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Abstract Dirac-harmonic maps couple a second order harmonic map type system with a first
nonlinear Dirac equation. We consider approximate Dirac-harmonic maps {(¢,, ¥,)}, that
is, maps that satisfy the Dirac-harmonic system up to controlled error terms. We show that
such approximate Dirac-harmonic maps defined on a Riemann surface, that is, in dimension
2, continue to satisfy the basic properties of blow-up analysis like the energy identity and
the no neck property. The assumptions are such that they hold for solutions of the heat flow
of Dirac-harmonic maps. That flow turns the harmonic map type system into a parabolic
system, but simply keeps the Dirac equation as a nonlinear first order constraint along the
flow. As a corollary of the main result of this paper, when such a flow blows up at infinite
time at interior points, we obtain an energy identity and the no neck property.
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1 Introduction

Dirac-harmonic maps were introduced and studied in [2,3]. They were motivated by the
supersymmetric nonlinear sigma model from quantum field theory [6, 10], and they combine
and generalize the theories of harmonic maps and harmonic spinors.

Let us recall the precise definiton. Let M be a compact Riemann surface, equipped with
a Riemannian metric 4 and with a fixed spin structure, ¥ M be the spinor bundle over M
and (-, -)xu be the metric on £ M induced by the Riemannian metric 4. Choosing a local
orthonormal basis ey, @ = 1,2 on M, the usual Dirac operator is defined as § := ¢4 - V,,,
where V is the spin connection on ¥ M. The usual Dirac operator § on a surface can be
seen as the Cauchy Riemann operator. Consider R? with the Euclidean metric dx2 + dy2.
Lete; = 3 and ey = " be the standard orthonormal frame. A spinor field is simply a

map ¥ : R?2 > Ay = (C2 and the action of e and ey on spinors can be identified with
multiplication with matrices

(0 1 (0 i
‘=1 o) 270 o)

If  := Vi 2 _5 (2 is a spinor field, then the Dirac operator is
v P p
oY . Yy Yo
_ (0 1\ (% 0 i\ (3 )\ _ 9z
W= (-1 o) (awz) + (i o) (dvfz =2\ o | (-1
ox dy 0z

d 1 /9 .0 ad 1 8+_8
— = — =i —=—=—4+i—].
dz 2 \ox ay dz 2 \0dx ay

For more details on spin geometry and Dirac operators, one can refer to [14].

Let ¢ be a smooth map from M to another compact Riemannian manifold (N, g) with
dimension n > 2. Let ¢*T N be the pull-back bundle of TN by ¢ and then we get the twisted
bundle XM ® ¢*T N. Naturally, there is a metric (-, )syg¢*Tny on XM ® ¢*T N which
is induced from the metrics on ¥ M and ¢*T N. Also we have a natural connection V on
XM ® ¢*T N which is induced from the connections on XM and ¢*T N. Let ¢ be a section
of the bundle XM ® ¢*T N. In local coordinates, it can be written as

Y=y ®0,(9),

where

where each /' is a usual spinor on M and d,i 1s the nature local basis on N. Then ¥V becomes
VY = VY @ d,i () + (T, Vo )yt @ 8, (9). (1.2)

where I ’J « are the Christoffel symbols of the Levi-Civita connection of N. The Dirac operator

along the map ¢ is defined by Dy := e, - %eax//.
We consider the following functional

L. v) = /M (142 + (0. DY) sarapern)dM

-/ (gi,-«p) 000 @, Y EM) .
M
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The functional L(¢, 1) is conformally invariant. That is , for any conformal diffeomor-
phism f : M — M, setting

d=¢of and Y=1""*yor

Then L($ , %) = L(¢, ¥). For the proof, one can refer to [3]. Here A is the conformal factor
of the conformal map f,i.e. f*h = A2h. Critical points (¢, ¥) are called Dirac-harmonic
maps from M to N.
The Euler-Lagrange equations of the functional L are
d
ay!
Dy =0, 1.4)

(A" + TP $i0k) - (@) = R@, V), (1.3)

where R(¢, ¥) is defined by
1 : .0
R, ¥) = ERZ?,-@(X))(!//’, Vo' Ilfj)ayfm(fi)(x))

Here Rl’;’j stands for the Riemann curvature tensor of the target manifold (X, g). One can
refer to [2,3].

By the Nash embedding theorem, we embed N into RX . Then, the critical points (¢, V)
satisfy the Euler-Lagrange equations

A¢p = A(P)(dop,dp) + Re(P(A(dd(eq), ea - ¥); ¥)), (1.5)
v = Aldp(ea). eq - V), (1.6)

where { is the usual Dirac operator, A is the second fundamental form of N in RX and
Ald¢(ea), ea - V) = (Vo' - Y/) ® Ay, 9,),
Re(P(A(d¢(eq). eq - ¥): Y1) == P(A(dy, d,): dy)Re((Y', dg' - 7).

Here P (£; -) denotes the shape operator, defined by (P (€; X), Y) = (A(X,Y), &) for X, Y €
I'(TN), and Re(z) denotes the real part of z € C. We refer to [2,3,5,11,24,30,33] for more
details.

Denote

W2(M, N) = { b € WA(M, RK) with ¢(x) € N forae.x e M ] ,

WM, EM @ ¢*TN) = { ¢ e WM, =M @ R¥) with ¢ (x) € EM ® ¢* TN
forae.x e M }

In this paper, with applications for the Dirac-harmonic heat flow in mind, we want to
consider pairs (¢, ) that satisfy the Euler-Lagrange equations up to an error term in L',
Here is the precise

Definition 1.1 (¢, ¥) € W22(M, N) x Whi(M, M x ¢*T N) is called an approximate
Dirac-harmonic map if there exist (z(¢, V), h(¢, ¥)) € LY (M) such that

T(p. V) = Ap — A(d¢,d¢) — Re (P(A(dP(ea), ea - V) ), (L.7)
h(@. ¥) = Iy — Aldg(ea), ea - V). (1.8)
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Thus, (¢, ¥) is a Dirac-harmonic map if and only if (¢, ) = h(¢, ¥) = 0. In the
sequel, we shall need to assume that the error terms are in stronger spaces than L', however.
See for instance Theorem 1.2.

As for harmonic maps, the conformal invariance of the energy functional L leads to
non-compactness of the set of Dirac-harmonic maps in dimension 2. This has been studied
extensively by [2,18,32], and in [11] for a more general case. For the harmonic map case,
we refer to [7,15-17,22,29,31]. Roughly speaking, the results of those papers assert that the
failure of strong convergence occurs at finitely many concentration points of the energy. At
such points, finitely many bubbles (i.e. nonconstant Dirac-harmonic spheres) separate, and
the total energies from these bubbles account for the total loss of Dirichlet energies during
the process of convergence. Moreover, the image of the remaining the base map and those
of the bubbles are connected in the target manifold. This is called the no neck property.

