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Abstract We establish exponential bounds on the Ginzburg–Landau order parameter away
from the curve where the applied magnetic field vanishes. In the units used in this paper,
the estimates are valid when the parameter measuring the strength of the applied magnetic
field is comparable with the Ginzburg–Landau parameter. This completes a previous work
by the authors analyzing the case when this strength was much higher. Our results display
the distribution of surface and bulk superconductivity and are valid under the assumption
that the magnetic field is Hölder continuous.

Mathematics Subject Classification 35Q56 · 35P15 · 35J10

1 Introduction

1.1 The functional

In non-dimensional units, the Ginzburg–Landau functional is defined as follows,

E(ψ,A) =
∫

�

(
|(∇ − iκHA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4 + (κH)2| curlA − B0|2

)
dx,

(1.1)
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where:

• � ⊂ R
2 is an open, bounded and simply connected set with a C∞ boundary;

• (ψ,A) ∈ H1(�;C) × H1(�;R2);
• κ > 0 and H > 0 are two parameters;
• B0 is a real-valued function in L2(�).

The superconducting sample is supposed to occupy a long cylinder with vertical axis and
horizontal cross section �. The parameter κ is the Ginzburg–Landau parameter that expresses
the properties of the superconducting material. The applied magnetic field is κHB0�e, where
�e = (0, 0, 1). The configuration pair (ψ,A) describes the state of superconductivity as
follows: |ψ |2 measures the density of the superconducting Cooper pairs, curlA measures
the induced magnetic field in the sample and j := (iψ,∇ψ − iκHAψ) measures the
induced super-current. Here (·, ·) denotes the inner product in C defined as follows, (u, v) =
u1v1 + u2v2 where u = u1 + iu2 and v = v1 + iv2.

At equilibrium, the state of the superconductor is described by the (minimizing) configu-
rations (ψ,A) that realize the following ground state energy

Egs(κ, H) = inf
{
E(ψ,A) : (ψ,A) ∈ H1(�;C) × H1(�;R2)

}
. (1.2)

Such configurations are critical points of the functional introduced in (1.1), that is they
solve the following system of Euler-Lagrange equations (ν is the unit inward normal on the
boundary)

⎧⎪⎪⎨
⎪⎪⎩

−(∇ − iκHA
)2

ψ = κ2(1 − |ψ |2)ψ in �,

−∇⊥(
curlA − B0

) = (κH)−1Im
(
ψ(∇ − iκHA)ψ

)
in �,

ν · (∇ − iκHA)ψ = 0 on ∂�,

curlA = B0 on ∂�.

(1.3)

Once a choice of (κ, H) is fixed, the notation (ψ,A)κ,H stands for a solution of (1.3). When
B0 belongs to C0(�), we introduce two constants β0 and β1 that will play a central role in
this paper:

β0 := sup
x∈�

|B0(x)| and β1 := sup
x∈∂�

|B0(x)|. (1.4)

1.2 The case with a constant magnetic field

A huge mathematical literature is devoted to the analysis of the functional in (1.1) when the
magnetic field is constant. This corresponds to taking B0 = 1 in (1.1). The two monographs
[15,40] and the references therein are mainly devoted to this subject. One important situation
is the transition from bulk to surface superconductivity. This happens when the parameter H
increases between two critical values HC2 and HC3 called the second and third critical fields
respectively.

In this analysis the deGennes constant plays a central role. This constant is universal and
defined as follows

�0 = inf
ξ∈R

{
inf‖u‖2=1

( ∫ ∞

0

(|u′(t)|2 + (t − ξ)2|u(t)|2)dt)}
. (1.5)

Furthermore, it is known (cf. [15]) that

1

2
< �0 < 1. (1.6)
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The de Gennes constant appears indeed in the asymptotics of HC3 for κ large

HC3 ∼ �−1
0 κ,

while we have for the second critical field

HC2 ∼ κ.

To be more specific, if b > 0 is a constant and (ψ,A)κ,H is a minimizer of the functional in
(1.1) for H = bκ (and B0 = 1), the concentration of ψ in the limit κ → ∞ depends strongly
on b.

If 0 < b < 1, then ψ is uniformly distributed in the domain � (cf. [28,41]). If 1 < b <

�−1
0 , then ψ is concentrated on the surface and decays exponentially in the bulk (cf. [12,35]).

If b > �−1
0 , then ψ = 0 (cf. [25,32]). The critical cases when b is close to 1 or �−1

0 are
thoroughly analyzed in [14,16].

1.3 The case with a non-vanishing magnetic field

The case of a non-constant magnetic field B0 satisfying the assumptions

B0 ∈ C0(�) and inf
x∈�

B0(x) > 0,

is qualitatively similar to the constant magnetic field case. This situation is reviewed in [22,
Sec. 2.2]. Surface superconductivity is studied in [15], while the transition to the normal
solution is discussed in [37].

1.4 The case with a vanishing magnetic field

The results in this paper are valid for a large class of applied magnetic fields, see Assump-
tion 1.2 below. However, one interesting situation covered by our results is the case where the
applied magnetic field has a non-trivial zero set. In the presence of such an applied magnetic
field, we will study the concentration of the minimizers (ψ,A)κ,H of (1.1) in the asymp-
totic limit κ → +∞ and H ≈ κ . Unlike the results in [15,37] that only investigate surface
superconductivity, the situation discussed here includes bulk superconductivity as well.

The discussion in this subsection is focusing on magnetic fields that satisfy:

Assumption 1.1 (On the applied magnetic field)

(1) The function B0 is in C1(�).
(2) The set 
 := {x ∈ � : B0(x) = 0} is non-empty and consists of a finite disjoint union

of simple smooth curves.
(3) 
 ∩ ∂� is either empty or a finite set.
(4) For all x ∈ �, |B0(x)| + |∇B0(x)| �= 0.
(5) The set 
 is allowed to intersect ∂� transversely. More precisely, if 
 ∩ ∂� �= ∅, then

on this set, ν × ∇B0 �= 0, where ν is the normal vector field along ∂�.

A much weaker assumption will be described later (cf. Assumption 1.2). Under Assump-
tion 1.1, we may introduce the following two non-empty open sets

�+ = {x ∈ � : B0(x) > 0} and �− = {x ∈ � : B0(x) < 0}. (1.7)

The boundaries of �± are given as follows

∂�± = 
 ∪ (�± ∩ ∂�).
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Magnetic fields satisfying Assumption 1.1 are discussed in many contexts:

• In geometry, the magnetic Laplacian arises naturally as a natural Laplacian associated
with a given connection on a U(1)-bundle (cf. [30]). Magnetic fields with a non-trivial
zero set appear in [33] under the appealing question: can we hear the zero locus of a
magnetic field?

• In the semi-classical analysis of the spectrum of Schrödinger operators with magnetic
fields satisfying Assumption 1.1 (and 
 ⊂ �). These operators are extensively studied
in [13,20,24].

• In the study of the time-dependent Ginzburg–Landau equations [4,5], applied magnetic
fields as in Assumption 1.1 naturally appear in the presence of applied electric currents.
Actually, for specific samples, there are electrical currents that produce sign-changing
induced magnetic fields.

• For superconducting surfaces submitted to constant magnetic fields [11], the constant
magnetic field may induce a smooth sign-changing magnetic field on the surface.

• In the transition from normal to superconducting configurations [36], one meets the
problem of determining H such that the ground state energy in (1.2) vanishes on a curve
meeting transversally the boundary. The results in [36] are sharpened in [9,34].

• The asymptotics of the ground state energy in (1.2) and the concentration of the corre-
sponding minimizers for large values of κ and H is analyzed in [7,8,22,23].

Of particular importance to us are the results of Attar in [7]. These results hold under Assump-
tion 1.1, for H = bκ with b > 0 constant. One of the results in [7] is that the ground state
energy in (1.2) satisfies, as κ → +∞,

Egs(κ, H) = κ2
∫

�

g(b|B0(x)|)dx + o(κ2). (1.8)

Here the function g(·), which was introduced by Sandier–Serfaty in [41], is a continuous non-
decreasing function defined on [0,∞) and vanishes on [1,∞) (cf. (2.5) for more details).

K. Attar also obtained an interesting formula displaying the local distribution of the min-
imizing order parameter ψ . If (ψ,A)κ,H is a minimizer of the functional in (1.1) for

H = bκ,

and if D is an open set in � with a smooth boundary, then, as κ → +∞,
∫
D

|ψ(x)|4dx = −2
∫
D
g(b|B0(x)|)dx + o(1). (1.9)

The interest for an L4 control of the order parameter dates back to Y. Almog (see [2] and the
discussion in the book [15, Ch. 12, Sec. 12.6]). Using the Ginzburg–Landau equations, the
L4-norm of the order parameter is directly connected with the Ginzburg–Landau energy of
the corresponding minimizer.

The formula in (1.9) shows that ψ is weakly localized in the neighborhood of 
, V
( 1
b

)
,

where:
V (ε) :=

{
x ∈ �, |B0(x)| ≤ ε

}
. (1.10)

For taking account of the boundary effects (the surface superconductivity should play a
role like in the constant magnetic field case) we also introduce in ∂� the subset

Vbnd (ε) := {
x ∈ ∂�,�0|B0(x)| ≤ ε

}
. (1.11)
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Fig. 1 Illustration of Regime I
for H = bκ and b = 1/ε:
Superconductivity is destroyed in
the dark regions and survived on
the entire boundary

We would like to measure the strength of the (exponential) decay of the minimizing order
parameter ψ in the domains

ω

(
1

b

)
:= �\V

(
1

b

)
. (1.12)

Note the role played by the two constants introduced in (1.4). If 1
b ≥ β0, then V( 1

b ) = �.

For this reason we will focus on the values of b above β−1
0 . We also observe that, if 1

b ≥ �0β1,
then Vbnd( 1

b ) = ∂�. Hence, boundary effects are expected to appear when b < 1
�0β1

.

Loosely speaking, we would like to prove that, for all values of b ≥ β−1
0 , the density |ψ |2

is exponentially small (in the L2-sense) outside the set V( 1
b ) ∪ Vbnd( 1

b ). This will lead us to
two distinct regimes:

Regime I: For β−1
0 < b ≤ (�0β1)

−1,Vbnd( 1
b ) = ∂� and ∂� carries surface supercon-

ductivity everywhere. This is illustrated in Fig. 1.
Regime II: For b > (�0β1)

−1, we will get that ψ is exponentially small outside the set
Vbnd( 1

b ). Here we have two cases:

• As b increases, surface superconductivity shrinks to the points of {x ∈ ∂�, B0(x) = 0},
provided that this set is non-empty (cf. Fig. 2).

• If {B0(x) = 0} ∩ ∂� = ∅, then, for sufficiently large values of b, no surface supercon-
ductivity is left (cf. Fig. 3).

Regime II is consistent with the results of [22, Thm. 3.6] devoted to the complementary
regime where b � 1 as κ → +∞.
The results in this paper confirm the behavior described in these two regimes and are valid
under a much weaker assumption than Assumption 1.1 (cf. Assumption 1.2 below).

The transition to the normal state is studied in [9,34,36]. This happens, when κ is large,
for H ∼ c∗κ2 (equivalently b ∼ c∗κ), where c∗ > 0 is a constant explicitly defined by the
domain � and the function B0.

