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Abstract In this paper, we study the following fractional Schrödinger–Poisson system

⎧
⎨

⎩

ε2s(−�)su + V (x)u + φu = K (x)|u|p−2u, in R
3,

ε2s(−�)sφ = u2, in R
3,

(0.1)

where ε > 0 is a small parameter, 3
4 < s < 1, 4 < p < 2∗

s := 6
3−2s ,V (x) ∈ C(R3)∩L∞(R3)

has positive global minimum, and K (x) ∈ C(R3) ∩ L∞(R3) is positive and has global
maximum. We prove the existence of a positive ground state solution by using variational
methods for each ε > 0 sufficiently small, and we determine a concrete set related to the
potentials V and K as the concentration position of these ground state solutions as ε → 0.
Moreover, we considered some properties of these ground state solutions, such as convergence
and decay estimate.
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1 Introduction and the main results

In this paper, we study the existence and concentration of solutions for the following fractional
Schrödinger–Poisson system

⎧
⎨

⎩

ε2s(−�)su + V (x)u + φu = K (x)|u|p−2u, in R
3,

ε2s(−�)sφ = u2, in R
3.

(1.1)

Here ε > 0 is a small parameter, 3
4 < s < 1 is a fixed constant, 4 < p < 2∗

s , 2∗
s := 6

3−2s is
the fractional critical exponent in dimension 3, and the operator (−�)s is the fractional Lapla-
cian of order s, which can be defined by the Fourier transform (−�)su = F−1(|ξ |2sFu). In
(1.1), the first equation is a fractional nonlinear Schrödinger equation in which the potential
φ satisfies the second equation which is a fractional Poisson equation. For this reason, (1.1) is
refereed to as a fractional nonlinear Schrödinger–Poisson system (also called Schrödinger–
Maxwell system).

In the local case that s = 1, (1.1) reduces to the following system
⎧
⎨

⎩

−ε2�u + V (x)u + φu = K (x)g(u), inR3,

−ε2�φ = u2, inR3,

(1.2)

which is called the Hatree–Fock equation for ε = 1 in [30]. A similar system settled on a
bounded domain was introduced by Benci in [4] as a model in semiconductor theory. For
more physical aspects of (1.2) we refer to [5] and the references therein.

In the past decades, the system like or similar to (1.2) has been studied extensively by
means of variational tools. See [1,25,36,44,48] and the references therein for the existence
of solutions. The concentration behavior of solutions was studied in some papers. In [37],
Ruiz and Vaira constructed multibump solutions whose bumps concentrate around a local
minimum of the potential V . In [19], by using the Ljusternik–Schnirelmann theory, He proved
that the system (1.2) has at least catΛδ (Λ) positive solutions for ε > 0 small. The critical
case was considered in [20], He and Zou proved that system (1.2) possesses a positive ground
state solution which concentrate around the global minimum of V . In [23], Ianni and Vaira
considered the following system

⎧
⎨

⎩

−ε2�u + V (x)u + φu = f (u), in R
3,

−�φ = u2, in R
3.

The authors proved the existence of a single bump solution which concentrates on the critical
points ofV (x). In [11], D’Aprile and Wei constructed a family of radially symmetric solutions
concentrating around a sphere. See [45] for the concentration phenomena for a Schrödinger–
Poisson system with competing potentials.

If φ(x) = 0, (1.1) becomes the fractional Schrödinger equation like

ε2s(−�)su + V (x)u = f (x, u), x ∈ R
N . (1.3)

Solutions of the Eq. (1.3) are standing wave solutions of the fractional Schrödinger equation
of the form

iε
∂ψ

∂t
= ε2s(−�)sψ + V (x)ψ − f (x, |ψ |), x ∈ R

N ,

that is solutions of the form ψ(x, t) = e−i Et/εu(x), where E is a constant, u(x) is a solution
of (1.3). The fractional Schrödinger equation is a fundamental equation in fractional quantum
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mechanics. It was discovered by Laskin [27,28] as a result of extending the Feynman path
integral, from the Brownian-like to Lévy-like quantum mechanical paths, where the Feynman
path integral leads to the classical Schrödinger equation, and the path integral Lévy trajectories
leads to the fractional Schrödinger equation. Different to the classical Laplacian operator,
the usual analysis tools for elliptic PDEs can not be directly applied to (1.3) since (−�)s is
a nonlocal operator. In [7], Cafferelli and Silvestre developed a powerful extension method
which transfer the nonlocal Eq. (1.3) into a local one settled on a half-space. Recently, in [13],
the authors gave a survey on the fractional Sobolev spaces and proposed some fundamental
techniques for fractional Laplacian equations.

Since then, there have been some works concerning with the existence, multiplicity and
concentration phenomenon of solutions to nonlinear fractional Schrödinger Eq. (1.3) via
variational methods. See [8,16,18,31,38,39] for the existence of solutions. The concentra-
tion phenomena was considered independently in [9,12] via a Lyapunov–Schmidt reduction
argument. After that, the concentration problem was studied in some very recent works. The
solutions concentrated around a global minimum of the potential V were constructed in [17].
For the concentration phenomena around a local minimum of the potential V , see [2,21]
for the subcritical and the critical cases, respectively. See also [10] for a similar work with
s = 1

2 and a nonlocal term. The different concentration phenomena for (1.3) with competition
potentials was studied in [29,39].

To the best of our knowledge, there are few results concerning the existence of solutions
to (1.1) except for works [33,41,47]. In [41], Teng adapted the monotonicity trick (see for
example, Jeanjean and Tanaka [24]) to obtain the existence of ground state solutions to

⎧
⎨

⎩

(−�)su + V (x)u + φu = μ|u|q−1u + |u|2∗
s−2u, in R

3,

(−�)tφ = αu2, in R
3,

for q ∈ (2, 2∗
s − 1). See [42] for the subcritical case. In [33], the authors considered the

following system ⎧
⎨

⎩

ε2s(−�)su + V (x)u + φu = g(u), in R
3,

εθ (−�)
α
2 φ = γαu2, in R

3,

and adapted some ideas of [3] to establish the multiplicity of solutions for small ε, where
g is subcritical at infinity. A positive solution of a system similar to (1.1) with V = 0 was
obtained in [47].

It is natural to ask how about the asymptotical behavior of solutions of (1.1) as ε → 0?
As far as we know such a problem was not considered before. There are some difficulties in
such a problem. The first one is that there is a competition between the potentials V and K :
each would try to attract ground states to their minimum and maximum points, respectively.
This makes difficulties in determining the concentration position of solutions. This kind of
problem can be trace back to [43], see also [14,15] for a different concentration phenomena
for a Dirac equation and an elliptic system of Hamilton type. The second one is, as we
mention above, the fractional Laplacian operator (−�)s is nonlocal, and this brings some
essential difference with the elliptic equations with the classical Laplacian operator, such as
regularity, Maximum principle and so on.

In this paper, we will give an answer to the above question. First, we obtain a positive
ground state solutions via Nehari manifold method for each ε > 0 small enough. To study the
concentration behavior of these solutions as ε → 0, we establish the L∞ and decay estimate
of these solutions. At last, we determine a concrete set related to the potentials V and K as
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the concentration position of these solutions. Roughly speaking, the ground state solutions
concentrate at such points x where V (x) is small or K (x) is large. For a special case, we
show that, as ε → 0, these ground state solutions concentrate around such points which are
both the minima points of the potential V and the maximum points of the potential K .

Before stating our theorems, we first give some notations. Set

Vmin := min
x∈R3

V, V := {
x ∈ R

3 : V (x) = Vmin
}
, V∞ := lim inf|x |→∞ V (x),

Kmax := max
x∈R3

K , K := {
x ∈ R

3 : K (x) = Kmax
}
, K∞ := lim sup

|x |→∞
K (x).

To describe our results, we assume that V and K satisfy the following conditions:

(A0) V, K ∈ L∞(R3) are uniformly continuous and Vmin > 0, inf K > 0;
either

(A1) Vmin < V∞ < +∞ and there exists x1 ∈ V such that K (x1) ≥ K (x) for |x | ≥ R with
R > 0 sufficiently large;
or

(A2) Kmax > K∞ ≥ inf K > 0 and there exists x2 ∈ K such that V (x2) ≤ V (x) for
|x | ≥ R with R > 0 sufficiently large.

Obviously, if (A1) holds, we can assume K (x1) = max
x∈V K (x), and set

H1 = {x ∈ V : K (x) = K (x1)} ∪ {x /∈ V : K (x) > K (x1)} .

If (A2) holds, we can assume V (x2) = min
x∈K V (x), and set

H2 = {x ∈ K : V (x) = V (x2)} ∪ {x /∈ K : V (x) < V (x2)} .

