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Abstract In this paper, we study the blow-up phenomena on the αk -harmonic map sequences
with bounded uniformly αk-energy, denoted by {uαk : αk > 1 and αk ↘ 1}, from a
compact Riemann surface into a compact Riemannian manifold. If the Ricci curvature of the
target manifold has a positive lower bound and the indices of the αk-harmonic map sequence
with respect to the corresponding αk-energy are bounded, then we can conclude that, if the
blow-up phenomena occurs in the convergence of {uαk } as αk ↘ 1, the limiting necks of
the convergence of the sequence consist of finite length geodesics, hence the energy identity
holds true. For a harmonic map sequence uk : (�, hk) → N , where the conformal class
defined by hk diverges, we also prove some similar results.
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1 Introduction

Let (�, g) be a compact Riemann surface and (N , h) be an n-dimensional smooth compact
Riemannian manifold which is embedded in R

K isometrically. Usually, we denote the space
of Sobolev maps from � into N by Wk,p(�, N ), which is defined by

Wk,p(�, N ) = {u ∈ Wk,p(�,RK ) : u(x) ∈ N for a.e. x ∈ �}.
For u ∈ W 1,2(�, N ), we define locally the energy density e(u) of u at x ∈ � by

e(u)(x) = |∇gu|2 = gi j (x)hαβ(u(x))
∂uα

∂xi
∂uβ

∂x j
.

The energy of u on �, denoted by E(u) or E(u, �), is defined by

E(u) = 1

2

∫
�

e(u)dVg,

and the critical points of E are called harmonic maps.
We know that the energy functional E does not satisfy the Palais–Smale condition. In order

to overcome this difficulty, Sacks and Uhlenbeck [16] introduced the so called α-energy Eα

of u : � → N as the following

Eα(u) = 1

2

∫
�

{(1 + |∇u|2)α − 1}dVg,

where α > 1. The critical points of Eα in W 1,2α(�, N ) are called as the α-harmonic maps
from � into N . It is well-known that this α-energy functional Eα satisfies the Palais–Smale
condition and therefore there always exists an α-harmonic maps in each homotopy class of
map from � into N .

The strategy of Sacks and Uhlenbeck is to employ such a sequence of αk-harmonic maps
to approximate a harmonic map as αk tends decreasingly to 1. If the convergence of the
sequence of αk-harmonic map is smooth, the limiting map is just a harmonic map from �

into N .
The energy of a map u from a closed Riemann surface � is conformally invariance, it

means that, if we let g′ = e2ϕg be another conformal metric of �, then∫
�

|∇gu|2dμg =
∫

�

|∇g′u|2dμg′ .

Let Cg denote the conformal class induced by a metric g, then, the following definition

E(u, Cg) = 1

2

∫
�

|∇gu|2dμg

does make sense. Moreover, it is well-known that the critical points of E(u, Cg) are some
branched minimal immersions (see [16,17]). Hence, in order to get a branched minimal
surface, we also need to study the convergence behavior of a sequence of harmonic maps
uk : (�, hk) → N with uniformly bounded energy E(uαk ) < C .

No doubt, it is very important to study the convergence of a sequence of αk-harmonic maps
from a fixed Riemann surface (�, g) and a sequence of harmonic maps from (�, hk) into N ,
where hk is the metric with constant curvature. In fact, these problems on the convergence
of harmonic map or approximate harmonic map sequences have been studied extensively by
many mathematicians. Although these sequences converge smoothly to harmonic maps under
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some suitable geometric and topological conditions, generally one found that the convergence
of such two classes of sequences might blow up.

First, let’s recall the convergence behavior of αk-harmonic map sequences. Suppose that
{uαk } be a sequence of αk-harmonic maps from (�, g) with bounded uniformly αk-energy,
i.e. Eαk (uαk ) ≤ �. By the theory of Sacks-Uhlenbeck, there exists a subsequence of {uαk },
still denoted by {uαk }, and a finite set S ⊂ � such that the subsequence converges to a
harmonic map u0 in C∞

loc(�\S). We know that, at each point pi ∈ S, the energy of the
subsequence concentrates and the blow-up phenomena occur. Moreover, there exist point
sequences {xlik } in � with lim

k→+∞ xlik = pi and scaling constant number sequences {λlik } with

lim
k→+∞ λlik → 0, l = 1, . . . , n0,

such that

uαk

(
xlik + λlik x

)
→ vl in C j

loc

(
R

2\Ai
)

,

where all vi are non-trivial harmonic maps from S2 into N , and Ai ⊂ R
2 is a finite set. In

order to explore and describe the asymptotic behavior of {uαk } at each blow-up point, the
following two problems were raised naturally.

