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Abstract In this paper, we study the following fractional Schrodinger—Poisson system

SZ‘Y(—A)XM + V(X)M + ¢u = K(x)|u|/’72u, in R3,
0.1)
e (=A)¢ = u?, inR3,

where e > Oisasmallparameter,% <s<lL4<p<2f:= %, V(x) € CRHNL®R?)
has positive global minimum, and K (x) € C (R¥) N L®(R3) is positive and has global
maximum. We prove the existence of a positive ground state solution by using variational
methods for each ¢ > 0 sufficiently small, and we determine a concrete set related to the
potentials V and K as the concentration position of these ground state solutions as & — 0.
Moreover, we considered some properties of these ground state solutions, such as convergence

and decay estimate.
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1 Introduction and the main results

In this paper, we study the existence and concentration of solutions for the following fractional
Schrodinger—Poisson system

X (=AY u + V()u + ¢u = K(x)|u|”2u, inR3,

(1.1)
eX (=AY ¢ = u?, inR3.
Here ¢ > Oisasmall parameter,% < s < lisafixed constant, 4 < p < 2¥,2% := % is

the fractional critical exponent in dimension 3, and the operator (—A)?* is the fractional Lapla-
cian of order s, which can be defined by the Fourier transform (—A)Su = F “L(&1» Fu). In
(1.1), the first equation is a fractional nonlinear Schrodinger equation in which the potential
¢ satisfies the second equation which is a fractional Poisson equation. For this reason, (1.1) is
refereed to as a fractional nonlinear Schrodinger—Poisson system (also called Schrodinger—
Maxwell system).

In the local case that s = 1, (1.1) reduces to the following system

—2Au+ V(x)u + ¢u = K(x)g(u), inR3,
(1.2)
—82A¢ =u?, inRR3,

which is called the Hatree—Fock equation for ¢ = 1 in [30]. A similar system settled on a
bounded domain was introduced by Benci in [4] as a model in semiconductor theory. For
more physical aspects of (1.2) we refer to [5] and the references therein.

In the past decades, the system like or similar to (1.2) has been studied extensively by
means of variational tools. See [1,25,36,44,48] and the references therein for the existence
of solutions. The concentration behavior of solutions was studied in some papers. In [37],
Ruiz and Vaira constructed multibump solutions whose bumps concentrate around a local
minimum of the potential V. In [19], by using the Ljusternik—Schnirelmann theory, He proved
that the system (1.2) has at least cat;(A) positive solutions for & > 0 small. The critical
case was considered in [20], He and Zou proved that system (1.2) possesses a positive ground
state solution which concentrate around the global minimum of V. In [23], Ianni and Vaira
considered the following system

—2Au+ V(x)u + ¢u = fu), inR3,

—A¢p =u?, inR3.

The authors proved the existence of a single bump solution which concentrates on the critical
points of V (x).In[11], D’ Aprile and Wei constructed a family of radially symmetric solutions
concentrating around a sphere. See [45] for the concentration phenomena for a Schrodinger—
Poisson system with competing potentials.

If (x) =0, (1.1) becomes the fractional Schrédinger equation like

(=AY ’u+Vxu= f(x,u), x e RV, (1.3)

Solutions of the Eq. (1.3) are standing wave solutions of the fractional Schrodinger equation
of the form
oy

isE =X (=AY + V)Y — f(x, [¥]), xeRY,

that is solutions of the form v (x, t) = e ' E*/¢y(x), where E is a constant, u(x) is a solution
of (1.3). The fractional Schrodinger equation is a fundamental equation in fractional quantum
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mechanics. It was discovered by Laskin [27,28] as a result of extending the Feynman path
integral, from the Brownian-like to Lévy-like quantum mechanical paths, where the Feynman
pathintegral leads to the classical Schrodinger equation, and the path integral Lévy trajectories
leads to the fractional Schrédinger equation. Different to the classical Laplacian operator,
the usual analysis tools for elliptic PDEs can not be directly applied to (1.3) since (—A)* is
a nonlocal operator. In [7], Cafferelli and Silvestre developed a powerful extension method
which transfer the nonlocal Eq. (1.3) into a local one settled on a half-space. Recently, in [13],
the authors gave a survey on the fractional Sobolev spaces and proposed some fundamental
techniques for fractional Laplacian equations.

Since then, there have been some works concerning with the existence, multiplicity and
concentration phenomenon of solutions to nonlinear fractional Schrodinger Eq. (1.3) via
variational methods. See [8,16,18,31,38,39] for the existence of solutions. The concentra-
tion phenomena was considered independently in [9,12] via a Lyapunov—Schmidt reduction
argument. After that, the concentration problem was studied in some very recent works. The
solutions concentrated around a global minimum of the potential V were constructed in [17].
For the concentration phenomena around a local minimum of the potential V, see [2,21]
for the subcritical and the critical cases, respectively. See also [10] for a similar work with
s = % and a nonlocal term. The different concentration phenomena for (1.3) with competition
potentials was studied in [29,39].

To the best of our knowledge, there are few results concerning the existence of solutions
to (1.1) except for works [33,41,47]. In [41], Teng adapted the monotonicity trick (see for
example, Jeanjean and Tanaka [24]) to obtain the existence of ground state solutions to

(=AY u+ V@ + du = plul9 u + [u|*2u, inR3,
(=A)'¢ = au?, inR3,

for g € (2,2% — 1). See [42] for the subcritical case. In [33], the authors considered the
following system
e¥ (=AY u+V(@)u+¢u=g), inR>,

?(=A)T ¢ = yeu?, inR3,

and adapted some ideas of [3] to establish the multiplicity of solutions for small ¢, where
g is subcritical at infinity. A positive solution of a system similar to (1.1) with V = 0 was
obtained in [47].

It is natural to ask how about the asymptotical behavior of solutions of (1.1) as ¢ — 0?
As far as we know such a problem was not considered before. There are some difficulties in
such a problem. The first one is that there is a competition between the potentials V and K:
each would try to attract ground states to their minimum and maximum points, respectively.
This makes difficulties in determining the concentration position of solutions. This kind of
problem can be trace back to [43], see also [14,15] for a different concentration phenomena
for a Dirac equation and an elliptic system of Hamilton type. The second one is, as we
mention above, the fractional Laplacian operator (—A)*® is nonlocal, and this brings some
essential difference with the elliptic equations with the classical Laplacian operator, such as
regularity, Maximum principle and so on.

