Theorem 0.4], we have

sfε(Dλ; λ ∈ [0, 1]) = μCLM
(
Eu

λ(0), Es
λ(0); λ ∈ [0, 1]),

which implies

− sf(Dλ; λ ∈ [0, 1]) = μCLM
(
Es

λ(0), Eu
λ(0); λ ∈ [0, 1]).

By Proposition 3.6 we infer that sf(Aλ; λ ∈ [0, 1]) = sf(Dλ; λ ∈ [0, 1]). This conclude the
proof. ��
Remark 3.8 It is worth noticing that Proposition 3.7 generalizes the main result recently
proved by author in [33].

As consequence of Lemma 3.2 the integers dim
(
Eu

0 (t0) ∩ Es
0(t0)

)
and dim

(
Eu

1 (t0) ∩
Es

1(t0)
)

does not depend on t0. Summing up all the results scattered so far we are in position
to prove the main result of this Section.

Theorem 3.9 (Spectral flow formula) In the above notation and if assumption (H1) holds,
then we have

ispec(A) = μCLM
(
Es

0(τ ), Eu
0 (−τ); τ ∈ [0,+∞)

) + μCLM
(
Es

λ(+∞), Eu
λ(−∞); λ ∈ [0, 1])

−μCLM
(
Es

1(τ ), Eu
1 (−τ); τ ∈ [0,+∞)

)
.

Proof By Definition 3.4, we know that ispec(A) = − sf(Aλ; λ ∈ [0, 1]). The results is from
Proposition 3.7 and Proposition 3.3. This conclude the proof. ��
As promised in Sect. 1, by using Theorem 3.9, we are able to prove a new spectral flow formula
for Hamiltonian systems parametrized by bounded intervals. Let L , M ∈ C 0

([0, 1];�(n)
)

and let us consider the following family of Hamiltonian boundary value problems
{
z′(t) = Sλ(t) z(t), t ∈ [a, b]
(
z(a), z(b)

) ∈ Lλ × Mλ.
(3.11)

Following authors in [4,23,32] and references therein, we associate to the Hamiltonian bvp
given in Eq. (3.11) the following Maslov index. Let γ(λ,a)(t) be denote the two parameter
family of matrix-valued maps γ(λ,a) : [a, b] → Sp (2n,R) defined by

{
γ ′
(λ,a)(t) = Sλ(t) γ(λ,a)(t), t ∈ [a, b]

γ(λ,a)(a) = I
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and we now consider the integer given by μCLM(Eλ,[a,b]; λ ∈ [0, 1]), where E[a,b] ∈
P

([0, 1];R2n
)

is pointwise defined by E[a,b](λ) := (
Mλ, γa(b)Lλ

)
. For any c ∈ (a, b),

we consider the real-valued functions on [a, b] defined by

α(t) := (t − b)

(a − b)
(c − b) + b if t ∈ [a, b] β(t) := (t − b)

(a − b)
(c − a) + a if t ∈ [a, b].

(3.12)
We observe that the function α is a positive affine reparameterisation of the interval [c, b]
with the same orientation whilst the function β is a negative affine reparameterisation of the
interval [a, c] with the opposite orientation. For c = (a + b)/2 the functions introduced in
Eq. (3.12) reduce respectively to

α(t) = 1

2
(t − b) + b if t ∈ [a, b]

β(t) = 1

2
(b − t) + a if t ∈ [a, b].

Let c ∈ (a, b), F ∈ P([0, 1];R2n) be the continuous path of ordered pairs of Lagrangian
paths pointwise defined by

F(λ) := (
Wλ(c), Vλ(c)

)
,

where
Wλ(c) := γa(c)γ

−1
a (b) Mλ. and Vλ(c) := γ(a,λ)(c)Lλ

Lemma 3.10 Under the previous notation, we have

μCLM(F; [0, 1]) = μCLM(E[a,b]; [0, 1]).
Proof The proof readily follows since

μCLM
(
F; [0, 1]) = μCLM

(
γ −1
a (b − c)M, γa(c)L; [0, 1])

= μCLM
(
M, γa(b − c)γa(c)L; [0, 1]) = μCLM

(
M, γa(b)L; [0, 1]) = μCLM(E[a,b]; [0, 1]).