In this paper, we will extend the results from [2, 18,32] to the approximate Dirac-harmonic
maps from a closed Riemann surface M to a compact Riemannian manifold N.

Denote the energy of ¢ on 2 C M by

1
E@i2) =5 [ 1vePam.
Q
the energy of ¥ on 2 C M by
EW; Q) = /Q WM,
and the energy of the pair (¢, ¥) on Q2 C M by
E@vi® = [ (6P +1v1am.
Q

We shall often omit the domain M from the notation and simply write E(¢) =
E(p; M), E(Y) = E(Y; M) and E(¢, V) = E(¢, s M).

Our first main result is

Theorem 1.2 For a sequence of smooth approximate Dirac-harmonic maps {(¢n, ¥y)} from
a closed Riemann surface M to a compact Riemannian manifold N with uniformly bounded
energy

E(d’n» wl’l) f A < 00
and

Iz (n, Wn)”LZ + [1h(¢n, 1;[fn)”[,“ <A,
defining the blow-up set

2
._ P 2 4 < €0
8= Npeofx € Miliminf [ (dl® + 1yl = 2}, (19)
n—o0 Jp(x r 2
where €9 > 0 is as in Theorem 2.1, then S is a finite set {p1, ..., pr}. There exists an

approximate Dirac-harmonic map (¢, ) so that, up to a subsequence, still denoted by
{(¢n, Yn)}, converges weakly in WIZO‘CZ(M\S) X WZIO‘CZ(M\S) to (¢, V) and there are a finite

set of Dirac-harmonic spheres (ail, “g‘il) 2 Ni=1,...,1;1=1,.., L; such that
1 L
: _ /
nlglgo E(¢n) = E(¢) + E E E(0;), (1.10)

i=1I=1
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I L
lim E(Yn) = EQ) + ) ) E@), (1.11)
i=11=1
and the image ¢ (M) UiI:1 UIL:"1 (O'il(Sz)) is a connected set.

Remark 1.3 From the proof of Theorem 4.1 in Sect. 4, it is easy to see that also the following
identities hold:

I L
4 4 .4
lim [V, |§dM=/ IV |3dM + E E / |V$‘|§d52, (1.12)
M " M §2 !

n— 00
i=1I=1

I L;
Tim L, Y) = L, )+ Y L (ol 8]). (1.13)

i=1I=1
This is due to the fact that both | u IV %dM and L(¢, v) are conformally invariant [3].

As an application of Theorem 1.2, we study the asymptotic behavior at infinite time for
the Dirac-harmonic map flow in dimension 2.

For that purpose, we first review the heat flow for Dirac-harmonic maps as introduced and
studied in [4,12] (a different flow has been introduced and studied in [1]). One tries to find
(@, V) : M x [0,00) > N x ¢*T N that solves

{3z¢ =7(¢) — Re(P(Aldp(eq), ea - ¥); ), in M x (0, 00); (1.14)
IV = Aldd(ea), ea - V), in M x (0, 00).
with the following boundary-initial data:

d(x,t) =@(x), on OM x [0, 00);

¢(x,0) =¢o(x), in M; (1.15)

By (x,t) = Bx(x), on oM x [0, 00);
Po(x) = ¢(x), on M,

where 7(¢) = A¢p — A(P)(d@, d@) is the tension field of ¢, M is a compact Riemannian
spin manifold with smooth boundary dM, ¢g € W'2(M,N),¢ € C>T¥@OM; N), x €
C**(@M; XM ® ¢*TN) are given maps and B = B¥ is the chiral boundary operator
defined as follows:

BY:L>(M,SM Q ¢*TN|sp) — L*(M, M ® ¢*TN|yum) (1.16)

IﬁH%(Idiﬁ)-G)-l,//, (1.17)

where 7 is the outward unit normal vector field on d M, and G is the chiral operator satisfying:
G*=1d, G'=G, VG=0, GX-=-X-G, (1.18)

forany X € I'(TM).

In dimension dim M = 2, [4] established the short-time existence for (1.14) with smooth
initial-boundary data (1.15). Later, [12] showed that, under some smallness assumption for
lgoll g1 +11Bx |l 12, there exists a unique global weak solution to (1.14) with initial-boundary
data (1.15), which has at most finitely many singular times and enjoys the property
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t
E(qb(t),xb(t);M)Jr/o /M |0, >dMds

x{s}

= CM, E(¢o). I1BYollr2m). YO0 =1 <o0. (1.19)

It follows from (1.19) that there exists a sequence f, 1 oo such that (¢,, ¥,) =
(@G, 1), V(- t,) € W2Z(M, N) x Wl*%(M, YM x ¢*T N) is an approximate Dirac-
harmonic map with boundary-data

{¢(x>=<p(x>, on IM; (120,

Byr(x) = Bx(x), on oM,
which satisfies the assumptions of Theorem 1.2. In fact, h(¢,, ¥,,) = 0 and

T(Pn, Yn) = 01 (-, 1) satisfying [|T(dn, ¥n)ll 2 — 0.

Thus, as an immediate corollary, we obtain

Theorem 1.4 For dim M = 2 and ¢9 € H'(M,N),¢ € C***@OM,N),x ¢
CH*OM, =M @ ¢*TN), let (¢, V) : M x [0,00) — N x ¢*TN be a global weak
solution of (1.14) and (1.15), which has finitely many singular times and satisfies (1.19).
Moreover, we assume that (¢, ) blows up at infinite time and at interior points. Then there
exist t, 1 00, a Dirac-harmonic map (¢oo, Yoo) € C*T4(M, N) x C'*4(M, XM ® ¢} TN)
with boundary data ¢ |gm = ¢ and B |am = By, and anonnegative integer I and finitely
many points {p1, ..., pr} € M such that

. 4
1) (Pn, V) = (@G, 1), V(- 1) — (doo, Yoo) in Wl’z(Mv N) x W]’3(M» XM x
¢*TN); -
@) (Pn> ¥n) = (Boos Yoo) in Wi (M\{p1, .o pL) X L (M\{p1, ..., p1});
(3) For 1 < i < I, there exist a positive integer L; and L; nontrivial Dirac-harmonic
spheres ((Til, él.[) 2 S Ni=1,..,1;1=1,.., L; such that

I L
lim E(¢n) = E(po) + )Y E(0)), (1.21)

i=1 [=1

1 L
Jim E(n) = EWoo) + ) ) EG, (1.22)

i=1[=1

and

lim (16 tn) = $oo(-) = 0] ()l Leaa) = 0. (1.23)

Remark 1.5 In this Theorem 1.4, we only consider the interior blow-up phenomenon for the
Dirac-harmonic maps flow. The boundary blow-up case is treated in a subsequent paper [13].