1.5 Main results

In this paper, we will first work under the following assumption:
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Fig. 2 Illustration of Regime II
for H = bκ and b = 1/ε:
Superconductivity is also
destroyed on the boundary parts
{�0|B0(x)| > ε} ∩ ∂�

Fig. 3 Illustration of Regime II
when {B0 = 0} ∩ ∂� = ∅, H =
bκ, b = 1/ε and ε is small:
Superconductivity is destroyed
on the entire boundary and is
concentrated in the set {|B0| < ε}

Assumption 1.2

• The function B0 is in C0,α(�) for some α ∈ (0, 1);
• The constants β0 and β1 in (1.4) satisfy β1 ≥ β0 > 0.

Note that this assumption is much weaker than Assumption 1.1. With the previous notation
our main theorem is:

Theorem 1.3 (Exponential decay outside the superconductivity region) Suppose that
Assumption 1.2 holds, that b > β−1

0 and let O be an open set such that O ⊂ ω
( 1
b

)
, where

ω( 1
b ) is the domain introduced in (1.12)
There exist κ0 > 0, C > 0 and α0 > 0 such that, if κ ≥ κ0 and (ψ,A)κ,H is a solution of

(1.3) for H = bκ , then the following inequality holds

‖ψ‖H1(O) ≤ Ce−α0κ . (1.13)

Furthermore, if b > (�0β1)
−1, then the estimate in (1.13) holdswhen the open set O satisfies

O ⊂
{
x ∈ ∂�, �0|B0(x)| >

1

b

}
∪ ω

(
1

b

)
.

The proof of Theorem 1.3 follows from the stronger conclusion of Theorem 3.1, estab-
lishing Agmon like estimates.
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Remark 1.4 (Sign-changing magnetic fields) In addition to Assumption 1.2, suppose that
�+ and �− are non-empty. The constant β0 in (1.4) can be expressed as follows

β0 = max(β+
0 , β−

0 ) where β±
0 = sup

x∈�±
|B0(x)|.

We will discuss the conclusion of Theorem 1.3 when β+
0 < β−

0 . We have:

• If (β0)
−1 < b < (β+

0 )−1, then ω( 1
b ) ∩ �+ = ∅. Consequently, the exponential decay

occurs in ω( 1
b ) ∩ �−.

• If (β+
0 )−1 ≤ b, then the exponential decay occurs in both ω( 1

b ) ∩ �+ and ω( 1
b ) ∩ �−.

The situation when β−
0 < β+

0 can be discussed similarly. Next, we suppose that the two sets

(∂�)+ := {x ∈ ∂� , B0(x) > 0} and (∂�)− := {x ∈ ∂� , B0(x) < 0}
are non-empty, and we express the constant β1 in (1.4) as follows

β1 = max(β+
1 , β−

1 ) where β±
1 = sup

x∈(∂�)±
|B0(x)|.

According to Theorem 1.3, when β+
1 < β−

1 and (β1)
−1 < b < (β+

1 )−1, then the exponential
decay occurs on {x ∈ ∂�, �0b|B0(x)| > 1} ∩ (∂�)−, since {x ∈ ∂�, �0b|B0(x)| >

1} ∩ (∂�)+ = ∅.

Our next result discusses the optimality of Theorem 1.3. This theorem determines a part
of the boundary where the order parameter (the first component ψ of the minimizer) is
exponentially small. Outside this part of the boundary, we will prove that the L4 norm of the
order parameter is not exponentially small. In physical terms, superconductivity is present
there.

The statement of Theorem 1.5 involves the following notation:

• For all t > 0, �̃(t) = {x ∈ R
2 : dist(x, ∂�) < t}.

• By smoothness of ∂�, there exists a geometric constant t0 such that, for all x ∈ �̃(t0),
we may assign a unique point p(x) ∈ ∂� such that dist(p(x), x) = dist(x, ∂�).

• If b > 0, we define the open subset in R
2

�̃(t0, b) =
{
x ∈ �̃(t0) : 1 < b|B0(p(x))| < �−1

0

}
. (1.14)

• Esurf : [1,�−1
0 ) → (−∞, 0) is the surface energy function which will be defined in

(4.5) later. This function is continuous and non-decreasing.
• If �̃(t0, b) �= ∅, we define the following distribution in D′(�̃(t0, b)

)
:

C∞
c

(
�̃(t0, b)

) � ϕ �→ Tb(ϕ) = −2
∫

�̃(t0,b)∩∂�

√
1

b|B0(x)| Esurf
(
b|B0(x)|

)
ϕ(x)ds(x),

(1.15)
where ds is the surface measure on ∂�.

• If D ⊂ �, we introduce the local Ginzburg–Landau energy in D as follows

E(ψ,A; D) =
∫
D

(
|(∇ − iκHA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ(x)|4

)
dx . (1.16)

• 1� denotes the characteristic function of the set �.
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Theorem 1.5 (Existence of surface superconductivity) Suppose that Assumption 1.2 holds,
that b > β−1

0 and that �̃(t0, b) �= ∅, whereβ0 is the constant introduced in (1.4). If (ψ,A)κ,H

is a minimizer of the functional in (1.1) for H = bκ , then as κ → ∞, we have the following
weak convergence1

κ1�|ψκ,H |4 ⇀ Tb in D′(�̃(t0, b)
)
. (1.17)

Remark 1.6 Theorem 1.5 demonstrates the existence of surface superconductivity. We can
interpret the assumption in Theorem 1.5 in two different ways.

• If H = bκ, b > 0 is fixed and x0 ∈ ∂�, then to find superconductivity near x0, this point
should satisfy 1 < b|B0(x0)| < �−1

0 .
• If x0 ∈ ∂� is fixed and |B0(x0)| is small, then to find superconductivity near x0, the

intensity of the applied magnetic field should be increased in such a manner that H = bκ
and 1 < b|B0(x0)| < �−1

0 .

Our last result confirms that the region {B0(x) < κ
H } carries superconductivity every-

where. To state it, we will use the following notation:

• If p, q ∈ ∂�, dist∂�(p, q) denotes the (arc-length) distance in ∂� between p and q .
• For x0 ∈ R

2 and r > 0, we denote by Qr (x0) = x0 + (−r/2, r/2)2 the interior of the
square of center x0 and side r . When x0 = 0, we write Qr = Qr (0).

• For (x, �) ∈ � × (0, t0/2), we will use the following notation:

W(x0, �) =
{ {x ∈ � : dist∂�(p(x), x0) < � and dist(x, ∂�) < 2�} if x0 ∈ ∂�,

Q2�(x0) if x0 ∈ �.

(1.18)

Theorem 1.7 (The bulk superconductivity region) Suppose that Assumption 1.2 holds for
some α ∈ (0, 1), b > 0 and 2

2+α
< ρ < 1 be two constants. Let x0 ∈ � such that

|B0(x0)| < 1
b .

There exist κ0 > 0, a function r : [κ0,+∞) → R+ such that limκ→+∞ r(κ) = 0 and, for
all κ ≥ κ0 and for all critical point (ψ,A)κ,H of the functional in (1.1) with H = bκ , the
following two inequalities hold,∣∣∣∣∣

1

|W(x0, κ−ρ)|
∫
Wx0 (κ−ρ)

|ψ(x)|4dx + 2g
(
b|B0(x0)|

)∣∣∣∣∣ ≤ r(κ)

and ∣∣∣E
(
ψ,A;W(x0, κ

−ρ)
)

− κ2g
(
b|B0(x0)|

)∣∣∣ ≤ κ2r(κ).

Here g(·) is the continuous function appearing in (1.8) and (1.9) (see Sect. 2.1 for its definition
and properties).

The result in Theorem 1.7 is a variant of the formula in (1.9) valid for applied magnetic
fields which are only Hölder continuous, thereby generalizing the results by Attar [7] and
Sandier–Serfaty [41]. This will be clarified further in Remark 1.9.

In the bulk superconductivity region displayed in Theorem 1.7, vortices are expected to
exist, since the energy of minimizers is strictly lower that that of the normal or perfectly
superconducting states. Even in the case of a uniform magnetic field, their detection remains
an open problem (cf. [41]). However, if the magnetic field is not constant, the vortices will

1 A distribution Tκ converges weakly to a distribution T in D′(U ) if, for all ϕ ∈ C∞
c (U ), Tκ (ϕ) → T (ϕ).
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not arrange on a lattice and will have a non-uniform distribution. We refer to [7] for existing
results about the non-uniform distributions of vortices, but for a different regime of the applied
magnetic field.

Remark 1.8 Let us choose fixed constantsγ andρ such that 2
2+α

< ρ < 1 and 0 < γ < 1−ρ.
Our proof of Theorem 1.7 yields that the constant κ0 and the function r(κ) in Theorem 1.7
can be selected independently of the point x0 provided that

• κ−2γ ≤ b|B0(x0)| < 1;
• x0 ∈ ∂� or dist(x0, ∂�) ≥ 4κ−ρ .

The condition dist(x0, ∂�) ≥ 4κ−ρ ensures that Q2κ−ρ (x0) ⊂ �, which is needed in the
proof of Theorem 1.7.

Remark 1.9 Let γ ∈ (0, α
2+α

). If we assume furthermore the following geometric condition
∣∣{x ∈ � , |B0(x)| ≤ κ−2γ }∣∣ = o(1) (κ → ∞), (1.19)

then Theorem 1.7 implies the weak convergence

|ψκ,H (·)|4 ⇀ −2g
(
b|B0(·)|

)
in D′(�).

In (1.19), we have used the following notation. If E ⊂ R
2, |E | denotes the Lebesgue (area)

measure of E . Note that the condition in (1.19) holds under Assumption 1.1 considered in
[7].

The rest of the paper is organized as follows. In Sect. 2, we collect various results that will
be used throughout the paper. Section 3 is devoted to the proof of Theorem 1.3. In Sect. 4,
we present the proof of Theorem 1.5. Finally, we prove Theorem 1.7 in Sect. 5.

In the proofs, we avoid the use of the a priori elliptic L∞-estimates, whose derivation is
quite complicated (cf. [15, Ch. 11]), thereby providing new proofs for the results in [35,41].
To our knowledge, these L∞-estimates have not been established when the magnetic field
B0 is only Hölder continuous.

2 Preliminaries

2.1 The bulk energy function

The energy function g(·), hereafter called the bulk energy, has been constructed in [41]. We
will recall its construction here. It plays a central role in the study of ‘bulk’ superconductivity,
both for two and three dimensional problems (cf. [17,19]). Furthermore, it is related to the
periodic solutions of (1.3) and the Abrikosov energy (cf. [1,16]).