Clearly, H1 and H2 are bounded sets. Moreover, if V ∩ K 
= ∅, then H1 = H2 = V ∩ K.
Now we state our main results as follows.

Theorem 1.1 Assume that (A0) and (A1) hold, then for all small ε > 0:

(i) The system (1.1) has a positive ground state solution (ωε, φωε );
(ii) ωε possesses a global maximum point xε such that, up to a subsequence, xε → x0 as

ε → 0, lim
ε→0

dist (xε,H1) = 0, and vε(x) := ωε(εx + xε) converges in Hs(R3) to a

positive ground state solution of
⎧
⎨

⎩

(−�)su + V (x0)u + φu = K (x0)|u|p−2u, in R
3,

(−�)sφ = u2, in R
3.

In particular if V ∩K 
= ∅, then lim
ε→0

dist (xε,V ∩K) = 0, and up to a subsequence, vε

converges in Hs(R3) to a positive ground state solution of
⎧
⎨

⎩

(−�)su + Vminu + φu = Kmax|u|p−2u, in R
3,

(−�)sφ = u2, in R
3.

(iii) There exists a constant C > 0 such that

ωε(x) ≤ Cε3+2s

ε3+2s + |x − xε|3+2s , ∀x ∈ R
3.
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Theorem 1.2 Assume (A0) and (A2) holds, and we replace (H1) by (H2), then all the
conclusions of Theorem 1.1 remain true.

In the sequel, we only give the details proof for Theorem 1.1 because the argument for
Theorem 1.2 is similar to that for Theorem 1.1.

This paper is organized as follows. In Sect. 2, we provide some preliminary Lemmas which
will be used later. In Sect. 3, we prove the existence of positive ground state solutions. In
Sect. 4, we study the concentration phenomenon and convergence of ground state solutions. In
Sect. 5, we obtain the decay estimate of solution, which is polynomial instead of exponential
form. Finally, we give the Proof of Theorem 1.1.

2 Preliminary results

Throughout this paper, we denote ‖·‖p the usual norm of the space L p(R3), 1 ≤ p < ∞,
‖·‖∞ denote the norm of the space L∞(R3), C or Ci (i = 1, 2, . . .) denote some positive
constants may change from line to line.

First, we collect some preliminary results for the fractional Laplacian. We define the
homogeneous fractional Sobolev space Ds,2(R3) as the completion of C∞

0 (R3) with respect
to the norm

‖u‖Ds,2 :=
(∫∫

R3×R3

|u(x) − u(y)|2
|x − y|3+2s dxdy

) 1
2

= [u]Hs .

We denote by Hs(R3) the standard fractional Sobolev space, defined as the set of u ∈
Ds,2(R3) satisfying u ∈ L2(R3) with the norm

‖u‖2
Hs =

∫∫

R3×R3

|u(x) − u(y)|2
|x − y|3+2s dxdy +

∫

R3
u2dx = [u]2

Hs + ‖u‖2
2.

Also, in light of [13, Proposition 3.4 and Proposition 3.6], we have
∥
∥
∥(−�)

s
2 u

∥
∥
∥

2

2
=

∫

R3
|ξ |2s |û(ξ)|2dξ = 1

2
C(s)

∫∫

R3×R3

|u(x) − u(y)|2
|x − y|3+2s dxdy,

where û stands for the Fourier transform of u and

C(s) =
( ∫

R3

1 − cosξ1

|ξ |3+2s dξ

)−1

, ξ = (ξ1, ξ2, ξ3).

As a consequence, the norms on Hs(R3) defined below

u �→
( ∫

R3
u2dx +

∫∫

R3×R3

|u(x) − u(y)|2
|x − y|3+2s dxdy

) 1
2

u �→
( ∫

R3
u2dx +

∫

R3
|ξ |2s |û(ξ)|2dξ

) 1
2

u �→
( ∫

R3
u2dx + ‖(−�)

s
2 u‖2

2

) 1
2

are all equivalent. Moreover, (−�)su can be equivalently represented as (see [13,
Lemma 3.2])

(−�)su(x) = −C(s)

2

∫

R3

u(x + y) + u(x − y) − 2u(x)

|y|3+2s dy, ∀ x ∈ R
3. (2.1)
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We denote ‖·‖Hs by ‖·‖ in the sequel for convenience.
Recall that by the Lax–Milgram theorem, we know that for every u ∈ Hs(R3), there

exists a unique φs
u ∈ Ds,2(R3) such that (−�)sφs

u = u2 and φs
u can be expressed by

φs
u(x) = Cs

∫

R3

u2(y)

|x − y|3−2s dy, ∀ x ∈ R
3,

which is called s-Riesz potential(see [26] or [7]), where

Cs = 1

π
3
2

Γ
( 3

2 − s
)

22sΓ (s)
.

Making the change of variable x �→ εx , we can rewrite the system (1.1) as the following
equivalent system

⎧
⎨

⎩

(−�)su + V (εx)u + φu = K (εx)|u|p−2u, in R
3,

(−�)sφ = u2, in R
3.

(2.2)

If u is a solution of the system (2.2), then ω(x) := u( x
ε
) is a solution of the system (1.1).

Thus, to study the system (1.1), it suffices to study the system (2.2). In view of the presence
of potential V (x), we introduce the subspace

Hε =
{

u ∈ Hs (
R

3) :
∫

R3
V (εx)u2dx < ∞

}

,

which is a Hilbert space equipped with the inner product

(u, v)ε =
∫

R3
(−�)

s
2 u(−�)

s
2 vdx +

∫

R3
V (εx)uvdx,

and the equivalent norm

‖u‖2
ε = (u, u)ε =

∫

R3
|(−�)

s
2 u|2dx +

∫

R3
V (εx)u2dx .

Moreover, it can be proved that (u, φs
u) ∈ Hε ×Ds,2(R3) is a solution of (2.2) if and only if

u ∈ Hε is a critical point of the functional Iε : Hε → R defined as

Iε(u) = 1

2

∫

R3
|(−�)

s
2 u|2dx + 1

2

∫

R3
V (εx)u2dx + 1

4

∫

R3
φs
uu

2dx − 1

p

∫

R3
K (εx)|u|pdx,

(2.3)
where φs

u is the unique solution of the second equation in (2.2). Note that 2 ≤ 12
3+2s ≤ 2∗

s if

s ≥ 1
2 , then by the Hölder inequality and the Sobolev inequality (see Lemma 2.3 below), we

have
∫

R3
φs
uu

2dx ≤
(∫

R3
|u| 12

3+2s dx

) 3+2s
6

(∫

R3
|φs

u |2
∗
s dx

) 1
2∗
s

≤ C

(∫

R3
|u| 12

3+2s dx

) 3+2s
6 ‖φs

u‖Ds,2

≤ C‖u‖2‖φs
u‖Ds,2 < ∞.
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Therefore, the functional Iε is well-defined for every u ∈ Hε and belongs to C1(Hε,R).
Moreover, for any u, v ∈ Hε , we have

〈I ′
ε(u), v〉 =

∫

R3
(−�)

s
2 u(−�)

s
2 vdx +

∫

R3
V (εx)uvdx

+
∫

R3
φs
uuvdx −

∫

R3
K (εx)|u|p−2uvdx .

(2.4)

The properties of the function φs
u are given in the following Lemma (see [41, Lemma 2.3]).

Lemma 2.1 For any u ∈ Hs(R3) and s ∈ [ 1
2 , 1), we have

(i) φs
u ≥ 0;

(ii) φs
u : Hs(R3) → Ds,2(R3) is continuous and maps bounded sets into bounded sets;

(iii)
∫

R3 φs
uu

2dx ≤ C‖u‖4
12

3+2s
≤ C‖u‖4;

(iv) If un ⇀ u in Hs(R3), then φs
un ⇀ φs

u in Ds,2(R3);
(v) If un → u in Hs(R3), then φs

un → φs
u in Ds,2(R3) and

∫

R3 φs
un u

2
ndx → ∫

R3 φs
uu

2dx.

Define N : Hs(R3) → R by

N (u) =
∫

R3
φs
uu

2dx .

The next Lemma shows that the functional N and N ′ possesses BL-splitting property
which is similar to the well-known Brezis–Lieb Lemma ([6]).

Lemma 2.2 ([41, Lemma 2.4]) Assume that s > 3
4 . Let un ⇀ u in Hs(R3) and un → u

a.e. in R
3. Then

(i) N (un − u) = N (un) − N (u) + o(1);
(ii) N ′(un − u) = N ′(un) − N ′(u) + o(1), in (Hs(R3))∗.

The following embedding results for fractional Sobolev space can be found in [13].

