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Abstract Dirac-harmonic maps couple a second order harmonic map type system with a first
nonlinear Dirac equation. We consider approximate Dirac-harmonic maps {(φn, ψn)}, that
is, maps that satisfy the Dirac-harmonic system up to controlled error terms. We show that
such approximate Dirac-harmonic maps defined on a Riemann surface, that is, in dimension
2, continue to satisfy the basic properties of blow-up analysis like the energy identity and
the no neck property. The assumptions are such that they hold for solutions of the heat flow
of Dirac-harmonic maps. That flow turns the harmonic map type system into a parabolic
system, but simply keeps the Dirac equation as a nonlinear first order constraint along the
flow. As a corollary of the main result of this paper, when such a flow blows up at infinite
time at interior points, we obtain an energy identity and the no neck property.
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1 Introduction

Dirac-harmonic maps were introduced and studied in [2,3]. They were motivated by the
supersymmetric nonlinear sigma model from quantum field theory [6,10], and they combine
and generalize the theories of harmonic maps and harmonic spinors.

Let us recall the precise definiton. Let M be a compact Riemann surface, equipped with
a Riemannian metric h and with a fixed spin structure, �M be the spinor bundle over M
and 〈·, ·〉�M be the metric on �M induced by the Riemannian metric h. Choosing a local
orthonormal basis eα, α = 1, 2 on M , the usual Dirac operator is defined as /∂ := eα · ∇eα ,
where ∇ is the spin connection on �M . The usual Dirac operator /∂ on a surface can be
seen as the Cauchy-Riemann operator. Consider R2 with the Euclidean metric dx2 + dy2.
Let e1 = ∂

∂x and e2 = ∂
∂y be the standard orthonormal frame. A spinor field is simply a

map ψ : R2 → �2 = C
2, and the action of e1 and e2 on spinors can be identified with

multiplication with matrices

e1 =
(

0 1
−1 0

)
, e2 =

(
0 i
i 0

)
.

If ψ :=
(

ψ1

ψ2

)
: R2 → C

2 is a spinor field, then the Dirac operator is

/∂ψ =
(

0 1
−1 0

) (
∂ψ1
∂x
∂ψ2
∂x

)
+

(
0 i
i 0

) (
∂ψ1
∂y
∂ψ2
∂y

)
= 2

(
∂ψ2
∂z

− ∂ψ1
∂z

)
, (1.1)

where

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
.

For more details on spin geometry and Dirac operators, one can refer to [14].
Let φ be a smooth map from M to another compact Riemannian manifold (N , g) with

dimension n ≥ 2. Let φ�T N be the pull-back bundle of T N by φ and then we get the twisted
bundle �M ⊗ φ�T N . Naturally, there is a metric 〈·, ·〉�M⊗φ�T N on �M ⊗ φ�T N which
is induced from the metrics on �M and φ�T N . Also we have a natural connection ∇̃ on
�M ⊗φ�T N which is induced from the connections on �M and φ�T N . Let ψ be a section
of the bundle �M ⊗ φ�T N . In local coordinates, it can be written as

ψ = ψ i ⊗ ∂yi (φ),

where each ψ i is a usual spinor on M and ∂yi is the nature local basis on N . Then ∇̃ becomes

∇̃ψ = ∇ψ i ⊗ ∂yi (φ) + (	i
jk∇φ j )ψk ⊗ ∂yi (φ), (1.2)

where 	i
jk are the Christoffel symbols of the Levi-Civita connection of N . The Dirac operator

along the map φ is defined by /Dψ := eα · ∇̃eαψ .
We consider the following functional

L(φ, ψ) =
∫
M

(|dφ|2 + 〈ψ, /Dψ〉�M⊗φ�T N
)
dM

=
∫
M

(
gi j (φ)hαβ ∂φi

∂xα

∂φ j

∂xβ
+ gi j (φ)〈ψ i , /Dψ j 〉�M

)
dM.
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The functional L(φ, ψ) is conformally invariant. That is , for any conformal diffeomor-
phism f : M → M , setting

φ̃ = φ ◦ f and ψ̃ = λ−1/2ψ ◦ f.

Then L(φ̃, ψ̃) = L(φ, ψ). For the proof, one can refer to [3]. Here λ is the conformal factor
of the conformal map f, i.e. f ∗h = λ2h. Critical points (φ, ψ) are called Dirac-harmonic
maps from M to N .

The Euler-Lagrange equations of the functional L are
(
�φi + 	i

jkh
αβφ j

αφk
β

) ∂

∂yi
(φ(x)) = R(φ, ψ), (1.3)

/Dψ = 0, (1.4)

where R(φ, ψ) is defined by

R(φ, ψ) = 1

2
Rm
li j (φ(x))〈ψ i ,∇φl · ψ j 〉 ∂

∂ym
(φ(x)).

Here Rm
li j stands for the Riemann curvature tensor of the target manifold (N , g). One can

refer to [2,3].
By the Nash embedding theorem, we embed N into R

K . Then, the critical points (φ, ψ)

satisfy the Euler-Lagrange equations

�φ = A(φ)(dφ, dφ) + Re(P(A(dφ(eα), eα · ψ);ψ)), (1.5)

/∂ψ = A(dφ(eα), eα · ψ), (1.6)

where /∂ is the usual Dirac operator, A is the second fundamental form of N in R
K , and

A(dφ(eα), eα · ψ) := (∇φi · ψ j ) ⊗ A(∂yi , ∂y j ),

Re(P(A(dφ(eα), eα · ψ);ψ)) := P(A(∂yl , ∂y j ); ∂yi )Re(〈ψ i , dφl · ψ j 〉).
Here P(ξ ; ·) denotes the shape operator, defined by 〈P(ξ ; X), Y 〉 = 〈A(X, Y ), ξ 〉 for X, Y ∈
	(T N ), and Re(z) denotes the real part of z ∈ C. We refer to [2,3,5,11,24,30,33] for more
details.

Denote

W 2,2(M, N ) :=
{

φ ∈ W 2,2(M,RK ) wi th φ(x) ∈ N f or a.e. x ∈ M
}

,

W 1,4/3(M, �M ⊗ φ�T N ) := {
ψ ∈ W 1,4/3(M, �M ⊗ R

K ) with ψ(x) ∈ �M ⊗ φ�T N

for a.e. x ∈ M
}
.

In this paper, with applications for the Dirac-harmonic heat flow in mind, we want to
consider pairs (φ, ψ) that satisfy the Euler-Lagrange equations up to an error term in L1.
Here is the precise

Definition 1.1 (φ, ψ) ∈ W 2,2(M, N ) × W 1, 4
3 (M, �M × φ�T N ) is called an approximate

Dirac-harmonic map if there exist (τ (φ,ψ), h(φ, ψ)) ∈ L1(M) such that

τ(φ,ψ) = �φ − A(dφ, dφ) − Re (P(A(dφ(eα), eα · ψ);ψ)) , (1.7)

h(φ, ψ) = /∂ψ − A(dφ(eα), eα · ψ). (1.8)
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Thus, (φ, ψ) is a Dirac-harmonic map if and only if τ(φ,ψ) = h(φ, ψ) = 0. In the
sequel, we shall need to assume that the error terms are in stronger spaces than L1, however.
See for instance Theorem 1.2.

As for harmonic maps, the conformal invariance of the energy functional L leads to
non-compactness of the set of Dirac-harmonic maps in dimension 2. This has been studied
extensively by [2,18,32], and in [11] for a more general case. For the harmonic map case,
we refer to [7,15–17,22,29,31]. Roughly speaking, the results of those papers assert that the
failure of strong convergence occurs at finitely many concentration points of the energy. At
such points, finitely many bubbles (i.e. nonconstant Dirac-harmonic spheres) separate, and
the total energies from these bubbles account for the total loss of Dirichlet energies during
the process of convergence. Moreover, the image of the remaining the base map and those
of the bubbles are connected in the target manifold. This is called the no neck property.

In this paper, we will extend the results from [2,18,32] to the approximate Dirac-harmonic
maps from a closed Riemann surface M to a compact Riemannian manifold N .

Denote the energy of φ on � ⊂ M by

E(φ;�) = 1

2

∫
�

|∇φ|2dM,

the energy of ψ on � ⊂ M by

E(ψ;�) =
∫

�

|ψ |4dM,

and the energy of the pair (φ, ψ) on � ⊂ M by

E(φ, ψ;�) =
∫

�

(|∇φ|2 + |ψ |4)dM.

We shall often omit the domain M from the notation and simply write E(φ) =
E(φ; M), E(ψ) = E(ψ; M) and E(φ, ψ) = E(φ, ψ; M).