This conclude the proof. ��
We denote by W 1,2([a, b]; Lλ, Mλ) the Sobolev space defined by

W 1,2([a, b], Lλ, Mλ) := {
z ∈ W 1,2([a, b];R2n)

∣∣ z(a) ∈ Lλ and z(b) ∈ Mλ

}

and for each λ ∈ [0, 1], we define the operators

Tλ := −J
d

dt
− Bλ(t) : W 1,2([a, b]; L , M) ⊂ L2([a, b],R2n) −→ L2([a, b],R2n).

It is well-known that for each λ ∈ [0, 1], Tλ is a closed unbounded selfadjoint Fredholm
operator in L2([a, b],R2n) having domain W 1,2([a, b]; Lλ, Mλ) (cf. [18], for instance) and
hence it remains well-defined (gap continuous) path of closed selfadjoint Fredholm operators

T : [0, 1]  λ 
−→ Tλ ∈ CF sa(L2([a, b],R2n)).

Theorem 3.11 (Spectral flow formula on bounded intervals) In the previous notation, we
have

ispec(T ) = μCLM
(
W1

(
β(τ)

)
, V1

(
α(τ)

); τ ∈ [a, b]) + μCLM
(
Mλ, Lλ; λ ∈ [0, 1])

−μCLM
(
W0

(
β(τ)

)
, V0

(
α(τ)

); τ ∈ [a, b])
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Proof We define the operators

Dλ := −J
d

dt
: W 1,2([a, b]; Vλ(c),Wλ(c)) ⊂ L2([a, b],R2n) −→ L2([a, b],R2n).

By arguing as inthe proof of Proposition 3.6, we have sf(Dλ; λ ∈ [0, 1]) = sf(Tλ; λ ∈ [0, 1]).
We get also that

ispec(T ) = −μCLM(Wλ(c), Vλ(c); λ ∈ [0, 1]).
Arguing as in the proof of Theorem 3.9 and using the additivity properties of the μCLM-index,
we get the result. This conclude the proof. ��
Corollary 3.12 In the assumption of Theorem 3.11, if (Lλ, Mλ) ≡ (L , M) ∈ �(n) × �(n),
then we have

ispec(T )=μCLM
(
W1

(
β(τ)

)
, V1

(
α(τ)

); τ ∈ [a, b])−μCLM
(
W0

(
β(τ)

)
, V0

(
α(τ)

); τ ∈[a, b]).
Inspired by the classical Morse-type Index Theorem for periodic solution of Hamiltonian
system (cf. [23] and references therein) we now prove a Morse-type index Theorem for
unbounded motions of a Hamiltonian system.

Proof of Theorem 1. The proof of this result in the case of heteroclinic/homoclinic motions
immediately follows by Theorem 3.9, Definition 1.2 and the previous discussion. The other
two formulas in Theorem 1 on the future and past halfclinic orbits, can be directly obtained
by the previous one simply by setting for i = 0, 1 simply Eu

i (−τ) ≡ Li in the case of future
heteroclinic orbit and Es

i (τ ) ≡ Li in the case of past heteroclinic orbit for any τ ∈ [0,+∞).
This conclude the proof. ��
Proof of Corollary 1 and Corollary 2. Let us consider on the space W the path of closed

selfadjoint Fredholm operators pointwise respectively given by Aλ := −J
d

dt
− B∗ −

λ
(
B(t) − B∗

)
. We observe that ι(w0) = 0 since Eu

0 (τ ), Es
0(τ ) is constant. Similarly,

Es
λ(+∞), Eu

λ(−∞) not depend on λ implies μCLM
(
Es

λ(+∞), Eu
λ(−∞); λ ∈ [0, 1]) = 0.

This conclude the proof of Corollary 1. The proof of Corollary 2 is completely analogous.
��

Proof of Theorem 2. The proof of this result readily follows by Definition 1.5 and Theorem
3.11. This conclude the proof. ��
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