For b ∈ (0,+∞), r > 0, and Qr = (−r/2, r/2)× (−r/2, r/2), we define the functional,

Fb,Qr (u) =
∫
Qr

(
b|(∇ − iA0)u|2 − |u|2 + 1

2
|u|4

)
dx, for u ∈ H1(Qr ). (2.1)

Here, the magnetic potential A0 is expressed using the symmetric gauge,

A0(x) = 1

2
(−x2, x1), for x = (x1, x2) ∈ R

2, (2.2)

and gives rise to the unit constant magnetic field.
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We define the Dirichlet and Neumann ground state energies by

eD(b, r) = inf{Fb,Qr (u) : u ∈ H1
0 (Qr )}, (2.3)

eN (b, r) = inf
{
Fb,Qr (u) : u ∈ H1(Qr )

}
. (2.4)

We can define g(·) as follows (cf. [7,17,41])

∀ b > 0, g(b) = lim
r→∞

eD(b, r)

|Qr | = lim
r→∞

eN (b, r)

|Qr | , (2.5)

where |Qr | = r2 denotes the area of Qr .
Furthermore, there exists a universal constant C > 0 such that

∀ b > 0, ∀ r > 1, g(b) ≤ eD(b, r)

|Qr | ≤ eN (b, r)

|Qr | + C

r
≤ g(b) + 2C

r
. (2.6)

One can show that the function g(·) is a non decreasing continuous function such that

g(0) = −1

2
, g(b) < 0 when b < 1, and g(b) = 0 when b ≥ 1. (2.7)

2.2 The magnetic Laplacian

We need two results about the magnetic Laplacian. The first result concerns the Dirichlet
magnetic Laplace operator in a bounded set � with a strong constant magnetic field B, that
is

−(∇ − i BA0)
2 in L2(�),

with the Dirichlet condition

u = 0 on ∂�.

Here A0 is the vector field introduced in (2.2), with curlA0 = 1. It is based on the elementary
spectral inequality (cf. [15, Lem. 1.4.1]):

Lemma 2.1 For all B ∈ R and φ ∈ H1
0 (�), it holds

∫
�

|(∇ − i BA0)φ|2dx ≥ |B|
∫

�

|φ(x)|2dx .

The second result concerns the Neumann magnetic Laplace operator in a bounded set � with
a strong constant magnetic field B, that is

−(∇ − i BA0)
2 in L2(�),

with the (magnetic) Neumann condition

ν · (∇ − i BA0)u = 0 on ∂�.

Here ν is the unit inward normal vector on ∂�. The asymptotic behavior of the groundstate
energy as |B| → ∞ is well known (cf. [21,31] and [15, Prop. 8.2.2]):

Lemma 2.2 There exist β̂0 > 0 and C > 0 such that, if |B| ≥ β̂0 and φ ∈ H1(�),∫
�

|(∇ − i BA0)φ|2dx ≥ (
�0|B| − C |B|3/4) ∫

�

|φ|2dx .
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2.3 Universal bound on the order parameter

If (ψ,A) is a solution of (1.3), then ψ satisfies in � (cf. [15, Prop. 10.3.1])

|ψ(x)| ≤ 1. (2.8)

2.4 The magnetic energy

Let us introduce the space of vector fields

H1
div(�) = {A ∈ H1(�;R2) : divA = 0 in � and ν · A = 0 on ∂�}. (2.9)

The functional in (1.1) is invariant under the gauge transformations (ψ,A) �→ (eiφψ,A +
∇φ). Consequently, if (ψ,A) solves (1.3), we may apply a gauge transformation such that
the new configuration (ψ̃ = eiφψ, Ã = A + ∇φ) is a solution of (1.3) and furthermore Ã ∈
H1

div(�). Having this in hand, we always assume that every critical/minimizing configuration
(ψ,A) satisfies A ∈ H1

div(�) which simply amounts to a gauge transformation.
Since � For given B0 ∈ L2(�), there exists a unique vector field satisfying

F ∈ H1
div(�) and curlF = B0. (2.10)

Actually, F = ∇⊥ f where f ∈ H2(�) ∩ H1
0 (�) is the unique solution of −� f = B0. The

uniqueness of F is a consequence of the simple connectedness of �.

Remark 2.3 By the elliptic Schauder Hölder estimates (see for example Appendix E.3 in
[15]), if in addition B0 ∈ C0,α(�) for some α > 0, then the vector field F is smooth of class
C1,α(�).

We recall the following result from [7]:

Proposition 2.4 Let γ ∈ (0, 1) and 0 < c1 < c2 be fixed constants. Suppose that B0 ∈
L2(�). There exist κ0 > 0 and C > 0 such that, if κ ≥ κ0, c1κ ≤ H ≤ c2κ and if
(ψ,A)κ,H ∈ H1(�) × H1

div(�) is a minimizer of (1.2), then

‖A − F‖C0,γ (�) ≤ C

κ
.

The proof of Proposition 2.4 given in [7] is made under the assumption B0 ∈ C∞(�), but
it still holds under the weaker assumption B0 ∈ L2(�).

The next result gives the existence of a useful gauge transformation that allows us to
approximate the vector field F locally by a vector field generating a constant magnetic field.
It is similar to the result in [7, Lem. A.3], but the difference here is that we only assume
F ∈ C1,α(�) instead of C2.

Lemma 2.5 Let α ∈ (0, 1), r0 > 0 and B0 ∈ C0,α(�). There exists C > 0 and for any
a ∈ � a function ϕa ∈ C2,α(R2) such that, if r ∈ (0, r0] and B(a, r) ∩ � �= ∅, then

∀ x ∈ B(a, r) ∩ �, |F(x) − B0(a)A0(x − a) − ∇ϕa(x)| ≤ Cr1+α.

Here F is the vector field satisfying (2.10).

Proof of Lemma 2.5 Since the boundary of � is smooth and F ∈ C1,α(�;R2), the vector
field F admits an extension F̂ in C1,α(R2;R2). We get in this way an extension B̂0 = curl F̂
of B0 in C0,α(R2). We now define in R

2, the two vector fields

F̃(y) = F̂(a + y), Ã(y) =
(∫ 1

0
s B̂0(a + sy)ds

)
(−y2, y1).

123
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Clearly, curl F̃ = curl Ã = B̂0(a + y). Consequently, by integrating the closed 1-form
associated with F̃ − Ã, there exists a function ϕ̃ ∈ C2,α(R2) such that

F̃ − ∇ϕ̃ = Ã, φ̃(0) = 0.

Since B̂0 ∈ C0,α(R2), Ã(y) = B0(a)(−y2, y1) + O(r1+α) in B(0, r). We then define the

function ϕa by ϕa(x) = ϕ̃(x − a) + B0(a)
(
a2x1 − a1x2

)
. This implies

∀ x ∈ B(a, r), |̂F(x) − B0(a)A0(x − a) − ∇ϕa(x)| ≤ Cr1+α,

and the lemma by restriction to �. ��
2.5 Lower bound of the kinetic energy term

The main result in this subsection is:

Proposition 2.6 Let 0 < c1 < c2 be fixed constants. Suppose that α ∈ (0, 1] and B0 ∈
C0,α(�). There exist κ0 > 0 and C > 0 such that the following is true, with

σ(α) = 2α

3 + α
. (2.11)

(1) For

• κ ≥ κ0, c1κ ≤ H ≤ c2κ;
• (ψ,A)κ,H a solution of (1.3);
• φ ∈ H1(�) satisfies suppφ ⊂ {x ∈ �, |B0(x)| > 0},
we have∫

�

|(∇ − iκHA)φ(x)|2dx ≥ �0κH
∫

�

(|B0(x)| − Cκ−σ(α)
)|φ(x)|2dx .

(2) If in addition φ = 0 on ∂�, then∫
�

|(∇ − iκHA)φ(x)|2dx ≥ κH
∫

�

(|B0(x)| − Cκ−σ(α)
)|φ(x)|2dx .

The estimates in Items (1) and (2) in this proposition are known when the vector field A
is C2, independent of (κ, H), curlA �= 0 and B0 is replaced by curlA (cf. Lemma 2.2 and
[20]).

For α = 1 (i.e. B0 is Lipschitz) the errors in Proposition 2.6 and Lemma 2.2 are of the
same order.

Proof of Proposition 2.6 Let us choose an arbitrary φ ∈ H1(�). All constants below are
independent of φ. For the sake of simplicity, we will work under the additional assumption
that suppφ ⊂ {B0 > 0}.
Step 1. Decomposition of the energy via a partition of unity.

For � > 0 we consider the partition of unity in R
2

∑
j

χ2
j = 1,

∑
j

|∇χ j |2 ≤ C�−2 inR2, and suppχ j ⊂ B(a�
j , �).

Here the construction is first done for � = 1 and then for general � > 0 by dilation. Hence
the constant C is independent of �. Although the points (a�

j ) depend on �, we omit below the

reference to � and write a j for a�
j .
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In what follows, we will use this partition of unity with

� = κ−ρ, 0 < ρ < 1 and κ large enough.

Using this partition of unity, we may estimate from below the kinetic energy term as
follows∫

�

|(∇ − iκHA)φ|2dx ≥
∑
j

(∫
�

|(∇ − iκHA)(χ jφ)|2dx − C�−2
∫

�

|χ jφ|2dx
)

.

(2.12)
Let α j (x) = (x −a j ) · (A(a j )−F(a j )

)
, where F is the vector field in (2.10). Note the useful

decomposition

A(x) − ∇α j = F(x) + (
A(x) − F(x)

) − (
A(a j ) − F(a j )

)
.

By Proposition 2.4, we have in B(a j , �) ∩ �,

|(∇ − iκHA)(χ jφ)|2 = |(∇ − iκH(A − ∇α j ))(e
−iκHα j χ jφ)|2

≥ (1 − �δ)|(∇ − iκHF)e−iκHα j χ jφ|2
− �−δκ2H2�2γ ‖A − F‖2

C0,γ (�)
|χ jφ|2

≥ (1 − �δ)|(∇ − iκHF)(e−iκHα j χ jφ)|2 − CH2�(2γ−δ)|χ jφ|2.
(2.13)

Here δ > 0 and γ ∈ (0, 1) are two parameters to be chosen later.
By Lemma 2.5, we may define a smooth function ϕ j in B(a j , �) ∩ � such that,

|F(x) − ∇ϕ j (x) − |B0(a j )|A0(x − a j )| ≤ C�1+α,

where C > 0 is independent of j .
Consequently, there exists C > 0 such that, for all j ,

|(∇ − iκHF)(e−iκHα j χ jφ)|2 ≥ (1 − �δ)|(∇ − iκH |B0(a j )

× |A0(x − a j ))e
−iκHϕ j e−iκHα j χ jφ|2

−Cκ2H2�2+2α−δ|χ jφ|2. (2.14)

Step 2. The case suppφ ⊂ {x ∈ �, B0(x) > 0} and φ = 0 on ∂�.
The assumption on the support of φ yields that χ jφ ∈ H1

0 (�). Collecting (2.13), (2.14)
and the spectral inequality in Lemma 2.1, we get the existence of C > 0 such that for all j

∫
�

|(∇ − iκHA)(χ jφ)|2dx ≥ (1 − 2�δ)κH
∫

�

|B0(a j )||χ jφ|2dx

−CH2(�2γ−δ + κ2�2+2α−δ)

∫
�

|χ jφ|2dx .

Since B0 is in C0,α(�), we have B0(x) = B0(a j ) + O(�α) in B(a j , �). Thus
∫

�

|(∇ − iκHA)(χ jφ)|2dx ≥ κH
∫

�

|B0(x)||χ jφ(x)|2dx

−CH2(�α + �δ + �2γ−δ + κ2�2+2α−δ)

∫
�

|χ jφ(x)|2dx .
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130 Page 14 of 35 B. Helffer, A. Kachmar

After summation and using that
∑

j χ
2
j = 1, we get

∫
�

|(∇ − iκHA)φ|2dx

≥ κH

(∫
�

|B0(x)||φ(x)|2dx − C(�α+�δ + �2γ−δ+κ2�2+2α−δ+κ−2�−2)

∫
�

|φ|2dx
)

.

