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Abstract Let G = (V, E) be a finite or locally finite connected weighted graph, � be the
usual graph Laplacian. Using heat kernel estimates, we prove the existence and nonexistence
of global solutions for the following semilinear heat equation on G

{
ut = �u + u1+α in (0,+∞) × V,

u(0, x) = a(x) in V .

We conclude that, for a graph satisfying curvature dimension condition CDE′(n, 0) and
V (x, r) � rm , if 0 < mα < 2, then the non-negative solution u is not global, and if mα > 2,
then there is a non-negative global solution u provided that the initial value is small enough.
In particular, these results apply to the lattice Z

m .

Mathematics Subject Classification 35A01 · 35K91 · 35R02 · 58J35

1 Introduction

The existence or nonexistence of global solutions to a simple system

{
ut = �u + u1+α (t > 0, x ∈ R

m),

u(0, x) = a(x) (x ∈ R
m)

(1.1)
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has been extensively studied since the 1960s. One of the most important results about it is
from Fujita [5]. Fujita showed that, if 0 < mα < 2, then there does not exist a non-negative
global solution for any non-trivial non-negative initial data. On the other hand, if mα > 2,
then there exists a global solution for a sufficiently small initial data. It is clear that Fujita’s
results do not include the critical exponent α = 2

m . The nonexistence of global solutions for
the critical exponent was proved in [10,12].

Recently, the study of equations on graphs has attracted attention from many researchers
in various fields (see [2,6–8,14,16] and references therein). Grigoryan et al. [6–8] established
existence results for Yamabe type equations and some nonlinear elliptic equations on graphs.
The solutions of the heat equation and its variations on graphs have also been investigated by
many authors due to its wide range of applications ranging from modelling of energy flows
through a network to image processing [3,4]. Chung et al. [2] considered the extinction and
positivity of the solutions of the Dirichlet boundary value problem for ut = �u − uq with
q > 0 on a network.

In [16], Xin et al. studied the blow-up properties of the Dirichlet boundary value problem
for ut = �u + uq with q > 0 on a finite graph. They concluded that if q ≤ 1, every solution
is global, and if q > 1 and under some suitable conditions, the nontrivial solutions blow
up in finite time. Different from [16], in this paper we consider the sufficient conditions for
existence or nonexistence of global solutions of the Cauchy problem for ut = �u + u1+α

with α > 0 on a finite or locally finite graph.
From another perspective, the problem discussed in this paper can be regarded as a discrete

analogue of the problem (1.1), that is,

{
ut = �u + u1+α in (0,+∞) × V,

u(0, x) = a(x) in V .
(1.2)

Motivated by [5], we find that the key technical point to proving the existence of global
solutions is to estimate the heat kernel. In [1], Bauer et al. obtained the Gaussian upper
bound for a graph satisfying CDE(n, 0). Based on the results in [1], Horn et al. [11]
derived the Gaussian lower bound for a graph satisfying CDE′(n, 0). In addition, Lin et
al. [13] used the volume growth condition to obtain a weaker on-diagonal lower estimate of
heat kernel on graphs for large time. Using these heat kernel estimates, we can prove the
existence and nonexistence of global solutions for problem (1.2) on finite or locally finite
graphs.

The results of Fujita [5] reveal that the dimension of the space and the degree of non-
linearity of the equation have a combined effect on deciding whether a solution of (1.1)
exists globally in Euclidean space. It is worth noting that the main results of this paper
exactly show that, for a finite or locally finite graph satisfying Dμ, Dω < ∞, CDE′(n, 0)

and V (x, r) � rm , the behaviors of the solutions for problem (1.2) strongly depend on m and
α. In particular, for the lattice Z

m , we have similar results as Fujita [5] in Euclidean space
R
m .
The rest of the paper is organized as follows. In Sect. 2, we introduce some concepts,

notations and known results which are essential to prove the main results of this paper. In
Sect. 3, we formally state our main results. In Sects. 4 and 5, we respectively prove the
nonexistence and existence of global solutions for problem (1.2). In Sect. 6, we study the
behaviors of the solutions for problem (1.2) under the curvature condition CDE′. In Sect. 7,
we give an example to explain our conclusions intuitively. Meanwhile, we also provide a
numerical experiment to demonstrate the example.
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2 Preliminaries

Throughout the paper, we assume that G = (V, E) is a finite or locally finite connected
graph and contains neither loops nor multiple edges, where V denotes the vertex set and E
denotes the edge set. We write y ∼ x if y is adjacent to x , or equivalently xy ∈ E . For each
vertex x , its degree is defined by

deg(x) = #{y ∈ V : y ∼ x}.
Let μ : V → (0,∞) be a positive measure on the vertices of G and satisfy μ0 :=

inf x∈V μ(x) > 0. Let ω : V × V → [0,∞) be an (edge) weight function satisfying ωxy =
ωyx and ωxy > 0 if and only if x ∼ y. Furthermore, we assume ωmin := infxy∈E ωxy > 0.

Given a weight and a measure, we define

Dω := μmax

ωmin

and

Dμ := sup
x∈V

m(x)

μ(x)
,

where μmax := supx∈V μ(x) and m(x) := ∑
y∼x ωxy .

In this paper, all the graphs in our concern are assumed to satisfy

Dμ < ∞.

2.1 The Laplacian on graphs

Let C(V ) be the set of real functions on V . For any 1 ≤ p < ∞, we denote by

�p(V, μ) =
{
f ∈ C(V ) :

∑
x∈V

μ(x)| f (x)|p < ∞
}

the set of �p integrable functions on V with respect to the measure μ. For p = ∞, let

�∞(V, μ) =
{
f ∈ C(V ) : sup

x∈V
| f (x)| < ∞

}
.

For any function f ∈ C(V ), the μ-Laplacian � of f is defined by

� f (x) = 1

μ(x)

∑
y∼x

ωxy( f (y) − f (x)).

It can be checked that Dμ < ∞ is equivalent to the μ-Laplacian � being bounded on �p(V, μ)

for all p ∈ [1,∞] (see [9]). The special case of μ-Laplacian are the case where μ ≡ 1, which
is the standard graph Laplacian, and the case where μ(x) = ∑

y∼x ωxy = m(x), which yields
the normalized graph Laplacian.