One is whether or not the energy identity, which states that all the concentrated energy
can be accounted for by harmonic bubbles, holds true, i.e.,

lim
αk→1

Eαk

(
uαk , B

�
r0

(pi )
) = E

(
u0, B

�
r0

(pi )
) +

n0∑
l=1

E(vl).

Here, B�
r0

(pi ) is a geodesic ball in � which contains only one blow-up point pi .
The other is whether or not the limiting necks connecting bubbles are some geodesics in

N of finite length?
For a harmonic map sequence {uk} from (�, hk) into (N , h), one also encountered the

same problems as above.
Up to now, for both cases one has made considerably great progress in these two problems

[1,3–11,13–15,18,19].
In particular, in [9] it is proven that if energy concentration does occur, then a generalized

energy identity holds. Moreover, from the view point of analysis some sufficient and necessary
conditions were given such that the energy identity holds true. On the other hand, a relation
between the blowup radii and the values of α was discovered to ensure the “no neck property”.
If necks do occur, however, they must converge to geodesics and an example was given to
show that there are even some limiting necks (geodesics) of infinite length.

Generally, the energy identity does not hold true. For the case of harmonic map sequence
uk : (�, hk) → (N , h) one has found a counter-example for the energy identity in [13].
Very recently, in [10] a counter-example for the energy identity was given for the case of
αk-harmonic map sequence.

Furthermore, from the study in [9,10] we can see that except for α, the topology and
geometry of the target manifold (N , h) also play an important role in the convergence of α-
harmonic map sequence from a compact surface. From the viewpoint of differential geometry,
it is therefore natural and interesting to find some reasonable geometric and topological
conditions on the domain or target manifold such that the energy identity holds. In particular,
a natural question is whether or not we can exploit some geometric and topological conditions
to ensure the limiting necks are some geodesics of finite length, which implies that the energy
identity holds true? For this goal, in this paper we obtain the following two theorems:
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Theorem 1.1 Let (�, g) be a closed Riemann surface and (N , h) be a closed Riemannian
manifold with RicN > λ > 0. Let αk → 1 and {uαk } be a sequence of maps from (�, g) →
(N , h) such that each uk is an αk-harmonic map, the indices and energy satisfy respectively

Index(Eαk (uαk )) < C, Eαk (uαk ) < C.

If {uαk } blows up, then the limiting necks consist of some finite length geodesics.

Theorem 1.2 Let � be a closed Riemann surface with genus g(�) ≥ 1. In the case g(�) ≥
2, � is equipped a sequence of smooth metrics hk with curvature −1. In the case g(�) = 1,
� is equipped a sequence of smooth metrics hk with curvature 0 and the area A(�, hk) = 1.
Let (N , h) be a Riemannian manifold with the Ricci curvature RicN > λ > 0. Suppose that
(�, hk) diverges in the moduli space and {uk} is a harmonic map sequence from (�, hk) into
(N , h) with bounded index and energy. If the set of the limiting necks of uk is not empty, then
it consists of finite length geodesics.

Remark 1.3 By the results in [1] or [9], the fact the limiting necks are of finite length implies
that the energy identity is true. We should also mention that, when each uαk in {uαk } is the
minimizer of the corresponding Eαk in a fixed homotopy class, Chen and Tian [1] have proved
that the necks are just some geodesics of finite length in N .

Remark 1.4 The curvature condition in Theorem 1.1 and 1.2 is used to ensure that any
geodesic of infinite length lying on N is not stable. In fact, we will prove in this paper that,
if the necks contain an unstable geodesic of infinite length, then the indices of the harmonic
(or α-harmonic) map sequence can not be bounded from the above.

2 The Proofs of Theorem 1.1

Our strategy is to show that the indices of the sequence {uαk } in Theorem 1.1 are not bounded
if there exists a infinite length geodesic in the set of the limiting necks {uαk }. For this goal, first
we need to recall the definition of the index of a α-harmonic map and the second variational
formula of α-energy functional.

2.1 The index of a α-harmonic map

Let u : (�, g) → (N , h) be an α-harmonic map. L = u−1(T N ) is a smooth pull-back
bundle over �. Let V be a section of L and

ut (x) = expu(x)(tV ).

Obviously, u0 = u. Then, the formula of the second variation of Eα reads

δ2Eα(u)(V, V ) = d2

dt2 Eα(ut )|t=0

= 2α

∫
�

(1 + |du|2)(α−1) (〈∇V,∇V 〉 − R(V,∇u,∇u, V )) dμ

+ 4α(α − 1)

∫
�

(1 + |du|2)α−2〈du,∇V 〉2dμ. (2.1)

For more details we refer to [12].
Let 
(L) denotes the linear space of the smooth sections of L . Then, the index of u is the

maximal dimension of the linear subspaces of 
(L) on which the (2.1) is negative definite.
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2.2 The index of the necks

We have known the limiting necks of {uαk } are some geodesics in N , a natural question is
there exists some relations between the indices of these geodesics and the indices of the necks
of {uαk }. In this subsection we need to analyse the asymptotic behavior of the necks of {uαk }
and try to establish the desired relations.