Lemma 2.3 There exists a constant C, depending only on s such that

‖u‖2
2∗
s

≤ C
∫∫

R3×R3

|u(x) − u(y)|2
|x − y|3+2s dxdy,

for every u ∈ Hs(R3). Moreover, Hs(R3) is continuously embedding into Lr (R3) for any
r ∈ [2, 2∗

s ] and compactly embedding into Lr
loc(R

3) for any r ∈ [1, 2∗
s ).

The following vanishing Lemma is a version of the concentration-compactness principle
proved by P. L. Lions. We can consult [22, Lemma 3.6], [18] and [38, Lemma 2.4].

Lemma 2.4 If {un} is bounded in Hs(R3) and for some R > 0 and 2 ≤ r < 2∗
s we have

sup
x∈R3

∫

BR(x)
|un |r dx → 0 as n → ∞,

then un → 0 in Lt (R3) for any 2 < t < 2∗
s .

The following Lemma implies that the functional Iε possesses the Mountain Pass structure
(see [34] or [46]).
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Lemma 2.5 The functional Iε possesses the following properties

(i) there exist α, ρ > 0, such that Iε(u) ≥ α if ‖u‖ε = ρ;
(ii) there exists an e ∈ Hε with ‖e‖ε > ρ such that Iε(e) < 0.

Proof (i) For any u ∈ Hε\{0}, by Lemma 2.1(i) and the Sobolev inequality, we have

Iε(u) = 1

2

∫

R3
|(−�)

s
2 u|2dx + 1

2

∫

R3
V (εx)u2dx + 1

4

∫

R3
φs
uu

2dx

− 1

p

∫

R3
K (εx)|u|pdx

≥ 1

2

∫

R3
|(−�)

s
2 u|2dx + 1

2

∫

R3
V (εx)u2dx − 1

p
Kmax

∫

R3
|u|pdx

≥ 1

2
‖u‖2

ε − C‖u‖p
ε .

Since p > 4, hence, we can choose some ρ > 0 such that

Iε(u) ≥ α with ‖u‖ε = ρ.

(ii) For any u ∈ Hε\{0}, we have

Iε(tu) = t2

2

∫

R3
|(−�)

s
2 u|2dx + t2

2

∫

R3
V (εx)u2dx

+ t4

4

∫

R3
φs
uu

2dx − t p

p

∫

R3
K (εx)|u|pdx

≤ t2

2

∫

R3
|(−�)

s
2 u|2dx + t2

2

∫

R3
V (εx)u2dx + t4

4

∫

R3
φs
uu

2dx

− t p

p
inf K

∫

R3
|u|pdx

→ −∞ as t → ∞.

Thus, we can choose e = t∗u for some t∗ > 0 large enough such that (ii) holds.
��

Lemma 2.6 Let {un} be a (PS)c sequence for Iε.Then {un} is bounded in Hε .

Proof Let {un} ⊂ Hε be a (PS)c sequence for Iε , that is

Iε(un) → c and I ′
ε(un) → 0 as n → +∞.

Therefore, we have

c + 1 + ‖un‖ε ≥ Iε(un) − 1

4
〈I ′

ε(un), un〉

= 1

4

∫

R3
|(−�)

s
2 un |2dx + 1

4

∫

R3
V (εx)u2

ndx

+
(

1

4
− 1

p

) ∫

R3
K (εx)|un |pdx

≥ 1

4
‖un‖2

ε,

for n large enough, which implies that {un} is bounded in Hε . ��
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To characterize the least energy, we define the Nehari manifold by

Nε = {
u ∈ Hε\{0} : 〈I ′

ε(u), u〉 = 0
}
.

Thus, for any u ∈ Nε , we have that
∫

R3
|(−�)

s
2 u|2dx +

∫

R3
V (εx)u2dx +

∫

R3
φs
uu

2dx =
∫

R3
K (εx)|u|pdx .

Lemma 2.7 For any u ∈ Hε\{0}, we have
(i) There exists a unique tε = tε(u) > 0 such that tεu ∈ Nε . Moreover, Iε(tεu) =

max
t≥0

Iε(tu).

(ii) There exist T1 > T2 > 0 independent of ε > 0 such that T2 ≤ tε ≤ T1.

Proof (i) For t > 0, let

g(t) = Iε(tu) = t2

2

∫

R3
|(−�)

s
2 u|2dx + t2

2

∫

R3
V (εx)u2dx

+ t4

4

∫

R3
φs
uu

2dx − t p

p

∫

R3
K (εx)|u|pdx .

Then we have

g(t) ≥ 1

2
t2‖u‖2

ε − t p

p

∫

R3
|u|qdx ≥ t2

4
‖u‖2

ε − Ct p‖u‖p
ε .

Since 4 < p < 2∗
s , g(t) > 0 for small t > 0. Moreover, by Lemma 2.1(iii), we get

g(t) ≤ t2

2
‖u‖2

ε + Ct4‖u‖4
ε − t p

p

∫

R3
|u|pdx .

Hence, g(t) → −∞ as t → ∞ and g has a positive maximum at tε = tε(u) > 0. So
that g′(tεu) = 0 and tεu ∈ Nε . The condition g′(t) = 0 is equivalent to

‖u‖2
ε

t2 +
∫

R3
φs
uu

2dx = t p−4
∫

R3
K (εx)|u|pdx . (2.5)

Suppose that there exist t ′ε > tε > 0 such that t ′εu, tεu ∈ Nε . It follows from (2.5) that
(

1

t ′ε2 − 1

t2
ε

)

‖u‖2
ε =

(
t ′ε

p−4 − t p−4
ε

) ∫

R3
K (εx) |u|pdx .

which is impossible in view of t ′ε > tε > 0.
(ii) By tεu ∈ Nε and Lemma 2.1(iii), we have

C1t
2
ε ‖u‖2 + C2t

4
ε ‖u‖4 ≥ t2

ε ‖u‖2
ε + t4

ε

∫

R3
φs
uu

2dx = t pε

∫

R3
K (εx)|u|pdx

≥ C3t
p
ε

∫

R3
|u|pdx .

Thus, there exists a T1 > 0 independent of ε such that tε ≤ T1.
On the other hand, using tεu ∈ Nε again and Lemma 2.1(i), we have

t2
ε ‖u‖2 ≤ t pε

∫

R3
K (εx)|u|pdx,
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which yields that there exists a T2 > 0 independent of ε such that tε ≥ T2. ��
In order to obtain a ground state solution, we need a characterization of the least energy.

Following [35], we define

cε = inf
γ∈Γ

max
t∈[0,1] Iε(γ (t)), c∗

ε = inf
u∈Nε

Iε(u), c∗∗
ε = inf

u∈Hε\{0} max
t≥0

Iε(tu),

where Γ = {γ ∈ C([0, 1], Hε) : γ (0) = 0, Iε(γ (1)) ≤ 0, γ (1) 
= 0}.
By a standard argument (see [35,46]), we have

Lemma 2.8 cε = c∗
ε = c∗∗

ε > 0.

For any a, b > 0, consider the autonomous problem
⎧
⎨

⎩

(−�)su + au + φu = b|u|p−2u, in R
3,

(−�)sφ = u2, in R
3,

(2.6)

and the corresponding energy functional

Iab(u) = 1

2

∫

R3
|(−�)

s
2 u|2dx + a

2

∫

R3
u2dx + 1

4

∫

R3
φs
uu

2dx − b

p

∫

R3
|u|pdx,

defined for u ∈ Hs(R3). It is easy to check that Iab(u) possesses the Mountain Pass structure
and hence Iab(u) has a bounded (PS)-sequence, and its least energy has the same charac-
terization as stated in Lemma 2.8. Using the fact that Iab(u) is invariant under translation,
we see that γab = inf

u∈Nab
Iab(u) is attained, where γab is the Mountain Pass level and Nab is

the Nehari manifold of Iab.

Lemma 2.9 Let a j > 0andb j > 0, j = 1, 2, with a1 ≤ a2 andb1 ≥ b2. Thenγa1b1 ≤ γa2b2 .
In particular, if one of inequalities is strict, then γa1b1 < γa2b2 .

Proof Let u ∈ Na2b2 be such that

γa2b2 = Ia2b2(u) = max
t>0

Ia2b2(tu).

Let u0 = t1u be such that Ia1b1(u0) = max
t>0

Ia1b1(tu). One has

γa2b2 = Ia2b2(u) ≥ Ia2b2(u0)

= Ia1b1(u0) + 1

2
(a2 − a1)

∫

R3
|u0|2dx + 1

p
(b1 − b2)

∫

R3
|u0|pdx

≥ γa1b1 .

Thus, we complete the proof. ��
Without loss of generality, up to a translation, we may assume that

x1 = 0 ∈ V,

so
V (0) = Vmin and κ := K (0) ≥ K (x) for all |x | ≥ R.