The gradient form � associated with a μ-Laplacian is defined by

�( f, g)(x) = 1

2μ(x)

∑
y∼x

ωxy( f (y) − f (x))(g(y) − g(x)).

We write �( f ) = �( f, f ).
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The iterated gradient form �2 is defined by

2�2( f, g) = ��( f, g) − �( f,�g) − �(� f, g).

We write �2( f ) = �2( f, f ).
Besides, the integral of a function f ∈ �1(V, μ) is defined by∫

V
f dμ =

∑
x∈V

μ(x) f (x).

The connected graph can be endowed with its graph distance d(x, y), i.e., the smallest
number of edges of a path between two vertices x and y, then we define balls B(x, r) = {y ∈
V : d(x, y) ≤ r} for any r ≥ 0. The volume of a subset U of V can be written as V (U )

and V (U ) = ∑
x∈U μ(x), for convenience, we usually abbreviate V

(
B(x, r)

)
by V (x, r). In

addition, a graph G satisfies a uniform volume growth of positive degree m, if for all x ∈ V ,
r > 0,

V (x, r) � rm,

that is, there exists a constant c′ ≥ 1, such that 1
c′ rm ≤ V (x, r) ≤ c′rm .

2.2 The heat kernel on graphs

Consider a function u : [0,+∞) × V → R, where u(t, x) represents the potential energy
given at vertex x ∈ V and time t ∈ [0,+∞). Assume that the energy flows from x to its
adjacent vertex y through their edge. If we give a very general assumption that the flow rate
from x to y is proportional to (i) the difference of potential energy in vertices x and y and
(ii) the conductivity ωxy , then it is easy to see that the function u satisfies the equation

ut (t, x) =
∑
y∼x

(u(t, y) − u(t, x))
ωxy

μ(x)
(t ≥ 0, x ∈ V ),

which is the homogeneous heat equation ut = �u.
We say that a function p : (0,+∞) × V × V → R is a fundamental solution of the heat

equation

ut = �u

on G, if for any bounded initial condition u0 : V → R, the function

u(t, x) =
∑
y∈V

μ(y)p(t, x, y)u0(y) (t > 0, x ∈ V )

is differentiable in t , satisfies the heat equation, and for any x ∈ V , limt→0+ u(t, x) = u0(x)
holds.

For completeness, we recall some important properties of the heat kernel p(t, x, y) as
follows:

Proposition 2.1 (see [11,15]) For t, s > 0 and any x, y ∈ V , we have

(i) p(t, x, y) = p(t, y, x),
(ii) p(t, x, y) > 0,

(iii)
∑

y∈V μ(y)p(t, x, y) ≤ 1,
(iv) ∂t p(t, x, y) = �x p(t, x, y) = �y p(t, x, y),
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(v)
∑

z∈V μ(z)p(t, x, z)p(s, z, y) = p(t + s, x, y).

In [1], Bauer et al. introduced two slightly different curvature conditions which are called
CDE and CDE′. Let us now recall the two definitions.

Definition 2.1 A graphG satisfies the exponential curvature dimension inequalityCDE(x, n,

K ), if for any positive function f : V → R
+ such that � f (x) < 0, we have

�2( f )(x) − �

(
f,

�( f )

f

)
(x) ≥ 1

n
(� f )(x)2 + K�( f )(x).

We say that CDE(n, K ) is satisfied if CDE(x, n, K ) is satisfied for all x ∈ V .

Definition 2.2 A graphG satisfies the exponential curvature dimension inequalityCDE′(x, n,

K ), if for any positive function f : V → R
+, we have

�2( f )(x) − �

(
f,

�( f )

f

)
(x) ≥ 1

n
f (x)2(� log f )(x)2 + K�( f )(x).

We say that CDE′(n, K ) is satisfied if CDE′(x, n, K ) is satisfied for all x ∈ V .

The relation between CDE(n, K ) and CDE′(n, K ) is the following:

Remark 2.1 (see [1,11]) CDE′(n, K ) implies CDE(n, K ).

Under the curvature conditionCDE(n, 0), Bauer et al. [1] established a discrete analogue of
the Li-Yau inequality in Theorem 4.20 and a Harnack-type inequality in Theorem 5.2. Using
these results, Bauer et al. derived a heat kernel estimate on unweighted graphs (see Theorem
7.6 in [1]). According to Remark 5.1 in [1], for the heat kernel estimate on weighted graphs,
we shall assume Dω < ∞ instead of maxx∈V deg(x) < ∞. Here, we show the relevant result
on weighted graphs as follows:

Proposition 2.2 (see [1]) Suppose G satisfies Dω < ∞ and CDE(n, 0). Then there exists a
positive constant C1 such that, for any x, y ∈ V and t > 0,

p(t, x, y) ≤ C1

V (x,
√
t)

, (2.1)

where C1 depends on n, Dω, Dμ and is denoted by C1 = C1(n, Dω, Dμ). Furthermore, for
any t > 1, there exist positive constants C2 and C3 such that

p(t, x, y) ≥ C2
1

tn
exp

(
−C3

d2(x, y)

t − 1

)
, (2.2)

where C2 depends on Dω, Dμ and is denoted by C2 = C2(Dω, Dμ), C3 depends on
n, Dω, Dμ and is denoted by C3 = C3(n, Dω, Dμ).

Although the upper bound from Bauer et al. [1] is formulated with Gaussian form, the
lower bound is not quite Gaussian form. Based on this, Horn et al. [11] improved some results
in [1] and derived the Gaussian type lower bound via introducing the curvature condition
CDE′(n, 0) in Theorem 5.1 of [11]. We transcribe it below.
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Proposition 2.3 (see [11]) Suppose G satisfies Dω < ∞ and CDE′(n, 0). Then for any
t0 > 0, there exist positive constants C and c such that

p(t, x, y) ≥ C

V (x,
√
t)

exp

(
−c

d2(x, y)

t

)

for all x, y ∈ V and t > t0, where C depends on n and is denoted by C = C(n), c depends
on n, Dω, Dμ and is denoted by c = c(n, Dω, Dμ). In particular, for any t0 > 0, we have

p(t, x, x) ≥ C(n)

V (x,
√
t)

(2.3)

for all x ∈ V and t > t0, where C(n) is positive.