In this paper, we will give an answer to the above question. First, we obtain a positive
ground state solutions via Nehari manifold method for each ¢ > 0 small enough. To study the
concentration behavior of these solutions as ¢ — 0, we establish the L* and decay estimate
of these solutions. At last, we determine a concrete set related to the potentials V and K as
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the concentration position of these solutions. Roughly speaking, the ground state solutions

concentrate at such points x where V (x) is small or K (x) is large. For a special case, we

show that, as ¢ — 0, these ground state solutions concentrate around such points which are

both the minima points of the potential V and the maximum points of the potential K.
Before stating our theorems, we first give some notations. Set

Viin :=min V, Vi=|x € R’ : V(x) = Viuin}, Voo := liminf V (x),
|x]—o00

xeR3

Kpax ;= max K, K := {x eR3: Kx) = Kmax}, Koo :=limsup K (x).

xeR3 |x]—o00
To describe our results, we assume that V and K satisfy the following conditions:

(Ag) V, K € L®(R?) are uniformly continuous and Vi, > 0, inf K > 0;
either

(A1) Vmin < Ve < 400 and there exists x; € V such that K (x1) > K (x) for |x| > R with
R > 0 sufficiently large;
or

(A2) Kmax > Koo > inf K > 0 and there exists xo € K such that V(x») < V(x) for
|x| > R with R > 0 sufficiently large.

Obviously, if (A1) holds, we can assume K (x1) = ma&( K (x), and set
xXe

Hi={xeV:Kx)=Kx)D}U{x ¢V:K(x) > K(x)}.

If (A,) holds, we can assume V (xp) = mi}g V(x), and set
xXe

Ho={xek:Vx)=Vx)}lU{x ¢ K:V(x) < V(x)}.

Clearly, H; and H; are bounded sets. Moreover, if V N IC # @, then H; = H, =V N K.
Now we state our main results as follows.

Theorem 1.1 Assume that (Ag) and (A1) hold, then for all small ¢ > 0:

(1) The system (1.1) has a positive ground state solution (wg, ¢y, );
(i) w. possesses a global maximum point x. such that, up to a subsequence, x; — xq as
e — 0, lin})dist(xa, Hi) = 0, and v (x) 1= ws(ex + xg) converges in H*(R3) to a
e—

positive ground state solution of
(=A)*u + V (xo)u + ¢u = K (x0)|ul”*u, in R?,
(=AY ¢ =u?, inR3.
In particular if VN IKC # O, then lin}) dist(xg, VNK) =0, and up to a subsequence, v,
E—>
converges in H*(R3) to a positive ground state solution of
(=A)*u + Viintt + pu = Kmax|ul|P"2u, in R3,
(=AY ¢ =u?, inR3.
(ii1) There exists a constant C > 0 such that

C83+23

we(x) < vx € R3.

83+25 + |x _ x8|3+23 ’
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Theorem 1.2 Assume (Ag) and (Az) holds, and we replace (H1) by (Hy), then all the
conclusions of Theorem 1.1 remain true.

In the sequel, we only give the details proof for Theorem 1.1 because the argument for
Theorem 1.2 is similar to that for Theorem 1.1.

This paper is organized as follows. In Sect. 2, we provide some preliminary Lemmas which
will be used later. In Sect. 3, we prove the existence of positive ground state solutions. In
Sect. 4, we study the concentration phenomenon and convergence of ground state solutions. In
Sect. 5, we obtain the decay estimate of solution, which is polynomial instead of exponential
form. Finally, we give the Proof of Theorem 1.1.

2 Preliminary results

Throughout this paper, we denote ||-||, the usual norm of the space LP(R3,1 < p < oo,
I'llco denote the norm of the space L®(R?), Cor C;(i = 1,2,...) denote some positive
constants may change from line to line.

First, we collect some preliminary results for the fractional Laplacian. We define the
homogeneous fractional Sobolev space D% (RR?) as the completion of (O (R3) with respect

to the norm 1
lu(x) — u(y)? 2

5,2 o= ———dxd = s,

il sz (//RR iy ) =l

We denote by H*(R?) the standard fractional Sobolev space, defined as the set of u €
DSL(RY) satisfying u € L2(R?) with the norm

u(x) — u(y)|? / 2o 2
||u||Hs //R3xR3 =y —————dxdy + R3u dx = [ulys + llull3.

Also, in light of [13, Proposition 3.4 and Proposition 3.6], we have

s |2 _ 251 A 2 e 1 u(x) — u(y)|2
H(‘A)Z“HZ—/Rz BRG] dS—EC(S)//R}X]R} ey,

where i stands for the Fourier transform of « and

c<s)—</ H“Elds)l E= (56 E)
e 5P R TR

As a consequence, the norms on H* (R3) defined below

1
2 Ju(x) — u(y)|2 :
o (foass [, i)
U (/ ude—i-/ |s|23|ﬁ(s)|2ds>7
R3 R3

2 R A
u > u“dx + |[(=A)2ull3
R3

are all equivalent. Moreover, (—A)*u can be equivalently represented as (see [13,
Lemma 3.2])

C(s) u(x +y) +ulx —y) —2u(x)
2 R3 |y|3+2s

(=A)’ux) = — dy, Vx e R (1)
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We denote ||-|| gs by ||-|| in the sequel for convenience.
Recall that by the Lax-Milgram theorem, we know that for every u € H*(R?), there
exists a unique ¢; € D*-2(IR3) such that (=AY, = u? and ¢; can be expressed by

2
) dy, VxeR3,

—2s

which is called s-Riesz potential(see [26] or [7]), where
1 r (% — s)

SRR

Making the change of variable x > ex, we can rewrite the system (1.1) as the following
(2.2)

equivalent system
(—A)u + V(ex)u + pu = K (ex)|u|?2u, in R3,

(=AY ¢ = u?, inR3.

If u is a solution of the system (2.2), then w(x) := u(%) is a solution of the system (1.1).
Thus, to study the system (1.1), it suffices to study the system (2.2). In view of the presence

of potential V (x), we introduce the subspace
V(sx)uzdx < oo},

ng{ueHS(R3):/RS

which is a Hilbert space equipped with the inner product
(u, ) = / (—A)2u(—A)>vdx + / V (ex)uvdx,
R3 R3

and the equivalent norm
luell = G, w)e =/ |(—A)%u|2dx+/ V(ex)u*dx.
R3 R3

Moreover, it can be proved that (1, ¢)) € H, x D52(R3) is a solution of (2.2) if and only if

u € H; is a critical point of the functional Z, : H, — R defined as
5.2 1 2 1 5,2
T.(u) = = [(=A)2u|*dx + = Viex)u“dx + - P u-dx — — K (ex)|ulPdx,
2 Jr3 3 4 Jr3 3
(2.3)
where ¢; is the unique solution of the second equation in (2.2). Note that 2 < % <2rif
s > %, then by the Holder inequality and the Sobolev inequality (see Lemma 2.3 below), we
have
+2s 1
12 * 2%
/ PSuldx < </ |u|mdx> (/ |¢;|2sdx)
R3 R3 R3
3425
12 6 '
<C (/ |u|3+2 dX> o5l ps.2
R3

2| 4
=< Clull*lig; I ps.2 < oo.
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Therefore, the functional Z, is well-defined for every u € H, and belongs to CY(H,,R).
Moreover, for any u, v € Hg, we have

(I;(u),m:/ (—A)%u(—A)%vdx+/ V (ex)uvdx
R R 2.4)

+/ ¢;uvdx—/ K (ex)|u|P >uvdx.
R3 R3

The properties of the function ¢;, are given in the following Lemma (see [41, Lemma 2.3]).