Let αk → 1 and each uαk of the map sequence {uαk : k = 1, 2, . . .} be a αk harmonic map
from (�, g) into (N , h). For convenience we always embed (N , h) into R

K isometrically
and set uk = uαk . Assume that {uk} blows up only at a point p ∈ �. Then, for any ε, we
have

lim
k→+∞ ‖∇uk‖C0(Bε (p)) = +∞.

Choose an isothermal coordinate chart (D; x1, x2) centered at p, such that

g = e2ϕ(dx1 ⊗ dx1 + dx2 ⊗ dx2), and ϕ(0) = 0.

For simplicity, we assume uk has only one blowup point in D. Put

rk = 1

‖∇uk‖
C0

(
D 1

2

) , and |∇uk(xk)| = ‖∇uk‖
C0

(
D 1

2

).

Then, we have that xk → 0, rk → 0 and there exists a bubble v, which can be considered
as a harmonic map from S2 into N , such that uk(xk + rk x) converges to v. Without loss of
generality, we may assume xk = 0.

By the arguments in [9], we only need to prove Theorem 1.1 for the case there exists one
bubble in the convergence of {uk}. So, we always assume that only one bubble appears in the
convergence of {uk} in this section.

Now, we consider the case that the limiting necks contain a geodesic of infinite length. In
fact, the present paper is a follow up of the papers [9] and [2], first of all, we need to recall
some results proved in [9].

Lemma 2.1 Let αk → 1 and {uk} be a map sequence such that each uk is an αk-harmonic
map from (�, g) into (N , h). If there is a positive constant � such that Eαk (uk) < � for any
αk , then, there exists a positive constant C such that, neglecting a subsequence, there holds

‖∇uk‖αk−1
C0(�)

< C.

For the proof of this Lemma and more details we refer to Remark 1.2 in [9]. Moreover, for
the convergence radii and αk we have following relations:

Lemma 2.2 Let {uk} satisfy the same conditions as in Lemma 2.1. If there exists only one
bubble in the convergence of {uk} and the limiting neck is of infinite length, then, the following
hold true

0 < −(αk − 1) log rk < C, and
√

αk − 1 log rk → −∞.

Here, rk is defined as before.

Proof From Remark 1.2 in [9], we have μ = lim infαk→1 r
2−2αk
k ∈ [1, μmax] where μmax ≥

1 is a positive constant. Therefore, it follows that there holds

0 < −(αk − 1) log rk < C.
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Since the limiting neck is of infinite length, from Theorem 1.3 in [9] we known that

ν = lim inf
αk→1

r−√
αk−1

k → ∞.

It follows that √
αk − 1 log rk → −∞.

Thus we complete the proof. ��
As a direct corollary of the Proposition 4.3 in [9], we have

Lemma 2.3 Let αk → 1 and {uk} be a map sequence such that each uk is an αk-harmonic
map from (�, g) into (N , h) ⊂ R

K . Suppose that there is a positive constant � such that
Eαk (uk) < � for any αk and there exists only one bubble in the convergence of {uk}. Then,
for any tk → t ∈ (0, 1), there exist a vector ξ ∈ R

K and a subsequence of {uk} such that
1√

αk − 1

∂uk
∂θ

(
r tkk e

√−1θ
)

→ 0 (2.2)

and
r tkk√

αk − 1

∂uk
∂r

(
r tkk e

√−1θ
)

→ ξ (2.3)

as k → ∞. Moreover,

|ξ | = μ1−t

√
E(v)

π
,

where μ is defined by

μ = lim
k→+∞ r2−2αk

k .

Now we define the approximate curve of uk , denoted by u∗
k(r), by

u∗
k(r) = 1

2π

∫ 2π

0
uk

(
re

√−1θ
)
dθ.

Since the target manifold (N , h) is embedded in R
K , u∗

k(r) is a space curve of RK and we
denote the arc-length parametrization of u∗

k by s such that s(r t1k ) = 0, where t1 ∈ (0, 1).
Then, by Proposition 4.6 in [9], we have

Lemma 2.4 Let {uk} satisfy the same conditions as in Lemma 2.3. Suppose that the limiting
neck of {uk} is a geodesic of infinite length. Then, there exists a subsequence of {u∗

k(s)}which
converges smoothly on [0, a] to a geodesic γ for any fixed a > 0.