Our first main result is

Theorem 1.2 For a sequence of smooth approximate Dirac-harmonic maps {(φn, ψn)} from
a closed Riemann surface M to a compact Riemannian manifold N with uniformly bounded
energy

E(φn, ψn) ≤ � < ∞
and

‖τ(φn, ψn)‖L2 + ‖h(φn, ψn)‖L4 ≤ �,

defining the blow-up set

S := ∩r>0
{
x ∈ M | lim inf

n→∞

∫
D(x,r)

(|dφn |2 + |ψn |4) ≥ ε2
0

2

}
, (1.9)

where ε0 > 0 is as in Theorem 2.1, then S is a finite set {p1, . . . , pI }. There exists an
approximate Dirac-harmonic map (φ, ψ) so that, up to a subsequence, still denoted by
{(φn, ψn)}, converges weakly in W 2,2

loc (M\S) × W 1,2
loc (M\S) to (φ, ψ) and there are a finite

set of Dirac-harmonic spheres (σ l
i , ξ

l
i ) : S2 → N , i = 1, . . . , I ; l = 1, ..., Li such that

lim
n→∞ E(φn) = E(φ) +

I∑
i=1

Li∑
l=1

E(σ l
i ), (1.10)
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lim
n→∞ E(ψn) = E(ψ) +

I∑
i=1

Li∑
l=1

E(ξ li ), (1.11)

and the image φ(M) ∪I
i=1 ∪Li

l=1(σ
l
i (S

2)) is a connected set.

Remark 1.3 From the proof of Theorem 4.1 in Sect. 4, it is easy to see that also the following
identities hold:

lim
n→∞

∫
M

|∇ψn | 4
3 dM =

∫
M

|∇ψ | 4
3 dM +

I∑
i=1

Li∑
l=1

∫
S2

|∇ξ il |
4
3 dS2, (1.12)

lim
n→∞ L(φn, ψn) = L(φ, ψ) +

I∑
i=1

Li∑
l=1

L
(
σ l
i , ξ

l
i

)
. (1.13)

This is due to the fact that both
∫
M |∇ψ | 4

3 dM and L(φ, ψ) are conformally invariant [3].

As an application of Theorem 1.2, we study the asymptotic behavior at infinite time for
the Dirac-harmonic map flow in dimension 2.

For that purpose, we first review the heat flow for Dirac-harmonic maps as introduced and
studied in [4,12] (a different flow has been introduced and studied in [1]). One tries to find
(φ, ψ) : M × [0,∞) → N × φ�T N that solves{

∂tφ = τ(φ) − Re(P(A(dφ(eα), eα · ψ);ψ), in M × (0,∞);
/∂ψ = A(dφ(eα), eα · ψ), in M × (0,∞).

(1.14)

with the following boundary-initial data:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(x, t) = ϕ(x), on ∂M × [0,∞);
φ(x, 0) = φ0(x), in M;
Bψ(x, t) = Bχ(x), on ∂M × [0,∞);
φ0(x) = ϕ(x), on ∂M,

(1.15)

where τ(φ) = �φ − A(φ)(dφ, dφ) is the tension field of φ, M is a compact Riemannian
spin manifold with smooth boundary ∂M, φ0 ∈ W 1,2(M, N ), ϕ ∈ C2+α(∂M; N ), χ ∈
C1+α(∂M;�M ⊗ φ�T N ) are given maps and B = B± is the chiral boundary operator
defined as follows:

B± : L2(M, �M ⊗ φ�T N |∂M ) → L2(M, �M ⊗ φ�T N |∂M ) (1.16)

ψ �→ 1

2

(
I d ± −→n · G) · ψ, (1.17)

where −→n is the outward unit normal vector field on ∂M , andG is the chiral operator satisfying:

G2 = I d, G∗ = G, ∇G = 0, GX · = −X · G, (1.18)

for any X ∈ 	(T M).
In dimension dim M = 2, [4] established the short-time existence for (1.14) with smooth

initial-boundary data (1.15). Later, [12] showed that, under some smallness assumption for
‖φ0‖H1 +‖Bχ‖L2 , there exists a unique global weak solution to (1.14) with initial-boundary
data (1.15), which has at most finitely many singular times and enjoys the property
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E(φ(t), ψ(t); M) +
∫ t

0

∫
M×{s}

|∂tφ|2dMds

≤ C(M, E(φ0), ‖Bψ0‖L2(∂M)), ∀ 0 ≤ t < ∞. (1.19)

It follows from (1.19) that there exists a sequence tn ↑ ∞ such that (φn, ψn) :=
(φ(·, tn), ψ(·, tn)) ∈ W 2,2(M, N ) × W 1, 4

3 (M, �M × φ�T N ) is an approximate Dirac-
harmonic map with boundary-data

{
φ(x) = ϕ(x), on ∂M;
Bψ(x) = Bχ(x), on ∂M,

(1.20)

which satisfies the assumptions of Theorem 1.2. In fact, h(φn, ψn) = 0 and

τ(φn, ψn) := ∂tφ(·, tn) satisfying ‖τ(φn, ψn)‖L2 → 0.

Thus, as an immediate corollary, we obtain

Theorem 1.4 For dim M = 2 and φ0 ∈ H1(M, N ), ϕ ∈ C2+α(∂M, N ), χ ∈
C1+α(∂M, �M ⊗ ϕ�T N ), let (φ, ψ) : M × [0,∞) → N × φ�T N be a global weak
solution of (1.14) and (1.15), which has finitely many singular times and satisfies (1.19).
Moreover, we assume that (φ, ψ) blows up at infinite time and at interior points. Then there
exist tn ↑ ∞, a Dirac-harmonic map (φ∞, ψ∞) ∈ C2+α(M, N )×C1+α(M, �M⊗φ∗∞T N )

with boundary dataφ∞|∂M = ϕ andBψ∞|∂M = Bχ , and a nonnegative integer I and finitely
many points {p1, ..., pI } ∈ M such that

(1) (φn, ψn) := (φ(·, tn), ψ(·, tn)) ⇀ (φ∞, ψ∞) in W 1,2(M, N ) × W 1, 4
3 (M, �M ×

φ�T N );
(2) (φn, ψn) → (φ∞, ψ∞) in W 1,2

loc (M\{p1, ..., pL }) × L4
loc(M\{p1, ..., pI });

(3) For 1 ≤ i ≤ I , there exist a positive integer Li and Li nontrivial Dirac-harmonic
spheres (σ l

i , ξ
l
i ) : S2 → N , i = 1, ..., I ; l = 1, ..., Li such that

lim
n→∞ E(φn) = E(φ∞) +

I∑
i=1

Li∑
l=1

E(σ l
i ), (1.21)

lim
n→∞ E(ψn) = E(ψ∞) +

I∑
i=1

Li∑
l=1

E(ξ li ), (1.22)

and

lim
n→∞ ‖φ(·, tn) − φ∞(·) − σ l

i (·)‖L∞(M) = 0. (1.23)

Remark 1.5 In this Theorem 1.4, we only consider the interior blow-up phenomenon for the
Dirac-harmonic maps flow. The boundary blow-up case is treated in a subsequent paper [13].

This paper is organized as follows. In Sect. 2, we shall prove some basic lemmas, called
small energy regularity, Pohozaev’s identity and removable singularity, so that the expert will
readily know what we are talking about, and we shall recall some known results for later use.
In Sect. 3, we shall establish the three circle theorem for approximate Dirac-harmonic maps
which ensures the exponential decay of the tangential energy. Our main result Theorem 1.2
will be proved in Sect. 4.
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2 Some basic lemmas

In this section, we will prove some basic lemmas and recall some known results which will
be used in this paper.

Firstly, we prove a small energy regularity theorem.

Theorem 2.1 There is a small constant ε0 > 0 such that if (φ, ψ) ∈ W 2,p(D, N ) ×
W 1,q(D, �D⊗φ�T N ) is an approximateDirac-harmonicmap from the unit disc D inR2 to a
compact Riemannianmanifold (N , g)with τ ∈ L p, h ∈ Lq for some 4

3 ≤ p ≤ 2, 8
5 ≤ q ≤ 2,

and satisfies

E(φ, ψ; D) =
∫
D

(|dφ|2 + |ψ |4)dx < ε2
0 , (2.1)

then

‖φ − φ‖
W 2,p

(
D 1

2

) ≤ C(‖dφ‖L2(D) + ‖τ‖L p(D)),

‖ψ‖
W 1,q

(
D 1

2

) ≤ C(‖ψ‖L4(D) + ‖h‖Lq (D)),

where φ := 1
|D1/2|

∫
D1/2

φdx and C > 0 is a constant depending only on p, q, �, N.

Moreover, by the Sobolev embedding W 2,p(R2) ⊂ C0(R2), we have

‖φ‖Osc(D1/2) = sup
x,y∈D1/2

|φ(x) − φ(y)|

≤ C(�, N )(‖∇φ‖L2(D) + ‖τ(u)‖L p(D)). (2.2)

Proof Without loss of generality, we assume 1
|D1/2|

∫
D1/2

φdx = 0.