Hence the goal is to choose, when κ → +∞ and with � = κ−ρ , the parameters ρ, δ, γ and
α in order to minimize the sum

�0(κ, �) := �α + �δ + �2γ−δ + κ2�2+2α−δ + κ−2�−2. (2.15)

If we take δ = γ , which corresponds to give the same order for the second and the third
terms in �0, we obtain with � = κ−ρ

∫
�

|(∇ − iκHA)φ|2dx ≥ κH
∫

�

(
|B0(x)| − C(κ−ρα + κ−ργ + κ2−(2+2α−γ )ρ

+ κ2ρ−2
)
|φ(x)|2dx .

In the remainder, to minimize the error for the two last terms, we select ρ such that

2 − (2 + 2α − γ )ρ = 2ρ − 2,

i.e.

ρ = 4/(4 + 2α − γ ).

Getting the condition 0 < ρ < 1 satisfied leads to the condition α > γ/2. We select γ = 2
3α.

This choice is optimal since

σ(α) := max
0<γ<2α

σ0(α, γ ) = σ0

(
α,

2α

3

)
= 2α

3 + α
,

where

σ0(α, γ ) = min

(
4α

4 + 2α − γ
,

4γ

4 + 2α − γ
,

2(2α − γ )

4 + 2α − γ

)
.

This finishes the proof of Item (2) in Proposition 2.6.

Step 3. The case supp φ ⊂ {x ∈ �, B0(x) > 0}.
We continue with the choice δ = γ = 2

3α and ρ = 4/(4+2α−γ ). We collect the inequalities
in (2.13), (2.14) and Lemma 2.2 and write∫

�

|(∇ − iκHA)(χ jφ)|2dx ≥ (1 − 2�2α/3)κH
∫

�

(
�0|B0(a j )| − C(κH)−1/4

)
|χ jφ|2dx

−CH2κ−σ(α)

∫
�

|χ jφ|2dx .

Since B0 ∈ C0,α(�), we can replace B0(a j ) by B0(x) on the support of χ j modulo an error
O(�α). We insert the resulting estimate into (2.12) and use that

∑
j χ

2
j = 1 to get,

∫
�

|(∇ − iκHA)φ|2dx ≥ κH
∫

�

(
�0|B0(x)| − C(κ−σ(α) + κ−1/2)

)
|φ(x)|2dx .

Observing that σ(α) ≤ 1
2 , we have achieved the proof of Item (1) in Proposition 2.6. ��
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3 Exponential decay

3.1 Main statements

We recall the definition of the de Gennes constant �0 in (1.5), and the two constants β0, β1

in (1.4). For all λ ∈ (0, β0), we introduce the two functions on ω(λ):

tλ(x) = dist
(
x, ∂ω(λ)

)
and ζλ(x) = dist

(
x,� ∩ ∂ω(λ)

)
, (3.1)

where ω(·) is the domain introduced in (1.12).

Theorem 3.1 (Exponential decay outside the superconductivity region) Let c1 and c2 be two
constants such that β−1

0 < c1 < c2. Suppose that Assumption 1.2 holds for some α ∈ (0, 1).
There exists μ0 > 0 and for all μ ∈ (0, μ0), there exist κ0 > 0,C > 0 and α̂ > 0 such that,
if

κ ≥ κ0, c1κ ≤ H ≤ c2κ,

and (ψ,A)κ,H is a solution of (1.3), then the following inequalities hold:

(1) Decay in the interior:∫
ω(λ)∩{tλ(x)≥ 1√

κH
}

(
|ψ(x)|2 + 1

κH
|(∇ − iκHA)ψ(x)|2

)
exp

(
2α̂

√
κHtλ(x)

)
dx ≤ C

κ
,

where λ = κ

H
+ μ;

(2) Decay up to the boundary:∫
ω(β)∩{ζβ (x)≥ 1√

κH
}

(
|ψ(x)|2 + 1

κH
|(∇ − iκHA)ψ(x)|2

)
exp

(
2α̂

√
κHζβ(x)

)
dx ≤ C

κ
,

where β = �−1
0

( κ

H
+ μ

)
.

Remark 3.2 Theorem 3.1 says that, for μ > 0 sufficiently small, bulk superconductivity
breaks down in the region {x ∈ �, |B0(x)| ≥ κ

H + μ} and that surface superconductivity
breaks down in the region {x ∈ ∂�, �0|B0(x)| ≥ κ

H +μ}. This is illustrated in Figs. 1 and 2.

Remark 3.3 In the constant magnetic field case, B0 = 1, Theorem 3.1 is proved by Pan [35],
in response to a conjecture by Rubinstein [38, p. 182]. Our proof of Theorem 3.1 is simpler
than the one in [35] since we do not use the a priori elliptic L∞-estimates, whose derivation
is not easy (cf. [15, Ch. 11]).

Remark 3.4 On a technical level, one can still avoid to use the L∞-elliptic estimates in
the proof of Theorem 3.1 when the magnetic field is constant, by establishing a weak
decay estimate on the order parameter (namely ‖ψ‖2 = O(κ−1/4)). This has been done
by Bonnaillie-Noël and Fournais in [10] and then generalized by Fournais–Helffer to non-
vanishing continuous magnetic fields in [15, Cor. 12.3.2]. However, in the sign-changing
field case and the regime considered in Theorem 3.1, the weak decay estimate as in [10] does
not hold.

The substitute of the weak decay estimate in our proof is the use of a (local) gauge
transformation. This has been used earlier to estimate the Ginzburg–Landau energy (cf.
[9,29]), and the exponential decay of the order parameter for non-smooth magnetic fields
(cf. [6]). We will extend this method for obtaining local estimates in Theorems 4.7 and 4.8.
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Remark 3.5 The conclusion in Theorem 1.3 is a simple consequence of Theorem 3.1 and
the estimate in Proposition 2.4. Actually, if O is an open set independent of κ such that
O ⊂ ω(κ/H), then

O ⊂ ω
( κ

H
+ μ

)

for μ sufficiently small, and

dist
(
x, ∂ω

( κ

H
+ μ

) )
≥ cμ in O,

for a constant cμ > 0.
Similarly, when O is an open set independent of κ and

O ⊂ ω(κ/H) ∪ {x ∈ ∂�, �0|B0(x)| < κ/H},
then

O ⊂ ω
(
�−1

0

( κ

H
+ μ

))

for μ sufficiently small, and

dist

(
x, ∂ω

(
�−1

0

( κ

H
+ μ

)) )
≥ ĉμ in O,

for a constant ĉμ > 0.

The rest of this section is devoted to the proof of Theorem 3.1, which follows the scheme
of the proof of the semi-classical Agmon estimates (cf. [15, Ch. 12] and references therein).

Suppose that the parameters κ and H have the same order, i.e.

κ ≥ κ0 and c1κ ≤ H ≤ c2κ,

where κ0 ≥ 1 is supposed sufficiently large (this condition will appear in the proof below).
Suppose also that

c2 > c1 > β−1
0 ,

where c1, c2 are fixed constants and β0 was introduced in (1.4).

3.2 Useful inequalities

For all γ > 0, we extend to � the definitions of tγ and ζγ given in (3.1) as follows

tγ (x) =
{

dist
(
x, ∂ω(γ )

)
if x ∈ ω(γ )

0 if x ∈ �\ω(γ ))
(3.2)

and

ζγ (x) =
{

dist
(
x,� ∩ ∂ω(γ )

)
if x ∈ ω(γ )

0 if x ∈ �\ω(γ )
. (3.3)

In the sequel, we will add conditions on γ to ensure that ω(γ ) �= ∅.
Let χ̃ ∈ C∞(R) be a non negative function satisfying

χ̃ = 0 on (−∞,
1

2
], χ̃ = 1 on [1,∞).
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Define the functions χγ , ηγ , fγ and gγ on � as follows:

χγ (x) = χ̃
(√

κHtγ (x)
)
, ηγ (x) = χ̃

(√
κHζγ (x)

)
,

fγ (x) = χγ (x) exp
(
α̂
√

κHtγ (x)
)

and gγ (x) = ηγ (x) exp
(
α̂
√

κHζγ (x)
)
, (3.4)

where α̂ is a positive number whose value will be fixed later.
Let h ∈ { fγ , gγ }. We multiply both sides of the first equation in (1.3) by h2ψ and then

integrate by parts over ω(γ ). We get
∫

ω(γ )

(∣∣(∇ − iκHA)(hψ)
∣∣2 − κ2h2|ψ |2 − |∇h|2|ψ |2

)
dx ≤ 0. (3.5)

In the computations below, the constant C is independent of α̂, γ, κ and H . We estimate the
term involving ∇h as follows

∫
ω(γ )

|∇h|2|ψ |2dx ≤ 2α̂2κH‖hψ‖2
L2(ω(λ))

+ CκHT (h),

where

T (h) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
ω(γ )∩{√κHtγ (x)≤1}

|ψ(x)|2dx if h = fγ ,

∫
ω(γ )∩{√κHζγ (x)≤1}

|ψ(x)|2dx if h = gγ .

(3.6)

In this way we infer from (3.5) the following estimate
∫

ω(γ )

(∣∣(∇−iκHA)(hψ)(x)
∣∣2−κ2h(x)2|ψ(x)|2−2α̂2κHh(x)2|ψ(x)|2

)
dx ≤ CκHT (h).

(3.7)

3.3 Decay in the interior

Now we choose

γ = λ = κ

H
+ μ.

Here 0 < μ < μ0 and μ0 is sufficiently small such that μ0 + 1
c1

< β0. This ensures that
ω(λ) �= ∅.

We choose in (3.7) the function h = fλ, where fλ is the function introduced in (3.4). Note
that fλψ ∈ H1

0 (ω(λ)). We may apply the result in Proposition 2.6 to φ := fλψ and infer
from (3.7)
∫

ω(λ)

((
1 − Cκ−σ(α))|B0(x)| − 2α̂2 − κ

H

)
f 2
λ |ψ |2dx ≤ C

∫
ω(λ)∩{√κHtλ(x)≤1}

|ψ(x)|2dx .

We then use that |B0(x)| ≥ λ in ω(λ) and that λ = κ
H + μ. Consequently, for 0 < μ <

μ0, 0 < α̂ < α̂0, κ ≥ κ0, α̂0 sufficiently small (for example α̂2
0 < μ/4) and κ0 sufficiently

large

(
1 − Cκ−σ(α))|B0(x)| − 2α̂2 − κ

H
≥ μ

2
.
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Consequently, there exists a constant Cμ > 0 such that∫
ω(λ)

fλ(x)
2|ψ(x)|2dx ≤ C−1

μ

∫
ω(λ)∩{√κHtλ(x)≤1}

|ψ(x)|2dx

≤ C√
κH

by (2.8).

Inserting this into (3.7) [with h = fλ and T ( fλ) defined in (3.6)] achieves the proof of
Item (1) in Theorem 3.1.