Without loss of generality, from now on, we assume that u∗
k(s) converges smoothly to γ

on any [0, a]. As a corollary, we have

Corollary 2.5 Let {uk} satisfy the same conditions as in Lemma2.3. Suppose that the limiting
neck of {uk} is a geodesic of infinite length. Then, for any given a > 0 and any fixed θ ,
uk(se

√−1θ ) converges to γ in C1[0, a]. Moreover, we have∥∥∥∥∥
r(s)√
αk − 1

∣∣∣∣∂s∂r

∣∣∣∣ − μ1−t1

√
E(v)

π

∥∥∥∥∥
C0([0,a])

→ 0. (2.4)
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Proof Let

s
(
r
tak
k

)
= a.

By Lemma 2.3, we have

a =
∫ r

t1
k

r
tak
k

∣∣∣∣du
∗
k(r)

dr

∣∣∣∣ dr ≥ C
∫ r

t1
k

r
tak
k

√
αk − 1

r
dr = −C(tak − t1)

√
αk − 1 log rk . (2.5)

On the other hand, Lemma 2.2 (see Theorem 1.3 in [9]) tells us√
αk − 1 log rk → −∞,

since the limiting neck (geodesic) is of infinite length. Hence, from (2.5) and the above fact,
we have

tak − t1 → 0 as k → +∞. (2.6)

We assume that uk(se
√−1θ ) does not converge to γ in C1[0, a]. Then there exists ski ∈

[0, a], such that

sup
θ

∣∣∣∣∂uk∂s

(
ski e

√−1θ
)

− du∗
k

ds
(ski )

∣∣∣∣ > ε > 0.

Let ski = r
tki
k . Obviously, tki ∈ [t1, taki ]. Thus tki → t1. By Lemma 2.3, after passing to a

subsequence, we have

lim
k→∞

r
tki
k√

αk − 1

∣∣∣∣∂uk∂r

(
r
tki
k e

√−1θ
)

− duk∗

dr

(
r
tki
k

)∣∣∣∣ → 0.

Therefore, noting∣∣∣∣∣
∂uk(ski e

√−1θ )

∂s
− du∗

k(ski )

ds

∣∣∣∣∣ =
∣∣∣∣drds

∣∣∣∣ ·
∣∣∣∣∂uk∂r

− duk∗(r)
dr

∣∣∣∣
r=r

ti
k

and
∣∣∣∣drds

∣∣∣∣
r=r

tki
k

≤ Cr
tki
k√

αk − 1
,

we have∣∣∣∣∣
∂uk(ski e

√−1θ )

∂s
− du∗

k(ski )

ds

∣∣∣∣∣ ≤ Crtik√
αk − 1

∣∣∣∣∂uk∂r
(re

√−1θ ) − duk∗

dr
(r)

∣∣∣∣
r=r

ti
k

→ 0.

Thus, we get a contradiction. Hence, it follows∥∥∥∥∥
∂uk(se

√−1θ )

∂s
− du∗

k(s)

ds

∥∥∥∥∥
C0[0, a]

→ 0.

From the arguments in the above and [9] we conclude that for any fixed θ

‖uk(se
√−1θ ) − u∗

k(s)‖C1[0, a] → 0.

By the same way, we can prove (2.4). ��
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Lemma 2.6 Suppose that {uk} satisfies the same conditions as in Lemma 2.3. Then, for any
fixed R > 0 and 0 < t1 < t2 < 1, we have

lim
k→+∞ sup

t∈[t1,t2]
1

αk − 1

∫
DRrtk

\D 1
R rtk

|uk,θ |2dx = 0,

where

uk,θ = r−1 ∂uk
∂θ

.

Proof Assume this is not true. After passing to a subsequence, we can find tk → t ∈ [t1, t2],
such that

1

αk − 1

∫
D
Rr

tk
k

\D 1
R r

tk
k

|uk,θ |2dx ≥ ε.

However, by Proposition 4.2 in [9],

lim
k→+∞

1

αk − 1

∫
D
Rr

tk
k

\D 1
R r

tk
k

|uk,θ |2dx = 0.

This is a contradiction, Thus we complete the proof of the lemma. ��
Now, let’s recall the definition of stability of a geodesic on a Riemannian manifold (N , h).

A geodesic γ is called unstable if and only if the second variation formula of its length satisfies

Iγ (V0, V0) =
∫ a

0
(〈∇γ̇ V0,∇γ̇ V0〉 − R(V0, γ̇ , γ̇ , V0))ds < −δ < 0.

Here R is the curvature operator of N . We have

Lemma 2.7 Suppose that {uk} satisfies the same conditions as in Lemma 2.3. If the limiting
neck of {uk} is a unstable geodesic which is parameterized on [0, a] by arc length, then, for
sufficiently large k, there exists a section Vk of u

−1
k (T N ), which is supported in D

r
t1
k

\D
r
tak
k

(xk),

such that

δ2Eαk (Vk, Vk) < 0.