Lemma 2.10 lim sup
ε→0

cε ≤ γVminκ .
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Proof Denote V c(x) = max{c, V (x)}, Kd(x) = min{d, K (x)}, V c
ε (x) = V c(εx) and

Kd
ε (x) = Kd(εx), where c, d are positive constants. Define the auxiliary functional as

follows:

Icd
ε (u) := 1

2

∫

R3
|(−�)

s
2 u|2dx+ 1

2

∫

R3
V c

ε (x)u2dx+ 1

4

∫

R3
φs
uu

2dx− 1

p

∫

R3
Kc

ε (x)|u|pdx,

for any u ∈ Hs(R3), which implies that Icd(u) ≤ Icd
ε (u), and thus γcd ≤ ccdε , where ccdε

is the least energy of Icd
ε . By the definition of Vmin and Kmax, we get V Vmin

ε (x) = V (εx),
K Kmax

ε (x) = K (εx). Therefore, we have

IVminKmax
ε (u) = Iε(u), (2.7)

and V Vmin
ε (x) → V (0) = Vmin , K Kmax

ε (x) → K (0) = κ uniformly on bounded sets of x as
ε → 0.

Now, we claim lim sup
ε→0

cVminKmax
ε ≤ γVminκ .

Indeed, let w be a ground state solution of IVminκ , that is, IVminκ (w) = γVminκ , then there
exists tε > 0 such that tεw ∈ N VminKmax

ε , where N VminKmax
ε is the Nehari manifold of the

functional IVminKmax
ε . Thus

cVminKmax
ε ≤ IVminKmax

ε (tεw) = max
t≥0

IVminKmax
ε (tw).

One has

IVminKmax
ε (tεw) = IVminκ (tεw) + 1

2

∫

R3

(
V Vmin

ε (x) − Vmin

)
|tεw|2dx

+ 1

p

∫

R3

(
κ − K Kmax

ε (x)
)

|tεw|pdx .
(2.8)

By Lemma 2.7(ii), we can assume that tε → t0 as ε → 0. Since w ∈ L2(R3), for any η > 0,
there exists a R > 0 such that ∫

R3\BR(0)

|w|2dx < η.

Therefore,
∫

R3

(
V Vmin

ε (x) − Vmin

)
|tεw|2dx =

∫

R3

(
V Vmin

ε (x) − Vmin

)
|t0w|2dx + o (1)

=
∫

R3\BR(0)

(
V Vmin

ε (x) − Vmin

)
|t0w|2dx+

∫

BR(0)

(
V Vmin

ε (x) − Vmin

)
|t0w|2dx + o (1)

≤ Ct2
0 η + o (1) + o (1) ,

here we use the fact that V Vmin
ε (x) → Vmin uniformly in x ∈ BR(0). Thus, we obtain

∫

R3

(
V Vmin

ε (x) − Vmin

)
|tεw|2dx = o (1) .

Similarly, we have ∫

R3

(
κ − K Kmax

ε (x)
)

|tεw|pdx = o (1) .

Thus, by (2.8), we have

IVminKmax
ε (tεw) = IVminκ (tεw) + o(1) → IVminκ (t0w) as ε → 0. (2.9)
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Consequently

cVminKmax
ε ≤ IVminKmax

ε (tεw) → IVminκ (t0w) ≤ max
t≥0

IVminκ (tw) = IVminκ (w) = γVminκ .

From (2.7), we obtain cVminKmax
ε = cε. This completes the proof. ��

3 Existence of ground state solutions

Lemma 3.1 cε is attained at some positive uε ∈ Hε for small ε > 0.

Proof By Lemma 2.5, we see that the functional Iε possesses the Mountain Pass structure.
Using a version of the Mountain Pass theorem without (PS) condition(see [46]), there exists
a sequence {un} ⊂ Hε such that

Iε(un) → cε and I ′
ε(un) → 0 as n → ∞.

By Lemma 2.6, we know that {un} is bounded in Hε . Assume that un ⇀ uε in Hε , then by
Lemmas 2.2(ii) and 2.3, we have I ′

ε(uε) = 0. If uε 
= 0, it is easy to check that Iε(uε) = cε.
Next we show that uε 
= 0 for small ε > 0.

Assume by contradiction that there exists a sequence ε j → 0 such that uε j = 0, then
un ⇀ 0 in Hε, and thus un → 0 in Lt

loc(R
3) for t ∈ [1, 2∗

s ) and un(x) → 0 a.e. in x ∈ R
3.

By (A1), choose b ∈ (Vmin, V∞) and consider the functional Ibκ
ε j

. Let tn > 0 be such

that tnun ∈ N bκ
ε j

, from Lemma 2.7(ii), {tn} is bounded. Assume tn → t0 as n → ∞. By

(A1) again, the set Oε := {x ∈ R
3 : Vε(x) < b or Kε(x) ≥ κ} is bounded. Notice that

Iε j (tnun) ≤ Iε j (un). We obtain

cbκε j
≤ Ibκ

ε j
(tnun)

= Iε j (tnun) + 1

2

∫

R3

(
V b

ε j
(x) − V (ε j x)

)
|tnun |2dx

+ 1

p

∫

R3

(
K (ε j x) − K κ

ε j
(x)

)|tnun |pdx

= Iε j (tnun) + 1

2

∫

Oε j

(
b − V (ε j x)

)|tnun |2dx

+ 1

p

∫

Oε j

(
K (ε j x) − κ

)|tnun |pdx

≤ Iε j (tnun) + o(1) ≤ Iε j (un) + o(1) = cε j .

Notice that γbκ ≤ cbκε j
, hence γbκ ≤ cε j . In virtue of Lemma 2.10, letting ε j → 0 yields

γbκ ≤ γVminκ ,

which is impossible since γVminκ < γbκ . Therefore, cε is attained at some uε 
= 0 for small
ε > 0.

Next we only need to prove that the solution uε is positive. Put u±
ε = max{±uε, 0} the

positive (negative) part of uε. We note that all the calculations above can be repeated word
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by word, replacing I+
ε (uε) with the functional

I+
ε (uε) = 1

2

∫

R3
|(−�)

s
2 uε|2dx + 1

2

∫

R3
V (εx)u2

εdx

+1

4

∫

R3
φs
uε
u2

εdx − 1

p

∫

R3
K (εx)|u+

ε |pdx .
In this way we get a ground state solution uε of the equation

(−�)suε + V (εx)uε + φs
uε
uε = K (εx)|u+

ε |p−2u+
ε , in R

3. (3.1)

Using u−
ε as a test function in (3.1) we obtain

∫

R3
(−�)

s
2 uε · (−�)

s
2 u−

ε dx +
∫

R3
V (εx)|u−

ε |2dx +
∫

R3
φs
uε

(u−
ε )2dx = 0. (3.2)

On the other hand,
∫

R3
(−�)

s
2 uε · (−�)

s
2 u−

ε dx = 1

2
C(s)

∫∫

R3×R3

(uε(x) − uε(y))(u−
ε (x) − u−

ε (y))

|x − y|3+2s dxdy

≥ 1

2
C(s)

[∫

{uε>0}×{uε<0}
(uε(x) − uε(y))(−u−

ε (y))

|x − y|3+2s dxdy

+
∫

{uε<0}×{uε<0}
(u−

ε (x) − u−
ε (y))2

|x − y|3+2s dxdy

+
∫

{uε<0}×{uε>0}
(uε(x) − uε(y))u−

ε (x)

|x − y|3+2s dxdy

]

≥ 0.

Thus, it follows from (3.2) and Lemma 2.1(i), we have u−
ε = 0 and uε ≥ 0. Moreover, if

uε(x0) = 0 for some x0 ∈ R
3, then (−�)suε(x0) = 0 and by (2.1), we have

(−�)suε(x0) = −C(s)

2

∫

R3

uε(x0 + y) + uε(x0 − y) − 2uε(x0)

|y|3+2s dy,

therefore, ∫

R3

uε(x0 + y) + uε(x0 − y)

|y|3+2s dy = 0,

yielding uε ≡ 0, a contradiction. Therefore, uε is a positive solution of the system (2.2) and
the proof is completed. ��

4 Concentration and convergence of ground state solutions

In this section, we are devoted to the concentration behavior of the ground state solutions uε

as ε → 0. We will prove the following results.

Theorem 4.1 Let uε be a solution of the system (2.2) given by Lemma 3.1, then uε pos-
sesses a global maximum point yε such that, up to a subsequence, εyε → x0 as ε → 0,
lim
ε→0

dist (εyε,H1) = 0 and vε(x) := uε(x + yε) converges in Hs(R3) to a positive ground

state solution of
{

(−�)su + V (x0)u + φu = K (x0)|u|p−2u, in R
3,

(−�)sφ = u2, in R
3.
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In particular, if V ∩ K 
= ∅, then lim
ε→0

dist (εyε,V ∩ K) = 0, and up to a subsequence, vε

converges in Hs(R3) to a positive ground state solution of
⎧
⎨

⎩

(−�)su + Vminu + φu = Kmax|u|p−2u, in R
3,

(−�)sφ = u2, in R
3.