Lemma 2.1 Foranyu € HY(R3) and s € [%, 1), we have

i) ¢, >0;
(i) ¢ : H*® (R3) — D%2(R3) is continuous and maps bounded sets into bounded sets;
(i) [fps @u’dx < Cllul*,, < Cllul*;

3+2s

(V) Ifu, — win HS(RY), then ¢ — ¢ in D>*(RY);
) Ifu, — uin HS(R3), then &y, —> Py in D52(R3) and fR3 ®y, u%dx — fR3 ¢;u2dx.

Define N : H*(R3) — R by
N(u) :/ oSu’dx.
R3

The next Lemma shows that the functional N and N’ possesses B L-splitting property
which is similar to the well-known Brezis—Lieb Lemma ([6]).

Lemma 2.2 ([41, Lemma 2.4]) Assume that s > %. Let u, — uin H* (R3) and u, — u
a.e. in R3. Then

(i) N(up —u) = N(up) — N@)+o(l);
(i) N'(un —u) = N'(un) — N'(u) + o(1), in (H* (R))*.

The following embedding results for fractional Sobolev space can be found in [13].

Lemma 2.3 There exists a constant C, depending only on s such that

2
hul, < C// lu(x) — u(y)l dxdy,
; RIxRS X — T

for every u € H%(R?). Moreover, H* (R?) is continuously embedding into L" (R?) for any
r € [2,2%] and compactly embedding into L R3) foranyr € [1, 27).

loc

The following vanishing Lemma is a version of the concentration-compactness principle
proved by P. L. Lions. We can consult [22, Lemma 3.6], [18] and [38, Lemma 2.4].

Lemma 2.4 If {u,} is bounded in H* (R3) and for some R > 0 and2 < r < 2% we have

sup / lu,|"dx — 0as n — oo,
xeR3 J Bg(x)

then u, — 0 in L' (R3) for any2 <t < 2%
The following Lemma implies that the functional Z, possesses the Mountain Pass structure

(see [34] or [46]).
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Lemma 2.5 The functional I, possesses the following properties

(i) there exist a, p > 0, such that T, (u) > « if ||u|ls = p;
(i1) there exists an e € H, with ||e||s > p such that Z.(e) < 0.

Proof (i) For any u € H;\{0}, by Lemma 2.1(i) and the Sobolev inequality, we have
1 52 1 2 1 5.2
Ze(u) = < [(=A)2u|"dx + < Viex)u“dx + — ¢ u”dx
2 R3 2 R3 4 R3

1
——/ K (ex)|u|Pdx
P JR3

%

1 s 9 1 2 1
Z [(=A)2u|“dx + = V(ex)u“dx — — Kmax |ulPdx
2 R3 2 R3 )4 R3

A%

1

FlullZ = Cllul?

Since p > 4, hence, we can choose some p > 0 such that
Te(u) > o with [lulle = p.

(ii) For any u € H:\{0}, we have

12 s 12
T (tu) = 3 /R3 |(—A)7u|2dx + 5 /1;3 V(sx)uzdx

I P
+ */ PSuldx — —/ K (ex)|u|Pdx
4 R3 p R3
12 ; 12 # ,
< */ |(—A)7u|2dx+—/ V(sx)uzdx—i-—/ (i);uzdx
2 R3 2 R3 4 R3

P
——me/ |u|Pdx
p R3
— —00 as t — oQ.

Thus, we can choose e = ¢*u for some t* > 0 large enough such that (ii) holds.

Lemma 2.6 Let {u,} be a (PS). sequence for Z,. Then {uy} is bounded in H,.

Proof Let{u,} C H; be a (PS). sequence for Z, that is
Te(uy) — ¢ and T, (uy) - 0 as n — 4o0.

Therefore, we have
1
c+ 1+ lluplle = Ze(un) — Z(I;(un)y Up)

I eniuPax+ [ vieowa
=2 ) u,|“dx 7 s ex)u,dx

1 1
+ (* - —) / K(ex)|u,|Pdx
4 P R3

1
2
z llunlls

for n large enough, which implies that {u,} is bounded in H,. O

@ Springer



The concentration behavior of ground state solutions... Page 9 of 25 116

To characterize the least energy, we define the Nehari manifold by
N = {u € H\(0} : (Z,(w), u) =0} .

Thus, for any u € N, we have that

/ |(—A)%u|2dx+/ V(ex)u2dx+/ ¢;u2dx=/ K (ex)|u|Pdx.
R3 R3 R3 R3

Lemma 2.7 For any u € H:\{0}, we have

(i) There exists a unique t; = t.(u) > 0 such that t.u € N,. Moreover, T,(teu) =
max Z, (tu).
t>0

(i) There exist T\ > T, > 0 independent of ¢ > 0 such that T, < t, < Ty.

Proof (i) Fort > 0, let

2

2

t s t

g(t) = T, (tu) = —/ [(—A)2ul?dx + —/ V(ex)u’dx
2 R3 2 R3

4 P
s 2
+—/ poudx — —/ K (ex)|u|Pdx.
4 Jrs P Jr3

Then we have

2
g(t) > L2 - v ldx = =l = co? 2.
-2 ¢ p Jrs ~ 4 € €

Since 4 < p < 2%, g(¢t) > 0 for small ¢+ > 0. Moreover, by Lemma 2.1(iii), we get

oo 4y 4 1P
8 = Sl + Ctulf = o [ i
2 P JR3
Hence, g(t) — —oo ast — oo and g has a positive maximum at 7, = #:(u) > 0. So
that g’(t;u) = 0 and t,u € N,. The condition g’(¢) = 0 is equivalent to

2
Il / oo utdx = 17 / K (ex)|ul?dx. 2.5)
t R3 R3

Suppose that there exist t; > f, > 0 such that r/u, t,u € N. It follows from (2.5) that

1 1 2 1p—4 p—4 P
(%2 _ tf) ue])? = (ts — ! ) [ K0 lulPdx.
which is impossible in view of #; > 1, > 0.