Proof Since the limiting neck of {uk}, denoted by γ : [0, a] → N , is not a stable geodesic,
there exists a vector field V0 on γ with V0|γ (0) = 0 and V0|γ (a) = 0 such that

Iγ (V0, V0) < 0.

Let P be projection from TRK to T N . We define

Vk
(
t (s)e

√−1θ + xk
)

= Puk (se
√−1θ )

(V0(s)),

where s is the arc-length parametrization of u∗
k(t) with s(r t1k ) = 0. Then, Vk is smooth section

of u−1
k (T N ) which is supported in D

r
t1
k

\D
r
tak
k

(xk). By Corollary 2.5, for any fixed θ , we have

that Vk(uk(se
√−1θ )) converges to V0(γ (s)) in C1[0, a]. Then

δ2Eαk (Vk , Vk ) = 2αk

∫
D
r
t1
k

\D
r
tak
k

(
1 + |duk |2

)(αk−1)
(〈∇Vk , ∇Vk 〉 − R(Vk , ∇uk , ∇uk , Vk )) dx

+ 4αk (αk − 1)

∫
D
r
t1
k

\D
r
tak
k

(
1 + |duk |2

)αk−2 〈duk , ∇Vk 〉2dx . (2.7)
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Next, we will show that

lim
k→+∞

1√
αk − 1

δ2Eαk (Vk, Vk) = 4πμ

√
E(v)

π
Iγ (V0, V0). (2.8)

We compute

δ2Eαk (Vk , Vk )

= 2αk

∫ 2π

0

∫ r
t1
k

r
tak
k

(
1 + |duk |2

)(αk−1)
(〈∇Vk , ∇Vk 〉 − R(Vk , ∇uk , ∇uk , Vk ))rdrdθ

+ 4αk (αk − 1)

∫
D
r
t1
k

\D
r
tak
k

(
1 + |duk |2

)αk−2 〈duk , ∇Vk 〉2dx

= 2αk

∫ 2π

0

∫ r
t1
k

r
tak
k

(
1 + |duk |2

)(αk−1)
(〈

∇ ∂uk
∂r

Vk , ∇ ∂uk
∂r

Vk

〉
− R

(
Vk ,

∂uk
∂r

,
∂uk
∂r

, Vk

))
rdrdθ

+ 2αk

∫ 2π

0

∫ r
t1
k

r
tak
k

(
1 + |duk |2

)(αk−1)
(〈∇uk,θ Vk , ∇uk,θ Vk 〉 − R(Vk , uk,θ , uk,θ , Vk ))rdrdθ

+ 4αk (αk − 1)

∫
D
r
t1
k

\D
r
tak
k

(
1 + |duk |2

)αk−2 〈duk , ∇Vk 〉2dx

= 2αkI + 2αkII + 4αkIII.

Firstly, we calculate I:

I√
αk − 1

=
∫ 2π

0

∫ a

0

(
1 + |duk |2

)(αk−1)
(〈

∇ ∂uk
∂s

Vk,∇ ∂uk
∂s

Vk
〉

−R

(
Vk,

∂uk
∂s

,
∂uk
∂s

, Vk

)) ∣∣ ∂s
∂r

∣∣
√

αk − 1
rdsdθ.

By Lemma 2.3 we can see easily that
⎛
⎝
∣∣∣∣∣

r t (s)k√
αk − 1

duk

∣∣∣∣∣
2

αk − 1

r2t (s)
k

⎞
⎠

(αk−1)

−→ μt1 .

It follows from the fact μ ≥ 1 (see [9]) and the above

(
1 + |duk |2

)(αk−1) =
⎛
⎝1 +

∣∣∣∣∣
r t (s)k√
αk − 1

duk

∣∣∣∣∣
2

αk − 1

r2t (s)
k

⎞
⎠

(αk−1)

−→ μt1 .

Hence, we infer from the above and Corollary 2.5

lim
k→+∞

I√
αk − 1

= 2πμ

√
E(v)

π
Iγ (V0, V0).

Next, we calculate the term II. By the definition we have

∇ ∂uk
∂θ

Vk = Puk (se
√−1θ )

(
∂Vk
∂θ

)
= Puk (se

√−1θ )

(
∂

∂θ

(
Puk (se

√−1θ )

)
(V0)

)
,
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where ∂Vk
∂θ

is the derivative in R
n . This leads to

|∇ ∂uk
∂θ

Vk | ≤ C(a)

∣∣∣∣∂uk∂θ

∣∣∣∣ .
Hence, we have

II√
αk − 1

=
∫ 2π

0

∫ r
t1
k

r
tak
k

(
1 + |duk |2

)(αk−1)

√
αk − 1

(〈∇uk,θ Vk,∇uk,θ Vk〉

−R(Vk, uk,θ , uk,θ , Vk)
)
rdrdθ

≤ C√
αk − 1

∫ 2π

0

∫ r
t1
k

r
tak
k

|uk,θ |2rdrdθ.