This paper is organized as follows. In Sect. 2, we shall prove some basic lemmas, called
small energy regularity, Pohozaev’s identity and removable singularity, so that the expert will
readily know what we are talking about, and we shall recall some known results for later use.
In Sect. 3, we shall establish the three circle theorem for approximate Dirac-harmonic maps
which ensures the exponential decay of the tangential energy. Our main result Theorem 1.2
will be proved in Sect. 4.
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2 Some basic lemmas

In this section, we will prove some basic lemmas and recall some known results which will
be used in this paper.
Firstly, we prove a small energy regularity theorem.

Theorem 2.1 There is a small constant €y > 0 such that if (¢, ) € W2P(D,N) x
WL49(D, S D®¢*T N) is an approximate Dirac-harmonic map from the unit disc D inR? toa
compact Riemannian manifold (N, g) witht € LP, h € quorsome% <p<2, % <qg <2
and satisfies

E@.vi D) = [ (a0 +1udx < &, @1
then
o — a”vﬂp(m) = C(ldellr2py + ITllzrpy)s
”w”W“I(DT> < CUIY¥lizapy + RllLapy),
2
where ¢ = Wl/z\ fDl/Z ¢dx and C > 0 is a constant depending only on p, q, A, N.

Moreover, by the Sobolev embedding W2P(R2) ¢ CO(R?), we have

¢lloscpijyy = sup  |p(x) — d(¥)l

x,y€D12
CA, NIVl L2py + It@)llLr(p))- (2.2)

IA

Proof Without loss of generality, we assume \D}ﬁ / D1 ¢dx = 0.

L Vol +
|[V25| < C, by the standard theory of first order elliptic equations, for any 1 < g < 2, we
have

Choosing a cut-off function € C§°(D) satisfying 0 < n < I, 77|D3/4

¥ lwrapy < ClIMY)IILa D)
< ClIIVn-¥ +nd¥liLap)
< C(II¥lizay + Nddlin¥lliLepy + lIkllLa (D))
= Cldolizipplnvll 2+ CUIYllLa) + IhllLap))
L2-4 (D)

<Celn¥ll 20  +CUY¥ILap) + IhllLap))-
L2=4 (D)

Taking g = % and €9 > O sufficiently small, by Sobolev embedding, we obtain
¥ lispy = Cln¥ llwisispy = CUV Ly + IRlILa(D))- (2.3)
Computing directly, we get

|AMP)| = nAd +2VnVe + ¢ An|
< C(I¢] + dg| + |dolIndg] + | |*Ind¢| + |7])
< Cldglld(ng)| + C (16| + 1dg| + nly *dg| + I7]) . 24
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By standard elliptic estimates,

Inllwzssp) < ClldGId D)l L+ p)
+ C (Idll ooy + 1w Plddll as oy + Tl 45y )
= Clldm®)ILapylldllr2(p)
+C (143 + 17V 125 148l 2oy + 250 )
< Ceolldd)l .4y + Cldll 2y + N7l 47 (Dy)-
Taking €9 > O sufficiently small, we have
14l L4Ds,0) = Cln@llw2anpy = CUlAPlL2p) + ITllL473(p))- (2.5)
By the interior elliptic estimates, for any % < p <2 we have
19l w2r Dy p) < CUAGILr (D) + 1PN Lo (D3y0))
2 2
= c (”d¢”L4(D3/4) + ||W||L8(D3/4)”d¢”L4(D3/4)
+lzllLroy + 1d@llLr(Dss))
= CUldolL2py + ITllLr D))
By the interior elliptic estimates for first order equations, for any % <gq <2,we get
I llwia(pyn) < CUATV I LaDs0) + 1V 1 L2(D3/0)
< CUdPN L4y 1V | 4Dy + 1 1 L2(p) + IRl La (D))

<CA+doll2py + ItlliLr@) U 4Dy + 1hllLaD))
< CU¥ sy + l1hllLap)y)-

Secondly, by a direct computation, we have the following proposition.

Proposition 2.2 Suppose ¢ € C*2(M, N), ¥ € C*(M, EM @¢*TN). Let {ea}>_, be a unit
normal basis of T M and eg € I'(T M) a section satisfying

leg,eql =0, a =1,2,
then

(v, %ﬁ(ﬂ)d/» = 2(Re (P(A(d¢(ea), ea - ¥); ¥))
op) + (¥, Drg), (2.6)
where [-, -] is the Lie bracket, ¢g = d¢(eg) and g = %eﬁ v,

Proof Proposition 2.2 is proved in [3]. For the reader’s convenience, we recall it here.
On the one hand, we have

1 . .
(Re (P(A(dd(ea), ea - V)i V1)) ) = <§Rﬁj(¢)(¢’, Vo' yl)oym, ¢§3yp>

—lR - Ll ydye™
—2 mlt]lb’ ¢ w>¢ﬂ
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On the other hand, by a direct computation, we get
Ve Ves ¥ = Vey Ve, 0 = R™ (eq, ep)y' @ 0y + Ri 010" @ 0™,

where R*M is the curvature operator of the connection on the spinor bundle X M. For this
curvature, we have (see [3,6,14])

M i 1 .
eq - R*M(eq, X)Y' = Ech(X), VX e T (M).
Thus we obtain
(W, e - R*M(eq, ep)¥' @ 3y') = gij (¥, eq - R¥M (eq, ep)¥")

1 ; .
= Egij(llfj, Ric(ep) - ") =0.

Therefore,
(V. DY) = (V. eq - Ve, Veu )
= (. Vegea - Ve, ¥)) + R0 (0, Vo' -y @ dym)
= (. Vey (BY)) + Ruutij 0y (0" V' - ')
= (. Ve, (BY)) — Routij (W' V' -y )9
Then, the conclusion of the proposition follows immediately. O

Thirdly, we compute Pohozaev’s identity for approximate Dirac-harmonic maps.