3.4 Decay up to the boundary

Now we prove Item (2) in Theorem 3.1. Here we choose

γ = β = �−1
0

( κ

H
+ μ

)
.

Note that the estimate in Item (2) of Theorem 3.1 is trivially true if ω(β) = ∅. So, we assume
in the sequel that ω(β) �= ∅. This holds if

H ≥ c1κ, c1 > (�0β1)
−1,

and μ is sufficiently small.
We write (3.7) for h = gβ , where gβ is introduced in (3.4) and T (gβ) in (3.6). We apply

Proposition 2.6 to φ := gβψ and get∫
ω(β)

((
1 − Cκ−σ(α))�0|B0(x)| − C α̂2 − κ

H

)
gβ(x)2|ψ(x)|2dx

≤ C
∫

ω(β)∩{√κHζβ (x)≤1}
|ψ(x)|2dx . (3.8)

We decompose the integral over ω(β) as follows∫
ω(β)

=
∫

ωint(β)

+
∫

ωbnd(β)

,

where

ωint(β)=ω(β) ∩ {√
κHdist(x, ∂�) ≥ 1

}
and ωbnd(β)=ω(β) ∩ {√

κHdist(x, ∂�)<1
}
.

From (3.2), we see that ζβ(x) = tβ(x) and fβ(x) = gβ(x) in ωint(β). Furthermore, from the
definition of ω(·) in (1.12), we see that ω(β) ⊂ ω(λ) and tβ(x) ≤ tλ(x) on ω(β) if β ≥ λ.
Hence, by the first item in Theorem 3.1 [which is already proved for all α̂ ∈ (0, α̂0)],∫

ωint(β)

∣∣∣(1 − Cκ−σ(α))�0|B0(x)| − 2α̂2 − κ

H

∣∣∣gβ(x)2|ψ(x)|2dx ≤ C

κ
. (3.9)

Thus, we infer from (3.8) (and the bound |ψ | ≤ 1),∫
ωbnd(β)

((
1 − Cκ−σ(α))�0|B0(x)| − 2α̂2 − κ

H

)
gβ(x)2|ψ(x)|2dx ≤ C

κ
.

But, in ωbnd(β),�0|B0(x)| ≥ κ
H + μ, by definition of ω(β) and β = �−1

0 ( κ
H + μ). Thus,

as long as α̂ is selected sufficiently small, we have

(1 − Cκ−σ(α))�0|B0(x)| − 2α̂2 − κ

H
≥ μ

2
,
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and consequently, for some constant C̃μ > 0,

∫
ωbnd(β)

gβ(x)2|ψ(x)|2dx ≤ C̃μ

κ
.

We insert this estimate and the one in (3.9) into (3.8) to get
∫

ω(β)

gβ(x)2|ψ(x)|2dx ≤ C̃μ + C

κ
.

Finally, by inserting this estimate into (3.7) [with h = gβ and T (gβ) defined in (3.6)], we
finish the proof of Item (2) in Theorem 3.1.

4 Surface energy

The analysis of surface superconductivity starts with the work of St. James–de Gennes [39],
who studied this phenomenon on the ball. In the last two decades, many papers adressed the
boundary concentration of the Ginzburg–Landau order parameter for general 2D and 3D
samples in the presence of a constant magnetic field. We refer the reader to [3,12,14,16,18,
19,32,35].

In this section, we study surface superconductivity in non-uniform magnetic fields. Our
presentation not only generalizes the results known for the constant field case, but also
provides local estimates and new proofs, see Theorems 4.7 and 4.8. The most notable novelty
in the proofs is that we do not use the L∞ elliptic estimates.

4.1 The surface energy function

In this subsection, we give the definition of the continuous function Esurf : [1,�−1
0 ] →

(−∞, 0] introduced by Pan in [35] and which appeared after (1.14) and in Theorem 1.5. �0

is as before the de Gennes constant introduced in (1.5) with property (1.6).
For b ∈ [1,�−1

0 ] and R > 0, we consider the reduced Ginzburg–Landau functional,

V(UR) � φ �→ Eb,R(φ) =
∫
UR

(
b|(∇(σ,τ ) + iτ f)φ|2 − |φ|2 + 1

2
|φ|4

)
dσdτ, (4.1)

where f = (1, 0) and UR is the domain,

UR = (−R, R) × (0,+∞), (4.2)

and
V(UR) = {

u ∈ L2(UR) : (∇(σ,τ ) + iτ f)u ∈ L2(UR) , u(±R, ·) = 0
}
. (4.3)

We introduce the following ground state energy,

d(b, R) = inf{Eb,R(φ) : φ ∈ V(UR)}. (4.4)

In [35], it is proved that, for all b ∈ [1,�−1
0 ], there exists Esurf (b) ∈ (−∞, 0] such that

Esurf (b) = lim
R→∞

d(b, R)

2R
. (4.5)

The surface energy function Esurf (·) can be described by a simplified 1D problem as well
(cf. [3,18] and finally [12] for the optimal result). We collect some properties of Esurf (·):
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• Esurf (·) is a continuous and increasing function (cf. [19]);
• Esurf (�

−1
0 ) = 0 and Esurf (b) < 0 for all b ∈ [1,�−1

0 ) (cf. [14]).

The next theorem gives the existence of some minimizer with good properties (cf. [35,
Theorems 4.4 & 5.3]):

Theorem 4.1 There exist positive constants R0 and M such that, for all b ∈ [1,�−1
0 ) and

R ≥ R0:

(1) The functional (4.1) has a minimizer uR in V(UR) with the following properties:

(a) uR �≡ 0;
(b) ‖uR‖∞ ≤ 1;
(c)

1

R

∫
UR∩{τ≥3}

τ 2

(ln τ)2

(|(∇(σ,τ )+iτ f)uR |2+|uR(σ, τ )|2+τ 2|uR(σ, τ )|4) dσdτ ≤ M.

(2) The surface energy function Esurf (b) satisfies

Esurf (b) ≤ d(b, R)

2R
≤ Esurf (b) + M

R
.

The upper bound in Item (2) above results from a property of superadditivity of d(b, R),
see [35, Eq. (5.4)]. The lower bound in Item (2) above is not explicitly mentioned in [35],
but its derivation is easy [17, Proof of Thm 2.1, Step 2, p. 351] and can be sketched in the
following way. Let R > 0 and n ∈ N. Let uR ∈ H1

0 (UR) be a minimizer of the functional in
(4.1). We extend uR to a function in H1

0 (U(2n+1)R) by periodicity as follows

uR(x1 + 2R, x2) = uR(x1, x2).

Consequently,

d(b, (2n + 1)R) ≤ Eb,(2n+1)R(uR) = (2n + 1)d(b, R).

Dividing both sides of the preceding inequality by 2(2n+1)R and sending n to +∞, we get

Esurf (b) ≤ d(b, R)

2R
.

4.2 Boundary coordinates

The analysis of the boundary effects is performed in specific coordinates valid in a tubular
neighborhood of ∂�. We call these coordinates boundary coordinates. For more details on
these coordinates, see for instance [15, Appendix F].

For a sufficiently small t0 > 0, we introduce the open set

�(t0) = {x ∈ R
2 : dist(x, ∂�) < t0}.

In the sequel, let x0 ∈ ∂� be a fixed point. Let s �→ γx0(s) be the parametrization of ∂� by
arc-length such that γx0(0) = x0. Also, let ν(s) be the unit inward normal of ∂� at γx0(s).
The orientation of γx0 is selected in the counter clock-wise direction, hence

det
(
γ ′
x0

(s), ν(s)
)

= 1.

Define the transformation

�x0 :
[
−|∂�|

2
,
|∂�|

2

)
× (0, t0) � (s, t) �→ γx0(s) + tν(s) ∈ �(t0). (4.6)
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We may choose t0 sufficiently small (independently from the choice of the point x0 ∈ ∂�)
such that the transformation in (4.6) is a diffeomorphism. The Jacobian of this transformation
is |D�x0 | = 1 − tk(s), where k denotes the curvature of ∂�. For x ∈ �(t0), we put

�−1
x0

(x) = (s(x), t (x)).

In particular, we get the explicit formulae

t (x) = dist(x, ∂�) and s(x0) = 0. (4.7)

Using �x0 , we may associate to any function u ∈ L2(�), a function ũ = T�x0
u defined

in [− |∂�|
2 ,

|∂�|
2 ) × (0, t0) by,

ũ(s, t) = u(�x0(s, t)). (4.8)

Also, for every vector field A ∈ H1(�), we assign the vector field

Ã(s, t) =
(
Ã1(s, t), Ã2(s, t)

)

with ⎧⎨
⎩
Ã1(s, t) = a(s, t)A

(
�x0(s, t)

)
· γ ′

x0
(s),

Ã2(s, t) = A
(
�x0(s, t)

)
· ν(s),

(4.9)

and

a(s, t) = 1 − tk(s).

The following change of variable formulas hold.

Proposition 4.2 For u ∈ H1(�) and A ∈ H1(�;R2), we have:

∫
�(t0)

|(∇ − iA)u|2 dx =
∫ t0

0

∫ |∂�|
2

− |∂�|
2

[
[a(s, t)]−2|(∂s − iÃ1)̃u|2

+ |(∂t − iÃ2 )̃u|2
]
a(s, t)dsdt, (4.10)

and ∫
�(t0)

|u(x)|2dx =
∫ t0

0

∫ |∂�|
2

− |∂�|
2

|̃u(s, t)|2a(s, t)dsdt. (4.11)

Recall the vector field A0 introduced in (2.2). Up to a gauge transformation, the vector
field A0 admits a useful (local) representation in the coordinate system (s, t).

For x0 ∈ ∂� and � ∈ (0, t0), we introduce the set Vx0(�) ⊂ �(t0) as follows:

Vx0(�) = �x0

(
(−�, �) × (0, �)

)
. (4.12)

Lemma 4.3 There exists r0 > 0 such that, for any x0 in ∂�, there exists gx0 in
C∞((−2r0, 2r0) × (0, r0)) such that

Ã0(s, t) − ∇gx0(s, t) =
(

−t + k(s)
t2

2
, 0

)
in (−2r0, 2r0) × (0, r0).

Here Ã0 is the vector field associated with A0 by the formulas in (4.9) and one can take
r0 = min(t0,

|∂�|
4 ).
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For the proof of Lemma 4.3, we refer to [15, Proof of Lem. F.1.1]. Note that Lemma F.1.1
in [15] is announced for a more general setting.

We will use Lemma 4.3 to estimate the following Ginzburg–Landau energy of u,

G0
(
u,A0; Vx0(�)

) =
∫
Vx0 (�)

(
|(∇ − ihexA0)u|2 − κ2|u|2 + κ2

2
|u|4

)
dx . (4.13)

Lemma 4.4 There exist constants C > 0, �0 > 0 and κ0 > 0 such that, for all x0 ∈
∂�, � ∈ (0, �0), κ ≥ κ0, κ

2 ≤ hex ≤ �−1
0 κ2, and u ∈ H1

0 (Vx0(�)) ∩ L∞(Vx0(�)) satisfying
‖u‖∞ ≤ 1, the following two inequalities hold:

G0
(
u,A0; Vx0(�)

) ≥ 2
κ2�√
hex

Esurf

(
hex

κ2

)
− Cκ�

(
� + κ3�4 + κ�2

)
, (4.14)

and

G0
(
u,A0; Vx0(�)

) ≤ (1 + C�)
κ2

hex
Ehex/κ2,

√
hex�(̃v) + Cκ�

(
κ3�4 + κ�2

)
. (4.15)

where E·,· is the functional introduced in (4.1) and

ṽ(σ, τ ) = exp

(
−ihexgx0

( σ√
hex

,
τ√
hex

))
ũ
( σ√

hex
,

τ√
hex

)
.