Lemma 4.1 There exists ε∗ > 0 such that, for all ε ∈ (0, ε∗), there exist {yε} ⊂ R
3 and R̃,

σ > 0 such that ∫

BR̃(yε)
u2

εdx ≥ σ.

Proof Assume by contradiction that there exists a sequence ε j → 0 as j → ∞, such that
for any R > 0,

lim
j→∞ sup

y∈R3

∫

BR(y)
u2

ε j
dx = 0.

Thus, by Lemma 2.4, we have

uε j → 0 in Lq(R3) for 2 < q < 2∗
s ,

jointly with Lemma 2.1(iii), we have
∫

R3
φs
uε j

u2
ε j
dx → 0 as j → ∞,

and hence

‖uε j ‖2
ε j

=
∫

R3
K (ε j x)|uε j |pdx −

∫

R3
φs
uε j

u2
ε j
dx → 0 as j → ∞.

Thus, Iε j (uε j ) → 0 as j → ∞, which contradicts Iε j (uε j ) → cε j > 0. ��
Set vε(x) := uε(x + yε), then vε satisfies

(−�)svε + V (ε(x + yε))vε + φs
vε

vε = K (ε(x + yε))|vε|p−2vε, (4.1)

with energy

Jε(vε) = 1

2

∫

R3
|(−�)

s
2 vε|2dx + 1

2

∫

R3
V (ε(x + yε))v

2
εdx + 1

4

∫

R3
φs

vε
v2
εdx

− 1

p

∫

R3
K (ε(x + yε))|vε|pdx

= Jε(vε) − 1

4

〈J ′
ε(vε), vε

〉

= 1

4

∫

R3
|(−�)

s
2 vε|2dx + 1

4

∫

R3
V (ε(x + yε))v

2
εdx

+
(

1

4
− 1

p

) ∫

R3
K (ε(x + yε))|vε|pdx

= Iε(uε) − 1

4
〈I ′

ε(uε), uε〉 = Iε(uε) = cε.

We may assume vε ⇀ u in Hε , and vε → u in Lt
loc(R

3) for t ∈ [1, 2∗
s ) with u 
= 0.

By V, K ∈ L∞(R3), without loss of generality, we may assume that V (εyε) → V0 and
K (εyε) → K0 as ε → 0.
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Lemma 4.2 u is a positive ground state solution of

(−�)su + V0u + φs
uu = K0|u|p−2u. (4.2)

Proof Since V, K are uniformly continuous, one has

|V (ε(x + yε)) − V (εyε)| → 0 and |K (ε(x + yε)) − K (εyε)| → 0 as ε → 0

uniformly on bounded sets of x ∈ R
3. Then, we get

|V (ε(x + yε)) − V0| ≤ |V (ε(x + yε)) − V (εyε)| + |V (εyε) − V0| → 0,

and

|K (ε(x + yε)) − K0| ≤ |K (ε(x + yε)) − K (εyε)| + |K (εyε) − K0| → 0

as ε → 0 uniformly on bounded sets of x ∈ R
3. Therefore, V (ε(x + yε)) → V0 and

K (ε(x + yε)) → K0 as ε → 0 uniformly on bounded sets of x ∈ R
3. Consequently, by

(4.1), for any ϕ ∈ C∞
0 (R3),

0 = lim
ε→0

∫

R3

(
(−�)svε + V (ε(x + yε))vε + φs

vε
vε − K (ε(x + yε))|vε|p−2vε

)
ϕdx

=
∫

R3

(
(−�)su + V0u + φs

uu − K0|u|p−2u
)
ϕdx,

which implies that u solves (4.2) with energy

IV0K0(u) : = 1

2

∫

R3
|(−�)

s
2 u|2dx + 1

2
V0

∫

R3
u2dx + 1

4

∫

R3
φs
uu

2dx − 1

p
K0

∫

R3
|u|pdx

= IV0K0(u) − 1

4

〈I ′
V0K0

(u), u
〉

= 1

4

∫

R3
|(−�)

s
2 u|2dx + 1

4
V0

∫

R3
u2dx +

(
1

4
− 1

p

)

K0

∫

R3
|u|pdx

≥ γV0K0 .

By Fatou’s lemma and the Proof of Lemma 2.10, we have

γV0K0 ≤ 1

4

∫

R3
|(−�)

s
2 u|2dx + 1

4
V0

∫

R3
u2dx +

(
1

4
− 1

p

)

K0

∫

R3
|u|pdx

≤ lim inf
ε→0

[
1

4

∫

R3
|(−�)

s
2 vε|2dx + 1

4

∫

R3
V (ε(x + yε))v

2
εdx

+
(

1

4
− 1

p

) ∫

R3
K (ε(x + yε))|vε|pdx

]

= lim inf
ε→0

Jε(vε)

≤ lim sup
ε→0

Iε(uε)

≤ γV0K0 .

Consequently,
lim
ε→0

Jε(vε) = lim
ε→0

cε = IV0K0(u) = γV0K0 . (4.3)

Therefore,u is a ground state solution of the limit problem (4.2). As in the Proof of Lemma 3.1,
u is positive. ��
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Lemma 4.3 {εyε} is bounded.
Proof Suppose to the contrary that, after passing to a subsequence, |εyε| → ∞. By V, K ∈
L∞(R3), without loss of generality, we may assume that V (εyε) → V0 and K (εyε) → K0

as ε → 0. Since V (0) = Vmin and κ = K (0) ≥ K (x) for all |x | ≥ R, we deduce that
V0 > Vmin and K0 ≤ κ . So it follows from Lemma 2.9 that γV0K0 > γVminκ .

However, by (4.3) and Lemma 2.10, cε → γV0K0 ≤ γVminκ , which is a contradiction.
Therefore, {εyε} is bounded. ��

After extracting a subsequence, we may assume εyε → x0 as ε → 0, then V0 = V (x0)

and K0 = K (x0).

Lemma 4.4 lim
ε→0

dist (εyε,H1) = 0.

Proof It suffices to show that x0 ∈ H1. We argue by contradiction, if x0 /∈ H1, then it is easy
to check that γV (x0)K (x0) > γVmink by (A1) and Lemma 2.9. Therefore, by Lemma 2.10, we
have

lim
ε→0

cε = γV (x0)K (x0) > γVmink ≥ lim
ε→0

cε,

which is absurd. ��
Lemma 4.5 vε → u in Hs(R3).

Proof Recall that u is a ground state solution of (4.2), we have

1

4

∫

R3
|(−�)

s
2 u|2dx ≤ lim inf

ε→0

1

4

∫

R3
|(−�)

s
2 vε|2dx ≤ lim sup

ε→0

1

4

∫

R3
|(−�)

s
2 vε|2dx

≤ lim sup
ε→0

1

4

∫

R3
|(−�)

s
2 vε|2dx + lim inf

ε→0

1

4

∫

R3
V (ε(x + yε))v

2
εdx − 1

4
V0

∫

R3
u2dx

+ lim inf
ε→0

(
1

4
− 1

p

) ∫

R3
K (ε(x + yε))|vε|pdx −

(
1

4
− 1

p

)

K0

∫

R3
|u|pdx

≤ lim sup
ε→0

[
1

4

∫

R3
|(−�)

s
2 vε|2dx + 1

4

∫

R3
V (ε(x + yε))v

2
εdx

+
(

1

4
− 1

p

) ∫

R3
K (ε(x + yε))|vε|pdx

]

− 1

4
V0

∫

R3
u2dx −

(
1

4
− 1

p

)

K0

∫

R3
|u|pdx

= 1

4

∫

R3
|(−�)

s
2 u|2dx .

Consequently,

lim
ε→0

∫

R3
|(−�)

s
2 vε|2dx =

∫

R3
|(−�)

s
2 u|2dx .

Similarly, we have

lim
ε→0

∫

R3
V (ε(x + yε))v

2
εdx = V0

∫

R3
u2dx .

Notice that

lim
ε→0

(∫

R3
V (ε(x + yε)) v2

εdx − V0

∫

R3
v2
εdx

)

= 0.

Thus

lim
ε→0

{∫

R3
|(−�)

s
2 vε|2dx + V0

∫

R3
v2
εdx

}

=
∫

R3
|(−�)

s
2 u|2dx + V0

∫

R3
u2dx .
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Together with vε ⇀ u in Hs(R3), we have vε → u in Hs(R3). ��
To establish the L∞-estimate of ground state solutions, we first recall the following result

which can be found in [16, (5.1.1) and (5.1.2)] but without having proof of it.