(ii) By teu € N and Lemma 2.1(iii), we have

2 2 4 4 2 2 4 2
Citllull” + Cat ull™ = t2ull; + ¢, /zq’);u dx = t)f/3 K (ex)|u|Pdx
R? R

v

C3t8”/ lulPdx.
R3

Thus, there exists a 71 > 0 independent of ¢ such that 7, < 7.
On the other hand, using t,u € N, again and Lemma 2.1(i), we have

t2lul* <tf / K (ex)|ulPdx,
R
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which yields that there exists a 7> > 0 independent of ¢ such that #, > T>. O

In order to obtain a ground state solution, we need a characterization of the least energy.
Following [35], we define

= inf max Z.(y(¢ = inf Z,(u), ¢™ = inf maxZ.(tu),
Ce ylgrtdx (y (1), ¢} Jof, e(u), c, ue;{g\{o} nax e (tu)

where I' = {y € C([0, 1], He) : ¥(0) = 0, Ze(y(1)) <0, y(1) # 0}.
By a standard argument (see [35,46]), we have

Lemma2.8 ¢, =c} =c¢* > 0.
For any a, b > 0, consider the autonomous problem

(—A)u + au + ¢pu = blu|?2u, inR3,
(2.6)
(—A)'¢ =u?, inR?,

and the corresponding energy functional

1
Tap (1) = 5/]1; |(—A)§u|2dx+;/ wdx + — / pSuldx — f/ lu|Pdx,

defined foru € HS(R3).Itis easy to check that 7,5, (1) possesses the Mountain Pass structure
and hence Z,5 (1) has a bounded (P S)-sequence, and its least energy has the same charac-
terization as stated in Lemma 2.8. Using the fact that Z,, () is invariant under translation,

we see that y,;, = 1% Tap(u) is attained, where y,,;, is the Mountain Pass level and N is
UEN b

the Nehari manifold of Z,;.

Lemma 2.9 Leta; > Oandb; > 0, j = 1,2, witha; < ayandby > by. Theny,,p; < Varb,-
In particular, if one of inequalities is strict, then Ya,b, < Varb,-

Proof Let u € Ng,p, be such that
Yayby = Larb, (u) = maXIaQbQ (“")-
t>0

Let up = tju be such that Z,,p, (o) = maé( Za, b, (tu). One has
>

Yarby, = Iazbz (M) > Iazbz (MO)
1 1
= Tayp, (o) + = (a2 — al)/ luo|*dx + — (by — bz)/ luol”dx
2 R3 p R3

= Yaib; -
Thus, we complete the proof. O
Without loss of generality, up to a translation, we may assume that
x1=0€eV,

S0
V() = Viin and « := K(0) > K (x) for all |x| > R.

Lemma 2.10 limsupc; < yy,;«-
e—0
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Proof Denote V¢(x) = max{c, V(x)}, K%(x) = min{d, K (x)}, VE(x) = VC(ex) and
K g x) = K d (ex), where ¢, d are positive constants. Define the auxiliary functional as
follows:

. 1 ; 1 . 1 , 1 .
74 u) = 7f |(—A)7u|2dx+f/ V;(x)uzdx—l—f/ ¢;u2dx—f/ KE(x)|u|Pdx,
2 Jr3 2 Jr3 4 Jr3 P Jr3

for any u € H® (R3), which implies that Z.4(u) < Ig’d (u), and thus y.q < cgd , where cg"

is the least energy of Igd. By the definition of Vi and Kpax, we get ng‘“i" (x) = V(ex),
K SK "X (x) = K (ex). Therefore, we have

IéyminKmax (I/l) — Ig(u)’ (27)

and Vng‘“ x) = V() = Viin, Ke "™ (x) - K(0) = « uniformly on bounded sets of x as
g — 0.
Now, we claim lim sup ¢)™nKmx < oy

e—0
Indeed, let w be a ground state solution of Zy,, ., thatis, Zy, . . (w) = yv,,.«. then there

exists t, > O such that r,w € /\/’gv‘“i“K‘“a", where SVmi“K‘““X is the Nehari manifold of the

functional Z, ™nKm Thys

C;/min Kmax S I{Ymin Kmax (té‘ U}) — maox I{Ymin Kmax (t w)
3 > 3
One has

. 1 ,
T (1o w) = Ty (tew) + / (V¥ @) = Viin ) Itewldx
R

1
+ 7/ (I( — Kfmax(x)) ltew|Pdx.
P JR3

By Lemma 2.7(ii), we can assume that 7, — #p as ¢ — 0. Since w € L3(R3), for any n > 0,
there exists a R > 0 such that

2.8)

|w|2dx <.
R3\BR(0)

Therefore,
[ (v ) = Vi) rewax = [ (V550 ) = Vi) x40 1)
R R
- / (ngmin (x) — me) |t0w|2dx+/ (vgvmin (x) — Vmi,,) ltow|dx + o (1)
R3\BR(0) Br(0)
<Cign4+o)+o(l),
here we use the fact that VEV“‘in (x) = Vpin uniformly in x € Bg(0). Thus, we obtain
/ (V¥ () = Vinin ) lewPdx = 0 (1)
]R3
Similarly, we have
/ (K — K Ko (x)) ltew|Pdx = o (1).
R3
Thus, by (2.8), we have

ZYminKmax (1) = Ty, (tew) + 0(1) — Ty, (fow) ase — 0. (2.9)
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Consequently

Vinin Kma Vinin Kmé
cpminmax. < 77 min max (tew) — WAV, (tow) < I;ﬂfg( Lpink (tw) = AV, (w) = Y Vinink +

From (2.7), we obtain cYminKmax — o This completes the proof. O

3 Existence of ground state solutions
Lemma 3.1 c, is attained at some positive u, € Hy for small ¢ > 0.

Proof By Lemma 2.5, we see that the functional Z, possesses the Mountain Pass structure.
Using a version of the Mountain Pass theorem without (P S) condition(see [46]), there exists
a sequence {u,} C H, such that

Te(up) > ¢ and Z,(uy) —> 0 asn — oo.

By Lemma 2.6, we know that {u,} is bounded in H;. Assume that u#,, — u, in H,, then by
Lemmas 2.2(ii) and 2.3, we have Z} (u,) = 0. If u, # 0, it is easy to check that Z, (us) = c.
Next we show that u, # 0 for small ¢ > 0.

Assume by contradiction that there exists a sequence ¢; — 0 such that u,; = 0, then
u, — 0in Hg, and thus u, — 0 in LEOC(H@) fort €[1,2¥)and u,(x) > Oae.inx € R3.