Choosing a cut-off function η ∈ C∞
0 (D) satisfying 0 ≤ η ≤ 1, η|D3/4 ≡ 1, |∇η| +

|∇2η| ≤ C , by the standard theory of first order elliptic equations, for any 1 < q < 2, we
have

‖ηψ‖W 1,q (D) ≤ C‖/∂(ηψ)‖Lq (D)

≤ C‖∇η · ψ + η/∂ψ‖Lq (D)

≤ C
(‖ψ‖Lq (D) + ‖|dφ||ηψ |‖Lq (D) + ‖h‖Lq (D)

)
≤ C‖dφ‖L2(D)‖ηψ‖

L
2q

2−q (D)
+ C(‖ψ‖Lq (D) + ‖h‖Lq (D))

≤ Cε0‖ηψ‖
L

2q
2−q (D)

+ C(‖ψ‖Lq (D) + ‖h‖Lq (D)).

Taking q = 8
5 and ε0 > 0 sufficiently small, by Sobolev embedding, we obtain

‖ηψ‖L8(D) ≤ C‖ηψ‖W 1,8/5(D) ≤ C(‖ψ‖Lq (D) + ‖h‖Lq (D)). (2.3)

Computing directly, we get

|�(ηφ)| = |η�φ + 2∇η∇φ + φ�η|
≤ C

(|φ| + |dφ| + |dφ||ηdφ| + |ψ |2|ηdφ| + |τ |)
≤ C |dφ||d(ηφ)| + C

(|φ| + |dφ| + η|ψ |2|dφ| + |τ |) . (2.4)

123
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By standard elliptic estimates,

‖ηφ‖W 2,4/3(D) ≤ C‖|dφ||d(ηφ)|‖L4/3(D)

+ C
(‖dφ‖L4/3(D) + ‖|ηψ |2|dφ|‖L4/3(D) + ‖|τ |‖L4/3(D)

)
≤ C‖d(ηφ)‖L4(D)‖dφ‖L2(D)

+ C
(
‖dφ‖L4/3(D) + ‖ηψ‖2

L8(D)
‖dφ‖L2(D) + ‖|τ |‖L4/3(D)

)

≤ Cε0‖d(ηφ)‖L4(D) + C(‖dφ‖L2(D) + ‖|τ |‖L4/3(D)).

Taking ε0 > 0 sufficiently small, we have

‖dφ‖L4(D3/4) ≤ C‖ηφ‖W 2,4/3(D) ≤ C(‖dφ‖L2(D) + ‖τ‖L4/3(D)). (2.5)

By the interior elliptic estimates, for any 4
3 ≤ p ≤ 2 we have

‖φ‖W 2,p(D1/2) ≤ C(‖�φ‖L p(D3/4) + ‖dφ‖L p(D3/4))

≤ C
(
‖dφ‖2

L4(D3/4)
+ ‖ψ‖2

L8(D3/4)
‖dφ‖L4(D3/4)

+‖|τ |‖L p(D) + ‖dφ‖L p(D3/4)

)
≤ C(‖dφ‖L2(D) + ‖τ‖L p(D)).

By the interior elliptic estimates for first order equations, for any 8
5 ≤ q ≤ 2, we get

‖ψ‖W 1,q (D1/2) ≤ C(‖/∂ψ‖Lq (D3/4) + ‖ψ‖Lq (D3/4))

≤ C(‖dφ‖L4(D3/4)‖ψ‖L4(D3/4) + ‖ψ‖L2(D) + ‖h‖Lq (D))

≤ C(1 + ‖dφ‖L2(D) + ‖τ‖L p(D))(‖ψ‖L4(D) + ‖h‖Lq (D))

≤ C(‖ψ‖L4(D) + ‖h‖Lq (D)).

��
Secondly, by a direct computation, we have the following proposition.

Proposition 2.2 Suppose φ ∈ C2(M, N ), ψ ∈ C2(M, �M⊗φ�T N ). Let {eα}2
α=1 be a unit

normal basis of T M and eβ ∈ 	(T M) a section satisfying

[eβ, eα] = 0, α = 1, 2,

then

〈ψ, ∇̃eβ ( /Dψ)〉 = 2〈Re (P(A(dφ(eα), eα · ψ);ψ)) ,

φβ〉 + 〈ψ, /Dψβ〉, (2.6)

where [·, ·] is the Lie bracket, φβ = dφ(eβ) and ψβ = ∇̃eβ ψ .

Proof Proposition 2.2 is proved in [3]. For the reader’s convenience, we recall it here.
On the one hand, we have

〈Re (P(A(dφ(eα), eα · ψ);ψ)) , φβ〉 =
〈

1

2
Rm
li j (φ)〈ψ i ,∇φl · ψ j 〉∂ym , φ

p
β ∂y p

〉

= 1

2
Rmli j 〈ψ i ,∇φl · ψ j 〉φm

β .

123
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On the other hand, by a direct computation, we get

∇̃eα ∇̃eβ ψ − ∇̃eβ ∇̃eαψ = R�M (eα, eβ)ψ i ⊗ ∂ yi + Rm
li jφ

i
αφ

j
βψ l ⊗ ∂ ym,

where R�M is the curvature operator of the connection on the spinor bundle �M . For this
curvature, we have (see [3,6,14])

eα · R�M (eα, X)ψ i = 1

2
Ric(X), ∀X ∈ 	(M).

Thus we obtain

〈ψ, eα · R�M (eα, eβ)ψ i ⊗ ∂ yi 〉 = gi j 〈ψ j , eα · R�M (eα, eβ)ψ i 〉
= 1

2
gi j 〈ψ j , Ric(eβ) · ψ i 〉 = 0.

Therefore,

〈ψ, /Dψβ〉 = 〈ψ, eα · ∇̃eα ∇̃eβ ψ〉
= 〈ψ, ∇̃eβ (eα · ∇̃eαψ)〉 + Rm

li jφ
j
β〈ψ,∇φi · ψ l ⊗ ∂ym 〉

= 〈ψ, ∇̃eβ ( /Dψ)〉 + Rmli jφ
j
β〈ψm,∇φi · ψ l〉

= 〈ψ, ∇̃eβ ( /Dψ)〉 − Rmli j 〈ψ i ,∇φl · ψ j 〉φm
β .

Then, the conclusion of the proposition follows immediately. ��

Thirdly, we compute Pohozaev’s identity for approximate Dirac-harmonic maps.

Lemma 2.3 Let D ⊂ R
2 be the unit disk and (φ, ψ) be a smooth approximate Dirac-

harmonic map, then for any 0 < t < 1
2 , we have

t
∫

∂Dt

(
|φr |2 − 1

2
|∇φ|2

)
=1

2

∫
∂Dt

〈
ψ, r−1 ∂

∂θ
· ψθ

〉
− 1

2

∫
Dt

〈ψ, /Dψ〉dx

− Re
∫
Dt

〈 /Dψ, rψr 〉dx +
∫
Dt

rφrτdx, (2.7)

where (r, θ) are polar coordinates in D centered at 0, φr = dφ( ∂
∂r ), ψr = ∇̃ ∂

∂r
ψ and

ψθ = ∇̃ ∂
∂θ

ψ .

Proof Multiplying the equation (1.7) by rφr and integrating over Dt , by Proposition 2.2 and
the fact that rφr = xβ ∂φ

∂xβ = xβdφ( ∂
∂xβ ), we get

∫
Dt

rφrτdx =
∫
Dt

rφr�φdx −
∫
Dt

〈rφr , Re (P(A(dφ(eα), eα · ψ);ψ))〉dx

=
∫
Dt

rφr�φdx + 1

2

∫
Dt

〈xβψ, /Dψβ〉dx − 1

2

∫
Dt

〈
xβψ, ∇̃ ∂

∂xβ
/Dψ

〉
dx

: = I + II + III.
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On the one hand, integrating by parts, we have

I =
∫

∂Dt

r |φr |2 −
∫
Dt

∇φ∇(rφr )dx

=
∫

∂Dt

r |φr |2 −
∫
Dt

|∇φ|2dx − 1

2

∫
Dt

r
∂

∂r
|∇φ|2dx

= r
∫

∂Dt

(
|φr |2 − 1

2
|∇φ|2

)
.