Lemma 4.6 Suppose that f : R → R is convex and Lipschitz continuous with the Lipschitz
constant L, f (0) = 0. Then for each u ∈ Hs(R3), f (u) ∈ Hs(R3) and

(−�)s f (u) ≤ f ′(u)(−�)su (4.4)

in the weak sense.

Proof First, we claim that f (u) ∈ Hs(R3) for u ∈ Hs(R3). In fact

Ds,2 =
(∫∫

R3×R3

| f (u(x)) − f (u(y))|2
|x − y|3+2s dxdy

) 1
2

≤
(∫∫

R3×R3

L2|u(x) − u(y)|2
|x − y|3+2s dxdy

) 1
2

= L[u]Ds,2 ,

which implies that f (u) ∈ Ds,2(R3). Moreover,
∫

R3
| f (u)|2dx =

∫

R3
| f (u) − f (0)|2dx ≤

∫

R3
L2|u|2dx < ∞,

which yields that f (u) ∈ L2(R3). Therefore, the claim is true.
Next we show that (4.4) holds. Observe that f ′ exists a.e. in R since f is Lipschitz

continuous. For ψ ∈ C∞
0 (R3,R) with ψ ≥ 0, combining (2.1) with the convexity of f , there

holds
∫

R3
(−�)s( f (u))ψdx

= −1

2
C(s)

∫ ∫

R3×R3

f (u(x + y)) + f (u(x − y)) − 2 f (u(x))

|y|3+2s ψ(x)dydx,

= −1

2
C(s)

∫ ∫

R3×R3

f (u(x + y)) − f (u(x)) + f (u(x − y)) − f (u(x))

|y|3+2s ψ(x)dydx

≤ −1

2
C(s)

∫ ∫

R3×R3

f ′(u(x))(u(x + y) − u(x)) + f ′(u(x))(u(x − y) − u(x))

|y|3+2s ψ(x)dydx

= −1

2
C(s)

∫ ∫

R3×R3

f ′(u(x))[u(x + y) + u(x − y) − 2u(x)]
|y|3+2s ψ(x)dydx

=
∫

R3
f ′(u)(−�)suψdx .

This completes the proof. ��
Remark 1 In fact, from the above arguments, one can see that (4.4) holds for a.e. x ∈ R

3.
Moreover, Lemma 4.6 is true for general dimension N .

The following Lemma plays a fundamental role in the study of behavior of the maximum
points of the solutions, whose proof is related to the Moser iterative method [32].
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Lemma 4.7 Let εn → 0 and vεn be a solution of the following problem

(−�)svεn + V (εn(x + yεn ))vεn + φs
vεn

vεn = K (εn(x + yεn ))|vεn |p−2vεn , in R
3, (4.5)

where yεn is given in Lemma 4.1. Then vεn ∈ L∞(R3) and there exists C > 0 such that

‖vεn‖∞ ≤ C, uniformly in n ∈ N.

Moreover, vεn → u in Lq(R3),∀ q ∈ [2,+∞).

Proof For simplicity of notations, we denote vεn and yεn by vn and yn , respectively. Define

h(x, vn) := K (εn(x + yn))|vn |p−2vn − V (εn(x + yn))vn − φs
vn

vn .

From Lemma 4.5, {vn} is bounded in Hs(R3), and hence in Lq(R3) for any q ∈ [2, 2∗
s ]. So

there exists some C > 0 such that
‖vn‖q ≤ C,

uniformly in n. Since vn is a solution of (4.5), then

φs
vn

(x) =
∫

R3

v2
n(y)

|x − y|3−2s dy =
∫

{|x−y|≤1}
v2
n(y)

|x − y|3−2s dy +
∫

{|x−y|>1}
v2
n(y)

|x − y|3−2s dy

≤
∫

{|x−y|≤1}
v2
n(y)

|x − y|3−2s dy +
∫

{|x−y|>1}
v2
n(y)dy

≤
(∫

{|x−y|≤1}
1

|x − y|(3−2s)t ′ dy

) 1
t ′

(∫

{|x−y|≤1}
v2t
n (y)dy

) 1
t + C

≤ C,

where t ′(3 − 2s) < 3, 2t ∈ [2, 2∗
s ], 1

t + 1
t ′ = 1 since 3

4 < s < 1. Therefore, we have

|h(x, vn)| ≤ C(|vn | + |vn |p−1) ≤ C(1 + |vn |2∗
s−1). (4.6)

Let T > 0, we follow [16] and define

f (t) =
⎧
⎨

⎩

0, if t ≤ 0,

tβ, if 0 < t < T,

βT β−1(t − T ) + T β, if t ≥ T,

with β > 1 to be determined later. Since f is convex and Lipschitz with constant L0 = βT β−1

and f (0) = 0, by Lemma 4.6, we have f (vn) ∈ Ds,2(R3) and

(−�)s f (vn) ≤ f ′(vn)(−�)svn (4.7)

in the weak sense. Thus, from f (vn) ∈ Ds,2(R3), the self-adjointness of the operator (−�)s/2

and (4.6)–(4.7), we have

‖ f (vn)‖2
2∗
s

≤ C
∫

R3
|(−�)

s
2 f (vn)|2dx = C

∫

R3
f (vn)(−�)s f (vn)dx

≤ C
∫

R3
f (vn) f

′(vn)(−�)svndx = C
∫

R3
f (vn) f

′(vn)h(x, vn)dx

≤ C
∫

R3
f (vn) f

′(vn)dx + C
∫

R3
f (vn) f

′(vn)v
2∗
s−1

n dx .
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Using the fact that f (vn) f ′(vn) ≤ β2v
2β−1
n and vn f ′(vn) ≤ β f (vn), we have

( ∫

R3

(
f (vn)

)2∗
s dx

) 2
2∗
s ≤ Cβ2

( ∫

R3
v2β−1
n dx +

∫

R3

(
f (vn)

)2
v

2∗
s−2

n dx

)

, (4.8)

where C is a positive constant that does not depend on β. Notice that the last integral is well
defined for T in the definition of f . Indeed

∫

R3

(
f (vn)

)2
v

2∗
s−2

n dx =
∫

{vn≤T }
(
f (vn)

)2
v

2∗
s−2

n dx +
∫

{vn>T }
(
f (vn)

)2
v

2∗
s−2

n dx

≤ T 2β−2
∫

R3
v

2∗
s

n dx + C
∫

R3
v

2∗
s

n dx < ∞.

We choose now β in (4.8) such that 2β − 1 = 2∗
s , and we name it β1, that is

β1 := 2∗
s + 1

2
. (4.9)

Let R̂ > 0 to be fixed later. Attending to the last integral in (4.8) and applying the Holder’s

inequality with exponents γ := 2∗
s

2 and γ ′ := 2∗
s

2∗
s−2 ,

∫

R3

(
f (vn)

)2
v

2∗
s−2

n dx

=
∫

{vn≤R̂}
(
f (vn)

)2
v

2∗
s−2

n dx +
∫

{vn>R̂}
(
f (vn)

)2
v

2∗
s−2

n dx

≤
∫

{vn≤R̂}

(
f (vn)

)2

vn
R̂2∗

s−1dx +
( ∫

R3

(
f (vn)

)2∗
s dx

) 2
2∗
s
( ∫

{vn>R̂}
v

2∗
s

n dx

) 2∗
s −2
2∗
s

.

(4.10)

By the Monotone Convergence Theorem, we can choose R̂ large enough so that

( ∫

{vn>R̂}
v

2∗
s

n dx

) 2∗
s −2
2∗
s ≤ 1

2Cβ2
1

,

where C is the constant appearing in (4.8). Therefore, we can absorb the last term in (4.10)
by the left hand side of (4.8) to get

( ∫

R3

(
f (vn)

)2∗
s dx

) 2
2∗
s ≤ 2Cβ2

1

( ∫

R3
v

2∗
s

n dx + R̂2∗
s−1

∫

R3

(
f (vn)

)2

vn
dx

)

.