By (A1), choose b € (Vpin, Voo) and consider the functional Ié’}" Let 7, > 0 be such
that t,u, € Nsb/.“, from Lemma 2.7(ii), {z,} is bounded. Assume #, — fo as n — 0. By
(A1) again, the set O, := {x € R3 : Ve(x) < b or K.(x) > «} is bounded. Notice that
T, (thuy) < Ze, (u,). We obtain

bk

b
ng = Z(\:/‘]’-( (taun)

1 b 2
=T, (tn) + 5 /R (VE@ = Vi) Ity Pix

1
o [ (K = K )l P
P JR3 J
1 2
= Te; (tnn) + 5 (b — V(ejx))ltgun|*dx
[
J

1
+—/ (K(ejx)—/c)|tnun|pdx
P Jo

j
= I&j (tauy) +o(1) < Iej (un) +o(1) = Cej-

Notice that yp, < cbx

= hence yp,e < ¢ i In virtue of Lemma 2.10, letting £; — 0 yields

Vb = VYVpmink s

which is impossible since yv, ;. « < Vpc. Therefore, ¢, is attained at some u, 7# 0 for small
e > 0.

Next we only need to prove that the solution u, is positive. Put u = max{=u,, 0} the
positive (negative) part of u.. We note that all the calculations above can be repeated word
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by word, replacing Z." (u,) with the functional
1 s 1
I:'(ua) = —/ |(—A)fu£|2dx + 5/3 V(ex)ugdx
R

/ o5 uldx — — /R3 K (ex)|uf |Pdx.
In this way we get a ground state solution u, of the equation
(=AY ug + V(ex)ue + ¢ ue = K(ex)luf |P"2uf, inR>, 3.1)
Using u as a test function in (3.1) we obtain
/R?(—A)%us S(—=A)2udx Jr/]Rz V(ex)|u; |2dx +/]Rz ¢y (u)?dx =0.  (3.2)

On the other hand,
[ et cayiupax = e [[ RO 0Dy
R? 2 R3 xR3 lx — y[Pt=

1 (e (x) —ue(y))(—u, (y))
—C
2 ) |:v/{u2>0}><{ug<0} [x — |1H_2Y

+/ (uy (x) —ug (y)?
(e <O} x{uo<0) X — y[3+%

N / (ug(x) — us(y))ug_(X)dxdy]
{ue <0} x{u, >0}

|x _ y|3+25

%

dxdy

> 0.

Thus, it follows from (3.2) and Lemma 2.1(i), we have u; = 0 and u, > 0. Moreover, if
ug(xp) = 0 for some xg € R3, then (—A)*u,(xo) = 0 and by (2.1), we have

C@) [ uctxoty) +uelxo —y) = 2us(xo) ,

—A) - _
(=AY ug(xp) 2 s [y [3+25 ’

therefore,

/ ug(xo +y) + ug(xo — y)
dy =0,
R3

|y|%+23

yielding u#, = 0, a contradiction. Therefore, u, is a positive solution of the system (2.2) and
the proof is completed. O

4 Concentration and convergence of ground state solutions

In this section, we are devoted to the concentration behavior of the ground state solutions u,
as ¢ — 0. We will prove the following results.

Theorem 4.1 Let u. be a solution of the system (2.2) given by Lemma 3.1, then u. pos-
sesses a global maximum point y, such that, up to a subsequence, €y, — xo as € — 0,
lir% dist(eye, H1) = 0 and ve(x) := us(x + y.) converges in H* (R3) to a positive ground
E—

state solution of

(=A)u + V(xo)u + ¢pu = K(xo)|u|P~2u, inR3,
(=AY ¢ =u?, inR3.
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In particular, if V N IKC # 0, then lirrz) dist(eye, VN K) = 0, and up to a subsequence, v,
E—>
converges in H*(R3) to a positive ground state solution of
(=A)u + Vinintt + ¢pu = Knax ||~ 2u, in R,
(=AY ¢ =u?, inR3.

Lemma 4.1 There exists ¢* > 0 such that, for all ¢ € (0, €*), there exist {y.} C R? and R,
o > 0 such that
/ ugdx > 0.
Bj(ye)

Proof Assume by contradiction that there exists a sequence &; — 0 as j — 00, such that
for any R > 0,

lim sup / ug,dx =0.

J=00 yer3 JBr(y)
Thus, by Lemma 2.4, we have

ug; — 0in LY(R%) for2 < g < 2},
jointly with Lemma 2.1(iii), we have
/ o, u?_dx — 0as j — oo,

R3 g

and hence
llae, 17, :/ K (g;x)|ug,|Pdx —/ ¢ u?dx — Oas j — oo.
7 R3 / R3 & o
Thus, T, (ugj) — 0 as j — oo, which contradicts Ze, (ugj) —> Ce; > 0. O
Set ve (x) := us(x + ye), then v, satisfies

(—=A)"ve + V(e(x + y))ve + ¢y ve = K(e(x + e |vel P v, 4.1

with energy
1 s ! 2 1 s 2
Tee) = 5 | [(=A)2ve|"dx + 5 | V(e(x +ye)vgdx + - [ ¢, vodx
2 R3 2 R3 4 R3 ¢

1
—f/ K(eCx + yo)lvelPdx
P JR3

1,
= Je(ve) = 7 (T (ve), ve)

1 1
— 7/ |(—A)§v£|2dx+ff V(e(x + ye))v2dx
4 R3 4 R3

1 1
T (— - —) / K(e(r + yo)lvelPdx
4 P R3
1
= Ze(ug) — Z(Ié(us), ug) = Ze(ug) = ce.
We may assume v; — u in He, and v, — u in L} (R®) for ¢ € [1,2%) with u # 0.

By V, K € L®(R?), without loss of generality, we may assume that V (¢y,) — Vo and
K(ey.) > Kpase — 0.
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Lemma 4.2 u is a positive ground state solution of
(=AY u + Vou + ¢u = Kolu|P2u. (4.2)

Proof Since V, K are uniformly continuous, one has

[V(e(x + ye)) — V(eye)l = Oand [K(e(x + ye)) — K(eye)| > Oase — 0
uniformly on bounded sets of x € R3. Then, we get

[V(elx +ye)) — Vol = [V(e(x + ye)) — Vieye) | + |V (eye) — Vol = 0,
and

[K(e(x + ye)) — Kol = |K(e(x + ye)) — K(eye)| + |K(eys) — Kol = 0O

as ¢ — 0 uniformly on bounded sets of x € R3. Therefore, V(s(x + ve)) — Vp and
K(e(x + y:)) = Ko as ¢ — 0 uniformly on bounded sets of x € R3. Consequently, by
(4.1), for any ¢ € C§° (R3),