Without the use of the curvature conditionCDE′, Lin et al. only utilized the volume growth
condition to obtain a on-diagonal lower estimate of heat kernel on graphs for large time (see
Theorem 3.2 in [13]). In fact, this estimate is enough to prove the nonexistence of global
solutions for problem (3.1) stated in Sect. 3. Let us now recall the on-diagonal lower estimate.

Proposition 2.4 (see [13]) Assume that, for all x ∈ V and r ≥ r0,

V (x, r) ≤ c0r
m,

where r0, c0,m are positive constants. Then, for all large enough t,

p(t, x, x) ≥ 1

4V (x,C0t log t)
, (2.4)

where C0 > 2Dμe.

3 Main results

In this paper, we study whether or not there exist global solutions to the initial value problem
for the semilinear heat equation{

ut = �u + u1+α in (0,+∞) × V,

u(0, x) = a(x) in V,
(3.1)

where α is a positive parameter, a(x) is bounded, non-negative and not trivial in V . Without
loss of generality, we may assume a(ν) > 0 with ν ∈ V . Throughout the present paper we
shall only deal with non-negative solutions so that there is no ambiguity in the meaning of
u1+α . We shall also fix the vertex ν.

For convenience, we state the relevant definitions first.

Definition 3.1 Assume that T > 0. A non-negative function u = u(t, x) satisfying (3.1)
in [0, T ] × V is called a solution of (3.1) in [0, T ], if u is bounded and continuous with
respect to t in [0, T ] × V . Furthermore, a solution u of (3.1) in [0,+∞) is a function whose
restriction to [0, T ] × V is a solution of (3.1) in [0, T ] for any T > 0. A solution u of (3.1)
in [0,+∞) is also called a global solution of (3.1) in [0,+∞).

Definition 3.2 F[0,+∞) is the set of all non-negative continuous (with respect to t) func-
tions u = u(t, x) defined in [0,+∞) × V satisfying

0 ≤ u(t, x) ≤ Mp(t + γ, ν, x)
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with some constants M > 0 and γ > 0, where ν is the vertex at which the function a is
positive. Furthermore, if u is a solution of (3.1) in [0,+∞) and u ∈ F[0,+∞), then u is
called a global solution of (3.1) in F[0,+∞).

Definition 3.3 A is a set of numbers defined by

A =
{
δ : 0 < δ < 1, δ

α
4
(
1 + δ

α
4
)1+α

< 1, C̃δ
α
2 < 1,

(1 + α)
(
δ + δ1+ α

2 (1 + δ
α
4 )1+α

)α
C̃ < 1

}
,

where

C̃ = 2γ

mα − 2

(
C1(n, Dω, Dμ)c−1

1

)α

γ −mα
2

and the constant C1(n, Dω, Dμ) appearing in the definition of C̃ is actually the same as the
one in Proposition 2.2.

Remark 3.1 The set A defined in Definition 3.3 is nonempty in terms of the constraint
conditions of A. In fact, by

lim
δ→0

δ
α
4
(
1 + δ

α
4
)1+α = 0, lim

δ→0
C̃δ

α
2 = 0, lim

δ→0
(1 + α)

(
δ + δ1+ α

2 (1 + δ
α
4 )1+α

)α
C̃ = 0,

we can conclude that there exists a δ0 (0 < δ0 < 1) such that the conditions given in A hold
for all δ ∈ (0, δ0).

Our main results are stated in the following theorems.

Theorem 3.1 Assume that, for all x ∈ V and r ≥ r0, the volume growth V (x, r) ≤ c0rm

holds, where r0, c0,m are positive constants. If 0 < mα < 1, then there is no non-negative
global solution of (3.1) in [0,+∞) for any bounded, non-negative and non-trivial initial
value.

Theorem 3.2 Assume that G satisfies Dω < ∞, CDE(n, 0) and V (x, r) ≥ c1rm for some
c1 > 0, m > 0 and all r > 0, x ∈ V . Suppose for γ > 0 and δ ∈ A, the initial value
satisfies

0 ≤ a(x) ≤ δp(γ, ν, x) (3.2)

for all x ∈ V . If mα > 2, then (3.1) has a global solution u = u(t, x) in F[0,+∞),

which satisfies 0 ≤ u(t, x) ≤ M(δ)p(t + γ, ν, x) for any (t, x) ∈ [0,+∞) × V, where
M(δ) = δ + δ1+ α

2
(
1 + δ

α
4
)1+α

.

Theorem 3.3 Suppose G satisfies Dω < ∞, CDE′(n, 0) and V (x, r) � rm for some m > 0
and all r > 0, x ∈ V .

(i) If 0 < mα < 2, then there is no non-negative global solution of (3.1) in [0,+∞) for
any bounded, non-negative and non-trivial initial value.

(ii) If mα > 2, then there exists a global solution of (3.1) in F[0,+∞) for a sufficiently
small initial value.
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4 Proof of Theorem 3.1

We first introduce a lemma which will be used in the proof of Theorem 3.1.

Lemma 4.1 Let T > 0, if u = u(t, x) is a non-negative solution of (3.1) in [0, T ], then we
have

J−α
0 − u(t, ν)−α ≥ αt (0 < t ≤ T ),

where

J0 = J0(t) =
∑
x∈V

μ(x)p(t, ν, x)a(x).

Proof Let ε be a positive constant and for any fixed t ∈ (0, T ], we put

vε(s, x) = p(t − s + ε, ν, x) (0 ≤ s ≤ t, x ∈ V )

and
Jε(s) =

∑
x∈V

μ(x)vε(s, x)u(s, x) (0 ≤ s ≤ t).

(i) We prove that Jε is positive for all s ∈ [0, t].
Since u(s, ν) is non-negative in [0, t], it follows that for all 0 ≤ s ≤ t ,

∂u

∂s
(s, ν) − �u(s, ν) ≥ 0. (4.1)

Note that

�u(s, ν) = 1

μ(ν)

∑
y∼ν

ωνy
(
u(s, y) − u(s, ν)

)

≥ − 1

μ(ν)

∑
y∼ν

ωνyu(s, ν)

≥ −Dμu(s, ν),

then the inequality (4.1) gives

∂u

∂s
(s, ν) ≥ −Dμu(s, ν),

which, together with a(ν) = u(0, ν) > 0, yields

u(s, ν) ≥ u(0, ν) exp(−Dμs) > 0, s ∈ [0, t].
Hence, for all 0 ≤ s ≤ t , we have∑

x∈V
u(s, x) > 0.