Lemma 2.3 Let D C R? be the unit disk and (¢, V) be a smooth approximate Dirac-

: 1
harmonic map, then for any 0 <t < 5, we have

o 2IveP) =5 R VAN
z/m(w —2|V¢|>—2fm<w,r - W> 2/DI<w,zz>w>dx

—Re/ (mllf,rl//r)dx-f-/ ré,tdx, 2.7
D, Dy

where (r, 0) are polar coordinates in D centered at 0, ¢, = dqb(%), v, = v v and

d
~ r
Yo =Va .

a6

Proof Multiplying the equation (1.7) by r¢, and integrating over D;, by Proposition 2.2 and
the fact that r¢, = xP 3‘% = xﬁdqb(axiﬂ), we get

/ ré,rdx f ré, Addx — f (rr. Re (P(A(d (ea). e - ¥): Y))dx
D, D D,

= [ rorapax s [ whvopupac- [ <xf‘w, %Lw>dx
Dy 2 Dy 2 D; axB

: =141 4 III.
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On the one hand, integrating by parts, we have

I= / rig P / VoV (ré,)dx
aD; D,
2 2 1 0 2
[ re2— [ verax—L [ rLivepax
aD, D 2 Jp, Or

1
2= = |Ve|?).
r/aD,('¢' a1 ¢|)

On the other hand, by Lemma 2.6, we get

211]1:/ (P, Pyg)dx
D,
=/ (B&Py), wmdx—/ (7 - xPy, yp)dx
Dy dD;

a
= - d rd PR 2 ) 2.8
[ wovass [ worase [ {oriow) e

and
2101 = —/ (P, Vo, Pyr)dx
Dy
_ / (r, BY)dx + / (s (P, D)
aD; D,
= 2/ (¥, Py)dx + f (rypr, Dyr)dx — / (ry, Dyr). (2.9)
D, Dy aD;
Combining the preceding equations, we get the conclusion of the lemma. O

Corollary 2.4 Under the assumption of Lemma 2.3, if |t (¢, ¥)|l 2py + 12(d, ¥) I L4 (p) <
C, then forany 0 <t < }T, we have

/ <|qf>r|2 —~ 1|V<z>|2) dx
Dy \D; 2

<C —1% + —1% Lt (2.10)
- Ir 00 ”L%(Dm\pt) I 90 IL2(Da\D1) . .

Proof By Lemma 2.3, forany 0 < s < %, we have

1
s/ <|¢r|2_*|v¢|2> =+ + 1 (2.11)
aD, 2
It is easy to see that
1
la=—3 /D (W, BY)dx < Csll¥ll 4oy Il L2,y < Cs.

s = / r¢rtdx < Cslldoll2p Tl 2p,) < Cs,
D,
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and

Js = —Re / (DY, ry)dx

s

<C h
< sIIl/frlng(Ds)II 24Dy

<Cs <”VI//||L%(DS) + ||W||L4(D_\.)||d¢>||L2(DS)> 1Al 4Dy
<Cs,

where we used the fact that

a a
Yrl = C (|87‘f| + |¢I|£I>,

0 0
ol < c(|3—‘g|+|wn£|).

Multiplying (2.7) by 31 and integrating from ¢ to 2¢, we get

1 2t 1 9
|¢r|2_*|v¢|2) 5/ */ <1/f,r’l—-w9>d0ds+Ct
~/D21\Dt < 2 t 2s Dy 00

<Cllr! Ct
< Clr vl 3, I s n) +

Ly Y
< 177 177
=¢ (”r 20 L3 a0y T 5 ”LZ(DZ’\D’)> e

[m}

Thirdly, we state an interior removable singularity result.

Theorem 2.5 Let (¢, ) € W2>(D\{0}) x WL2(D\{0}) be an approximate Dirac-

loc loc

harmonic map from D\{0} to N with finite energy
ldpll2py + 1l 4py = C

that satisfies
T = f e L*D), xe D\{0}, (2.12)
h=geL*D), xe D\{0}, (2.13)

then (¢, W) can be extended to a field in W>2(D) x W'2(D).

Proof By a standard argument as in Lemma A.2 in [9], it is easy to see that (¢, ) is a weak
solution of (2.12) and (2.13). It is known that the equation of ¢ can be written as an elliptic
system with an anti-symmetric potential [5,24,30]:

Ap=Q-Vo+f,

with @ € L*(By, so(N) ® R?) satisfying |Q2| < C(|Vé| + |¥|?). Then it follows from
Riviere’s regularity result and its extensions (see [26-28]) that ¢ € WP (D) for any 1 <
p < 2 which implies ¢ € W!#(D). Applying a simple argument to the Dirac equation
for i gives that ¢ € WL2(D). This indicate that /S L3(D). Then by (2.12), we have
A¢ € L2(D) which implies the conclusion of the theorem. ]
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In the end of this section, we recall two lemmas which are used in this paper.

Lemma 2.6 ([5]) Forany ¥, w € W'3/*(M, SM ® ¢*TN), we have

/ (W, Pow) 2/ (DY, w) —/ (7 -, w) (2.14)
M M oM

where (Y, ) := h;j (¥, o).

Proposition 2.7 ([2]) Let N be a compact Riemannian manifold. Then there exists a constant
€1 = €1(N) > Osuchthatif (¢, V) is a smooth Dirac-harmonic map from the standard sphere
$2 to N satisfying

/ (1dl? + [1*) < e,
S2

then both ¢ and r are trivial.

3 Three circle theorem for approximate Dirac-harmonic maps

In this section, we will extend the three circle theorem for Dirac-harmonic maps in [18] to

the case of approximate Dirac-harmonic maps. The idea is from Qing-Tian’s paper [22],

which used a special case of the three circle theorem due to Simon [25] to show that the

tangential energy of the sequence in the neck region decays exponentially. The second author

in cooperation with H.Yin has extended this idea to some fourth order equations, see [19,20].
Let us first state the three circle theorem for harmonic functions (see [18,22,25]).

Theorem 3.1 There exists a constant L > 0, such that if u is a nontrivial smooth harmonic
function defined in [(i — 1)L, (i +2)L] x S that satisfies

/ udf = / udd =0,
{iL}xS! {G+1)L}xS!

then
llull? < Mt
L2([iL,(i+1)L]x S1) ) L2([(i—1)L,iL]1xS")
—L 2
te ”””L2<[<z‘+1)L,<z‘+2)L1xs')> : G.D

Next, we prove an L interior estimate for the following integro-differential equations.

Lemma 3.2 Suppose u € W22(D4\Dy), v € WH2(D4\Dy) and satisfies

1 2

Au= A'u+ A*Vu + A3 + 7/ A*u+ AVu + A%vdo + 11, (3.2)
7 Jo
1 2

v = Blu+32w+33v+2—/ B*u + BVu + B%vdo + f, (3.3)
T Jo

where
2

> (I nnn + 1B lsann ) < o and W fillzoany C. - (G4)

i=1 i=1
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Then there exists a positive constant po such that if p < po, there holds
lullw22(ps\pyy + IVlIw12(Ds\Dy)
< C (lull 2y + 1012200001y + 11l 220001y + 1220220\ D1)) - (3.5)

Proof The proof is similar to Lemma 3.1 in [18] where f; = f> = 0.
Denote By = D345\D2—»,0 <o < 1.Leto’ = "TH Take a cut-off function n(x) =
n(Jx|) with compact support in B, satisfying n(x) = 1 in B, and |Vn| < (1;% and

|[An| < (157)2 . Computing directly, we get

A(qu) = nAu +2VnVu + Anu

= QVn+nA*)Vu + (An + A u +nAv +nfi
1 2
+n-— A*u+ APVu + A%vdo.
2 0

By the standard elliptic estimate and Sobolev embedding, we have
Inullwz2py < C(IA null 2py) + A2 Vil 12,

