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Abstract We investigate the convergence of phase fields for the Willmore problem away
from the support of a limiting measure μ. For this purpose, we introduce a suitable notion
of essentially uniform convergence. This mode of convergence is a natural generalisation
of uniform convergence that precisely describes the convergence of phase fields in three
dimensions. More in detail, we show that, in three space dimensions, points close to which
the phase fields stay bounded away from a pure phase lie either in the support of the limit-
ing mass measure μ or contribute a positive amount to the limiting Willmore energy. Thus
there can only be finitely many such points. As an application, we investigate the Haus-
dorff limit of level sets of sequences of phase fields with bounded energy. We also obtain
results on boundedness and L p-convergence of phase fields and convergence from outside
the interval between the wells of a double-well potential. For minimisers of suitable energy
functionals, we deduce uniform convergence of the phase fields from essentially uniform
convergence.
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1 Introduction and main results

Problems both in pure and applied mathematics lead to investigating energies depending on
the curvatures of manifolds. A famous example is Willmore’s energy

W(�) =
∫

�

H2 dHn−1

where � ⊂ R
n is a hypersurface, H denotes its mean curvature and Hk the k-dimensional

Hausdorff measure. Often, one may reserve the term Willmore’s energy for the case n = 3 and
denote the same energy on plane curves as Euler’s elastica energy. Like the minimal surface
problem in the gradient-theory of phase transitions [9], this energy can be approximated by
diffuse functionals on phase-fields [1]. For a more extensive review of the literature, see e.g.
[4].

There are several phase-field models for Willmore’s energy. The one described in the
following is particularly satisfying for two reasons: (1) Higher order terms appear only
quadratically, allowing for a comparatively easy and stable implementation of the gradient
flow and (2) the Willmore integrand is the density associated to the first variation of the
diffuse area integrand squared. In this sense, the diffuse functional is constructed in direct
analogy to the sharp interface energy.

Assume that n = 2, 3, � � R
n , W is the double-well potential W (u) = 1

4 (u2 − 1)2 and

c0 = ∫ 1
−1

√
2 W (s) ds = 2

√
2/3. Then we consider the Modica-Mortola energy

Sε : L1(�) → R, Sε(u) =
{

1
c0

∫
�

ε
2 |∇u|2 + 1

ε
W (u) dx u ∈ W 1,2(�)

+∞ else

as an approximation of the surface area measure and the functional

Wε : L1(�) → R, Wε(u) =
{

1
c0

∫
�

1
ε

(
ε �u − 1

ε
W ′(u)

)2
dx u ∈ W 2,2(�)

+∞ else

as an approximation of Willmore’s energy. In [11], Röger and Schätzle proved that

�(L1(�)) − lim
ε→0

(Wε + � Sε) (χE − χ�\E ) = W(∂E) + �Hn−1(∂E)

for any � > 0 if E � � and ∂E ∈ C2 in n = 2, 3 space dimensions. We shall always
restrict ourselves to these dimensions in the following. The recovery sequence is constructed
by using the well-known transition layer for the Modica-Mortola energy [2]. It is given by
functions of the type
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uε(x) = qε(sdist(x, ∂E)/ε)

where sdist is the signed distance function to ∂E and qε is a suitably cut-off approximation
of q(t) = tanh(t/

√
2) which is the stationary transition between the wells u = ±1 of W in

one dimension since −q ′′ + W ′(q) = 0. Sequences of this general structure will be referred
to as optimal profiles.

Clearly, optimal profiles converge to χE −χ�\E in L1(�). More generally, they converge
in all finite L p-spaces and they become constant away from ∂E . Our aim in this article is
to understand the convergence properties of general sequences uε such that the total energy
Eε(uε):=(Wε + Sε)(uε) remains bounded in n = 3 dimensions.

We notice that such a sequence must have a limit point in the L2-sense (in any dimension)
since a uniform bound on Sε implies a uniform bound on uε in L4(�) and onG(uε) in BV (�)

where G is a primitive function of
√

2W . This argument only uses the strict monotone growth
of G and Young’s inequality.