On the other hand, by Lemma 2.6, we get

2II =
∫
Dt

〈xβψ, /Dψβ〉dx

=
∫
Dt

〈 /D(xβψ), ψβ〉dx −
∫

∂Dt

〈−→n · xβψ,ψβ〉dx

= −
∫
Dt

〈ψ, /Dψ〉dx +
∫
Dt

〈 /Dψ, rψr 〉dx +
∫

∂Dt

〈
ψ, r

∂

∂r
· ψr

〉
, (2.8)

and

2III = −
∫
Dt

〈xβψ, ∇̃∂β
/Dψ〉dx

= −
∫

∂Dt

〈rψ, /Dψ〉dx +
∫
Dt

〈∇̃∂β (xβψ), /Dψ〉dx

= 2
∫
Dt

〈ψ, /Dψ〉dx +
∫
Dt

〈rψr , /Dψ〉dx −
∫

∂Dt

〈rψ, /Dψ〉. (2.9)

Combining the preceding equations, we get the conclusion of the lemma. ��

Corollary 2.4 Under the assumption of Lemma 2.3, if ‖τ(φ,ψ)‖L2(D) +‖h(φ, ψ)‖L4(D) ≤
C, then for any 0 < t < 1

4 , we have∫
D2t\Dt

(
|φr |2 − 1

2
|∇φ|2

)
dx

≤ C

(
‖r−1 ∂ψ

∂θ
‖
L

4
3 (D2t\Dt )

+ ‖r−1 ∂φ

∂θ
‖L2(D2t\Dt )

)
+ Ct. (2.10)

Proof By Lemma 2.3, for any 0 < s < 1
2 , we have

s
∫

∂Ds

(
|φr |2 − 1

2
|∇φ|2

)
:= J1 + · · · + J4. (2.11)

It is easy to see that

J2 = −1

2

∫
Ds

〈ψ, /Dψ〉dx ≤ Cs‖ψ‖L4(Ds )
‖h‖L4(Ds )

≤ Cs,

J4 =
∫
Ds

rφrτdx ≤ Cs‖dφ‖L2(Ds )
‖τ‖L2(Ds )

≤ Cs,
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and

J3 = −Re
∫
Ds

〈 /Dψ, rψr 〉dx
≤ Cs‖ψr‖

L
4
3 (Ds )

‖h‖L4(Ds )

≤ Cs

(
‖∇ψ‖

L
4
3 (Ds )

+ ‖ψ‖L4(Ds )
‖dφ‖L2(Ds )

)
‖h‖L4(Ds )

≤ Cs,

where we used the fact that

|ψr | ≤ C

(
|∂ψ

∂r
| + |ψ ||∂φ

∂r
|
)

,

|ψθ | ≤ C

(
|∂ψ

∂θ
| + |ψ ||∂φ

∂θ
|
)

.

Multiplying (2.7) by 1
s and integrating from t to 2t , we get

∫
D2t\Dt

(
|φr |2 − 1

2
|∇φ|2

)
≤

∫ 2t

t

1

2s

∫
∂Ds

〈
ψ, r−1 ∂

∂θ
· ψθ

〉
dθds + Ct

≤ C‖r−1ψθ‖
L

4
3 (D2t\Dt )

‖ψ‖L4(D2t\Dt )
+ Ct

≤ C

(
‖r−1 ∂ψ

∂θ
‖
L

4
3 (D2t\Dt )

+ ‖r−1 ∂φ

∂θ
‖L2(D2t\Dt )

)
+ Ct.

��
Thirdly, we state an interior removable singularity result.

Theorem 2.5 Let (φ, ψ) ∈ W 2,2
loc (D\{0}) × W 1,2

loc (D\{0}) be an approximate Dirac-
harmonic map from D\{0} to N with finite energy

‖dφ‖L2(D) + ‖ψ‖L4(D) ≤ C

that satisfies

τ = f ∈ L2(D), x ∈ D\{0}, (2.12)

h = g ∈ L2(D), x ∈ D\{0}, (2.13)

then (φ, ψ) can be extended to a field in W 2,2(D) × W 1,2(D).

Proof By a standard argument as in Lemma A.2 in [9], it is easy to see that (φ, ψ) is a weak
solution of (2.12) and (2.13). It is known that the equation of φ can be written as an elliptic
system with an anti-symmetric potential [5,24,30]:

�φ = � · ∇φ + f,

with � ∈ L2(B1, so(N ) ⊗ R
2) satisfying |�| ≤ C(|∇φ| + |ψ |2). Then it follows from

Riviere’s regularity result and its extensions (see [26–28]) that φ ∈ W 2,p(D) for any 1 <

p < 2 which implies φ ∈ W 1,4(D). Applying a simple argument to the Dirac equation
for ψ gives that ψ ∈ W 1,2(D). This indicate that ψ ∈ L8(D). Then by (2.12), we have
�φ ∈ L2(D) which implies the conclusion of the theorem. ��
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In the end of this section, we recall two lemmas which are used in this paper.

Lemma 2.6 ([5]) For any ψ,ω ∈ W 1,3/4(M, �M ⊗ φ�T N ), we have∫
M

〈ψ, /Dω〉 =
∫
M

〈 /Dψ,ω〉 −
∫

∂M
〈−→n · ψ,ω〉 (2.14)

where 〈ψ,ω〉 := hi j 〈ψ i , ω j 〉.
Proposition 2.7 ([2]) Let N be a compact Riemannianmanifold. Then there exists a constant
ε1 = ε1(N ) > 0 such that if (φ, ψ) is a smoothDirac-harmonicmap from the standard sphere
S2 to N satisfying ∫

S2
(|dφ|2 + |ψ |4) < ε1,

then both φ and ψ are trivial.

3 Three circle theorem for approximate Dirac-harmonic maps

In this section, we will extend the three circle theorem for Dirac-harmonic maps in [18] to
the case of approximate Dirac-harmonic maps. The idea is from Qing-Tian’s paper [22],
which used a special case of the three circle theorem due to Simon [25] to show that the
tangential energy of the sequence in the neck region decays exponentially. The second author
in cooperation with H.Yin has extended this idea to some fourth order equations, see [19,20].

Let us first state the three circle theorem for harmonic functions (see [18,22,25]).

Theorem 3.1 There exists a constant L > 0, such that if u is a nontrivial smooth harmonic
function defined in [(i − 1)L , (i + 2)L] × S1 that satisfies∫

{i L}×S1
udθ =

∫
{(i+1)L}×S1

udθ = 0,

then

‖u‖2
L2([i L ,(i+1)L]×S1)

<
1

2

(
e−L‖u‖2

L2([(i−1)L ,i L]×S1)

+ e−L‖u‖2
L2([(i+1)L ,(i+2)L]×S1)

)
. (3.1)

Next, we prove an L2 interior estimate for the following integro-differential equations.

Lemma 3.2 Suppose u ∈ W 2,2(D4\D1), v ∈ W 1,2(D4\D1) and satisfies

�u = A1u + A2∇u + A3v + 1

2π

∫ 2π

0
A4u + A5∇u + A6vdθ + f1, (3.2)

/∂v = B1u + B2∇u + B3v + 1

2π

∫ 2π

0
B4u + B5∇u + B6vdθ + f2, (3.3)

where

6∑
i=1

(
‖Ai‖L4(D4\D1)

+ ‖Bi‖L4(D4\D1)

)
≤ ρ and

2∑
i=1

‖ fi‖L2(D4\D1)
≤ C. (3.4)

123



Blow-up analysis for approximate Dirac-harmonic maps... Page 13 of 26 108

Then there exists a positive constant ρ0 such that if ρ ≤ ρ0, there holds

‖u‖W 2,2(D3\D2) + ‖v‖W 1,2(D3\D2)

≤ C
(‖u‖L2(D4\D1)

+ ‖v‖L2(D4\D1)
+ ‖ f1‖L2(D4\D1)

+ ‖ f2‖L2(D4\D1)

)
. (3.5)

Proof The proof is similar to Lemma 3.1 in [18] where f1 = f2 = 0.
Denote Bσ = D3+σ \D2−σ , 0 < σ < 1. Let σ ′ = σ+1

2 . Take a cut-off function η(x) =
η(|x |) with compact support in Bσ ′ satisfying η(x) ≡ 1 in Bσ and |∇η| ≤ 4

(1−σ)
and

|�η| ≤ 16
(1−σ)2 . Computing directly, we get

�(ηu) = η�u + 2∇η∇u + �ηu

= (2∇η + ηA2)∇u + (�η + ηA1)u + ηA3v + η f1

+ η · 1

2π

∫ 2π

0
A4u + A5∇u + A6vdθ.

By the standard elliptic estimate and Sobolev embedding, we have

‖ηu‖W 2,2(D4) ≤ C
(‖A1ηu‖L2(D4) + ‖A2η∇u‖L2(D4)

+ ‖A3ηv‖L2(D4) + ‖η f1‖L2(D4)

+ ‖∇η∇u‖L2(D4) + ‖�ηu‖L2(D4)

+ ‖η · 1

2π

∫ 2π

0
A4u + A5∇u + A6vdθ‖L2(D4)

)

≤ C
(‖A1‖L2(D4\D1)

+ ‖A4‖L2(D4\D1)

+‖A2‖L4(D4\D1)
+ ‖A5‖L4(D4\D1)

)
‖ηu‖W 2,2(D4)

+ C(‖A3‖L4(D4\D1) + ‖A6‖L4(D4\D1))‖ηv‖W 1,2(D4) + C(‖A2∇ηu‖L2(D4)

+ ‖A5∇ηu‖L2(D4)) + C(‖∇η∇u‖L2(D4) + ‖�ηu‖L2(D4) + ‖η f1‖L2(D4))

≤ Cρ0‖ηu‖W 2,2(D4) + Cρ0‖ηv‖W 1,2(D4)

+ C(‖A2‖L4(D4\D1) + ‖A5‖L4(D4\D1))‖∇ηu‖W 1,2(D4)

+ C

(‖∇u‖L2(Bσ ′ )
1 − σ

+ ‖u‖L2(Bσ ′ )
(1 − σ)2 + ‖η f1‖L2(D4)

)

≤ Cρ0(‖ηu‖W 2,2(D4) + ‖ηv‖W 1,2(D4))

+ C

(‖∇u‖L2(Bσ ′ )
1 − σ

+ ‖u‖L2(Bσ ′ )
(1 − σ)2 + ‖η f1‖L2(D4)

)
.