Now we use the fact that f (vn) ≤ v
β1
n and (4.9) once again in the right hand side and we

take T → ∞ we obtain
( ∫

R3
v

2∗
s β1

n dx

) 2
2∗
s ≤ 2Cβ2

1

( ∫

R3
v

2∗
s

n dx + R̂2∗
s−1

∫

R3
v

2∗
s

n dx

)

.

and therefore
vn ∈ L2∗

s β1(R3), ∀ n ∈ N, (4.11)

and
‖vn‖2∗

s β1 ≤ C, (4.12)

uniformly in n.
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Let us suppose now β > β1. Thus, using that f (vn) ≤ v
β
n in the right hand side of (4.8)

and letting T → ∞ we get

( ∫

R3
v

2∗
s β

n dx

) 2
2∗
s ≤ Cβ2

( ∫

R3
v2β−1
n dx + R̂2∗

s−1
∫

R3
v

2β+2∗
s−2

n dx

)

. (4.13)

Set c0 := 2∗
s (2

∗
s−1)

2(β−1)
and c1 := 2β−1−c0. Notice that, sinceβ > β1, then 0 < c0 < 2∗

s , c1 > 0.
Hence, applying Young’s inequality with exponents γ := 2∗

s /c0 and γ ′ := 2∗
s /2∗

s − c0, we
have

∫

R3
v2β−1
n dx ≤ c0

2∗
s

∫

R3
v

2∗
s

n dx + 2∗
s

2∗
s − c0

∫

R3
v

2∗
s c1

2∗
s −c0

n dx

≤
∫

R3
v

2∗
s

n dx +
∫

R3
v

2β+2∗
s−2

n dx

≤ C

(

1 +
∫

R3
v

2β+2∗
s−2

n dx

)

,

with C > 0 independent of β. Plugging into (4.13),

( ∫

R3
v

2∗
s β

n dx

) 2
2∗
s ≤ Cβ2

(

1 +
∫

R3
v

2β+2∗
s−2

n dx

)

,

with C changing from line to line, but remaining independent of β. Therefore

(

1 +
∫

R3
v

2∗
s β

n dx

) 1
2∗
s (β−1) ≤ (

Cβ2) 1
2(β−1)

(

1 +
∫

R3
v

2β+2∗
s−2

n dx

) 1
2(β−1)

. (4.14)

Repeating this argument we will define a sequence βm,m ≥ 1 such that

2βm+1 + 2∗
s − 2 = 2∗

sβm .

Thus,

βm+1 − 1 =
(

2∗
s

2

)m

(β1 − 1).

Replacing it in (4.14) one has

(

1 +
∫

R3
v

2∗
s βm+1

n dx

) 1
2∗
s (βm+1−1) ≤ (

Cβ2
m+1

) 1
2(βm+1−1)

(

1 +
∫

R3
v

2∗
s βm

n dx

) 1
2∗
s (βm−1)

.

Defining Cm+1 := Cβ2
m+1 and

Am :=
(

1 +
∫

R3
v

2∗
s βm

n dx

) 1
2∗
s (βm−1)

.

So

Am+1 ≤ (Cm+1)
1

2(βm+1−1) Am, m = 1, 2, . . . .

Now from an iterative procedure we conclude that there exists a constantC0 > 0 independent
of m, such that

Am ≤
m∏

k=1

C
1

2(βk−1)

k A1 ≤ C0A1, ∀m.
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Thus, from (4.11),
‖vn‖∞ ≤ C0A1 < ∞, (4.15)

and hence vn ∈ L∞(R3). By (4.12),
‖vn‖∞ ≤ C, (4.16)

uniformly in n ∈ N, Finally, by interpolation on the Lq -spaces and vn → u in L2(R3), we
have vn → u in Lq(R3),∀ q ∈ [2,+∞). This finishes the Proof of Lemma 4.7. ��
Lemma 4.8 vn(x) → 0 as |x | → ∞ uniformly in n.

Proof Since vn satisfies the equation
(−�)svn + vn = Υn, x ∈ R

3,

where
Υn(x) = vn(x) − V (εn(x + yn))vn(x) − φs

vn
(x)vn(x) + K (εn(x + yn))v

p
n (x), x ∈ R

3.

Putting Υ (x) = u(x)− V (x0)u(x)−φs
u(x)u(x)+ K (x0)u p(x), by Lemma 4.7, we see that

Υn → Υ in Lq(R3), ∀ q ∈ [2,+∞),

and there exists a C2 > 0 such that

‖Υn‖∞ ≤ C2, ∀ n ∈ N.

From [18], we have that

vn(x) = G ∗ Υn =
∫

R3
G(x − y)Υn(y)dy,

where G is the Bessel Kernel

G(x) = F−1
(

1

1 + |ξ |2s
)

.

It is known from [18, Theorem 3.3] that, G is positive, radially symmetric and smooth in
R

3\{0}; there is C > 0 such that G(x) ≤ C
|x |3+2s , and G ∈ Lq(R3), ∀ q ∈ [1, 3

3−2s ). Now
argue as in the Proof of [2, Lemma 2.6], we conclude that

vn(x) → 0 as |x | → ∞, (4.17)

uniformly in n ∈ N. ��
Proof of Theorem4.1First we claim that there exists a ρ0 > 0 such that ‖vn‖∞ ≥ ρ0, ∀n ∈ N.
In fact, suppose that ‖vn‖∞ → 0 as n → ∞. Let ε0 = Vmin

2 , then there exists an n0 ∈ N

such that

Kmax‖vn‖p−2∞ <
Vmin

2
for n > n0.

Therefore, we have
∫

R3
|(−�)

s
2 vn |2dx +

∫

R3
V (εn(x + yn))v

2
ndx

≤
∫

R3
|(−�)

s
2 vn |2dx +

∫

R3
V (εn(x + yn))v

2
ndx +

∫

R3
φs

vn
v2
ndx

=
∫

R3
K (εn(x + yn))|vn |pdx

≤ Kmax‖vn‖p−2∞
∫

R3
v2
ndx .
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This implies that ‖vn‖ = 0 for n > n0, which is impossible because vn → u in Hs(R3) and
u 
= 0. Then, the claim is true.

From [40, Proposition 2.9], we see that vn ∈ C1,α(R3) for any α < 2s − 1. Thus, we
know that vn has a global maximum point pn by (4.17) and the claim above, we also see that
pn ∈ BR0(0) for some R0 > 0. Hence, the global maximum point of uεn given by pn + yn .
Define ψn(x) := uεn (x + yn + pn), where uεn (x) = vn(x + yn). Since {pn} ⊂ BR0(0) is
bounded, then we know that {εn(pn + yn)} is bounded and εn(pn + yn) → x0 ∈ H1. It
follows from the boundedness of {uεn } that {ψn} is bounded in Hs(R3), and we assume that
ψn ⇀ ψ in Hs(R3), ψn → ψ in Lq

loc(R
3) for q ∈ [1, 2∗

s ). On the other hand, by Lemma 4.1,
we have

∫

BR̃+R0
(0)

ψ2
n (x)dx ≥

∫

{|x+pn |<R̃}
ψ2
n (x)dx =

∫

BR̃(yn)
u2

εn
(x)dx ≥ σ,

so we obtain ψ 
= 0. Moreover, similar to the argument above, we know that ψ is a ground
state solution of (4.2) and ψn → ψ in Hs(R3). Therefore, ψn possesses same properties as
vn , and we can assume that yn is a global maximum point of uεn . Then, by Lemmas 4.1–4.5
above, one can obtain Theorem 4.1.

5 Decay estimates

In this section, we estimate the decay properties of vn .

Lemma 5.1 There exist C > 0 such that

vn(x) ≤ C

1 + |x |3+2s , ∀ x ∈ R
3.

Proof According to [18, Lemma 4.2], there exists a continuous function ω̄ such that

0 < ω̄(x) ≤ C

1 + |x |3+2s , (5.1)

and

(−�)s ω̄ + Vmin

2
ω̄ = 0, inR3\BR̄(0) (5.2)

for some suitable R̄ > 0. Thanks to (4.17), we have that vn(x) → 0 as |x | → ∞ uniformly
in n. Therefore, for some large R1 > 0, we obtain

(−�)svn + Vmin

2
vn = (−�)svn + V (εn(x + yn))vn −

(

V (εn(x + yn)) − Vmin

2

)

vn

= −φs
vn

vn + K (εn(x + yn))|vn |p−2vn −
(

V (εn(x + yn)) − Vmin

2

)

vn

≤
(

Kmax|vn |p−2 − Vmin

2

)

vn

≤ 0,

(5.3)
for x ∈ R

3\BR1(0). Now we take R2 := max{R̄, R1} and set

zn := (m + 1)ω̄ − bvn, (5.4)
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where m := sup
n∈N

‖vn‖∞ < ∞ and b := min
B̄R2 (0)

ω̄ > 0. We next show that zn ≥ 0 in R
3. For

this we suppose by contradiction that, there is a sequence {x j
n } such that

inf
x∈R3

zn(x) = lim
j→∞ zn

(
x j
n

)
< 0. (5.5)

Notice that
lim|x |→∞ ω̄(x) = 0.