While uε ∈ W 2,2(�) is continuous on � (and � if ∂� ∈ C0,1) due to the Sobolev embed-
ding theorems, the limit u is either discontinuous or constant ±1, and uniform convergence
uε → u cannot be expected.

To properly understand the convergence of a fixed finite energy sequence uε, one needs
to consider the associated Radon measures με, αε given on open sets U ⊂ R

n by

με(U ) = 1

c0

∫
U∩�

ε

2
|∇uε|2 + 1

ε
W (uε) dx,

αε(U ) = 1

c0

∫
U∩�

1

ε

(
ε �uε − 1

ε
W ′(uε)

)2

dx

which localise the functionals Sε and Wε respectively. We also denote the Willmore inte-
grand by vε:= − ε �uε + 1

ε
W ′(uε). By the compactness theorem for Radon measures, there

exist finite Radon measures μ, α supported in � with |Du| ≤ 2μ such that (for a further

subsequence) με
∗
⇀ μ and αε

∗
⇀ α. Due to [11], the restriction μ|� is the mass measure of

an integral varifold with square integrable mean curvature and H2
μ · μ|� ≤ α.

In this article, we will always make the following non-restrictive assumptions:

(1) The sequence uε has finite energy, i.e. lim supε→∞ Eε(uε) < ∞,

(2) all quantities have a limit, i.e. uε → u in L2(�), με
∗
⇀ μ and αε

∗
⇀ α,

(3) ε is small enough for the phase fields to resemble the limit in the sense that we assume
that μ(Rn) = μ̄, α(Rn) = ᾱ and με(R

n) ≤ μ̄ + 1, αε(R
n) ≤ ᾱ + 1 and

(4) on ∂� we have either |uε| ≤ θ for all ε > 0 and some θ ≥ 1 or ∂νuε = 0 for all ε > 0.

Sequences along which the Modica-Mortola energy Sε(uε) stays bounded can behave quite
badly. In specific situations, uniform convergence uε → u away from the support of the
measure μ has been established:

(1) If the functions uε are not only bounded in energy but also local minimisers of Sε under
the constraint 1

|�|
∫
�
u dx = m ∈ (0, 1), [3].

(2) More generally, if they are stationary states

uk ∈ W 1,2(�), −εk �uk + 1

εk
W ′(uk) = λk

with εk → 0 for which the sequence of Lagrange multipliers λk remains bounded [7].
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(3) Assuming the same energy bounds as we do, but in dimension n = 2 [10].

We can take a continuous representative of uε ∈ W 2,2(�) ↪−→ C0,1/2(�) if � is regular
and uε ∈ C0,1/2

loc (�) else. For u we take the representative that is constant ±1 on � \ spt(μ)

(which exists since |Du| ≤ 2μ). We will show that the following hold.

Main Theorem Let n = 3, � � R
n open and the conditions above be satisfied. Then the

following hold true.

(1) Let�′ � �. Then there exists C > 0 such that |uε| ≤ C on�′ for all ε < dist(�′, ∂�)2

and uε ∈ C0,1/2(Bε(x)) for all x ∈ �′ with

|uε(y) − uε(z)| ≤ C

ε1/2 |y − z|1/2 ∀ y, z ∈ Bε(x).

(2) Let �′ � �. Then uε → u in L p(�′) for all 1 ≤ p < ∞.
(3) Let τ > 0. Then there are only finitely many points x ∈ � with the following property:

∃ xε → x such that lim sup
ε→0

|uε(xε)| ≥ 1 + τ.

The number of points can be bounded in terms of μ̄, ᾱ and τ .
(4) Let τ > 0. Then there are only finitely many points x ∈ � \ spt(μ) with the following

property:

∃ xε → x such that lim sup
ε→0

∣∣ uε(xε) − u(x)
∣∣ ≥ τ.

The number of such points can be bounded in terms of μ̄, ᾱ and τ .
(5) Let �′ � � \ spt(μ). If α has no atoms in �′ \ spt(μ), then uε → u uniformly on �′.

In particular, if V is an integral varifold supported in � with mass measure μ such that
με → μ and additionally αε(�) → W(μ), then uε converges to u uniformly on all
�′ � � \ spt(μ).