In view of the fact that vε(s, x) is positive in [0, t] × V , we obtain Jε(s) > 0 in [0, t].
(ii) We prove that Jε is differentiable with respect to s and satisfies the following equation

d

ds
Jε(s) =

∑
x∈V

μ(x)vε(s, x)u(s, x)1+α.

Case 1 We consider the case where G is a finite connected graph.
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Since ωxy = ωyx , according to the definition of �, for any function f, g ∈ C(V ), we
have ∑

x∈V
μ(x)� f (x)g(x) =

∑
x∈V

μ(x) f (x)�g(x). (4.2)

From the property of the heat kernel, we know that

∂

∂s
vε = −�vε.

Thus

d

ds
Jε(s) =

∑
x∈V

(
μ(x)

∂

∂s
vε(s, x)u(s, x) + μ(x)vε(s, x)

∂

∂s
u(s, x)

)

=
∑
x∈V

(
−μ(x)�vε(s, x)u(s, x) + μ(x)vε(s, x)

(
�u(s, x) + u(s, x)1+α

))

= −
∑
x∈V

μ(x)�vε(s, x)u(s, x) +
∑
x∈V

μ(x)vε(s, x)�u(s, x)

+
∑
x∈V

μ(x)vε(s, x)u(s, x)1+α

=
∑
x∈V

μ(x)vε(s, x)u(s, x)1+α.

(4.3)

Case 2 We consider the case where G is a locally finite connected graph.
Firstly, we claim that Jε exists if G is locally finite.
Since u is bounded, we can assume that there exists a constant B > 0 such that for any

(s, x) ∈ [0, t] × V ,

|u(s, x)| ≤ B.

Hence, from the property of the heat kernel, we have

Jε =
∣∣∣∣
∑
x∈V

μ(x)vε(s, x)u(s, x)

∣∣∣∣ ≤ B
∑
x∈V

μ(x)vε(s, x) ≤ B < ∞.

Secondly, we observe that, if G is locally finite, the exchange between summation and
derivation in the first step of (4.3) is allowed because Jε(s) and d

ds Jε(s) both are uniformly
convergent.

Indeed, when � is a bounded operator, we have

Ptu(x) = et�u(x) =
+∞∑
k=0

tk�k

k! u(x) =
∑
y∈V

μ(y)p(t, x, y)u(y). (4.4)

Furthermore, we can prove that the summation (4.4) has a nice convergency when u(x)
is a bounded function. The details are as follows:

Assuming that |u(x)| ≤ B in V , then

|�u(x)| =
∣∣∣∣ 1

μ(x)

∑
y∼x

ωxy
(
u(y) − u(x)

)∣∣∣∣ ≤ 2DμB.

By iteration, we obtain for any k ∈ N and x ∈ V ,∣∣�ku(x)
∣∣ ≤ 2k Dk

μB.
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Thus for any t ∈ (0, T ] and x ∈ V ,∣∣∣∣ t
k�k

k! u(x)

∣∣∣∣ ≤
∣∣∣∣T

k�k

k! u(x)

∣∣∣∣ ≤ T k

k! 2k Dk
μB.

In view of
+∞∑
k=0

T k

k! 2k Dk
μB = Be2DμT < ∞,

we deduce that
∑

y∈V μ(y)p(t, x, y)u(y) converges uniformly in (0, T ] when u(x) is
bounded in V .

Since u(s, x) and u(s, x)1+α both are bounded, we obtain that Jε(s) and d
ds Jε(s) converge

uniformly in [0, t].
Thirdly, we show that if G is locally finite, the equation∑

y∈V
μ(y)�p(t, x, y)u(y) =

∑
y∈V

μ(y)p(t, x, y)�u(y) (4.5)

holds for any bounded function u.
A direct computation yields∑
y∈V

μ(y)�p(t, x, y)u(y) =
∑
y∈V

∑
z∈V

ωyz
(
p(t, x, z)u(y) − p(t, x, y)u(y)

)

=
∑
y∈V

∑
z∈V

ωyz p(t, x, z)u(y) −
∑
y∈V

∑
z∈V

ωyz p(t, x, y)u(y)

=
∑
z∈V

∑
y∈V

ωyz p(t, x, y)u(z) −
∑
y∈V

∑
z∈V

ωyz p(t, x, y)u(y)

=
∑
y∈V

∑
z∈V

ωyz p(t, x, y)u(z) −
∑
y∈V

∑
z∈V

ωyz p(t, x, y)u(y)

=
∑
y∈V

μ(y)p(t, x, y)�u(y).

Note that the above summation can be exchanged, since

∑
y∈V

∑
z∈V

∣∣ωyz p(t, x, y)u(z)
∣∣ ≤

∑
y∈V

μ(y)p(t, x, y)

(∑
z∈V

ωyz

μ(y)
|u(z)|

)

≤ DμB.

Finally, we need to show that if G is locally finite, the interchange of sums in the third
step of (4.3) holds because the sums are convergent.

Noting that |�u(s, x)| ≤ 2DμB, |u(s, x)1+α| ≤ B1+α and∑
x∈V

μ(x)�vε(s, x)u(s, x) =
∑
x∈V

μ(x)vε(s, x)�u(s, x),

we deduce that for any (s, x) ∈ [0, t]×V ,
∑

x∈V μ(x)vε(s, x)�u(s, x),
∑

x∈V μ(x)vε(s, x)
u(s, x)1+α and

∑
x∈V μ(x)�vε(s, x)u(s, x) all are convergent.

(iii) Since vε > 0 and ∑
x∈V

μ(x)vε(s, x) ≤ 1,
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applying Jensen’s inequality to x1+α and owing to the convexity of x1+α (α > 0), we obtain
∑

x∈V μ(x)vε(s, x)u(s, x)1+α∑
x∈V μ(x)vε(s, x)

≥
(∑

x∈V μ(x)vε(s, x)u(s, x)∑
x∈V μ(x)vε(s, x)

)1+α

,

that is, (∑
x∈V

μ(x)vε(s, x)u(s, x)

)1+α

≤
(∑
x∈V

μ(x)vε(s, x)u(s, x)1+α

) (∑
x∈V

μ(x)vε(s, x)

)α

≤
∑
x∈V

μ(x)vε(s, x)u(s, x)1+α.