Jointly with (4.17), we obtain
lim|x |→∞ zn(x) = 0,

uniformly in n ∈ N. Consequently, the sequence {x j
n } is bounded and therefore, up to a

subsequence, we may assume that x j
n → x∗

n as j → ∞ for some x∗
n ∈ R

3. Hence (5.5)
becomes

zn(x
∗
n ) = inf

x∈R3
zn(x) < 0. (5.6)

From (5.6) and (2.1), we have

(−�)s zn(x
∗
n ) = −C(s)

2

∫

R3

zn(x∗
n + y) + zn(x∗

n − y) − 2zn(x∗
n )

|y|3+2s dy ≤ 0. (5.7)

By (5.4), we get
zn(x) ≥ mb + ω̄ − mb > 0, in B(0, R2).

Therefore, combining this with (5.6), we see that

x∗
n ∈ R

3\BR2(0). (5.8)

From (5.2)–(5.3), we conclude that

(−�)s zn + Vmin

2
zn ≥ 0, in R

3\BR2(0). (5.9)

Thinks to (5.8), we can evaluate (5.9) at the point x∗
n , and recall (5.6), (5.7), we conclude that

0 ≤ (−�)s zn(x
∗
n ) + Vmin

2
zn(x

∗
n ) < 0,

this is a contradiction, so zn(x) ≥ 0 in R
3. That is to say, vn ≤ (m+ 1)b−1ω̄, which together

with (5.1), implies that

vn(x) ≤ C

1 + |x |3+2s , ∀ x ∈ R
3.

Then the proof is completed. ��

Proof of Theorem 1.1 Define ωn(x) := un(
x
εn

), then ωn is a positive ground state solution
of system (1.1) and xεn := εn yn is a maximum point of ωn , and by Theorem 4.1, we know
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that the Theorem 1.1(i), (ii) hold. Moreover, we have

ωn(x) = un

(
x

εn

)

= vn

(
x

εn
− yn

)

≤ C

1 + | x
εn

− yn |3+2s

= Cε3+2s
n

ε3+2s
n + |x − εn yn |3+2s

= Cε3+2s
n

ε3+2s
n + |x − xεn |3+2s

, ∀ x ∈ R
3.

Thus, the proof of Theorem 1.1 is completed.

Acknowledgements The authors would express their thanks to unknown referee for his/her careful read-
ing and suggestions which improve the work. The first author was supported by NSFC (11661083), China.
The second author was supported by NSFC (11361078), China. The third author was supported by NSFC
(11671026), China.

References

1. Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)
2. Alves, C., Miyagaki, O.: Existence and concentration of solution for a class of fractional elliptic equation

in R
N via penalization method. Calc. Var. Partial Differ. Equ. 55, 1–19 (2016)

3. Benci, V., Cerami, G.: The effect of domain topology on the number of positive solutions of nonlinear
elliptic problems. Arch. Ration. Mech. Anal. 114, 79–83 (1991)

4. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods
Nonlinear. Anal. 11, 283–293 (1998)

5. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein–Gordon equation coupled with Maxwell
equations. Rev. Math. Phys. 14, 409–420 (2002)

6. Brezis, H., Lieb, E.H.: A relation between pointwise convergence of function and convergence of func-
tional. Proc. Am. Math. Soc. 88, 486–490 (1983)

7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial
Differ. Equ. 32, 1245–1260 (2007)

8. Chen, G.: Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations. Nonlin-
earity 28, 927–949 (2015)

9. Chen, G., Zheng, Y.: Concentration phenomenon for fractional nonlinear Schrödinger equations. Com-
mun. Pure Appl. Anal. 13, 2359–2376 (2014)

10. Cingolani, S., Secchi, S.: Semiclassical analysis for pseudo-relativistic Hartree equations. J. Differ. Equ.
258, 4156–4179 (2015)

11. D’Aprile, T., Wei, J.: On bound states concentrating on spheres for the Maxwell–Schrödinger equation.
SIAM J. Math. Anal. 37, 321–342 (2005)

12. Dávila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger
equation. J. Differ. Equ. 256, 858–892 (2014)

13. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional sobolev spaces. Bull. Sci.
Math. 136, 521–573 (2012)

14. Ding, Y., Lee, C., Zhao, F.: Semiclassical limits of ground state solutions to Schrödinger system. Calc.
Var. Partial Differ. Equ. 51, 725–760 (2014)

15. Ding, Y., Liu, X.: Semi-classical limits of ground states of a nonlinear Dirac equation. J. Differ. Equ. 252,
4962–4987 (2012)

16. Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of
R
N . Edizioni della Normale Pisa 15, viii+152 (2017)

17. Fall, M., Mahmoudi, F., Valdinoci, E.: Ground states and concentration phenomena for fractional
Schrödinger equation. Nonlinearity 28, 1937–1961 (2015)

18. Felmer, P., Quass, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional
Laplacian. Proc. R. Soc. Edinb. Sect. A. 142, 1237–1262 (2012)

123



The concentration behavior of ground state solutions… Page 25 of 25 116

19. He, X.: Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations. Z.
Angew. Math. Phys. 62, 869–889 (2011)

20. He, X., Zou, W.: Existence and concentration of ground states for Schrödinger–Poisson equations with
critical growth. J. Math. Phys. 53, 023702 (2012)

21. He, X., Zou, W.: Existence and concentration result for the fractional Schrödinger equations with critical
nonlinearities. Calc. Var. Partial Differ. Equ. 55, 1–39 (2016)

22. He, S., Zhang, R., Zhao, F.: A note on a superlinear and periodic elliptic system in the whole space.
Commu. Pure Anal. Appl. 10, 1149–1163 (2011)

23. Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger–Poisson problem with
potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

24. Jeanjean, L., Tanaka, K.: A positive solution for a nonlinear Schrödinger equation on R
N . Indiana Univ.

Math. J. 54, 443–464 (2005)
25. Jiang, Y., Zhou, H.: Schrödinger–Poisson system with steep potential well. J. Differ. Equ. 251, 582–608

(2011)
26. Landkof, N.S.: Foundations of Modern Potential Theory, trans. from Russian (Grundlehren der Math-

ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 180). Springer, Berlin
(1973)

27. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)
28. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. 66, 56–108 (2002)
29. Li, S., Ding, Y., Chen, Y.: Concentrating standing waves for the fractional Schrödinger equation with

critical nonlinearities. Bound. Value Probl. 240, 1–26 (2015)
30. Lions, P.L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97

(1984)
31. Liu, W., Gan, L.: Solutions of perturbed fractional Schrödinger equations with critical non-linearity.

Complex Var. Elliptic Equ. 60, 1142–1158 (2015)
32. Moser, J.: A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential

equations. Commun. Pure Appl. Math. 13, 457–468 (1960)
33. Murcia, E., Siciliano, G.: Positive semiclassical states for a fractional Schrödinger–Poisson system. Differ.

Integral Equ. 30, 231–258 (2017)
34. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations

(CBMS Reg. Conf. Ser. Math. 65). American Mathematical Society, Providence (1986)
35. Rabinowitz, P.H.: On a class of nonlinear Schrodinger equations. Z. Angew. Math. Phys. 43, 270–291

(1992)
36. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal.

237, 655–674 (2006)
37. Ruiz, D., Vaira, G.: Cluster solutions for the Schrödinger–Poisson–Slater problem around a local minimum

of potential. Rev. Mat. Iberoam. 27, 253–271 (2011)
38. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in R

N . J. Math. Phys.
54, 031501 (2013)

39. Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity
27, 187–207 (2014)

40. Silvestre, L.: Regularity of the obstable problem for a fractional power of the Laplace operator. Commun.
Pure Appl. Math. 60, 67–112 (2007)

41. Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system
with critical Sobolev exponent. J. Differ. Equ. 261, 3061–3106 (2016)

42. Teng, K.: Ground state solutions for the nonlinear fractional Schrödinger–Poisson system.
arXiv:1605.06732v2 [math.AP]

43. Wang, X., Zeng, B.: On concentration of positive bound states of nonlinear Schrödinger equations with
competing potential functions. SIAM J. Math. Anal. 28, S633–S655 (1997)

44. Wang, Z., Zhou, H.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in R
3.

Discrete Contin. Dyn. Syst. 18, 809–816 (2007)
45. Wang, J., Tian, L., Xu, J., Zhang, F.: Existence and concentration of positive solutions for semilinear

Schrödinger–Poisson systems in R
3. Calc. Var. Partial Differ. Equ. 48, 243–273 (2013)

46. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
47. Zhang, J., do Ó, J.M., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical

or critical nonlinearity, Adv. Nonlinear Stud. 16, 15–30 (2016)
48. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal.

Appl. 346, 155–169 (2008)

123

http://arxiv.org/abs/1605.06732v2

	The concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system
	Abstract
	1 Introduction and the main results
	2 Preliminary results
	3 Existence of ground state solutions
	4 Concentration and convergence of ground state solutions
	5 Decay estimates
	Acknowledgements
	References