Here ũ is the function associated with u by (4.8) and gx0 is introduced in Lemma 4.3.

Proof Using Proposition 4.2 and the assumptions on u, we may write, for two positive
constants C0,C and for all 0 < � < min

( 1
2C

−1
0 , t0

)
,

G0
(
u,A0; Vx0(�)

)≥(1 − C0�)

∫ �

0

∫ �

−�

(
|(∇ − ihexÃ0 )̃u|2−κ2 |̃u|2 + κ2

2
|̃u|4

)
dsdt−Cκ2�3.

Let g := gx0 be the function defined in Lemma 4.3 and w̃(s, t) = e−ihexg(s,t)ũ(s, t).
Using the Cauchy-Schwarz inequality, we get the existence of C > 0 such that

G0
(
u,A0; Vx0(�)

) ≥ (1 − 2C0�)

∫ �

0

∫ �

−�

(
|(∇ + ihextf)w̃|2 − κ2|w̃|2 + κ2

2
|w̃|4

)
dsdt

−Cκ4�5 − Cκ2�3.

Here f = (1, 0). We apply the change of variables (σ, τ ) = (
√
hexs,

√
hext) and ṽ(σ, τ ) =

w̃(s, t) to get

G0(u,A0; Vx0(�)) ≥ (1 − 2C0�)
κ2

hex
Ehex/κ2,R (̃v) − Cκ4�5 − Cκ2�3,

where R = h
1
2
ex� and Ehex/κ2,R is the functional introduced in (4.1) for b = hex/κ

2.
Note that we extended ṽ by 0, which is possible because u ∈ H1

0 (Vx0(�)). Using the
second Item in Theorem 4.1 and the assumption C0� < 1

2 , we get

G0(u,A0; Vx0(�)) ≥ 2(1 − 2C0�)
κ2

hex
(h

1
2
ex�)Esurf

(
hex

κ2

)
− Cκ4�5 − Cκ2�3.

This proves the lower bound (4.14) in Lemma 4.4.
Similarly, using Lemma 4.3, the Cauchy-Schwarz inequality on the kinetic term and a change
of variables, we get the upper bound (4.15) of Lemma 4.4. ��
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4.3 Existence of surface superconductivity

The proof of Theorem 1.5 follows from the exponential decay stated in Theorem 3.1 and the
following result:

Theorem 4.5 Suppose that Assumption 1.2 holds and that b > β−1
0 , where β0 is the constant

introduced in (1.4). There exists ρ ∈ (0, 1) such that the following is true.
Let x0 ∈ ∂� such that 1

b < |B0(x0)| < 1
�0b

. If (ψ,A)κ,H is a minimizer of the functional
in (1.1) for H = bκ , then

lim
κ→+∞

(
2κ1+ρ

∫
Vx0 (κ−ρ)

|ψ(x)|4dx
)

= −2

√
1

b|B0(x0)| Esurf
(
b|B0(x0)|

)
> 0, (4.16)

and

lim
κ→+∞

(
2κρ−1E

(
ψ,A; Vx0(κ

−ρ)
)) =

√
1

b|B0(x0)| Esurf
(
b|B0(x0)|

)
< 0. (4.17)

The proof of Theorem 4.5 will follow from the upper bound in Theorems 4.7 and 4.8
below.

Remark 4.6 Let ε ∈ (1,�−1
0 − 1). The convergence in (4.16) and (4.17) is uniform with

respect to x0 ∈ {1 + ε ≤ b|B0| < �−1
0 } ∩ ∂�. This is precisely stated in Theorems 4.7

and 4.8.

4.4 Sharp upper bound on the L4-norm

In this subsection, we will prove:

Theorem 4.7 Suppose that B0 ∈ C0,α(�) for some α ∈ (0, 1), ρ ∈ ( 3
3+α

, 1) and

b ≥ β−1
0 , with β0 := sup

x∈�

|B0(x)| > 0.

There exist κ0 > 0, a function r : [κ0,+∞) → R+ such that limκ→+∞ r(κ) = 0 and, for
all κ ≥ κ0, for all critical point (ψ,A)κ,H of the functional in (1.1) with H = bκ , and all
x0 ∈ ∂� satisfying

1 ≤ b|B0(x0)| < �−1
0 ,

the inequality

1

2�

∫
Vx0 (�)

|ψ(x)|4dx ≤ −2κ−1

√
1

b|B0(x0)| Esurf

(
b|B0(x0)|

)
+ κ−1r(κ),

holds with

� = κ−ρ and Vx0(�) is defined in (4.12).

Proof The proof is reminiscent of the method used by the second author in [26, Sec. 4] (see
also [27]). We assume that B0(x0) > 0. The case where B0(x0) < 0 can be treated in the
same manner by applying the transformation u �→ u.
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Let σ ∈ (0, 1) and � = κ−ρ as in the statement of Theorem 4.7. Let f ∈ C∞
c

(
Vx0

(
(1 +

σ)�
))

be a smooth function satisfying,

f = 1 in Vx0(�), 0 ≤ f ≤ 1 and |∇ f | + σ�|� f | ≤ C

σ�
in Vx0

(
(1 + σ)�

)
. (4.18)

The function f depends on the parameters x0, �, σ but the constant C is independent of these
parameters. We will estimate the following local energy

E1( f ψ,A) := E1
(
f ψ,A; Vx0((1 + σ)�)

)
, (4.19)

where, for an open set V ⊂ �,

E1(u,A;V) :=
∫
V

(
|(∇ − iκHA)u|2 − κ2|u|2 + κ2

2
|u|4

)
dx,

E2(u,A;V) :=
∫
V

(
|(∇ − iκHA)u|2 − κ2|u|2 + κ2

2
|u|4

)
dx

+ (κH)2
∫

�

| curlA − B0|2dx .

(4.20)

Since (ψ,A) is a solution of (1.3), an integration by parts yields (cf. [16, Eq. (6.2)]),

E1( f ψ,A) = κ2
∫
Vx0 ((1+σ)�)

f 2
(

−1 + 1

2
f 2

)
|ψ |4 dx +

∫
Vx0 ((1+σ)�)

|∇ f |2|ψ |2dx .
(4.21)

Since f = 1 in Vx0(�) and −1 + 1
2 f 2 ≤ − 1

2 in Vx0((1 + σ)�), we may write

∫
Vx0 ((1+σ)�)

f 2
(

−1 + 1

2
f 2

)
|ψ |4dx ≤ −1

2

∫
Vx0 (�)

|ψ |4dx .

We estimate the integral in (4.21) involving |∇ f | using (4.18) and
∣∣supp∇ f

∣∣ ≤ Cσ�2, where∣∣supp∇ f
∣∣ denotes the area of the support of ∇ f . In this way, we infer from (4.21),

E1( f ψ,A) ≤ −κ2

2

∫
Vx0 (�)

|ψ |4dx + Cσ−1. (4.22)

Now we write a lower bound for this energy. We may find a real-valued function w ∈
C2,α(Vx0((1 + σ)�) such that

E1( f ψ,A) ≥
∫
Vx0 ((1+σ)�)

(
(1 − C�δ)|(∇ − iκHB0(x0)A0)(e

−iκHw f ψ)|2

− κ2| f ψ |2 + κ2

2
| f ψ |4

)
dx

−Cκ2
(
�2γ−δ + κ2�2+2α−δ

) ∫
Vx0 ((1+σ)�)

| f ψ |2,

where γ ∈ (0, 1) is a constant whose choice will be specified later and δ > 0.
The details of these computations are given in (2.13) and (2.14).
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From now on we choose δ = α, use the lower bound in Lemma 4.4 and the assumption
that H = bκ to write

E1( f ψ,A) ≥ 2(1 − C�α)κ(1 + σ)�

√
1

b|B0(x0)| Esurf
(
b|B0(x0)|

)

−Cκ�(� + κ3�4 + κ�2) − Cκ2
(
�α + �2γ−α + κ2�2+α

) ∫
Vx0 ((1+σ)�)

| f ψ |2.

Using the bound ‖ f ψ‖∞ ≤ 1, we get further

E1( f ψ,A) ≥ 2(1 − C�α)κ(1 + σ)�

√
1

b|B0(x0)| Esurf
(
b|B0(x0)|

)

−Cκ�
(
� + κ�1+α + κ�1+2γ−α + κ3�3+α

)
. (4.23)

To optimize the remainder, we choose γ = α. Our assumption

� = κ−ρ with (1 + α)−1 < 3(3 + α)−1 < ρ < 1

yields that the function

�(κ, �) := �α + � + κ�1+α + κ3�3+α

tends, with � = κ−ρ , to 0 as κ → +∞.
Now, coming back to (4.22), we find

2κ(1 + σ)�

√
1

b|B0(x0)| Esurf
(
b|B0(x0)|

) − Cκ��(κ, �) ≤ −κ2

2

∫
Vx0 (�)

|ψ |4dx + Cσ−1.

We rearrange the terms in this inequality, divide by κ2�, and choose σ = κ
1
2 (ρ−1). In this

way, we get the upper bound in Theorem 4.7 with, for some constant C > 0,

r(κ) = C
(
�(κ, κ−ρ) + κ

1
2 (ρ−1)

)
.

��
4.5 Sharp Lower bound on the L4-norm

In this subsection, we will prove the asymptotic optimality of the upper bound established
in Theorem 4.7 by giving a lower bound with the same asymptotics.

We remind the reader of the definition of the domain Vx0(�) in (4.12) and the local energy
E1

(
ψ,A;V)

introduced in (4.20).

Theorem 4.8 Let 1 < ε < �−1
0 − 1, 3

3+α
< ρ < 1 and 1 − ρ < δ < 1 be constants. Under

the assumptions of Theorem 4.7, there exist κ0 > 0, a functionOr : [κ0,+∞) → R+ such
that limκ→+∞Or(κ) = 0 and, for all κ ≥ κ0, for all minimizer (ψ,A)κ,H of the functional in
(1.1) with H = bκ , and all x0 ∈ ∂� satisfying

1 + ε ≤ b|B0(x0)| < �−1
0 ,
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the two inequalities

1

2�

∫
Vx0 (�)

|ψ(x)|4dx ≥ −2κ−1

√
1

b|B0(x0)| Esurf

(
b|B0(x0)|

)
− κ−1Or(κ),

∣∣∣∣∣
1

2�
E1

(
ψ,A; Vx0((1 + σ)�)

) − κ

√
1

b|B0(x0)| Esurf

(
b|B0(x0)|

)∣∣∣∣∣ ≤ κOr(κ),

hold, with � = κ−ρ and σ = κ−δ .

Remark 4.9 Let c2 > c1 > 0 be fixed constants. The conclusion in Theorem 4.8 remains
true if � satisfies

c1κ
−ρ ≤ � ≤ c2κ

−ρ.