Similarly, we can compute

/∂(ηv) = ηB1u + ηB2∇u + (ηB3 + ∇η)v

+ η
1

2π

∫ 2π

0
B4u + B5∇u + B6vdθ + η f2.

By the first order elliptic estimate, we have

‖ηv‖W 1,2(D4) ≤ C

(
‖B1ηu‖L2(D4) + ‖B2η∇u‖L2(D4) + ‖B3ηv‖L2(D4)

+ ‖η f2‖L2(D4) + ‖∇ηv‖L2(D4)
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+ ‖η · 1

2π

∫ 2π

0
B4u + B5∇u + B6vdθ‖L2(D4)

)

≤ C(‖B1‖L4(D4\D1)
+ ‖B4‖L4(D4\D1)

+ ‖B2‖L4(D4\D1)
+ ‖B5‖L4(D4\D1)

)‖ηu‖W 2,2(D4)

+ C(‖B3‖L4(D4\D1)
+ ‖B6‖L4(D4\D1)

)‖ηv‖W 1,2(D4)

+ C(‖B2∇ηu‖L2(D4) + ‖B5∇ηu‖L2(D4))

+ C(‖∇ηv‖L2(D4) + ‖η f2‖L2(D4))

≤ Cρ0‖ηu‖W 2,2(D4) + Cρ0‖ηv‖W 1,2(D4)

+ C(‖B2‖L4(D4\D1)
+ ‖B5‖L4(D4\D1)

)‖∇ηu‖W 1,2(D4)

+ C

(‖v‖L2(D4\D1)

1 − σ
+ ‖η f2‖L2(D4)

)

≤ Cρ0(‖ηu‖W 2,2(D4) + ‖ηv‖W 1,2(D4))

+ C

(‖∇u‖L2(Bσ ′ )
1 − σ

+ ‖u‖L2(Bσ ′ )
(1 − σ)2 + ‖v‖L2(D4\D1)

1 − σ
+ ‖ f2‖L2(D4\D1)

)
.

Taking ρ0 sufficiently small, we get

‖ηu‖W 2,2(B1)
+ ‖ηv‖W 1,2(B1)

≤ C

(‖∇u‖L2(Bσ ′ )
1 − σ

+ ‖u‖L2(Bσ ′ )
(1 − σ)2 + ‖v‖L2(D4\D1)

1 − σ

+ ‖ f1‖L2(D4\D1)
+ ‖ f2‖L2(D4\D1)

)
. (3.6)

We now introduce seminorms, and define for j = 0, 1, 2

� j = sup
0≤σ≤1

(1 − σ) j‖D ju‖L2(Bσ ).

Multiplying (3.6) by (1 − σ)2 and noting that 1 − σ ′ = 1−σ
2 , we have

�2 ≤ C
(
�1 + �0 + ‖v‖L2(D4\D1)

+ ‖ f1‖L2(D4\D1)
+ ‖ f2‖L2(D4\D1)

)
. (3.7)

We claim now that � j satisfy an interpolation inequality

�1 ≤ ε�2 + C

ε
�0 (3.8)

for any ε > 0, where C > 0 is a universal constant. In fact, by the definition of �1, for any
γ > 0, we have

�1 ≤ (2 − σγ )‖Du‖L2(Bσγ ) + γ

≤ ε(2 − σγ )2‖D2u‖L2(Bσγ ) + C

ε
‖u‖L2(Bσγ ) + γ,

where the second inequality is derived from the interpolation Theorem 7.27 (or Theorem
7.28) in [8].

By letting γ → 0, we obtain (3.8). Using (3.8) in (3.7), we then obtain

�2 ≤ C
(‖u‖L2(D4\D1)

+ ‖v‖L2(D4\D1) + ‖ f1‖L2(D4\D1) + ‖ f2‖L2(D4\D1)

)
,
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this is

‖D2u‖L2(Bσ ) ≤ C

(1 − σ)2

(‖u‖L2(D4\D1) + ‖v‖L2(D4\D1)

+‖ f1‖L2(D4\D1)
+ ‖ f2‖L2(D4\D1)

)
.

Taking σ = 1
2 , it follows

‖u‖W 2,2(B1/2) ≤ C
(‖u‖L2(D4\D1)

+ ‖v‖L2(D4\D1)

+‖ f1‖L2(D4\D1)
+ ‖ f2‖L2(D4\D1)

)
. (3.9)

Choosing a new cut-off function η in (3.6) and using (3.9), we get

‖v‖W 1,2(B1/4)
≤ C

(‖u‖L2(D4\D1) + ‖v‖L2(D4\D1)

+‖ f1‖L2(D4\D1)
+ ‖ f2‖L2(D4\D1)

)
. (3.10)

Then it is easy to see that the lemma follows from (3.9) and (3.10). ��
Denote Pi := De(i+1)Lr2

\DeiLr2
and

Fi (u, v) :=
∫
Pi

1

|x |2 |u|2dx +
∫
Pi

1

|x | |v|2dx,

where L > 0 is the constant in Theorem 3.1.
We have the following three circle theorem:

Theorem 3.3 Suppose u ∈ W 2,2(Pi−1 ∪ Pi ∪ Pi+1), v ∈ W 1,2(Pi−1 ∪ Pi ∪ Pi+1) satisfy
equations (3.2) and (3.3). Then there exists a positive constant ρ0, such that if 0 < ρ1 < ρ0

and

max
i−1,i,i+1

(
‖|x | f1‖2

L2(Pj )
+ ‖|x | 1

2 f2‖2
L2(Pj )

)
≤ ρ1Fi (u, v), (3.11)

and for any e(i−1)Lr2 ≤ r ≤ 1
2e

(i+2)Lr2, there hold

‖|x | 3
2 (|A1| + |A4|)‖L4(D2r \Dr )

+ ‖|x |(|A3| + |A6| + |B1| + |B4|)‖L4(D2r \Dr )

+ ‖|x | 1
2 (|A2| + |A5| + |B3| + |B6|)‖L4(D2r \Dr )

+ ‖|B2| + |B5|‖L4(D2r \Dr )
≤ ρ1, (3.12)

and ∣∣∣∣
∫ 2π

0
u(ei Lr2, θ)dθ

∣∣∣∣
2

+
∣∣∣∣
∫ 2π

0
u(e(i+1)Lr2, θ)dθ

∣∣∣∣
2

+
∣∣∣∣
∫ 2π

0
v(ei Lr2, θ)dθ

∣∣∣∣
2

+
∣∣∣∣
∫ 2π

0
v(e(i+1)Lr2, θ)dθ

∣∣∣∣
2

≤ ρ1Fi (u, v)

then, there hold

(a) Fi+1(u, v) ≤ e−L Fi (u, v) implies Fi (u, v) ≤ e−L Fi−1(u, v);
(b) Fi−1(u, v) ≤ e−L Fi (u, v) implies Fi (u, v) ≤ e−L Fi+1(u, v);
(c) either Fi (u, v) ≤ e−L Fi−1(u, v) or Fi (u, v) ≤ e−L Fi+1(u, v).
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Proof Since Fi (u, v), (3.11) and (3.12) are scaling invariant, we may assume r2 = 1 and
i = 2. If the conclusion does not hold, there exist sequences ρ1k → 0, A j

k , B
j
k (j=1,...,6),

f1k, f2k, uk, vk such that uk and vk satisfy

�uk = A1
kuk + A2

k∇uk + A3
kvk

+ 1

2π

∫ 2π

0
A4
kuk + A5

k∇uk + A6
kvkdθ + f1k,

/∂vk = B1
k uk + B2

k∇uk + B3
k vk

+ 1

2π

∫ 2π

0
B4
k uk + B5

k∇uk + B6
k vkdθ + f2k,

and
∣∣∣∣
∫ 2π

0
uk(e

i L , θ)dθ

∣∣∣∣
2

+
∣∣∣∣
∫ 2π

0
uk(e

(i+1)L , θ)dθ

∣∣∣∣
2

+
∣∣∣∣
∫ 2π

0
uk(e

i L , θ)dθ

∣∣∣∣
2

+
∣∣∣∣
∫ 2π

0
uk(e

(i+1)L , θ)dθ

∣∣∣∣
2

≤ ρ1k Fi (uk, vk).