It follows that

d

ds
Jε ≥ J 1+α

ε .

Using the Mean-value theorem, we have

Jε(0)−α − Jε(t)
−α ≥ αt. (4.6)

According to (4.4), we assert that for any bounded function u,

lim
t→0+ Ptu(x) = lim

t→0+

∑
y∈V

μ(y)p(t, x, y)u(y) = u(x),

from which we get

Jε(t) → u(t, ν) (ε → 0+). (4.7)

Moreover, it is not difficult to find that

Jε(0) → J0 (ε → 0+). (4.8)

In fact, if G is a finite connected graph, then (4.8) is obvious. If G is a locally finite connected
graph, we can exchange limitation with summation because Jε(0) is uniformly convergent.
This leads to (4.8).

Applying (4.7) and (4.8) to (4.6), for any t ∈ (0, T ], we have

J−α
0 − u(t, ν)−α ≥ αt.

This completes the proof of Lemma 4.1. �

Proof of Theorem 3.1 With the help of Lemma 4.1 we can now prove Theorem 3.1 by con-
tradiction.

Suppose that there exists a non-negative global solution u = u(t, x) of (3.1) in [0,+∞).
By Lemma 4.1, we have for any t > 0,

J−α
0 ≥ u(t, ν)−α + αt ≥ αt.

From Proposition 2.4 and the given condition V (x, r) ≤ c0rm (r ≥ r0), we have for all
large enough t ,

p(t, ν, ν) ≥ 1

4c0Cm
0

(t log t)−m (C0 > 2Dμe).
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Hence, for all sufficiently large t ,

J0 =
∑
x∈V

μ(x)p(t, ν, x)a(x)

≥ μ(ν)a(ν)p(t, ν, ν)

≥ C (t log t)−m ,

where C = μ(ν)a(ν)
4c0Cm

0
> 0 and C0 > 2Dμe.

Combining J−α
0 ≥ αt and J0 ≥ C (t log t)−m , for all large enough t , we get

(t log t)mα ≥ αC
α
t. (4.9)

However, if 0 < mα < 1, the inequality (4.9) is invalid for sufficiently large t . This leads
to a contradiction.

This completes the Proof of Theorem 3.1. �


5 Proof of Theorem 3.2

Before proving Theorem 3.2, we consider the following integral equations (5.1) associated
with (3.1) and discuss its solution u(t, x) in F(0,+∞).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(t, x) = u0(t, x) +
∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)u(s, y)1+αds in (0,+∞) × V,

u0(t, x) =
∑
y∈V

μ(y)p(t, x, y)a(y) in (0,+∞) × V,

(5.1)
where α > 0, a(y) is bounded, non-negative and not trivial in V . Moreover, we assume
0 ≤ a(y) ≤ δp(γ, ν, y) in V for γ > 0 and δ ∈ A. It should be noted that ν is the vertex, as
stated previously, at which the function a is positive. Furthermore, the set A satisfies

A =
{
δ : 0 < δ < 1, δ

α
4
(
1 + δ

α
4
)1+α

< 1, C̃δ
α
2 < 1,

(1 + α)
(
δ + δ1+ α

2 (1 + δ
α
4 )1+α

)α
C̃ < 1

}
,

where C̃ = 2γ
mα−2

(
C1(n, Dω, Dμ)c−1

1

)α

γ −mα
2 > 0.

For any function v(t, x) with |v| ∈ F(0,+∞), we can define its norm

||v|| = sup
t>0,x∈V

|v(t, x)|
ρ(t, x)

, (5.2)

where ρ(t, x) = p(t + γ, ν, x).
Let

(
u)(t, x) =
∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)u(s, y)1+αds.

We first prove some lemmas which are essential to prove Theorem 3.2.
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Lemma 5.1 Let G satisfy Dω < ∞, CDE(n, 0) and V (x, r) ≥ c1rm (c1 > 0,m > 0, r >

0) for all x ∈ V . If mα > 2, then


ρ ∈ F(0,+∞) and ||
ρ|| ≤ C̃,

where C̃ = 2γ
mα−2

(
C1c

−1
1

)α

γ −mα
2 > 0.

Proof For any (t, x) ∈ (0,+∞) × V , we have

(
ρ)(t, x) =
∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)ρ(s, y)1+αds

=
∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)p(s + γ, ν, y)p(s + γ, ν, y)αds.

Obviously, 
ρ is non-negative and continuous with respect to t in (0,+∞) × V .
According to Proposition 2.2, for any s ≥ 0, there exists a positive constant C1 such that

p(s + γ, ν, y) ≤ C1

V
(
ν,

√
s + γ

) .

Since

V
(
ν,

√
s + γ

) ≥ c1(s + γ )
m
2 ,

we obtain

p(s + γ, ν, y) ≤ C1c
−1
1 (s + γ )−

m
2 . (5.3)

Hence,

(
ρ)(t, x) ≤
∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)p(s + γ, ν, y)
(
C1c

−1
1

)α

(s + γ )−
mα
2 ds

≤
(
C1c

−1
1

)α
∫ t

0
(s + γ )−

mα
2

∑
y∈V

μ(y)p(t − s, x, y)p(s + γ, ν, y)ds

=
(
C1c

−1
1

)α

p(t + γ, ν, x)
∫ t

0
(s + γ )−

mα
2 ds.

Furthermore, ∫ t

0
(s + γ )−

mα
2 ds ≤

∫ +∞

0
(s + γ )−

mα
2 ds

= −2γ

2 − mα
γ −mα

2 ,

(5.4)

it is worth noting that the existence of the integral in (5.4) is based on the assumptionmα > 2.
Thus for any (t, x) ∈ (0,+∞) × V ,

(
ρ)(t, x) ≤ C̃ p(t + γ, ν, x), (5.5)

where C̃ = 2γ
mα−2

(
C1c

−1
1

)α

γ −mα
2 > 0.

It follows that


ρ ∈ F(0,+∞) and ||
ρ|| ≤ C̃ .