+ 1A Dl L20pyy + I0f1 1120y
+IVaVull2p,y + 1Anull2p,y

2w
1 4
< C (1A I 2py\py) + 1AM L2 (Dy\ Dy

1 2
+n- —/ Atu+ ASVu + A%d0| 12 p,)
0

+||A2||L4(D4\D|) + ||A5 ||L4(D4\D|)) Inully22(p,)

+ CUIA sy pyy + 1A% Lapp o) IVl wi2epyy + CUA>Vull 2(p,

+ 187 Vnull 2(p,) + CUVIVull 20py + 187U 2(py) + 10£1 11 22(04)
= Cpollnullw22(p,y + Crollnvliwi2p,)

+ CUA s pppyy + 1A I LD o) IVl

||VM||L2(B B ||”||L2(B /)
C o o
< P 10 + ||77f1||L2(D4))

= Cpo(lnullw22(p,y + IInvllwrzp,))

||V’4||L2(B B ||M||L2(B B
C z — + .
< o 10 Infi ||L2(D4)>

Similarly, we can compute

d(v) = nB'u 4+ nB*Vu + B> + Vv
2

1
+n— B*u + BVu + B%vd6 + nfs.
2 0

By the first order elliptic estimate, we have

1 2
Imvllwizp,) < C(”B nullp2p,y + 1B nVull2p,) + ||B3’7U||L2(D4)

+ Inf2llp2py) + 1IV0Ulli2py)
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1 2
C— B*u + BVu + B%vdo
+1In Zﬂ/o u+ u+ B vd0|l2p,)

<C(|B' 4 py\Dy) + ||B4||L4(D4\D1)
+ 1B 4 gy + 1B s o) Iniellw22(py
+ CUB NI sy nyy + 1BCI Lm0 w12,
+ CUB*Vnull2p,y + 1B Viull2p,)
+ CUIVnvl2pyy + Inf2llL2py)
< Cpollnullw22(py + Coollnvllwizpy
+ CUIB |l 4y pyy + 1B L3 g oy VIVl w2y

Ivllz2(p,\ D
+C (% + ||nfz||Lz<D4>>

= Cpo(llnullw22(p,y + lInvllwi2(p,))

c ||V”||L2(B(,/) ”””Lz(B(;/) ||U||L2(D4\D1)
1—0 (1—-0)2 1 —

+ ||f2||L2(D4\D1)) .

Taking pp sufficiently small, we get

IVullzp ) Nl vl
||T]M||W2.2(BI) + ||77U||W1v2(B1) = C( -0 (1-0)?2 1 —3’ 1
+ A1l 2papy + lllele<D4\Dl>>~ (3.6

We now introduce seminorms, and define for j =0, 1, 2

gj = sup (1 —0)|Dullj2p,).
0<o<l1

Multiplying (3.6) by (1 — 0)? and noting that 1 — o’ = FT“, we have
E> < C(E1+ o+ Wl 2m0p + 1l 20000 + 1 2l20pny) - BT

We claim now that & satisfy an interpolation inequality
- - . -
o 56.’:42-1—?.:0 3.8)

for any € > 0, where C > 0 is a universal constant. In fact, by the definition of E, for any
y > 0, we have

[l
A

<@2- Uy)”DM”LZ(B(,y) +v

IA

201 2 ¢
€2 —oy)7 D ull2p,,) + ?”M”LZ(BGV) +v,
where the second inequality is derived from the interpolation Theorem 7.27 (or Theorem
7.28) in [8].
By letting y — 0, we obtain (3.8). Using (3.8) in (3.7), we then obtain

E2 < C (lullz2py\py + 10 2(p\y) + A1 llL2(00\Dy) + 121l L2040\ DY) -
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this is
C
2
I1D%ull 2,y = o2 (lull 2oy nyy + 101224\ Dy
HfillL2ppnyy + ||f2||L2(D4\D1))-
Taking 0 = %, it follows
lellw22ez,,) = € (Il 2001y + 1012204\

+f1ll 2o py + 12020 D1)) - (3.9)

Choosing a new cut-off function 7 in (3.6) and using (3.9), we get
lvllwizp, ) =€ (||”||L2(D4\D1) + vl 2(py\by)
Hl Al 2oy + 120l 200 D) - (3.10)

Then it is easy to see that the lemma follows from (3.9) and (3.10). O

Denote P; := D,i+vL,,\D,iL,, and

1 1
Fi(u,v) :=/ —2|u|2dx+/ —|U|2dx,
P 1xl P 1xl

where L > 0 is the constant in Theorem 3.1.
We have the following three circle theorem:

Theorem 3.3 Suppose u € W>2(P;_y U P; U P,y1),v € WH2(Pi_y U P; U P;yy) satisfy
equations (3.2) and (3.3). Then there exists a positive constant po, such that if 0 < p1 < po
and

1
cmax (11, x12 fall ) ) < 1P ). G.11)
and for any e~ Vlry, < < %e(iﬂ)l‘m, there hold

3
Ix1Z(AA + 1A* D1l 24Dy \ D)
+ 1x[(1 A% + 1A% + 1B+ 1B* DIl L4 (py\ D,
1
+ 11x12( A2 + 1A + 1B+ 1BD I 4 py oy
+ 1B+ 1Bl a(pa\nyy < P1- (3.12)

and
2
+

2 . 2 . 2
V u(e'lry, 0)do [ u(e Ly 0)do
0

0

2
+

2

< p1Fi(u,v)

21 ) 2 )
+ V v(e'try, 0)do / v(e DLy, 0)do
0 0

then, there hold

(@) Fip1(u, v) < e LFy(u, v) implies Fi(u, v) < e"LFi_y(u, v);
(b) Fi—1(u,v) < e L Fi(u, v) implies F;(u,v) < e L Fi(u, v);
(c) either Fi(u,v) < e LF_i(u,v) or F;(u,v) < e LFiyi1(u,v).
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Proof Since F;(u, v), (3.11) and (3.12) are scaling invariant, we may assume ry = 1 and
i = 2. If the conclusion does not hold, there exist sequences pjx — 0, Al B,f (j=1,...,6),
fik> ok, uk, vg such that iy and vy satisfy

Aup = Alug + A2Vuy + Advg
1 o 4 5 6
+— Apug + AVuy + AQved0 + fik,
2 0
du, = B]luk + B,?Vuk + B,ka

1 2
+E / B,fuk + B,fVuk + B,?vde + for,
0

and

2

2 . 2 2 .
‘/ u(e'’l, 0)do| + V ur (e VL 9)qp
0 0

2

2 . 2 2 )
+' / ur (e, 0)d6 +‘ / u(@DL 0)d8| < puFi(ug, vo).
0 0

Moreover, for any DL < p < o(+DL, Ai, B,f, fik, fox satisfy
%13 (AL + 1AED 14Dy )
+ X IAAR] + 1AZL + |BL ]+ IBED 24Dy Dy
+ 1x12 (A + AL+ 1821+ 1BED I 4oy
+ 1BEI+ 1B 4Dy \pyy < Pk
and

2 3 2 '
i—Iir,ll'E}?(—Q—](”'x'flk”Lz(Pj) + ” |~x| fzk”LZ(pj)) =< plkE(uv U).