Moreover, for any e(i−1)L ≤ r ≤ e(i+2)L , A j
k , B

j
k , f1k, f2k satisfy

‖|x | 3
2 (|A1

k | + |A4
k |)‖L4(D2r \Dr )

+ ‖|x |(|A3
k | + |A6

k | + |B1
k | + |B4

k |)‖L4(D2r \Dr )

+ ‖|x | 1
2 (|A2

k | + |A5
k | + |B3

k | + |B6
k |)‖L4(D2r \Dr )

+ ‖|B2
k | + |B5

k |‖L4(D2r \Dr )
≤ ρ1k

and

max
i−1,i,i+1

(‖|x | f1k‖2
L2(Pj )

+ ‖|x | 1
2 f2k‖2

L2(Pj )
) ≤ ρ1k Fi (u, v).

But, uk does not satisfy at least one of the conclusions in (a), (b) and (c).
If (a) does not hold, then we have

F2(uk, vk) ≥ eL F3(uk, vk) and F2(uk, vk) ≥ e−L F1(uk, vk);
If (b) does not hold, then we have

F2(uk, vk) ≥ eL F1(uk, vk) and F2(uk, vk) ≥ e−L F3(uk, vk);
If (c) does not hold, then we have

F2(uk, vk) ≥ e−L max{F1(uk, vk), F3(uk, vk)};
In all those three cases, we may get the same conclusion that

2F2(uk, vk) ≥ e−L(F1(uk, vk) + F3(uk, vk)). (3.13)

Without loss of generality, we assume F2(uk, vk) = 1 (if not, we consider ũk = uk
F2(uk ,vk )

and ṽk = vk
F2(uk ,vk )

). Then we obtain

‖uk‖L2(P1∪P2∪P3)
+ ‖vk‖L2(P1∪P2∪P3)

≤ C.
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By Lemma 3.2, we have ‖uk‖W 2,2(P2) + ‖vk‖W 1,2(P2) ≤ C . So, there exists a subsequence of
(uk, vk) (we still denote it by (uk, vk)), such that

uk ⇀ u, vk ⇀ v weakly in L2(P1 ∪ P2 ∪ P3);
uk → u, vk → v strongly in L2(P2).

It is easy to see that u is a harmonic function and v is a holomorphic function in
De(i+2)L \De(i−1)L and they satisfy

∫
∂DeiL

u =
∫

∂De(i+1)L

u =
∫

∂DeiL

v =
∫

∂De(i+1)L

v = 0.

Let f : R1 × S
1 → R

2, f (t, θ) = (et , θ)(t, θ) ∈ R
1 × S

1 where R
1 × S

1 is equipped
with the metric g = dt2 + dθ2, which is conformal to the standard Euclidean metric ds2 on
R

2. In fact,

( f −1)∗g = 1

r2 ds
2.

Then we know that u ◦ f is a harmonic function and e
t
2 v ◦ f is a holomorphic function in

[L , 4L] × S1.
According to Theorem 3.1, we know

‖u ◦ f ‖2
L2([2L ,3L]×S1)

<
1

2

(
e−L‖u ◦ f ‖2

L2([L ,2L]×S1)
+ e−L‖u ◦ f ‖2

L2([3L ,4L]×S1)

)

and

‖e t
2 v ◦ f ‖2

L2([2L ,3L]×S1)

<
1

2

(
e−L‖e t

2 v ◦ f ‖2
L2([L ,2L]×S1)

+ e−L‖e t
2 v ◦ f ‖2

L2([3L ,4L]×S1)

)

which implies

‖ 1

|x |u‖2
L2(P2)

<
1

2

(
e−L‖ 1

|x |u‖2
L2(P1)

+ e−L‖ 1

|x |u‖2
L2(P3)

)

and

‖ 1√|x |v‖2
L2(P2)

<
1

2

(
e−L‖ 1√|x |v‖2

L2(P1)
+ e−L‖ 1√|x |v‖2

L2(P3)

)
.

Thus,

2F2(u, v) < e−L(F1(u, v) + F3(u, v)). (3.14)

But, letting k → ∞ in (3.13) which implies

2F2(u, v) ≥ e−L (F1(u, v) + F3(u, v)). (3.15)

This contradiction finishes the proof. ��

As a direct corollary of the three circle theorem, we can get the following decay lemma.
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Lemma 3.4 Let ρ1 > 0 be the constant in Theorem 3.3. Let u ∈ W 2,2(De(l+1)Lr2
\Dr2), v ∈

W 1,2(De(l+1)Lr2
\Dr2), fi ∈ L2(De(l+1)Lr2

\Dr2), i = 1, 2, and some integer l > 1, satisfying
equations (3.2), (3.3) and for any r2 ≤ r ≤ 1

2e
(l+1)Lr2, there hold

‖|x | 3
2 (|A1| + |A4|)‖L4(D2r \Dr )

+ ‖|x |(|A3| + |A6| + |B1| + |B4|)‖L4(D2r \Dr )

+ ‖|x | 1
2 (|A2| + |A5| + |B3| + |B6|)‖L4(D2r \Dr )

+ ‖|B2| + |B5|‖L4(D2r \Dr )
≤ ρ1, (3.16)

and ∫
∂Dr

u =
∫

∂Dr

v = 0.

Then we have

Fi (u, v) ≤ C

(
elLr2 + F0(u, v) + Fl(u, v)

)(
e−(l−i)L + e−i L

)
. (3.17)

Proof Denote the set of j (0 < j < l) for which

max
j−1, j, j+1

(
‖|x | f1‖2

L2(Pi )
+ ‖|x | 1

2 f2‖2
L2(Pi )

)
> ρ1Fj (u, v) (3.18)

by J := { j1, ..., jk}. If J = ∅, according to (c) of Theorem 3.3, we get

Fi (u, v) ≤ e−L Fi−1(u, v) or Fi (u, v) ≤ e−L Fi+1(u, v).

Then using the (a) and (b) of Theorem 3.3, by iterating, we obtain

Fi (u, v) ≤ e−Li F0(u, v) or Fi (u, v) ≤ e−L(l−i)Fl(u, v).

So, we have

Fi (u, v) ≤ 1

2
(e−Li F0(u, v) + e−L(l−i)Fl(u, v)), (3.19)

which implies (3.17) immediately.
If J �= ∅, without loss of generality, we may assume

0 < j1 < j2 < · · · < jk < l.

Then for each jm,m = 1, ..., k, we have

Fjm (u, v) ≤ C max
jm−1, jm , jm+1

(
‖|x | f1‖2

L2(Pi )
+ ‖|x | 1

2 f2‖2
L2(Pi )

)

≤ Ce jm Lr2 = C(elLr2)e
−L(l− jm ).

By the choice of jm , the condition (3.11) holds for jm < i < jm+1,m = 1, ..., k − 1.
Similar to deriving (3.19), we obtain

Fi (u, v) ≤ e−L(i− jm )Fjm (u, v) or Fi (u, v)

≤ e−L( jm+1−i)Fjm+1(u, v).

Thus, we know for j1 ≤ i ≤ jk , there exists m ∈ {1, ..., k − 1} such that jm ≤ i ≤ jm+1.
Then we get
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Fi (u, v) ≤ 1

2
(e−L(i− jm )Fjm (u, v) + e−L( jm+1−i)Fjm+1(u, v))

≤ C(elLr2)
(
e−L(i− jm )e−L(l− jm ) + e−L( jm+1−i)e−L(l− jm+1)

)
≤ C(elLr2)e

−(l−i)L . (3.20)

So, if j1 = 1 and jk = l−1, then the inequality (3.19) follows immediately. If not, assuming
j1 > 1, similar to deriving (3.20), we have, for 1 ≤ i ≤ j1,

Fi (u, v) ≤ 1

2
(e−Li F0(u, v) + e−L( j1−i)Fj1(u, v))

≤ C
(
e−Li F0(u, v) + (elLr2)e

−(l−i)L)
.

Similarly, if jk < l − 1, then for jk ≤ i ≤ l, we have

Fi (u, v) ≤ 1

2

(
e−L(l−i)Fl(u, v) + e−L(i− jk )Fjk (u, v)

)

≤ C

(
e−L(l−i)Fl(u, v) + (elLr2)e

−(l−i)L
)

.