0=1lim | ((=A)ve + V(& +ye))ve + ¢y ve — K(e(x + e |ve|P%ve ) pdx
R
= / ((=A)u+ Vou + ¢pju — Ko|u|p_2u)<pdx,
R3
which implies that u solves (4.2) with energy
. 1 _ £02 1 2 s 2 - P
Ty, (M) 1 = [(=A)2ul|*dx + V() u-dx + ¢ dx Ko |ulPdx

2 R3 2 R3

= Tvpko () — = (Tyy, i, ), 1)

1

2l
1 s, ) 11

= - [(=A)Zu|"dx + =V udx+|-——) Ko |u|Pdx
4 Jrs 47 Jrs 4 p R

= YVoKo-

By Fatou’s lemma and the Proof of Lemma 2.10, we have

1/|(A)%|2d+1v[2d+1 1K/||1’d
- X+ — X - — = ul’dx
J/VOKO_4 “ 40 R}u 4 p 0 R3

1 ; 1
< liminf 7/ |(—A)7v5|2dx+7/ V(e(x + ye))vidx
4 R3 4 R3

e—0
1 1 »
175 K (e(x + ye))ve|Pdx
p R3

= lim inf J¢ (ve)

e—0
< lim sup Z, (u;)

e—0
=< YVoKo-

Consequently,
Sli_r)l%)is(ve) = é}l_l}lo ce = Lyyko(U) = VK- 4.3)

Therefore, u is a ground state solution of the limit problem (4.2). As in the Proof of Lemma 3.1,
u is positive. O
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Lemma 4.3 {cy.} is bounded.

Proof Suppose to the contrary that, after passing to a subsequence, |ey.| — 00. By V, K €
L>®(R?), without loss of generality, we may assume that V (ey,) — Vp and K (ey.) — Kp
as ¢ — 0. Since V(0) = Vpin and x = K(0) > K(x) for all |[x] > R, we deduce that
Vo > Vmin and Ko < k. So it follows from Lemma 2.9 that yv,k, > Y-

However, by (4.3) and Lemma 2.10, ¢ — Yvyky < ¥Vunc> Which is a contradiction.
Therefore, {€y.} is bounded. O

After extracting a subsequence, we may assume €y, — xg as € — 0, then V = V(xg)
and Ko = K (xp).

Lemma 4.4 lim dist(ey., H1) = 0.
e—0

Proof 1t suffices to show that xo € H;. We argue by contradiction, if xo ¢ 1, then it is easy
to check that yv (xg)K (xg) > VVimink DY (A1) and Lemma 2.9. Therefore, by Lemma 2.10, we
have

lim ¢e = yv(xg)K(xg) > VVmink = lim ce,

e—0 e—0
which is absurd. O
Lemma 4.5 v, — u in H*(R?).

Proof Recall that u is a ground state solution of (4.2), we have

1 . 1 . 1 ;
f/ I(—A)2u|?dx Sliminff/ [(—A)2v, > dx Slimsupf/ I(—A)2 v, |>dx
4 R3 e—>0 4 R3 £—0 4 R3

1 1 1
§limsupf/ |(—A)?v8|2dx+liminf7/ V(e(x + ye))vidx — fvof u’dx
£—0 4 R3 e—0 4 R3 4 R3

.. 1 1 1 1
+ liminf | - — — K(e(x + y)|velPdx — | = — — ) Ko |u|Pdx
e—>0 \4 p/) Jr3 4 p R3

1 s 1
< lim sup f/ |(—A)fv8|2dx + f/ Vie(x + yg))vfdx
e—>0 L4 Jr3 4 Jrs3

11 1 5 11
+|--- K(e(x + ye))|ve|Pdx | — =V udx — |- —— 1)Ko lu|Pdx
4 p) Jr3 4 R3 4 p R3

1 s 5
=— [ [(=A)2ul?dx.
4 R3

Consequently,

1im/ |(—A)%v5|2dx:/ [(—A)2ul?dx.
3 R3

e—=0 Jr
Similarly, we have

lim Vie(x + yg))vszdx = V()/ u*dx.
0 JRr3

£—> R3

Notice that

lim </ V (e(x + ye)) vidx — VO/ vgdx) =0.
£—0 R3 R3
Thus

lim {/ |(—A)%v£|2dx+vof vgdx} =/ |(—A)%u|2dx+vof u’dx.
e—0 R3 R3 R3 R3
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Together with v, — u in H*(R3), we have v, — u in H*(R3). O

To establish the L>-estimate of ground state solutions, we first recall the following result
which can be found in [16, (5.1.1) and (5.1.2)] but without having proof of it.

Lemma 4.6 Suppose that f : R — R is convex and Lipschitz continuous with the Lipschitz
constant L, f(0) = 0. Then for each u € H*(R3), f(u) € H*(R>) and

(=D fu) < f'w)(=A)u (4.4)

in the weak sense.

Proof First, we claim that f () € H*(R3) for u € H*(R?). In fact

- (// F @) = Fa?, )5
P U e x — 32 g

1
L2u(x) — u(y)? 2
= (//RR oy D )

= L[u]Dx,z,

which implies that f (u) € D*2(R?). Moreover,
[ rwiar = [ 17w - rokdx < [ 1pdr <o,
R3 R3 R3
which yields that f(u) € L2(R3). Therefore, the claim is true.
Next we show that (4.4) holds. Observe that f’ exists a.e. in R since f is Lipschitz
continuous. For ¢ € Cgo (R3, R) with ¥ > 0, combining (2.1) with the convexity of f, there

holds

/ (—A) (F ) vdx
]R3

1 fulx+y)+ fulx —y) —2f(ux))

= —EC(S)//RMR3 s Y (x)dydx,

_ _lc(s)/[ fux+y) — fukx)) 3++é’(u(x —-y) — f(u(x))w(x)dydx
R3xR3 [y[T=s

A

1 Sl x4+ y) —ux) + £/ (@) (ux — y) —u(x))
_—C(s)//]R3XIR3 |y|3+23 Y (x)dydx

4
_lc(s)// f (u(x))[u(x+y)+u(x—y)—2u(x)]w(x)dydx
R3xR3

|y|3+25

/ f @) (=8) uyrdx.
R3
This completes the proof. O

Remark 1 In fact, from the above arguments, one can see that (4.4) holds for a.e. x € R3.
Moreover, Lemma 4.6 is true for general dimension N.