For a given R > 0, set

mk =
⎡
⎣ log r

t1−tak
k

log R

⎤
⎦ + 1.

It is easy to see that

D
r
t1
k

\D
r
tak
k

⊂ ∪mk
i=1

(
D

Rir
tak
k

\D
Ri−1r

tak
k

)
.

By (2.5), we have √
αk − 1mk ≤ C(R).

Then

II√
αk − 1

≤ C√
αk − 1

∫ 2π

0

∫ r
t1
k

r
tak
k

|uk,θ |2rdrdθ

≤ C√
αk − 1

∫
∪mk
i=1

(
D
Ri r

tak
k

\D
Ri−1r

tak
k

) |uk,θ |2dx

≤ Cmk
√

αk − 1

αk − 1

1

mk

∫
∪mk
i=1

(
D
Ri r

tak
k

\D
Ri−1r

tak
k

) |uk,θ |2dx

≤ C(R)

mk

⎛
⎜⎝ 1

αk − 1

∫
∪mk
i=1

(
D
Ri r

tak
k

\D
Ri−1r

tak
k

) |uk,θ |2dx
⎞
⎟⎠ .

It follows from Lemma 2.6 and the above inequality that there holds

lim
k→∞

1√
αk − 1

II = 0.

Lastly, we consider the term III. It is easy to check that

|〈duk,∇Vk〉| ≤ C |duk |2.
So, there exists a constant C such that

(
1 + |duk |2

)αk−2 〈duk,∇Vk〉2 ≤ (
1 + |duk |2

)αk
< C.
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This leads to

III√
αk − 1

≤ C
√

αk − 1
∫
D
r
t1
k

(
1 + |duk |2

)αk dx → 0.

Thus, we obtain the desired estimate and finish the proof. ��
Since that (N , h) is a complete Riemannian manifold with RicN ≥ λ > 0, then, the

well-known Myers theorem tells us that the diameter of (N , h) satisfies

diam(N , h) ≤ π√
λ(n − 1)−1

,

and any geodesic γ lying on (N , h) is unstable if its length l(γ ) satisfies

l(γ ) ≥ π√
λ(n − 1)−1

≡ lN .

Hence, for any given positive number a such that a ≥ lN + 2ε and any geodesic γ lying
on (N , h) which is parameterized by arc-length in [0, a], there always exists a vector field
V0(s), which is smooth on γ , and 0 on γ |[0, ε] and γ |[a−ε, a], such that the second variation
of the length of γ satisfies

Iγ (V0, V0) =
∫ a

0
(〈∇γ̇ V0,∇γ̇ V0〉 − R(V0, γ̇ , γ̇ , V0))ds < −δ < 0. (2.9)

Lemma 2.8 Let (N , h) be a closed Riemannian manifold with Ric(N ) ≥ λ > 0. Suppose
that {uk} satisfies the same conditions as in Lemma 2.3. If the limiting neck of {uk} is a
geodesic of infinite length, then the indices of {uk} with respect to the corresponding Eαk can
not be bounded from above.

Proof Since the limiting neck of {uk} is a geodesic of infinite length, then, for given t1, the
above arguments in Lemma 2.7 tell us that we can always choose a suitable positive constant
ε1 such that, as k is large enough, the arc length a of u∗

k(s) on D
r
t1
k

\D
r
t1+ε

k
(xk) satisfies

a > lN = π√
λ(n − 1)−1

.

Therefore, there exists a section V 1
k of u−1

k (T N ), which is 0 outside D
r
t1
k

\D
r
t1+ε

k
(xk), satis-

fying

δ2Eαk

(
V 1
k , V 1

k

)
< 0.

By the same method, for t2 = t1 + 2ε1, we can also pick ε2 > 0 and construct a section V 2
k ,

which is 0 outside D
r
t2
k

\D
r
t2+ε2
k

(xk), such that

δ2Eαk

(
V 2
k , V 2

k

)
< 0.

Since the limiting neck is a geodesic of infinite length, then, when k is sufficiently large,
there exists ik with ik → ∞ such that we can construct by the same way as above a series of
sections {V 3

k , V 4
k , . . . , V ik

k } satisfying that for any 1 ≤ i ≤ ik there holds true

δ2Eαk

(
V i
k , V i

k

)
< 0.
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Obviously, V 1
k , V 2

k , . . ., V ik
k are linearly independent. This means that

Index(Eαk (uk)) ≥ ik .

Therefore, we get

Index(Eαk (uk)) → +∞, as k → +∞.