Proof of Theorem 4.8 In the sequel, σ ∈ (0, 1) will be selected as a negative power of
κ, σ = κ−δ for a suitable constant δ ∈ (0, 1). As the proof of Theorem 4.7, we can assume
that B0(x0) > 0. The proof of the lower bound in Theorem 4.8 will be done in four steps.

Step 1: Construction of a trial function.
The construction of the trial function here is reminiscent of that by Sandier–Serfaty in the

study of bulk superconductivity (cf. [41]). Define the function

u(x) = 1Vx0 ((1+σ)�)(x)χ

(
t (x)

�

)
exp

(
iκHw(x)

)
vR ◦ �−1

x0
(x) + η�(x)ψ(x) (x ∈ �).

(4.24)
Here Vx0(·) is introduced in (4.12), t (x) = dist(x, ∂�),�x0 is the coordinate transformation
defined in (4.6),

vR(s, t) = exp
(
iκHgx0(s, t)

)
uR

(
s
√
B0(x0)κH , t

√
B0(x0)κH

)
, (4.25)

R = (1 + σ)�
√
B0(x0)κH , (4.26)

and [cf. (4.1)]

uR(·) is a minimizer of the reduced functional EbB0(x0),R(·).
The function gx0(s, t) satisfies the following identity in

(− 2�, 2�
)× (0, �) (cf. Lemma 4.3),

Ã0(s, t) − ∇gx0(s, t) =
(

− t + t2

2
k(s), 0

)
.

The function χ ∈ C∞([0,∞)) satisfies

χ = 1 in [0, 1/2], χ = 0 in [1,∞), and 0 ≤ χ ≤ 1.

The function η� is a smooth function satisfying

η�(x) = 0 in Vx0((1 + σ)�), η�(x) = 1 in �\Vx0((1 + 2σ)�), 0 ≤ η�(x) ≤ 1 in �,

and

|∇η�(x)| + σ�|�η�| ≤ Cσ−1�−1 in �,

for some constant C > 0.
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Finally, the function w is the sum of two real-valuedC2,α-functions w1 and w2 in Vx0((1+
σ)�) and satisfying the following estimates

|A(x) − F(x) − ∇w1(x)| ≤ C

κ
�α and |F(x) − B0(x0)A0(x) − ∇w2(x)| ≤ C�1+α

in Vx0((1 + σ)�). (4.27)

By Proposition 2.4, we simply define w1(x) = (x − x0) · (A(x0) − F(x0)
)
. The fact that the

vector field A0(x) is gauge equivalent to A0(x − x0) and Lemma 2.5 ensure the existence of
w2.

We decompose the energy E(u,A) as follows

E(u,A) = E1(u,A) + E2(u,A), (4.28)

where

E1(u,A) = E1

(
u,A; Vx0((1 + σ)�)

)
and E2(u,A) = E2

(
u,A;�\Vx0((1 + σ)�)

)
(4.29)

are introduced in (4.20).

Step 2: Estimating E1(u,A).
Using the Cauchy-Schwarz inequality and the estimates in (4.27), we get

E1(u,A) ≤ (1 + �α)E1

(
e−iκHwu, B0(x0)A0

)
+ C

(
κ2�2+α + κ4�4+α

)
.

For estimating the term E1

(
e−iκHwu, B0(x0)A0

)
, we write

E1

(
e−iκHwu, B0(x0)A0

)
= G0

(
e−iκHwu, hexA0; Vx0(�̃)

)
,

where

�̃ = (1 + σ)�, hex = κHB0(x0) and G0 is introduced in (4.13).

We apply Lemma 4.4 and get

E1(u,A) ≤ (1 + C�α)
1

bB0(x0)
EbB0(x0),R

(
χ̃�uR

) + Cκ�
(
κ3�3+α + κ�1+α

)
,

where

χ̃�(τ ) = χ

(
τ

�
√

κH

)
, b = H/κ, and R = √

hex�̃,

in conformity with (4.26).
Note that supp(1 − χ̃2

� ) ⊂ [�√κH/2, +∞) and suppχ̃ ′
� ⊂ [�√κH/2, �

√
κH ]. Using the

decay of uR established in Theorem 4.1, we get

EbB0(x0),R
(
χ̃� uR

) ≤ EbB0(x0),R
(
uR

) + C
| ln(�

√
κH)|2

�
√

κH
.

Since EbB0(x0),R(uR) = d(bB0(x0), R) and R = (1 + σ)�
√
B0(x0)κH , Theorem 4.1 yields

E1(u,A) ≤ 2κ�

√
1

b|B0(x0)| Esurf
(
bB0(x0)

)

+Cκ�
(
�α + κ3�3+α + κ�1+α + σ + (κ�)−1 + | ln(�

√
κH)|2

�2κ2

)
. (4.30)
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Step 3: Estimating E2(u,A).
Let Vx0(�̃)

� := �\Vx0(�̃) and u = η�ψ . By a straight forward computation, we obtain

∫
Vx0 (�̃)�

|(∇ − iκHA)η�ψ |2 dx

=
∫
Vx0 (�̃)�

|η�(∇ − iκHA)ψ |2 dx −
∫
Vx0 (�̃)�

|ψ |2η��η� dx

=
∫
Vx0 (�̃)�

|(∇ − iκHA)ψ |2 dx −
∫

{t (x)≤σ�}∩Vx0 (�̃)�
|ψ |2η��η� dx −

∫
{t (x)>σ�}

|ψ |2η��η� dx

≤
∫
Vx0 (�̃)�

|(∇ − iκHA)ψ |2 dx + C.

Here we used the properties of the function η�, namely that 0 ≤ η� ≤ 1, |�η�| = O(σ−2�−2)

and |{t (x) ≤ σ�} ∩ supp(∇η�)| = O(σ 2�2).
For the integral over {t (x) > σ�}, we use that b|B0(x0)| ≥ 1 + ε, which in turn allows us to
use Theorem 1.3 and prove that the integral of |ψ |2 is exponentially small as κ → +∞.

Now we use that
∣∣∣Vx0(�̃)

� ∩ supp(1 − η�)

∣∣∣ = O(σ�2) to write

−κ2
∫
Vx0 (�̃)�

|η�ψ |2 dx = −κ2
∫
Vx0 (�̃)�

|ψ |2 dx + κ2
∫
Vx0 (�̃)�

(1 − η2
�)|ψ |2 dx

≤ −κ2
∫
Vx0 (�̃)�

|ψ |2 dx + Cκ2σ�2.

This yields

E2(u,A) ≤
∫

�\Vx0 (�̃)

(
|(∇ − iκHA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4

)
dx

+C
(

1 + κ2σ�2
)

+ κ2H2
∫

�

| curlA − B0|2 dx .

Remembering the definition of E2(ψ,A) in (4.29), we obtain

E2(u,A) ≤ E2(ψ,A) + C
(

1 + κ2σ�2
)
. (4.31)

Step 4: Upper bound of the local Ginzburg–Landau energy.
Since (ψ,A) is a minimizer of the functional E(·, ·),

E(ψ,A) ≤ E(u,A) = E1(u,A) + E2(u,A).

By (4.29), we may write the simple identity E(ψ,A) = E1(ψ,A) + E2(ψ,A). Using (4.31),
we get

E1(ψ,A) ≤ E1(u,A) + C
(

1 + κ2σ�2
)
.

Now, we use the estimate in (4.30) to write

E1(ψ,A) ≤ 2κ�

√
1

b|B0(x0)| Esurf
(
bB0(x0)

)

+Cκ�
(
�α + κ3�3+α + κ�1+α + σ + (κ�)−1 + κσ� + | ln(�

√
κH)|2

�2κ2

)
. (4.32)
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Step 5: Lower bound of the L4-norm.
We select

� = κ−ρ and σ = κ−δ,

with

1

1 + α
<

3

3 + α
< ρ < 1 and 1 − ρ < δ < 1.

In this way, we get that, the restriction �̄(κ, κ−ρ, κ−δ) of

�̄(κ, �, σ ) := �α + κ3�3+α + κ�1+α + σ + (κ�)−1 + κσ� + | ln(�
√

κH)|2
�2κ2 , (4.33)

tends to 0 as κ → +∞.
Consequently, we infer from (4.32),

E1(ψ,A) ≤ 2κ �

√
1

b|B0(x0)| Esurf
(
bB0(x0)

) + C κ� �̄(κ, κ−ρ, κ−δ). (4.34)

Now, let f be the smooth function satisfying (4.18). Again, using the properties of f and a
straightforward computation as in Step 3, we have

E1( f ψ,A) ≤ E1(ψ,A) + C
(

1 + κ2σ�2
)
,∫

Vx0 (�̃)

f 2
(

− 1 + 1

2
f 2

)
|ψ |4 dx ≥ −1

2

∫
Vx0 (�)

|ψ |4 dx − Cσ�2.
(4.35)

Using the lower bound of E1( f ψ;A) in (4.23), we get from (4.34) and (4.35),
∣∣∣∣∣E1(ψ,A) − 2κ�

√
1

b|B0(x0)| Esurf
(
bB0(x0)

)∣∣∣∣∣ ≤ Cκ� �̄(κ, κ−ρ, κ−δ).

Remembering the definition of E1(ψ,A) = E1
(
ψ,A; Vx0((1 + σ)�)

)
, we get the statement

concerning the local energy in Theorem 4.8.
Now we return back to (4.21). Using (4.35), we write

E1(ψ,A) + C
(

1 + κ2σ�2
)

≥ −κ2

2

∫
Vx0 (�)

|ψ |4 dx − Cσ�2κ2.

Rearranging the terms, then using (4.34) and (4.33), we arrive at the following upper bound

κ2

2

∫
Vx0 (�)

|ψ(x)|4 dx ≥ −2κ�

√
1

b|B0(x0)| Esurf
(
bB0(x0)

) + C κ � �̄(κ, κ−ρ, κ−δ).

Using the remark around (4.33), this finishes the proof of Theorem 4.8. ��

5 The superconductivity region: Proof of Theorem 1.7

In this section, we present the proof of Theorem 1.7 devoted to the distribution of the super-
conductivity in the region

{x ∈ �, b |B0(x)| < 1} for the applied magnetic field H = bκ.
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The proof follows by an analysis similar to the one in Sect. 4, so our presentation will be
shorter here.

Remark 5.1 As � → 0+, the area of W(x0, �) as introduced in (1.18) is

|W(x0, �)| = 4�2 if x0 ∈ �,

and

|W(x0, �)| = 4�2 + o(�2) if x0 ∈ ∂�.

The proof of Theorem 1.7 is presented in five steps. In the sequel, ρ ∈ ( 2
2+α

, 1) and
c2 > c1 > 0 are fixed,

c1κ
−ρ ≤ � ≤ c2κ

−ρ and σ = κ
ρ−1

2 . (5.1)

We will refer to the condition on � by writing � ≈ κ−ρ .

Step 1. Useful estimates.