The following Lemma plays a fundamental role in the study of behavior of the maximum
points of the solutions, whose proof is related to the Moser iterative method [32].
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Lemma 4.7 Let ¢, — 0 and v, be a solution of the following problem
(—=A)’ Ve, + V(en (X + e, Ve, + 63, ve, = K62 (x + ye,))ve, [P v, in R, (4.5)
where y,, is given in Lemma 4.1. Then v,, € L*°(R3) and there exists C > 0 such that
lve, lloo < C, uniformly inn € N.
Moreover, vg, — u in L9 (R, vV q € [2, +00).
Proof For simplicity of notations, we denote v,, and y,, by v, and y,, respectively. Define
h(x, vn) i= K (&n(x 4+ ya)vn|? v — V(en(x + yn))vn — @3, vn.

From Lemma 4.5, {v,} is bounded in H* (R?), and hence in L7 (R3) for any g € [2,2}]. So
there exists some C > 0 such that
lvallg < C,

uniformly in . Since v, is a solution of (4.5), then

2 2 2
v, (y) v, (y) v, (y)
@y, (x) :/ ——dy :/ ——=—-dy + ———=—-dy
o R? | =y (x—yl<ty X =y (x—yl=1) X = y[3=%
2
v
5/ %dH/ v (v)dy
{lx—yl<1) X = ¥l {lx—yl>1)

1 1
1 i T
< i,dy) ( / v”(y)dy) e
(/{|xy<1} |x — y| G201 x—yl<ty "

5 C7
where (3 — 2s) < 3, 2t € [2,2]], % + tl, = 1 since % < s < 1. Therefore, we have
h(x, vp)| < C(lval + [val?™") < CA+ o 57, (4.6)
Let T > 0, we follow [16] and define

0, ifr <0,
f@y =11, if0<t<T,
BTP 1t —T)+ TP, ift >T,

with 8 > 1 tobe determined later. Since f is convex and Lipschitz with constant Lo = ST#~1
and f(0) = 0, by Lemma 4.6, we have f(v,) € D*?(R?) and

(—=A) f(vn) = f (W) (=) vy .7

in the weak sense. Thus, from f (v,,) € D52(R3), the self-adjointness of the operator (— A)S/2

and (4.6)—(4.7), we have
7wl <€ [ 1808 famPar=c [ f=ay fundx
=< C/ f(vn)f/(vn)(_A)svndx = C/ f(Un)f/(Un)h(xs vy)dx
R3 R3

= C/ f(vn)f/(vn)dx + C/ f(vn)f/(vi1)l)3?_ldx.
R3 R3
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Using the fact that £ (v,) £/ (va) < 202"~ and v, £/ (vs) < Bf (vy), we have

2
(/ (f(u,,))Q?dx>2‘ < C,B2</ v,%ﬂflder/ (f(vn))zvyz,?_zdx) (4.8)
R3 R3 R3

where C is a positive constant that does not depend on S. Notice that the last integral is well
defined for 7 in the definition of f. Indeed

2,22, _ 2,22, 2,22,
~/R (f(vn)) dx = /{v,,fT} (f(vn)) +/ (f(vn)) dx

{vy>T}
§T2’3_2/ xdx—l—C/ v,ﬁdx<oo
R3

We choose now f in (4.8) such that 28 — 1 = 2%, and we name it i, that is
25+ 1

B = >

(4.9)

Let R > 0 to be fixed later. Attending to the last integral in (4.8) and applying the Holder’s

inequality with exponents y := z 3 and y' = 2*2 L
2 252
/ (f(vn)) v, Tdx
R3
2 252 2%~
= f(wn) dx + / F ) vy
/[vn<m( )t {vn>R}( ) o (4.10)

(f @)’ % 5

v Ay * 2% * 2F

f/ 7nR2y71dx + </ (f(v,ﬂ)zsd)f) (/ U,%de> .
{vu<R}  Un R3 {va>R)

By the Monotone Convergence Theorem, we can choose R large enough so that

(/' 2 )3? 1
v dx < —.
{va>R} 2CBi

where C is the constant appearing in (4.8). Therefore, we can absorb the last term in (4.10)
by the left hand side of (4.8) to get

2 2
(f (f(vn>)2§dx>2f §2C/312(f v,?dxﬂéz?—‘/ (f(”"))dx)
R3 R3 R3 Un

Now we use the fact that f(v,) < v ' and (4.9) once again in the right hand side and we
take T — oo we obtain

2
* 2? * Ak *
(/ vﬁ“ﬁldx> < 2C,312</ vssdx +R2l“71/ vﬁ“dx).
R3 R3 R3

v, € LEPIR3), Vi e N, 4.11)

2%

and therefore

and
lvall2zp, < C, (4.12)

uniformly in 7.
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Let us suppose now > B. Thus, using that f(v,) < v,’? in the right hand side of (4.8)
and letting T — oo we get

2
g\ . .
(/ v,%“’ﬁdx> < Cﬂ2</ vgﬂ—ldersz—l/ vl zdx). (4.13)
R3 R3 R3

Setcg := 2;‘((;1‘:1;) andc := 2B —1—cp. Notice that, since § > B1,then0 < ¢ < 2§, c1 > 0.

Hence, applying Young’s inequality with exponents y := 2¥/co and y' := 2% /2% — ¢o, we

have
_ co 2% 2% 2
/ v lax < —/ v, dx + s / v Odx
R3 2% Jr3 2% —co Jr3

- 3
<c (1 +/ v,%mz‘tfzdx),
]R3

with C > 0 independent of 8. Plugging into (4.13),

2
* 25 *_
(/ stﬁdx> < cp? <1 +/ 2P 2dx>,
R3 R3

with C changing from line to line, but remaining independent of 8. Therefore

1 1
. FED | . %D
(1 +[3 v,%“ﬂdx> SO < (cpr) T (1 +/3 2P zdx) . (4.14)
R R

Repeating this argument we will define a sequence S,,, m > 1 such that

2/‘3m+1 +2_>: -2= 2?,3m-

2\
Bmt1 — 1= (4> (B1— D).

Thus,

2
Replacing it in (4.14) one has

1 1
* 25 Bnt1—1 RS S * 25 (Bm—1)
(1—{—/ v,%“ﬂ'"“dx> P < (Cﬂi+l)2(ﬁrn+1*l) (1—|—/ v,zl“'ﬂ’"dx> s
R3 R3

Defining Cy11 := Cp2, | and

m-+
1
* 2F(Bm—1)
Ap = <1+f vﬁ*’ﬁ’"dx) .
R3

S
Apyr < (Cm+l)2(ﬂ”’+l_l)A11la m=1,2,....

So

Now from an iterative procedure we conclude that there exists a constant Cy > 0 independent
of m, such that

m 1
Anm = [T 41 < oAy, V.
k=1
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Thus, from (4.11),
lvnlloo < CoAy < 00, (4.15)

and hence v, € L®(R?). By (4.12),
lvnlloo = C, (4.16)

uniformly in n € N, Finally, by interpolation on the L9-spaces and v, — u in L*>(R?), we
have v, — u in LY(R3),V q € [2, +00). This finishes the Proof of Lemma 4.7. ]

Lemma 4.8 v, (x) — 0as |x| = oo uniformly in n.