This completes the proof of Lemma 5.1.

123



102 Page 14 of 22 Y. Lin, Y. Wu

Lemma 5.2 Under the conditions of Lemma 5.1 and u ∈ F(0,+∞), we have


u ∈ F(0,+∞) and ||
u|| ≤ C̃ ||u||1+α.

Proof Since u ∈ F(0,+∞), we can define its norm and then we have u(t, x) ≤ ||u||ρ(t, x)
for any (t, x) ∈ (0,+∞) × V .

A simple calculation shows that

0 ≤ (
u)(t, x) =
∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)u(s, y)1+αds

≤ ||u||1+α

∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)ρ(s, y)1+αds

= ||u||1+α(
ρ)(t, x).

(5.6)

Combining (5.6) with (5.5), we get


u ∈ F(0,+∞) and ||
u|| ≤ C̃ ||u||1+α.

This completes the proof of Lemma 5.2. �

Lemma 5.3 Under the conditions of Lemma 5.1, we suppose that u and v are in F(0,+∞)

and satisfy ||u|| ≤ M and ||v|| ≤ M with a positive number M. Then we have

||
u − 
v|| ≤ (1 + α)MαC̃ ||u − v||.
Proof Since u, v ∈ F(0,+∞), for any (t, x) ∈ [0,∞) × V , we get∣∣u(t, x) − v(t, x)

∣∣ ≤ |u(t, x)| + |v(t, x)| ≤ 2Mρ(t, x),

which implies |u − v| ∈ F(0,+∞).
By using the elementary inequality

|p1+α − q1+α| ≤ (1 + α)|p − q| max{pα, qα} (q ≥ 0, p ≥ 0),

we have∣∣u(s, y)1+α − v(s, y)1+α
∣∣ ≤ (1 + α)|u(s, y) − v(s, y)| max{u(s, y)α, v(s, y)α}
≤ (1 + α)Mαρ(s, y)α

∣∣u(s, y) − v(s, y)
∣∣

≤ (1 + α)Mαρ(s, y)α||u − v||ρ(s, y)

= (1 + α)Mαρ(s, y)1+α||u − v||.
Case 1 When G is a finite connected graph, for any (t, x) ∈ (0,+∞) × V , we find that∣∣
u(t, x) − 
v(t, x)

∣∣
=

∣∣∣∣
∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)
(
u(s, y)1+α − v(s, y)1+α

)
ds

∣∣∣∣

≤
∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)
∣∣∣u(s, y)1+α − v(s, y)1+α

∣∣∣ds

≤ (1 + α)Mα||u − v||
∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)ρ(s, y)1+αds

= (1 + α)Mα||u − v||(
ρ)(t, x)

≤ (1 + α)Mα||u − v||C̃ρ(t, x),

(5.7)
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thus

||
u − 
v|| ≤ (1 + α)MαC̃ ||u − v||. (5.8)

Case 2 When G is a locally finite connected graph, we have the same inequality as (5.8)
above. In fact, the inequality (5.8) will be obtained if we can show that the first equation of
(5.7) is true. The details are as follows:

Since u ∈ F(0,+∞) and ||u|| ≤ M , we have

0 ≤ u(t, x) ≤ Mp(t + γ, ν, x).

By (5.3), we know that

p(t + γ, ν, x) ≤ C1c
−1
1 γ −m

2 ,

hence for any (t, x) ∈ (0,+∞) × V , we deduce that

0 ≤ u(t, x) ≤ B,

where B = MC1c
−1
1 γ −m

2 .
Similarly, v also satisfies 0 ≤ v(t, x) ≤ B.
Hence,

∑
y∈V μ(y)p(t−s, x, y)u(s, y)1+α and

∑
y∈V μ(y)p(t−s, x, y)v(s, y)1+α both

are convergent, which shows that∑
y∈V

μ(y)p(t − s, x, y)u(s, y)1+α −
∑
y∈V

μ(y)p(t − s, x, y)v(s, y)1+α

=
∑
y∈V

μ(y)p(t − s, x, y)
(
u(s, y)1+α − v(s, y)1+α

)
.

Based on the above discussion, we verify the validity of inequalities (5.7) and (5.8) under
the condition that G is locally finite.

The proof of Lemma 5.3 is complete. �

Proof of Theorem 3.2 (i) We construct the solution of (5.1) in F(0,+∞).

Set a iteration relation

un+1 = u0 + 
un (n = 0, 1, . . .) (5.9)

with u0 given by (5.1) and un ∈ F(0,+∞) (n = 1, 2, . . .).
Recall the definition of the set A:

A =
{
δ : 0 < δ < 1, δ

α
4
(
1 + δ

α
4
)1+α

< 1, C̃δ
α
2 < 1,

(1 + α)
(
δ + δ1+ α

2 (1 + δ
α
4 )1+α

)α
C̃ < 1

}
.

On account of the assumption of Theorem 3.2 that the initial value satisfies

0 ≤ a(y) ≤ δp(γ, ν, y),

where δ ∈ A, we have for any (t, x) ∈ (0,+∞) × V ,

0 ≤ u0(t, x) ≤ δ
∑
y∈V

μ(y)p(t, x, y)p(γ, ν, y)

= δp(t + γ, ν, x),

which shows u0 ∈ F(0,+∞) and ||u0|| ≤ δ, where δ ∈ A.
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According to Lemma 5.2, we obtain the inequalities

||un+1|| ≤ ||u0|| + ||
un || ≤ ||u0|| + C̃ ||un ||1+α,

that is,

||un+1|| ≤ δ + C̃ ||un ||1+α (n = 0, 1, . . .). (5.10)

From recurrent inequalities (5.10), we have for any δ ∈ A,

||u0|| ≤ δ,

||u1|| ≤ δ + C̃ ||u0||1+α ≤ δ + δ1+αC̃ < δ + δ1+ α
2 ,

||u2|| ≤ δ + C̃ ||u1||1+α

≤ δ + (
δ + δ1+ α

2
)1+α

C̃

< δ + δ1+ α
2
(
1 + δ

α
2
)1+α

< δ + δ1+ α
2
(
1 + δ

α
4
)1+α

,

||u3|| ≤ δ + C̃ ||u2||1+α

≤ δ + [
δ + δ1+ α

2
(
1 + δ

α
4
)1+α]1+α

C̃

< δ + δ1+ α
2
[
1 + δ

α
2
(
1 + δ

α
4
)1+α]1+α

< δ + δ1+ α
2
(
1 + δ

α
4
)1+α

,

· · ·
||un || < δ + δ1+ α

2
(
1 + δ

α
4
)1+α

,

· · ·
It follows that ||un || < M(δ) = δ + δ1+ α

2
(
1 + δ

α
4
)1+α

(n = 0, 1, . . .) with δ ∈ A.
Note that

un+2 − un+1 = 
un+1 − 
un .