Let f ∈ C∞
c

(
W

(
x0, (1 + σ)�

))
be a smooth function such that

f = 1 in W(x0, �), 0 ≤ f ≤ 1 and |∇ f | ≤ C

σ�
in W

(
x0, (1 + σ)�

)
. (5.2)

As in the proof of (4.22), we have

E1

(
f ψ,A;W(x0, (1 + σ)�)

)
≤ −κ2

2

∫
W(x0,�)

|ψ(x)|4 dx + Cσ−1. (5.3)

Here E1 is introduced in (4.20). Furthermore, by Cauchy’s inequality, we have the following
two estimates:

E1

(
f ψ,A;W(x0, (1 + σ)�)

)
≤ (1 + κ−ζ )E1

(
ψ,A;W(x0, (1 + σ)�)

)

+Cκ2�2(σ−1κζ (κ�)−2 + σ + κ−ζ
)
, (5.4)

and [cf. (4.21)]

E1

(
f ψ,A;W(x0, (1 + σ)�)

)
≥ κ2

∫
W(x0,(1+σ)�)

f 2
(

−1 + 1

2
f 2

)
|ψ |4 dx

≥ −κ2

2

∫
W(x0,�)

|ψ(x)|4 dx − Cσ�2κ2,

(5.5)

where ζ ∈ (0, 1) is a constant to be chosen later.

Step 2. The case B0(x0) = 0.
The upper bound for the integral of |ψ |4 in Theorem 1.7 is trivial since |ψ | ≤ 1 and

g(0) = − 1
2 .

We have the obvious inequalities

E1

(
f ψ,A;W(x0, (1 + σ)�)

)
≥

∫
W(x0,(1+σ)�)

(
− κ2| f ψ |2 + κ2

2
| f ψ |4

)
dx

≥ −κ2

2

∫
W(x0,(1+σ)�)

dx .
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Inserting this into (5.4) and selecting ζ = 1−ρ
2 , we get

E1

(
ψ,A;W(x0, (1 + σ)�)

)
≥ −Cκ2�2(σ−1κζ (κ�)−2 + σ + κ−ζ

) = o(κ2�2),

since σ = κ
ρ−1

2 , � ≈ κ−ρ and 2
2+α

< ρ < 1.

Now we prove an upper bound for E1

(
f ψ,A;W(x0, (1 + σ)�)

)
. Let η� be a smooth

function satisfying

η�(x) = 0 in W(x0, (1+σ)�), η�(x) = 1 in �\W(x0, (1+2σ)�), 0 ≤ η�(x) ≤ 1 in �,

(5.6)
and

|∇η�(x)| ≤ Cσ−1�−1 in �, (5.7)

for some constant C > 0. We define the function

u(x) = exp
(
iκHw(x)

)
f (x) + η�(x)ψ(x),

where the function w is the sum of two functions w1 and w2 such that the two inequalities
in (4.27) are satisfied in W(x0, (1 + σ)�)).

We have the obvious decomposition

E(u,A) = E1

(
exp

(
iκHw(x)

)
f (x),A;W(x0, (1 + σ)�)

)

+E2

(
η�(x)ψ(x),A;�\W(x0, (1 + σ)�)

)
,

where E1 and E2 are introduced in (4.20).

We estimate E2

(
η�(x)ψ(x),A;�\W(x0, (1+σ)�)

)
as we did in the proof of Theorem 4.8

[cf. Step 3 and (4.31)]. In this way we get

E2

(
η�(x)ψ(x),A;�\W(x0, (1 + σ)�)

)
≤ E2

(
ψ(x),A;�\W(x0, (1 + σ)�)

)

+C(σ−1 + σκ2�2). (5.8)

For the term E1

(
exp

(
iκHw(x)

)
f (x),A;W(x0, (1 + σ)�)

)
, we argue as in the proof of

Theorem 4.8 (Step 2) and write

E1

(
exp

(
iκHw(x)

)
f (x),A;W(x0, (1 + σ)�)

)

≤ (1 + �α)E1

(
f (x), B0(x0)A0;W(x0, (1 + σ)�)

)
+ C(κ2�2+α + κ4�4+α).

Note that

E1

(
f (x), B0(x0)A0;W(x0, (1 + σ)�)

)
= E1

(
f (x), 0;W(x0, (1 + σ)�)

)

≤ Cσ−1 + κ2
∫
W(x0,(1+σ)�)

f 2
(

− 1 + f 2

2

)
dx

≤ Cσ−1 − κ2

2
|W(x0, (1 + σ)�)| + Cσκ2�2.

Therefore, we get the estimate

E1

(
exp

(
iκHw(x)

)
f (x),A;W(x0, (1 + σ)�)

)
≤ −(1 + �α)

κ2

2
|W(x0, (1 + σ)�)|

+Cκ2�2(�α + κ2�2+α + σ−1(κ�)−2 + σ),
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and consequently

E(u,A) ≤ −κ2

2
|W(x0, (1 + σ)�)| + E2

(
ψ(x),A;�\W(x0, (1 + σ)�)

)

+Cκ2�2(�α + κ2�2+α + σ−1(κ�)−2 + σ).

Using that E(ψ,A) ≤ E(ψ,A), we get

E1

(
ψ,A;W(x0, (1 + σ)�)

)
≤ −κ2

2
|W(x0, (1 + σ)�)|

+Cκ2�2(�α + κ2�2+α + σ−1(κ�)−2 + σ). (5.9)

We insert this into (5.4), then we substitute the resulting inequality into (5.5). In this way we
get ∫

W(x0,�)

|ψ |4 dx ≥ 1

2
|W(x0, (1 + σ)�)| − C(σ + σ−1(κ�)−2 + κ2�2+α + �α).

The assumption on σ and � in (5.1) yield that the term on the right hand side above is o(1),
hence we get the lower bound for the integral of |ψ |4 in Theorem 1.7. Now, the estimate of
the energy follows by collecting the estimates in (5.9) and (5.5).

Step 3. The case |B0(x0)| > 0: Upper bound.
We use (2.13) and (2.14) with γ = δ = α. We obtain, for some C2,α real-valued function

w,

E1

(
f ψ,A;W(x0, (1 + σ)�)

)
≥ (1 − �α)E1

(
e−iκHw f ψ,A0;W(x0, (1 + σ)�)

)

−Cκ2�2(�α + κ2�2+α). (5.10)

If x0 ∈ � , we get by re-scaling and (2.6) that

E1

(
e−iκHw f ψ,A0;W(x0, (1 + σ)�)

)
≥ 4κ2(1 + σ)2�2g(b|B0(x0)|).

If x0 ∈ ∂� , then we may write a lower bound forE1

(
f ψ,A0;W(x0, (1+σ)�)

)
by converting

to boundary coordinates as in Lemma 4.4 and get

E1

(
e−iκHw f ψ,A0;W(x0, (1 + σ)�)

)

≥ (1 − C�)

b|B0(x0)|e
N
(
b|B0(x0)|, 2(1 + σ)�

√|B0(x0)|κH
)

− Cκ2�2(� + κ2�3)

≥ 4κ2(1 + σ)2�2g(b|B0(x0)|) − Cκ2�2(� + κ2�3 + (κ�)−1).
Thus, we infer from (5.10), for x0 ∈ � ,

E1

(
f ψ,A;W(x0, (1 + σ)�)

)
≥ 4κ2(1 + σ)2�2g(b|B0(x0)|)

−Cκ2�2(�α + κ2�2+α + (κ�)−1).
Inserting this into (5.3), we get

1

2

∫
W(x0,�)

|ψ(x)|4 dx ≤ 4(1 + σ)2�2g(b|B0(x0)|)

+C�2(�α + κ2�2+α + (κ�)−1 + (κ�)−2σ−1).
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Our choice of σ and � in (5.1) guarantees that the term on the right side above is o(�2) . Using
Remark 5.1, we get the upper bound in Theorem 1.7.

Remark 5.2 The proof in step 3 is still valid if |B0(x0)| ≥ κ−2γ , 0 < γ < 1 − ρ and
Q4κ−ρ (x0) ⊂ �.

Step 4. The case |B0(x0)| > 0 and x0 ∈ ∂� : Lower bound.

For the sake of simplicity, we treat the case B0(x0) > 0. The case B0(x0) < 0 can be
treated similarly by taking complex conjugation.

We define the function

u(x) = 1W(x0,(1+σ)�)(x) exp
(
iκHw(x)

)
wR ◦ �−1

x0
(x) + η�(x)ψ(x),

where the function η� satisfies (5.6) and (5.7). Similarly as in (4.24), the function w is the sum
of two functions w1 and w2, defined in W(x0, (1 + σ)�)) and satisfying the two inequalities
in (4.27). Finally

wR(s, t) = exp
(
iκHgx0(s, t)

)
exp

(−iκHst

2

)
uR

(
s
√
B0(x0)κH , t

√
B0(x0)κH

)
,

and gx0 is the function satisfying (4.25) in W(x0, �) (by Lemma 4.3). The function uR ∈
H1

0 (QR) is a minimizer of the energy eD
(
bB0(x0), R

)
for R = 2(1 + σ)

√
B0(x0)κH (cf.

(2.3)). We can estimate E(u,A) similarly as we did in the proof of Theorem 4.8 and get

E(u,A) ≤ 4(1 + σ)2�2κ2g
(
bB0(x0)

) + E2(ψ,A)

+Cκ2�2(�α + κ2�2+α + σ + σ−1(κ�)−2).
E2(ψ,A) =

∫
�\W(x0,(1+σ)�)

(
|(∇ − iκHA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4

)
dx

+ κ2H2
∫

�

| curlA − B0|2 dx .

Now we use that E(ψ,A) ≤ min(0, E(u,A)) to write

E1

(
ψ,A;W(x0, (1 + σ)�)

)
≤ 4(1 + σ)2�2κ2g

(
bB0(x0)

)

+Cκ2�2(�α + κ2�2+α + σ + σ−1(κ�)−2). (5.11)

Now we use (5.4) and (5.5) to obtain

−κ2

2

∫
W(x0,�)

|ψ(x)|4 dx + Cσ�2κ2 ≤ 4(1 + σ)2�2κ2g
(
bB0(x0)

)

+Cκ2�2(�α + κ2�2+α + σ + σ−1(κ�)−2).
Remembering that σ = κ

ρ−1
2 and � ≈ κ−ρ (cf. (5.1)), we get the lower bound for the integral

of |ψ |4 as in Theorem 1.7.
For the estimate of the local energy E1(ψ,A;W(x0, (1+σ)�)), we collect the inequalities

in (5.11), (5.4), (5.5) and the lower and upper bounds for the integral of |ψ |4.

Remark 5.3 Remark 5.2 holds for Step 4 as well.
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Step 5. The case |B0(x0)| > 0 and x0 ∈ � : Lower bound.
In this case Wx0((1 + σ)�) = Q2(1+σ)�(x0). We define the following trial state

u(x) = 1W(x0,(1+σ)�)(x) exp
(
iκHw(x)

)
wR(x) + η�(x)ψ(x),

where the functions w and η� are as in Step 4,

wR(s, t) =
⎧⎨
⎩
uR

(√
B0(x0)κH (x − x0)

)
if B0(x0) > 0,

uR
(√

B0(x0)κH (x − x0)
)

if B0(x0) < 0,

and uR ∈ H1
0 (QR) is a minimizer of the energy eD

(
bB0(x0), R

)
for R = 2(1 +

σ)
√
B0(x0)κH [cf. (2.3)].

We argue as in Step 4 and obtain the lower bound for the integral of |ψ |4 in Theorem 1.7.
The details are omitted.
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