But, uj does not satisfy at least one of the conclusions in (a), (b) and (c).
If (a) does not hold, then we have

Fy(u, vi) = e" F(ug, vi) and  Fy(ug, v) > e Fi(ug, vp);
If (b) does not hold, then we have
Fy(ug, vp) > e" Fi(ug, vp) and  Fy(ug, v) = e Fa(ug, vp):
If (¢) does not hold, then we have
Fy(ug, vi) = e~ " max{Fi (ug, vi), F3(ux, vo);
In all those three cases, we may get the same conclusion that
2Fy(ux, vi) = e (Fi(ug, vi) + F3(ug, vp)). (3.13)

Without loss of generality, we assume F> (uy, vi) = 1 (if not, we consider i1y, = m

and v; = ). Then we obtain

Uk
Fa(ug,vr)

lukll z2cpyupupy) + Vel L2cpup,upy) < C-
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By Lemma 3.2, we have [luk|ly2.2¢p,y + Ukl w12(pyy < C. So, there exists a subsequence of
(uk, vr) (we still denote it by (ug, vk)), such that

up —u, vr — v weaklyin L2(P1 U P, U P3);

up — u, v — v strongly in L2(P2).

It is easy to see that u is a harmonic function and v is a holomorphic function in
D, i+».\D,i-nr and they satisfy

/ u= / u= f v= / v=0.
0D, 0D i+1)L aD,ir 9D i+1)L

Let f: R! x S! — R2, £(t,0) = (¢, 0)(t,0) € R! x S! where R! x S is equipped
with the metric g = d 2 + d6?%, which is conformal to the standard Euclidean metric ds? on
R2. In fact,

1
(f ™)' = ds’.
’
Then we know that u o f is a harmonic function and eivo f is a holomorphic function in
[L,4L] x S'.

According to Theorem 3.1, we know

2
||Lt o f”Lz([ZL,SL]XS])

<5 (e o s, o+ bl 12, ))
5 L2([L,2L]1xS1) L2(3L,4L1xS")

and

t
5 2
||€2U ° f||L2([2L,3L]><Sl)
Lo o, 2 —Ly, 5 2
< 5 (6’ ||62vof”L2([L,2L]><SI)+e ”ezvof”L2([3L’4L]><S}))

which implies

1 2 1 —L 1 2 —L 1 2
||7M||L2(p2) < 5 (6 ”TMHLZ(P]) +e ”mM”LZ(P';)

x| x|
and
L L A S R
||ﬁv||Lz(p2) <3 (e ”ﬁU”LZ(PI) +e ||ﬁv||L2(p3) .
Thus,

2F(u,v) < efL(Fl (u,v) + F3(u, v)). (3.14)
But, letting kK — oo in (3.13) which implies
2Fy(u, v) = e " (Fi(u, v) + F3(u, v)). (3.15)

This contradiction finishes the proof. O

As a direct corollary of the three circle theorem, we can get the following decay lemma.
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Lemma 3.4 Let p; > 0 be the constant in Theorem 3.3. Let u € W2’2(De<1+1>Lr2\D,2), v E
W]'Q(De(/H)L,Z\DrZ), fi € LQ(DE(H])L,Z\DrZ),i = 1,2, and some integer | > 1, satisfying
equations (3.2), (3.3) and for any ry <r < %e(l“‘])er, there hold
3l 4
x[2(AA™ T+ 1A™DI L4 (poy\ D,
+ X IAA% 4+ 1A% + 1B+ [B*D I 4Dy \ D)
1
+ 1x1Z (A% + 147 + 1B+ 1BD 4 py\ 1y

+ 1B + B3|l 4Dy, < 1. (3.16)
and
/ u :/ v=0.
D, aD,
Then we have
Fi(u,v) < C(e’Lr2 + Fo(u, v) + Fi(u, v)) (e 70 4 e—"L>. (3.17)

Proof Denote the set of j (0 < j < [) for which

2 L2 )
Lmax (Wil + 12 fllEagp,y) > p1F5 ) (3.18)

by J := {ji1, ..., jx}. If J = @, according to (c¢) of Theorem 3.3, we get
Fi(u,v) < e “Fi_1(u,v) or Fi(u,v) < e “Fiyi(u,v).

Then using the (a) and (b) of Theorem 3.3, by iterating, we obtain
Fi(u,v) < e M Fo(u, v) or Fi(u,v) < e D Fyu, v).

So, we have
1 . .
Fi(u,v) < 5(6_“ Fo(u, v) + e LD Fju, vy), (3.19)

which implies (3.17) immediately.
If J # ¢, without loss of generality, we may assume

O<ji<p<--<jr<l

Then for each j,,,m =1, ..., k, we have

1
Fiv) =€ max (Ixl il + 102 20 )

Jm— L JmsJm

< Celmnlry = C(e'try)eLU=im),

By the choice of j,,, the condition (3.11) holds for j,, < i < juy1,m =1,....,k — 1.
Similar to deriving (3.19), we obtain

Fi(u,v)

IA

e L= Ey (u, v) or Fi(u, v)
< M ().

Thus, we know for j; < i < j, there exists m € {1, ...,k — 1} such that j,, < i < ju41.
Then we get
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1 . . ,
Fiw,v) < ST, u,0) + eTHHTVEL L, 0)
< C(elLry) (e~ Li=im) g=LU=in) 4 g=LUn+1=i) p=LU=jns)
< C(e'try)e =L, (3.20)
So,if j1 = l and ji = [ — 1, then the inequality (3.19) follows immediately. If not, assuming

j1 > 1, similar to deriving (3.20), we have, for 1 <i < ji,

1 . o
Fi(u,v) < 5<e*“ Fo(u,v) + e VD F; (u, )

C(e_LiFo(u, v) + (elLrg)e_(l_i)L).