Combining the preceding estimates proves the lemma. ��
Corollary 3.5 Under the assumptions of Lemma 3.4, we have

‖∇u‖L2(Pi ) + ‖∇v‖
L

4
3 (Pi )

≤ C

(
(elLr2)

1
2 + F1/2

0 (u, v) + F1/2
l (u, v)

)(
e− 1

2 (l−i)L + e− 1
2 i L

)
. (3.21)

Proof By Lemma 3.2, Lemma 3.4 and a standard scaling argument, we get

‖∇u‖L2(Pi ) + ‖∇v‖
L

4
3 (Pi )

≤ C

(
F1/2
i−1(u, v) + F1/2

i (u, v)

+ F1/2
i+1(u, v) + ei Lr2‖ f1‖L2(Pi−1∪Pi∪Pi+1)

+ (ei Lr2)
1
2 ‖ f2‖L2(Pi−1∪Pi∪Pi+1)

)

≤ C

(
(elLr2)

1
2 + F1/2

0 (u) + F1/2
l (u)

)(
e− 1

2 (l−i)L + e− 1
2 i L

)
.

��

4 Energy identity and no neck result

In this section, we will prove our main result Theorem 1.2.
We first consider the following simpler case of a single interior blow-up point.

Theorem 4.1 Let (φn, ψn) be a sequence of smooth approximateDirac-harmonicmaps from
D1(0) to N with

(a) ‖φn‖W 1,2(D) + ‖ψn‖L4(D) + ‖τn‖L2(D) + ‖hn‖L4(D) ≤ �,

(b) (φn, ψn) → (φ, ψ) strongly in W 1,2
loc (D\{0},RN ) × W

1, 4
3

loc (D\{0},RN ) as n → ∞,

123



108 Page 20 of 26 J. Jost et al.

where τn := τ(φn, ψn) and hn := h(φn, ψn). Then there exist a subsequence of (φn, ψn) (still
denoted by (φn, ψn)) and a nonnegative integer Q such that, for any i = 1, ..., Q, there exist
point xin, positive numbers λin and a nonconstant Dirac-harmonic sphere (σ i , ξ i ) : S2 → N
such that:

(1) xin → 0, λin → 0, as n → ∞;

(2) limn→∞
( λin

λ
j
n

+ λ
j
n

λin
+ |xin−x j

n |
λin+λ

j
n

) = ∞ for any i �= j ;

(3) (σ i , ξ i ) is theweak limit of (φn(xin+λin x),
√

λinψn(xin+λin x)) in W
1,2
loc (R2)×W

1, 4
3

loc (R2);

(4) Energy identity: we have

lim
n→∞ E(φn) = E(φ) +

Q∑
i=1

E(σ i ), (4.1)

lim
n→∞ E(ψn) = E(ψ) +

Q∑
i=1

E(ξ i ), (4.2)

(5) No neck property: The image

φ(D) ∪
Q⋃
i=1

σ i (S2) (4.3)

is a connected set.

Proof Assume 0 is the only blow-up point of the sequence {(φn, ψn)} in D, i.e.

lim inf
n→∞ E(φn, ψn; Dr ) ≥ ε2

0

2
for all r > 0. (4.4)

By the standard argument of blow-up analysis we can assume that, for any n, there exist
sequences xn → 0 and rn → 0 such that

E(φn, ψn; Drn (xn)) = sup
x∈D,r≤rn
Dr (x)⊂D

E(φn, ψn; Dr (x)) = ε2
0

4
. (4.5)

Denoting

φ′
n(x) := φn(xn + rnx), ψ

′
n(x) := √

rnψn(xn + rnx) (4.6)

then we have

τ(φ′
n, ψ

′
n) = �φ′

n − A(dφ′
n, dφ′

n) − Re
(
P(A(dφ′

n(eα), eα · ψ ′
n);ψ ′

n)
)
, (4.7)

h(φ′
n, ψ

′
n) = /∂ψ ′

n − A(dφ′
n(eα), eα · ψ ′

n), (4.8)

where τ(φ′
n, ψ

′
n) = r2

n τ(φn, ψn) and h(φ′
n, ψ

′
n) = r3/2

n h(φn, ψn). Noting that for any
DR(y) ⊂ R

2 with R > 0, there holds

E(φ′
n, ψ

′
n; DR(y)) ≤ E(φn, ψn; D 1

2
(xn)) ≤ � < ∞,
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E(φ′
n, ψ

′
n; D) = E(φn, ψn; Drn (xn)) = ε2

0

4
,

for n large enough. By the small energy regularity Theorem 2.1, the removable singularity
Theorem 2.5 and conformal invariance of Dirac-harmonic maps in dimension two, we can
take a subsequence, still denoted by (φ′

n, ψ
′
n), that strongly converges to a nonconstant Dirac-

harmonic sphere. This is the first bubble.
By the standard induction argument in [7], we only need to prove the theorem in the case

where there is only one bubble. Under this assumption, we have the following:

Claim For any ε > 0, there exist δ > 0 and R > 0 such that

E(φn, ψn; D8t (xn)\Dt (xn)) ≤ ε2 for any t ∈
(

1

2
rn R, 2δ

)
(4.9)

when n is large enough.

Proof In fact, if (4.9) is not true, then we can find ε > 0, tn → 0, such that limn→∞ tn
rn

= ∞
and

E(φn, ψn; D8tn (xn)\Dtn (xn)) ≥ ε > 0. (4.10)

Setting

un(x) := φn(xn + tnx), vn(x) := √
tnψn(xn + tnx),

then it is easy to see that 0 is an energy concentration point for (un, vn). We have to consider
the following two cases:

(a) (un, vn) has no other energy concentration points except 0.
By Theorem 2.1, passing to a subsequence, we may assume that (un, vn) converges to a
Dirac-harmonic map (σ, ξ) : R2 → N strongly in W 1,2

loc (R2) × L4
loc(R

2) as n → ∞. In
particular, we have

lim
n→∞ E(un, vn; D8\D1) = E(σ, ξ ; D8\D1) ≥ ε.

According to the standard theory of Dirac-harmonic maps, we know that (σ, ξ) is a
nontrivial Dirac-harmonic sphere. This is the second bubble. This is a contradiction to
the “one bubble” assumption.

(b) (un, vn) has another energy concentration point p �= 0.
Without loss of generality, we may assume that p is the only blow-up point in Dr (p) for
some small r > 0. By the standard theory of blow-up analysis, there exist x ′

n → p and
r ′
n → 0 such that

E(un, vn; Dr ′
n
(x ′

n)) = sup
x∈Dr (p),s≤rn
Ds (x)⊂Dr (p)

E(un, vn; Ds(x)) = ε2
0

4
. (4.11)

From the process of constructing the first bubble, we know that there exists a nontrivial
Dirac-harmonic sphere (̃σ , ξ̃ ) such that

(un(x
′
n + r ′

nx), r
′1/2
n vn(x

′
n + r ′

nx)) → (̃σ , ξ̃ ) strongly in W 1,2
loc (R2) × L4

loc(R
2)

as n → ∞. This is

(φn(xn + tnx
′
n + tnr

′
nx), (tnr

′
n)

1/2ψn(xn + tnx
′
n + tnr

′
nx)) → (̃σ , ξ̃ )
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strongly in W 1,2
loc (R2) × L4

loc(R
2)

as n → ∞. By (4.11), (̃σ , ξ̃ ) is nontrivial. Therefore, we again get the second bubble
contradicting the “one bubble” assumption. So, we proved Claim (4.9).

By Theorem 2.1, for any t ∈ (rn R, δ), we obtain

‖|x | 3
4 ∇φn‖L8(D2t (xn)\Dt (xn)) + ‖|x | 3

8 ψn‖L16(D2t (xn)\Dt (xn))

≤ C(‖∇φn‖L2(D4t (xn)\Dt/2(xn)) + ‖ψn‖L4(D4t (xn)\Dt/2(xn)) + t‖τn‖L2(D4t (xn)\Dt/2(xn))

+ √
t‖hn‖L2(D4t (xn)\Dt/2(xn)))

≤ C(ε + √
δ). (4.12)

For simplicity, we will denote φn, ψn, τn, hn by φ,ψ, τ and h respectively.
We define φ∗(r) and ψ∗(r) as follows:

φ∗(r) = 1

2π

∫ 2π

0
φ(r, θ)dθ and ψ∗(r) = 1

2π

∫ 2π

0
ψ(r, θ)dθ. (4.13)

Next, we use the same method as in [18] to compute the equation for (φ − φ∗, ψ − ψ∗).
Here, for reader’s convenience, we repeat this process again.

By equation (1.7), we have

�φ∗(t) = 1

2π

∫ 2π

0
A(φ)(dφ, dφ) + Re(P(φ) (A(φ)(dφ(eα), eα · ψ);ψ)) + τdθ

= I + II + 1

2π

∫ 2π

0
τdθ.