Thus, we complete the proof of the lemma. ��
The proof of Theorem 1.1 Obviously, Theorem 1.1 is just a direct corollary of the above
lemma. ��

3 The Proofs of Theorem 1.2

From the arguments and the Appendix in [2] we know that one only need to consider the con-
vergence behavior of harmonic map sequences from two dimensional flat cylinders, although
the original harmonic map sequence is from a sequence of hyperbolic or flat closed Riemann
surfaces respectively. First, we recall some fundamental notions such as the index of a har-
monic map with respect to the energy functional.

Let Tk → ∞ be a series of positive numbers and u : (−Tk, Tk) × S1 → (N , h) be a
harmonic map. L = u−1(T N ) is the pull-back bundle over (−Tk, Tk) × S1. Let V be a
section of L which is 0 near {±Tk} × S1 and

uτ (x) = expu(x)(τV ).

It is well-known that the second variational formula of energy functional E is the following:

δ2E(u)(V, V ) = 2
∫

�

(〈∇V,∇V 〉 − R(V,∇u,∇u, V )) dtdθ.

Let 
(L) denote the linear space of the smooth sections of L . Then, the index of u is just the
maximal dimension of a linear subspace of 
(L) on which the above is negative definite.

Let uk be an harmonic map from (−Tk, Tk) × S1 into (N , h). We assume that, for any
tk ∈ (−Tk, Tk),

|∇uk(θ, tk)| → 0, as k → ∞.

Moreover, we assume that uk((−Tk, Tk) × S1) converges to an infinite length geodesic.
By the arguments in [2], we can see easily that Theorem 1.2 in this paper can be deduced

from the following lemma:

Proposition 3.1 Let {uk : (−Tk, Tk)×S1 → N , k = 1, 2, . . .} be a harmonic map sequence
such that for any tk ∈ (−Tk, Tk), there holds true |∇uk(θ, tk)| → 0. If RicN ≥ λ > 0 and
uk((−Tk, Tk) × S1) converges to an infinite length geodesic, then the index of uk tends to
infinity.

In order to prove Proposition 3.1, we need to recall some known results which were
established in [2]. We first recall a useful observation in [19].

Lemma 3.2 Let u be a harmonicmap from (−T, T )×S1 → N. Then, the following function
defined by

β(u) =
∫

{t}×S1

(|ut |2 − |uθ |2 − 2iut · uθ

)
dθ
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is independent of t ∈ (−T, T ).

Next, we recall some known results proved in [2], which are used in the following argu-
ments.

Lemma 3.3 Let {uk : (−Tk, Tk) × S1 → N , k = 1, 2, . . .} be a sequence of harmonic
maps such that for any tk ∈ (−Tk, Tk), there holds true |∇uk(θ, tk)| → 0. Assume that
uk((−Tk, Tk) × S1) converges to an infinite length geodesic. Then, as k → 0, we have

lim
k→∞

√|Re β(uk)|Tk = ∞.

Lemma 3.4 Let {uk} satisfy the same conditions as in Lemma 3.3. Then, for any λ < 1 and
tk ∈ [−λTk, λTk], there exists a vector ξ ∈ R

K and a subsequence of
{

1√|Re(β(uk))|
∂uk
∂t

(tk, θ) : k = 1, 2, 3, . . .

}

such that the subsequence converges to ξ . Moreover, we have

|ξ | = 1√
2π

.

By Lemma 2.6 in [2], we also have

Lemma 3.5 Let {uk} satisfy the same conditions as in Lemma 3.3. Then, for any fixed 0 <

λ < 1 and T > 0, we have

lim
k→∞ sup

t∈[−λTk , λTk ]
1

|Re β(uk)|
∫

[t−T, t+T ]×S1

∣∣∣∣∂uk∂θ

∣∣∣∣
2

dtdθ = 0.

As in [2], we introduce the following sequence of curves in R
K defined by

u∗
k(t) = 1

2π

∫ 2π

0
uk(t, θ)dθ.

Obviously, these curves are smooth. Now, for each k, let s be the arc-length parametrization
of the the curve u∗

k(t) with s(0) = 0. By the arguments in [2], we have

Lemma 3.6 Under the same conditions as Lemma 3.3, we have that u∗
k(s) converges

smoothly on [0, a] to a geodesic γ on N for any fixed a > 0.

From now on, we assume u∗
k(s) converges to γ on [0, a] for any fixed a > 0. Set s(tak ) = a.

Similar to Corollary 2.5, we have

Corollary 3.7 Let {uk} satisfy the same conditions as in Lemma 3.3. Then, for any fixed θ ,
uk(s, θ) converges to γ in C1[0, a]. Moreover, we have

tak → ∞,
√|Re β(uk)|tak < C(a),

and ∥∥∥∥ 1√|Re(β(uk))|
∣∣∣∣∂s∂t (s)

∣∣∣∣ − 1√
2π

∥∥∥∥
C0([0,a])

→ 0. (3.1)

Here C(a) is a positive constant which depends on a.