From Lemma 5.3, we deduce that

||un+2 − un+1|| ≤ κ||un+1 − un || (n = 0, 1, . . .), (5.11)

where κ = (1 + α)M(δ)αC̃ .
Since δ ∈ A, we have

κ = (1 + α)M(δ)αC̃ = (1 + α)
(
δ + δ1+ α

2 (1 + δ
α
4 )1+α

)α
C̃ < 1.

In view of κ < 1, the inequality (5.11) implies the convergence of
∑∞

n=0 ||un+1 − un ||.
Thus {un} is a Cauchy sequence in F(0,+∞), that is, for any ε > 0, we may choose a
constant N (ε) such that, for any m, n ≥ N (ε),

||um − un || = sup
t>0,x∈V

|um(t, x) − un(t, x)|
ρ(t, x)

< ε.

Hence, for any t ∈ (0,+∞) and x ∈ V ,∣∣∣∣um(t, x)

ρ(t, x)
− un(t, x)

ρ(t, x)

∣∣∣∣ < ε for any m, n ≥ N (ε). (5.12)
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On the other hand, the inequality (5.3) shows that ρ(t, x) is uniformly bounded with
respect to t and x . Thus for any t ∈ (0,+∞) and x ∈ V , we have

|um(t, x) − un(t, x)| < B ′ε for any m, n ≥ N (ε), (5.13)

where B ′ = C1c
−1
1 γ −m

2 .
It follows from (5.13) that the sequence {un} is a Cauchy sequence in R. Thus we assume

limn→+∞ un(t, x) = u(t, x). Taking the limit m → +∞ in (5.12), we get for any n ≥ N (ε),∣∣∣∣ u(t, x)

ρ(t, x)
− un(t, x)

ρ(t, x)

∣∣∣∣ ≤ ε,

from which we deduce that un
ρ

converges uniformly to u
ρ

in (0,+∞) × V . So un converges
with respect to the norm || · ||.

In addition,

sup
t>0,x∈V

|u(t, x)|
ρ(t, x)

≤ sup
t>0,x∈V

(∣∣∣∣ u(t, x)

ρ(t, x)
− un(t, x)

ρ(t, x)

∣∣∣∣ +
∣∣∣∣un(t, x)ρ(t, x)

∣∣∣∣
)

< ε + M(δ),

that is, u(t, x) ∈ F(0,+∞). Furthermore, letting ε → 0, we have ||u|| ≤ M(δ).
In conclusion, there exists a function u which satisfies 0 ≤ u(t, x) ≤ M(δ)ρ(t, x), such

that

||un − u|| → 0 (n → +∞). (5.14)

Utilizing (5.9) and (5.14) leads us to the assertion that u is a solution of (5.1) in F(0,+∞)

and satisfies 0 ≤ u(t, x) ≤ M(δ)p(t + γ, ν, x), where M(δ) = δ + δ1+ α
2
(
1 + δ

α
4
)1+α .

(ii) We prove that the solution u(t, x) of (5.1) constructed above satisfies (3.1).
For any T > 0, since u ∈ F(0, T ], we derive from (5.3) that u is bounded and continuous

with respect to t in (0, T ] × V .
Taking a small positive number ε, we put

(
εu)(t, x) =
∫ t−ε

0

∑
y∈V

μ(y)p(t − s, x, y)u(s, y)1+αds,

where 0 < ε < t ≤ T and x ∈ V .
Obviously, 
εu tends to 
u in [σ, T ] × V as ε → 0+, here σ is an arbitrary positive

number and σ > ε.
Case 1 If G is a finite connected graph, recalling an important property of the heat kernel:

pt (t, x, y) = �x p(t, x, y) = �y p(t, x, y), (5.15)

we have
∂

∂t
(
εu) =

∑
y∈V

μ(y)p(ε, x, y)u(t − ε, y)1+α

+
∫ t−ε

0

∑
y∈V

μ(y)pt (t − s, x, y)u(s, y)1+αds

=
∑
y∈V

μ(y)p(ε, x, y)u(t − ε, y)1+α

+
∫ t−ε

0

∑
y∈V

μ(y)�x p(t − s, x, y)u(s, y)1+αds

≡I1 + I2.

(5.16)
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Since u1+α is bounded and continuous with respect to t in (0, T ] × V , it follows imme-
diately from (4.4) that I1 tends to u(t, x)1+α in [σ, T ] × V as ε → 0+. On the other hand,
when ε → 0+, I2 converges in [σ, T ] × V to a function

ϕ(t, x) =
∫ t

0

∑
y∈V

μ(y)�x p(t − s, x, y)u(s, y)1+αds.

Letting ε → 0+ in (5.16), we obtain for any (t, x) ∈ [σ, T ] × V ,

∂

∂t
(
u)(t, x) = u(t, x)1+α + ϕ(t, x)

= u(t, x)1+α + �x (
u)(t, x).
(5.17)

Since u = u0 + 
u and ∂
∂t u0 = �u0, for any (t, x) ∈ [σ, T ] × V , we conclude that

ut = �u0 + ∂

∂t

u

= �u0 + �(
u) + u1+α

= �u + u1+α.

(5.18)

Because σ is arbitrary, (5.18) is true for all (t, x) ∈ (0, T ] × V .
Furthermore, we can prove that the initial-value condition is satisfied in the sense that

u(t, x) → a(x) (t → 0+),

from which we can extend u(t, x) to t = 0 and set u(0, x) = a(x).
By the arbitrariness of T , we deduce that the solution u(t, x) of (5.1) constructed above

is the required global solution of (3.1) in F[0,+∞).
Case 2 If G is a locally finite connected graph, as before, the following assertions need to

be verified.