Computing directly, we have

I = 1

2π

∫ 2π

0
A(φ)(dφ, dφ) − A(φ∗)(dφ, dφ)

+A(φ∗)(dφ, dφ) − A(φ∗)(dφ∗, dφ∗) + A(φ∗)(dφ∗, dφ∗)dθ

= A(φ∗)(dφ∗, dφ∗) + 1

2π

∫ 2π

0
A4(φ − φ∗) + A5∇(φ − φ∗)dθ,

and

II = 1

2π
Re

∫ 2π

0
P(φ) (A(φ)(dφ(eα), eα · ψ);ψ)

−P(φ∗) (A(φ)(dφ(eα), eα · ψ);ψ)

+P(φ∗) (A(φ)(dφ(eα), eα · ψ);ψ)

−P(φ∗)
(A(φ∗)(dφ(eα), eα · ψ);ψ

)
+P(φ∗)

(A(φ∗)(dφ(eα), eα · ψ);ψ
)

−P(φ∗)
(A(φ∗)(dφ∗(eα), eα · ψ);ψ

)
+P(φ∗)

(A(φ∗)(dφ∗(eα), eα · ψ);ψ
)

−P(φ∗)
(A(φ∗)(dφ∗(eα), eα · ψ∗);ψ

)
+P(φ∗)

(A(φ∗)(dφ∗(eα), eα · ψ∗);ψ
)

−P(φ∗)
(A(φ∗)(dφ∗(eα), eα · ψ∗);ψ∗)

+P(φ∗)
(A(φ∗)(dφ∗(eα), eα · ψ∗);ψ∗) dθ
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= Re
(
P(φ∗)

(A(φ∗)(dφ∗(eα), eα · �∗);ψ∗))

+ 1

2π

∫ 2π

0
A4(φ − φ∗) + A5∇(φ − φ∗)

+ 1

2π
Re

∫ 2π

0
A6(ψ − ψ∗)dθ,

where Ai may differ from line to line and just stands for an expression satisfying

|A4| ≤ C(N )(|dφ|2 + |dφ||ψ |2),
|A5| ≤ C(N )(|dφ| + |ψ |2),
|A6| ≤ C(N )|dφ||ψ |.

Moreover, (4.12) implies

‖|x | 3
2 A4‖L4(D2t\Dt )

+ ‖|x |A6‖L4(D2t\Dt )
+ ‖|x | 1

2 A5‖L4(D2t\Dt )
≤ Cε

for any t ∈ ( 1
2rn R, 2δ). Then, we get

�(φ − φ∗) = A(φ)(dφ, dφ) − A(φ∗)(dφ∗, dφ∗)
+ReP(φ) (A(φ)(dφ(eα), eα · ψ);ψ)

−ReP(φ∗)
(A(φ∗)(dφ∗(eα), eα · ψ∗);ψ∗)

− 1

2π

∫ 2π

0
A4(φ − φ∗) + A5∇(φ − φ∗) + Re

(
A6(ψ − ψ∗)

)
dθ

+τ − 1

2π

∫ 2π

0
τdθ.

Using the same method, we get

�(φ − φ∗) = A1(φ − φ∗) + A2∇(φ − φ∗) + Re(A3(ψ − ψ∗))

+ 1

2π

∫ 2π

0
A4(φ − φ∗) + A5∇(φ − φ∗) + Re(A6(ψ − ψ∗))dθ

+τ − 1

2π

∫ 2π

0
τdθ, (4.14)

and

/∂(ψ − ψ∗) = B1(φ − φ∗) + B2∇(φ − φ∗) + B3(ψ − ψ∗)

+ 1

2π

∫ 2π

0
B4(φ − φ∗) + B5∇(φ − φ∗) + B6(ψ − ψ∗)dθ

+h − 1

2π

∫ 2π

0
hdθ, (4.15)

where Ai , Bi , i = 1, ..., 6 satisfy

|A1| + |A4| ≤ C(N )(|dφ|2 + |dφ||ψ |2),
|A2| + |A5| + |B3| + |B|6 ≤ C(N )(|dφ| + |ψ |2),
|A3| + |A6| + |B1| + |B4| ≤ C(N )|dφ||ψ |,
|B2| + |B5| ≤ C(N )|ψ |.
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and

‖|x | 3
2 (|A1| + |A4|)‖L4(D2r \Dr )

+ ‖|x | (|A3| + |A6| + |B1| + |B4|) ‖L4(D2r \Dr )

+ ‖|x | 1
2 (|A2| + |A5| + |B3| + |B6|)‖L4(D2r \Dr )

+ ‖|B2| + |B5|‖L4(D2r \Dr )
≤ Cε (4.16)

for any t ∈ ( 1
2rn R, 2δ) by (4.12).

Without loss of generality, we may assume δ = emnLrn R for some positive integer mn

which tends to ∞ as n → ∞. Substituting u = φ − φ∗ and v = ψ − ψ∗ in Corollary 3.5,
we obtain the energy decay in the θ -direction,

‖r−1 ∂φ

∂θ
‖L2(Pi ) + ‖r−1 ∂ψ

∂θ
‖
L

4
3 (Pi )

≤ ‖∇u‖L2(Pi ) + ‖∇v‖
L

4
3 (Pi )

≤ C

(
(ei Lrn R)

1
2 + F1/2

0 (u, v) + F1/2
mn (u, v)

)
(
e− 1

2 (mn−i)L + e− 1
2 i L

)

≤ C(
√

ε + √
δ)

(
e− 1

2 (mn−i)L + e− 1
2 i L

)
, (4.17)

where the last inequality follows from Poincaré’s inequality and the assumption (4.9).
By Corollary 2.4, we get

‖∂φ

∂r
‖L2(Pi ) ≤ ‖r−1 ∂φ

∂θ
‖

1
2
L2(Pi )

+ C‖r−1 ∂ψ

∂θ
‖

1
2

L
4
3 (Pi )

+ C
√
ei Lrn R

≤ C
(
ε

1
4 + δ

1
4

) (
e− 1

4 (mn−i)L + e− 1
4 i L

)
. (4.18)

Therefore,

‖∇φ‖L2(Pi ) ≤ C(ε
1
4 + δ

1
4 )

(
e− 1

4 (mn−i)L + e− 1
4 i L

)
. (4.19)

Then, by Theorem 2.1, we have

E(φ; Dδ(xn)\Drn R(xn)) ≤
mn−1∑
i=0

‖∇φ‖2
L2(Pi )

≤ C(ε
1
2 + δ

1
2 ) (4.20)

and

OscDδ(xn)\Drn R(xn)φn ≤ C
mn−1∑
i=0

(
‖∇φ‖L2(Pi ) + ei Lrn R‖τ‖L2(Pi )

)

≤ C
(
ε

1
4 + δ

1
4

)
. (4.21)

So, we have proved (4.1) and (4.3).
Combining this with equation (1.8), we get

‖∂ψ

∂r
‖
L

4
3 (Pi )

≤ ‖r−1 ∂ψ

∂θ
‖
L

4
3 (Pi )

+ C‖∇φ‖L2(Pi )‖ψ‖L4(Pi ) + ‖h‖
L

4
3 (Pi )

≤ C(ε
1
4 + δ

1
4 )

(
e− 1

4 (mn−i)L + e− 1
4 i L

) + CeiLrn R‖h‖L4(Pi )
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≤ C(ε
1
4 + δ

1
4 )

(
e− 1

4 (mn−i)L + e− 1
4 i L

)
.

Thus,

‖∇ψ‖
L

4
3 (Pi )

≤ C
(
ε

1
4 + δ

1
4

) (
e− 1

4 (mn−i)L + e− 1
4 i L

)
. (4.22)

Taking a cut-off function η ∈ C∞
0 (Dδ), such that 0 ≤ η ≤ 1, η ≡ 1 in D 1

2 δ\D2rn R and

|∇η| ≤ C

δ
in Dδ\D 1

2 δ and |∇η| ≤ C

rn R
in D2rn R\Drn R,

by the elliptic estimates for first order equations and Sobolev embedding, we obtain

‖ηψ‖L4(Dδ)
≤ C‖/∂(ηψ)‖

L
4
3 (Dδ)

≤ C

(
1

δ
‖ψ‖

L
4
3 (Dδ\D 1

2 δ
)
+ 1

rn R
‖ψ‖

L
4
3 (D2rn R\Drn R)

+‖∇ψ‖
L

4
3 (Dδ\Drn R)

+ ‖h‖
L

4
3 (Dδ)

)

≤ C

(
‖ψ‖L4(Dδ\D 1

2 δ
) + ‖ψ‖L4(D2rn R\Drn R)

+
mn∑
i=1

‖∇ψ‖
L

4
3 (Pi )

+ δ‖h‖L4(Dδ)

)

≤ C
(
ε

1
4 + δ

1
4

)
,

where the last inequality follows from (4.22). This is

E(ψ; Dδ(xn)\Drn R(xn)) ≤ C(ε + δ). (4.23)

This is (4.2) and we finished the proof of Theorem 4.1. ��
Proof of Theorem 1.2 It is easy to see that Theorem 1.2 is a consequence of Theorem 4.1,
the removable singularity Theorem 2.5 and the standard argument in [7]. ��
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