IA

Similarly, if jiz <[ — 1, then for jp <i <[, we have
1 . o
Fi(u, v) < 5(6_L”_’)Fz(u, v) + e HE @, v))

< C(e_L(l_i)Fl(u, v) + (eler)e_(l_i)L>.
Combining the preceding estimates proves the lemma. O

Corollary 3.5 Under the assumptions of Lemma 3.4, we have

IVullp2p,y + ”VUHL%(PI-)

< C((e’er)% + Fo 2w, v) + @, ) (e 2070E + e*%"L>. (3.21)

Proof By Lemma 3.2, Lemma 3.4 and a standard scaling argument, we get

172

172
IVullp2py + ||VU||L%(Pi) = C<Fi_] (u,v) + F; /

(u,v)
1/2 ;
+ Fill(u’ v) + el fi lz2p_jupPUPL )
L L
+ (e'Fro)2 ||f2||L2(P,-_1UP,-UP,-+1))
< c<<e’er)% + Ry + FP @) (e 20708 4 e—%fL).

[m}

4 Energy identity and no neck result

In this section, we will prove our main result Theorem 1.2.
We first consider the following simpler case of a single interior blow-up point.

Theorem 4.1 Let (¢, V) be a sequence of smooth approximate Dirac-harmonic maps from
D(0) to N with

@ N@nllwr2py + 1¥nllpapy + enllz2py + lAnllLapy < A,

() (Pn, Yn) = (&, ) strongly in W2 (D\{0}, RY) x W,i;f (D\{0}, RV) as n — oo,
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where T, := T (P, ¥n) and h,, := h(dp, ¥n). Then there exist a subsequence of (¢, Yy (still
denoted by (¢n, ¥n)) and a nonnegative integer Q such that, foranyi = 1, 50, there exist
point x},, positive numbers A’ and a nonconstant Dirac-harmonic sphere (o £):82 > N
such that

(1) xi—0, Al - 0,asn — oo;
. J i

(2) lim,_e0 (iz + 2 4 M) oo foranyi # j;

(3) (o', &) is the weak limit of (b (x5 +11,x), /Ay (¥} +21x)) in W2 (R?) x Wlog (R?);

(4) Energy identity: we have

0
lim E(¢y) = E@) + ) E(o"), (4.1)
i=1
Q .
Tim E() = EQ) + Y E@), 42)

i=1

(5) No neck property: The image

0
oD U Jo'(s?) (4.3)

i=1

is a connected set.

Proof Assume 0 is the only blow-up point of the sequence {(¢,, ¥,)} in D, i.e.

2
liminf E(¢y, ¥y; Dy) > il for all » > 0. “4.4)
n—00 2

By the standard argument of blow-up analysis we can assume that, for any n, there exist
sequences x, — 0 and r, — 0 such that

2

E@, Y Dy o) = sup E(@y i Dr(2) = = 4.5)
Booch
Denoting
(P;,(x) = ¢n (xn + rnx), 1//:1 ()C) = \/Ewn(xn + rnx) (46)

then we have

(P V) = Ay — A(ddy, ddy,) — Re (P(AWd,(ea), ea - )i ¥)) 4.7)

h(gy,, ) = IV, — Aldgy (o), ea - V), (4.8)

where (¢, ¥l) = r2T(d. ) and h(g). ¥) = r/>
Dgr(y) C R? with R > 0, there holds

E(¢,, ¥y DR(Y)) < E(¢n. ¥ns Dy (xn)) < A < 00,

h(¢n, ¥,). Noting that for any
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€2

E@, ¥y D) = E@n, Yins Dr, (6n) = -,
for n large enough. By the small energy regularity Theorem 2.1, the removable singularity
Theorem 2.5 and conformal invariance of Dirac-harmonic maps in dimension two, we can
take a subsequence, still denoted by (¢),, ¥,,), that strongly converges to a nonconstant Dirac-
harmonic sphere. This is the first bubble.

By the standard induction argument in [7], we only need to prove the theorem in the case
where there is only one bubble. Under this assumption, we have the following:

Claim For any € > 0, there exist § > 0 and R > 0 such that

1
E(¢n, Yu; Dgr (xn)\ Dy (x5)) < 62f01’ anyt € (ErnRs 25) 4.9)
when n is large enough.

Proof Infact, if (4.9) is not true, then we can find € > 0, #, — 0, such that lim;,—, o % =00
and

E(pn, Yn: Dgy, (xn)\Dy, (xn)) = € > 0. (4.10)

Setting
Up(x) 1= Pp(xp + 1px), Vy(x) 1= «/Ewn(xn + InX),

then it is easy to see that 0 is an energy concentration point for (u,, v,). We have to consider
the following two cases:

(a) (uy, vy) has no other energy concentration points except 0.
By Theorem 2.1, passing to a subsequence, we may assume that (u,, v,) converges to a
Dira.c-harmonic map (o, §) : RZ > N strongly in WIL’CZ(RZ) X L;‘o C(]Rz) asn — 00.In
particular, we have

lim E(u,, vy; Dg\D1) = E(0,&; Dg\Dy) > €.
n—oo

According to the standard theory of Dirac-harmonic maps, we know that (o, &) is a
nontrivial Dirac-harmonic sphere. This is the second bubble. This is a contradiction to
the “one bubble” assumption.

(b) (uy, v,) has another energy concentration point p # 0.
Without loss of generality, we may assume that p is the only blow-up point in D, (p) for
some small » > 0. By the standard theory of blow-up analysis, there exist x, — p and
r), — 0 such that

2
€
Eun,vw: Dy () = sup  E(un, g Ds(x)) = 2. @11
€D, (p),s<ry 4
Dy (x)CDr (p)
From the process of constructing the first bubble, we know that there exists a nontrivial
Dirac-harmonic sphere (&, &) such that

(p(x, + r)x), r,/,l/zv”(x,’l +7r/x)) = (5, %) strongly in Wli;c

2(R?) x L}, .(R?)
as n — oo. This is

(0 (Xn + 10Xy + 1273 X), (07 2) V2 Y (X + 10X)y + 127 X)) = (T, )
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strongly in Wll{,’cz (R) x Lf,.(R?)

asn — oo. By (4.11), (7, E) is nontrivial. Therefore, we again get the second bubble
contradicting the “one bubble” assumption. So, we proved Claim (4.9).