(a)

∂

∂t

⎛
⎝∑

y∈V
μ(y)p(t − s, x, y)u(s, y)1+α

⎞
⎠ =

∑
y∈V

μ(y)pt (t − s, x, y)u(s, y)1+α;

(b) ∫ t

0

∑
y∈V

μ(y)�x p(t − s, x, y)u(s, y)1+αds

= �

⎛
⎝∫ t

0

∑
y∈V

μ(y)p(t − s, x, y)u(s, y)1+αds

⎞
⎠ .

Noting that u is bounded and Dμ < ∞, we deduce that �u1+α is bounded too.
Following (4.5) and (5.15), we find that∑

y∈V
μ(y)pt (t − s, x, y)u(s, y)1+α =

∑
y∈V

μ(y)�y p(t − s, x, y)u(s, y)1+α

=
∑
y∈V

μ(y)p(t − s, x, y)�u(s, y)1+α,

123



The existence and nonexistence of global solutions... Page 19 of 22 102

thus
∑

y∈V μ(y)pt (t−s, x, y)u(s, y)1+α converges uniformly, from which we conclude that
the assertion (a) is valid.

Similar to the proof of (4.5), the validity of assertion (b) can be proved due to the absolute
convergence of sums.

In view of the assertions (a) and (b), for a locally finite graph we have the same conclusion
as for a finite graph.

This completes the Proof of Theorem 3.2. �


6 Proof of Theorem 3.3

Proof of the assertion (i) of Theorem 3.3 We proceed as in the Proof of Theorem 3.1, instead
of using the heat kernel estimate in Proposition 2.4, we use the one in Proposition 2.3.

Actually, by Proposition 2.3, for any t0 > 0, we have

p(t, ν, ν) ≥ C(n)

V (ν,
√
t)

(6.1)

for all t > t0. Taking t0 = 1
2 and combining (6.1) with V (ν, t) � tm (m > 0), we obtain

p(t, ν, ν) ≥ C(n)

c′ t−
m
2

for all t > 1
2 .

Hence, for any t > 1
2 , we have

J0 =
∑
x∈V

μ(x)p(t, ν, x)a(x)

≥ μ(ν)a(ν)p(t, ν, ν)

≥ C ′t−
m
2 ,

(6.2)

where C ′ = C(n)μ(ν)a(ν)
c′ > 0 and the definition of J0 is the same as in Lemma 4.1.

Let us now prove the assertion (i) of Theorem 3.3 by contradiction. Suppose that there
exists a non-negative global solution of (3.1) in [0,+∞), then by Lemma 4.1 we have

J−α
0 ≥ αt (6.3)

for any t > 0.
Combining (6.2) and (6.3), for any t > 1

2 , we have

t
mα
2 ≥ αC ′αt. (6.4)

However, if 0 < mα < 2, the above inequality (6.4) is distinctly not true for a sufficiently
large t . This proves the assertion (i) of Theorem 3.3. �


Proof of the assertion (ii) of Theorem 3.3 From Remark 2.1 we conclude that CDE′(n, 0)

impliesCDE(n, 0), thus the assertion of Theorem 3.2 implies the assertion (ii) of Theorem 3.3.
This proves the assertion (ii) of Theorem 3.3. �
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Fig. 1 C6

7 Example and numerical experiments

In this section, we give an example to illustrate our result asserted in Theorem 3.3.
It is well known that the integer grid Z

m admits the uniform volume growth of pos-
itive degree m. Moreover, Bauer et al. [1] proved that Z

m satisfies CDE(2m, 0) and
CDE′(4.53m, 0) for the normalized graph Laplacian, which, along with Theorem 3.3 enable
us to deduce the existence and non-existence of global solutions to problem (3.1) in Z

m with
the normalized graph Laplacian, i.e., we have the following result:

Proposition 7.1 Let G be Zm with μ(x) = m(x) and Dω < ∞.

(i) If 0 < mα < 2, then there is no non-negative global solution of (3.1) in [0,+∞) for
any bounded, non-negative and non-trivial initial value.

(ii) If mα > 2, then there exists a global solution of (3.1) in F[0,+∞) for a sufficiently
small initial value.

For example, we consider a circle C6 (as shown in Fig. 1) which satisfies CDE′(4.53, 0).
And then the problem (3.1) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (t, x1) = 1
2

(
u(t, x6) + u(t, x2)

) − u(t, x1) + u(t, x1)
1+α,

ut (t, x2) = 1
2

(
u(t, x1) + u(t, x3)

) − u(t, x2) + u(t, x2)
1+α,

ut (t, x3) = 1
2

(
u(t, x2) + u(t, x4)

) − u(t, x3) + u(t, x3)
1+α,

ut (t, x4) = 1
2

(
u(t, x3) + u(t, x5)

) − u(t, x4) + u(t, x4)
1+α,

ut (t, x5) = 1
2

(
u(t, x4) + u(t, x6)

) − u(t, x5) + u(t, x5)
1+α,

ut (t, x6) = 1
2

(
u(t, x5) + u(t, x1)

) − u(t, x6) + u(t, x6)
1+α,

u(0, x1) = a(x1),

u(0, x2) = a(x2),

u(0, x3) = a(x3),

u(0, x4) = a(x4),

u(0, x5) = a(x5),

u(0, x6) = a(x6),

(7.1)
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Fig. 2 Non-existence of global solutions to the equations (7.1)

Fig. 3 Existence of global solutions to the equations (7.1)

where we take ωxy = 1 for any x ∼ y and μ(x) = m(x) = 2 for all x ∈ V .
If we choose α = 1, a(x1) = 1, a(x2) = 2, a(x3) = 3, a(x4) = 4, a(x5) = 5, a(x6) = 6,

respectively. It is easy to verify that the above choices satisfy the condition of non-existence
of global solutions to the equations (7.1). The numerical experiment result is shown in Fig. 2.

Besides, if we choose α = 3, a(x1) = 1 × 10−4, a(x2) = 2 × 10−4, a(x3) = 3 ×
10−4, a(x4) = 4 × 10−4, a(x5) = 5 × 10−4, a(x6) = 6 × 10−4, respectively, then the
above choices satisfy the condition of existence of global solutions to the equations (7.1).
The numerical experiment result is shown in Fig. 3.
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