123



146 Page 14 of 16 Y. Li et al.

Now we turn to the discussions on the asymptotic behavior of the index and the second
variation of the energy of uk . Since RicN ≥ λ > 0, by the well-known Myers theorem we
know that, if

a ≥ π√
λ(n − 1)−1

+ 2ε,

then there exists a tangent vector field V0(s) on N , which is smooth on γ , and 0 on γ |[0,ε]
and γ |[a−ε,a], such that the second variational of length of γ satisfies

Iγ (V0, V0) =
∫ a

0
(〈∇γ̇ V0,∇γ̇ V0〉 − R(V0, γ̇ , γ̇ , V0))ds < −δ < 0. (3.2)

Following the arguments in Sect. 2, we can see easily that the conclusions in Proposition 3.1
are implied by the following Lemma.

Lemma 3.8 Let {uk} satisfy the same conditions as in Lemma 3.3. Then, for sufficiently large
k, there exists a section Vk of u∗

k(T N ), which is supported in [0, tak ], such that

δ2E(uk)(Vk, Vk) < 0.

Proof Let P be projection from TRK to T N . We define

Vk(t, θ) = Puk (s,θ)(V0(s)),

where s is the arc-length parametrization of u∗
k(t) with s(0) = 0. Then, Vk is a smooth section

of u−1
k (T N ) which is supported in [0, tak ] × S1. By Corollary 3.7, for any fixed θ , we have

Vk
(
uk(se

√−1θ )
)

→ V0(s) in C1[0, a].
Next, we will show

lim
k→+∞

1√|Re β(uk)|δ
2E(uk)(Vk, Vk) = 2

√
2π Iγ (V0, V0). (3.3)

Since

δ2E(uk)(Vk, Vk) = 2
∫ 2π

0

∫ tak

0
(〈∇Vk,∇Vk〉 − R(Vk,∇uk,∇uk, Vk))dtdθ

= 2
∫ 2π

0

∫ tak

0

(〈
∇ ∂uk

∂t
Vk,∇ ∂uk

∂t
Vk
〉
− R

(
Vk,

∂uk
∂t

,
∂uk
∂t

, Vk

))
dtdθ

+2
∫ 2π

0

∫ tak

0

(〈
∇ ∂uk

∂θ

Vk,∇ ∂uk
∂θ

Vk
〉
− R

(
Vk,

∂uk
∂θ

,
∂uk
∂θ

, Vk

))
dtdθ

= 2I + 2II.

Noting

I√|Re β(uk)| =
∫ 2π

0

∫ a

0

(〈
∇ ∂uk

∂s
Vk,∇ ∂uk

∂s
Vk
〉
− R

(
Vk,

∂uk
∂s

,
∂uk
∂s

, Vk

))

×
∣∣ ∂s
∂t

∣∣
√|Re β(uk)|dsdθ,

we infer from Corollary 3.7

lim
k→+∞

I√|Re β(uk)| = √
2π Iγ (V0, V0).
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On the other hand, we have

II√|Re β(uk)|
= 1√|Re β(uk)|

∫ 2π

0

∫ tak

0

(〈
∇ ∂uk

∂θ

Vk,∇ ∂uk
∂θ

Vk
〉
− R

(
Vk,

∂uk
∂θ

,
∂uk
∂θ

, Vk

))
dtdθ

≤ C√|Re β(uk)|
∫ 2π

0

∫ tak

0

∣∣∣∣∂uk∂θ

∣∣∣∣
2

dtdθ.

For any given T > 0, we set

mk =
[
tak
T

]
+ 1.

By Corollary 3.7, there holds
√|Re β(uk)|mk ≤ C(T ).

Hence, it follows

II√|Re β(uk)| ≤ C√|Re β(uk)|
∫

∪mk
i=0[iT,(i+1)T ]×S1

|uk,θ |2dtdθ

≤ Cmk
√|Re β(uk)|

|Re β(uk)|
1

mk

∫
∪mk
i=0[iT,(i+1)T ]×S1

|uk,θ |2dtdθ

≤ C(T )

mk

(
1

|Re β(uk)|
∫

∪mk
i=0[iT,(i+1)T ]×S1

|uk,θ |2dtdθ

)
.

In view of Lemma 3.5, we concludes

lim
k→∞

1√|Re β(uk)| II = 0.

Immediately, it follows

lim
k→+∞

1√|Re β(uk)|δ
2E(uk)(Vk, Vk) = 2

√
2π Iγ (V0, V0).

Hence, for k large enough, we have the desired inequality

δ2E(uk)(Vk, Vk) < 0.

Thus, we complete the proof of this lemma. ��
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