Proof Since v, satisfies the equation
(=AY vy + vy =Ty, x €RY,

where
1 (%) = 02 (x) = V(€ (X 4 yu))va (x) — ¢}, ()0 (x) + K (£ (x + y))vh (), x € R’
Putting 7" (x) = u(x) — V(xo)u(x) — ¢, (x)u(x) + K (xo)u” (x), by Lemma 4.7, we see that
T, — T in LY(RY), ¥V q € [2, +00),
and there exists a C» > 0 such that
17ulloo < Ca, Y €N,

From [18], we have that
w0 =647, = [ 06— nTinay,

where G is the Bessel Kernel

1
Gx)=7"" <7) .
) TTEP
It is known from [18, Theorem 3.3] that, G is positive, radially symmetric and smooth in
R3\{0}; there is C > 0 such that G(x) < WLH and G € LI(R3), ¥ q € [1, 55). Now
argue as in the Proof of [2, Lemma 2.6], we conclude that

v, (x) = 0 as|x| — oo, 4.17)
uniformly inn € N. O

Proof of Theorem 4.1 First we claim that there exists a pg > O suchthat ||v,|cc > po, Vn € N.
In fact, suppose that ||v,|lcc — 0 asn — oo. Let g9 = Vg‘i“, then there exists an ng € N
such that

Vmin

-2
Kmax”Un”go < forn > nog.

Therefore, we have
/ [(—A) 2 v, dx +/ V(en(x + yn))vpdx
R3 R3
< f |(—A)%vn|2dx +/ Vi(en(x + y,,))v,zldx +/ ¢f,”v3dx
R3 R3 R3
= / K(Sn(x+)’n))|vn|pdx
R3

) 2
= Kmax”Un”Io)o /3 vndx~
R
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This implies that ||v, || = 0 for n > ng, which is impossible because v, — u in H*(R?) and
u # 0. Then, the claim is true.

From [40, Proposition 2.9], we see that v, € Cl*‘)‘(]R3) for any o < 2s — 1. Thus, we
know that v, has a global maximum point p, by (4.17) and the claim above, we also see that
Pn € Bg,(0) for some Ry > 0. Hence, the global maximum point of u,, given by p, + y,.
Define v/, (x) := ug, (x + y, + pa), where ug, (x) = v, (x + y,). Since {p,} C Bg,(0) is
bounded, then we know that {e,(p, + y,)} is bounded and ¢,(p, + y,) — xo € H;i. It
follows from the boundedness of {u,, } that {1/,} is bounded in H* (R3), and we assume that
Y — ¥ in HSR3), ¥, — ¢ in L] (R3)forg € [1,2}). Onthe other hand, by Lemma 4.1,

loc
we have
./;;

so we obtain ¢ # 0. Moreover, similar to the argument above, we know that v is a ground
state solution of (4.2) and ¥, — ¥ in H® (R?). Therefore, 1, possesses same properties as
vy, and we can assume that y, is a global maximum point of u,,. Then, by Lemmas 4.1-4.5
above, one can obtain Theorem 4.1.

ﬁmmZ/

{Ix+pu|<R}

Y (x)dx = / ul (x)dx > o,

FIPN0) Bj(yn)

5 Decay estimates

In this section, we estimate the decay properties of v,,.

Lemma 5.1 There exist C > 0 such that

3
vy (x) < 71+|x|3+25’ VxelR.

Proof According to [18, Lemma 4.2], there exists a continuous function @ such that

i c
and v
(=AY o+ ’;‘“5) =0, inR*Bz(0) (5.2)

for some suitable R > 0. Thanks to (4.17), we have that v, (x) — 0 as |x| — oo uniformly
in n. Therefore, for some large R; > 0, we obtain

Viin

(=8)"v, +

Uy = (_A)Svn + V(é‘,,(x =+ yn))vn — <V(8n(x + yn)) _ Vr;in) Un

_ Vini
=—%w+Kma+mmmp%r(w%u+mr—“ﬂw

2
Vo
= ([(mzi)(|11rl|1772 - ﬂ) Un

2
<0,
(5.3)
forx € ]R3\BRl (0). Now we take Ry := max{R, R;} and set
zZn = (m + D — b, 5.4
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where m := sup [|[Un|leo < 00 and b := min & > 0. We next show that z, > 0 in R3. For
neN B, (0)

this we suppose by contradiction that, there is a sequence {x,{} such that
inf 2,(x) = lim z, (x{) <0. (5.5)
xeR3 j—o00

Notice that
Iim @(x) =0.
|x]—o00
Jointly with (4.17), we obtain

lim z,(x) =0,
|x|—o00

uniformly in n € N. Consequently, the sequence {x,{} is bounded and therefore, up to a
subsequence, we may assume that x;, — X as j — oo for some x € R3. Hence (5.5)
becomes
zp(x;) = inf z,(x) <O. (5.6)
xeR3

From (5.6) and (2.1), we have

C(s) 20 +¥) + 20 (X — ¥) — 22, (x)))

(=8 zg) = == s S dy <0. (5.7)
By (5.4), we get
Zn(x) = mb + @ —mb > 0, in B(0, R>).
Therefore, combining this with (5.6), we see that
x' € R3\Bg,(0). (5.8)
From (5.2)—(5.3), we conclude that
s Vinin . 3
(=AY z, + Zp = 0, in R\ Bg, (0). 5.9

Thinks to (5.8), we can evaluate (5.9) at the point x*, and recall (5.6), (5.7), we conclude that

n’

Vinin
2

0 < (—A)Yz,(xp) + Zn(xy) <0,

this is a contradiction, so z,, (x) > 0 in R3. That is to say, v, < (m+ Db~1&, which together
with (5.1), implies that

3
Un(X)S W, VxelR.

Then the proof is completed. O

Proof of Theorem 1.1 Define w,(x) := un(ﬁ), then w, is a positive ground state solution
of system (1.1) and x,, := &,y, is a maximum point of w,, and by Theorem 4.1, we know
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that the Theorem 1.1(i), (ii) hold. Moreover, we have

X X
wp(X) = uy < ) = Un ( - yn>
&n &n

C
= T L 1X .\ 13+2s
1+ |g = Yul? T
342s
_ Ce;,
— _342s
e+ |x — &nyn 32
3+2s
Ce;

VxeR.

= b
et 4 x — Xg, |32

Thus, the proof of Theorem 1.1 is completed.
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