By Theorem 2.1, for any r € (r, R, §), we obtain

|||x|%v¢n||Ls(021(xn>\0,(xn)) + 11 g 216 (D e\ D1 ()
< CUIVOnll L2(Dyy oo\ D1 ) T 1V L4 Dy o\ D12 i) T LT | L2 Dy o\ Dy 2 i)
+ 'ty I 22(Das e\ D12 ()
< C(e +V5). (412

For simplicity, we will denote ¢, ¥, T, h,, by ¢, ¥, T and h respectively.
We define ¢*(r) and ¥ *(r) as follows:

2 2
P*(r) = L ¢(r,0)d0 and ¥*(r) = L Y (r, 0)do. (4.13)
2 0 2 0

Next, we use the same method as in [18] to compute the equation for (¢ — ¢*, v — ™).
Here, for reader’s convenience, we repeat this process again.
By equation (1.7), we have

1 2
Ag*(t) = g/o A(@)(dp, d¢) + Re(P (@) (A(@)(dd(ea), e - V)5 ¥)) + TdO
1 2
=141+ — tdo.
21 0

Computing directly, we have
1 2
I= 7[ A(p)(dg,do) — A(p™)(dg, do)
7 Jo
+A(P")(d¢,dp) — A(p*)(d¢™, ddp™) + A(p™)(dp", dp™)dO
1 2
= A(p")dp*, do*) + o /0 AYp — ¢") + APV (§ — ¢*)db,
and

1 2
=L Re / P($) (A@)(d(ew), ea - ¥); V)
T 0

—P(¢") (AP)(dP(ea), e - V)5 V)

+P (") (A(P)(d(ea). e - V)5 V)

—P(¢") (A(@™)(d¢(ea), ea - ¥); V)
+P (%) (AP dp(ea), e - V); ¥
—P(¢") (AlP™)(d9™ (), ea - V) V)
+P(9") (A(@™) (g™ (), ea - V) V)
—P(¢") (A(9™)(d¢" (ea), ea - Y);
(
(
(

~

V)
+P (%) (A@*) (9™ (ea), ea - V)5 V)
—P(¢") (A(9™)(d9™ (ea), eq - ¥); ¥¥)
+P (") (AlP™)(d9™ (), ea - Y™); Y¥) dO
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= Re (P(¢") (A@")(d¢™ (), e - W¥); ¥¥))

1 2

bor [ A0 =6+ V@ - 9)
7 Jo
1 2

+—Re/ AS(yr — ¥*)do,

2w 0
where A’ may differ from line to line and just stands for an expression satisfying

A% < CV)(dg I + ldally ),
|A%] < CN)(1do| + 1y ),

|A%] < C(N)dll¥].
Moreover, (4.12) implies

|||x|%A4||L4(DZ,\D,) + |||X|A6||L4(DQ,\D,) + |||)C|%A5 l24(Dy\D,) < Ce
forany t € (%rnR, 26). Then, we get
A(p — @) = A(p)(de, dp) — A(@™)(dp™, dp™)
+ReP(¢) (A@)(dd(eq), eq - V) ¥)
—ReP(¢*) (A(@*)(dg*(ea). eq - ¥): ¥™)
1 21
o [ A=)+ ATV =7+ Re(A%w =)o
1 2
+7 — T A tdf.
Using the same method, we get

Al — ¢%) = Al (@ — ¢%) + A’V (P — ¢*) + Re(A> (Y — ¥™))
1 2
+o /0 AN P — ") + AV (P — ¢*) + Re(A°(Y — ¥*))db

1 2
+7 - — tdb, 4.14)
2 0
and

W —y*) = B (¢ — ") + B*V(p — ") + B (Y — ¥™)
2
tom /O B — ¢%) + BV — ¢%) + BO(Y — y*)db

1 2
+h — E/ hd®o, (4.15)
0

where Al, B, i =1, ..., 6 satisfy
|AY| + 1A% < C(N)(Ido|* + 1dplIy 1),
|A%] + |A5| + |B*| + |BI® < C(N)(ldo| + ¥,
|AY + 1A% + |B'| + |B* < C(N)Idolly|,
|B?| +|B%| < C(N)|¥].
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and

3
x12 (A" + 1A% Dl 24Dy 1y
+ ] (1A% + 1AL+ 1B+ 1BY) | 240y 1)

1
+ 11x12 (JA%] + 1A% + 1B + [BDll 4Dy \ D,
+ 1B? + B[l L3(py\pyy < Ce (4.16)

forany ¢ € (374 R, 26) by (4.12).

Without loss of generality, we may assume 8 = ¢”Lr, R for some positive integer n,,
which tends to co as n — oo. Substituting u = ¢ — ¢™ and v = ¥ — ™ in Corollary 3.5,
we obtain the energy decay in the 6-direction,

a9 oy

-1 -1
I %”LZ(H) Tl gl g o = IVullze) 1Vl 4

060 L3(P, (P)

EC((e"LrnRﬁ + Fy P (u,v) + Fol(u, v))

<e—%(mn—i)L +e—%iL>
< C(Je+3) <e*%<'""*">L + e*%"L>, 4.17)

where the last inequality follows from Poincaré’s inequality and the assumption (4.9).
By Corollary 2.4, we get

0¢ 199 LY :
I 2y < Iir 13@”L2<P>+C” 1—||2 ‘o )+cm

sc(eZ +81)(e*1<m"*")L+e*Z’L). (4.18)
Therefore,
IVl 2(py < Clet 4 83)(e3mnDL 4 om3il), 4.19)
Then, by Theorem 2.1, we have
my—1
E(@: Dsa)\Dp k() < 3 V12,5, < Cle2 +83) (4.20)
i=0
and
my—1
O5¢D5(x)\ Dy p e P = € (IIV¢>||Lz<p,.) + €lLr,,R||‘E||L2(PI_))
i=0
gc(e% +8%). 421)

So, we have proved (4.1) and (4.3).
Combining this with equation (1.8), we get

oY 19y
==l s —=<Ir 17” sy TCIVOIL2p) IV lLacry + 171 4

ar L?(P) L3(P)

< C(el +84)(e 10=DL 4 =3y 4 Cellr, R|hl| 4,
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< Clet 4 81)(e7#m=DL 4 =3Il
Thus,
F T R e AT 1))
1991, 5, = C(ef +84) (THomE 4 bk, 4.22)

Taking a cut-off function n € Cgo(Dg;), suchthat0 <n <1,np=1in D%B\DZrnR and

C C
Vil = = in Ds\D and |Vn| < =2 in Doy, R\Dr, k.

n

by the elliptic estimates for first order equations and Sobolev embedding, we obtain

InYllLaps) < CW(WI)HL%(DS)

1 1
<C|- +-—
- (5 ”w”L%(D(;\D%S) R ”w”L%(Dsz\DmR)

v h
IV oy T ”L%(Da)>

=C (WHH(D@\D%) + IV L4 (Dsy, 0\Dy )
2
my

+ DIV, + Ol LD,
i=1

< C (et +0t),
where the last inequality follows from (4.22). This is

E(f; Ds(xp)\ Dy, r (%)) < C(€ +8). (4.23)
This is (4.2) and we finished the proof of Theorem 4.1. O

Proof of Theorem 1.2 1Tt is easy to see that Theorem 1.2 is a consequence of Theorem 4.1,
the removable singularity Theorem 2.5 and the standard argument in [7]. O
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