(6) Let I � (−1, 1). Then there exists a compact set K ⊂ � and a subsequence ε → 0
such that u−1

ε (I ) → K in Hausdorff distance. K satisfies

K ∩ � = (spt(μ) ∩ �) ∪ {x1, . . . , xN }
for finitely many points x1, . . . , xN ∈ �. If α has no atoms outside spt(μ), then K ∩� =
spt(μ) ∩ �.

(7) There exists a countable set � ⊂ � \ spt(μ), such that uε → u pointwise everywhere
on � \ (spt(μ) ∪ �). In particular, for C � � \ spt(μ), s > 0 such that Hs(C) < ∞
we have that uε → u Hs |C-almost everywhere.

The statement and the proof are split over Corollary 2.16, Lemma 2.6, Theorems 2.11, 2.14
and 2.20.

Under the same assumptions, Nagase and Tonegawa [10] proved uniform convergence in
n = 2 dimensions. The differences between the cases n = 2 and n = 3 arise from the sharp
interface problem, not the phase field approximation. Namely, due to the fact that Willmore’s
energy is scale invariant, the sequence of manifolds

Mk = ∂B1(0) ∪ ∂B1/k(0)

has Willmore energy W(Mk) ≡ 32π in n = 3 dimensions. It satisfies Mk → ∂B1(0) in the
measure sense, but Mk → ∂B1(0) ∪ {0} in Hausdorff distance. Such a sequence can be used
to show that uniform convergence cannot hold for the phase field problem. The analogue of
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Willmore’s energy on curves, also known as Euler’s elastica energy, is not scale invariant
since the exponent of the mean curvature p = 2 is higher than the dimension n − 1 = 1 of
the manifold.

It is an important feature of our analysis that we only assume that Eε(uε) is bounded and
not necessarily that uε is a local minimiser or stationary point of a related functional under
suitable side conditions. This is of central importance for applications, where Willmore’s
energy is usually not the only term contributing to the total energy in a model.

We remark that our result is sharp. While the formulation is new, it is geometrically
intuitive. Namely, the sets

�τ :=
{
x ∈ � \ spt(μ) | ∃ xε → x such that lim sup

ε→0
|uε(xε) − u(x)| ≥ τ

}

and �:=⋃
τ>0 �τ = ⋃∞

k=1 �1/k encode how far uε is from converging uniformly to u.
Since u is locally constant on � \ spt(μ), it is easy to see that uε → u locally uniformly on
� \ spt(μ) if and only if � = ∅. We show that the τ -distant sets �τ are finite for all τ > 0,
but may be non-empty. So while uniform convergence cannot be achieved in general, the set
where it fails by any given positive amount is as small as can be.

This is still a strong statement, and we shall call such functions converging essentially
uniformly on � \ spt(μ). Essentially uniform convergence is especially suited for investi-
gating functionals that depend on individual level sets and can be used to deduce uniform
convergence for certain minimising sequences, see Sect. 3. The new technique is particularly
useful in fourth order problems where energy competitors cannot be constructed as easily as
in generalised Modica-Mortola functionals.

Our convergence results can be applied to functionals depending on level sets of phase-
fields (like the connectedness constraint functionals in [4]), to rigorously justify the usual
notion that the zero level set of a phase field approximates a sharp interface limit (via Haus-
dorff convergence) and to prove the stability of closedness under varifold convergence in the
class of embedded surfaces with uniformly bounded Willmore energy.

The article is organised as follows. In Sect. 2.1, we collect a few helpful results and first
applications to boundedness and L p-convergence of uε. We deal with essentially uniform
convergence in Sect. 2.2 and Hausdorff convergence of the level sets of uε to spt(μ) in
Sect. 2.3. Applications to uniform convergence for minimisers and varifold geometry will be
discussed in Sect. 3. We conclude the article with examples demonstrating that our results
are sharp in Sect. 4.

2 Proofs

2.1 Auxiliary estimates

In this section, we will collect a few estimates. The first Lemma is essentially obvious from
the energy estimates, but important in controlling the Sobolev norms of uε from the control
over Eε(uε) = (Wε + Sε)(uε).

Lemma 2.1 Let uε ∈ W 2,2(�). Then there is a constant C depending on Eε(uε) and � such
that

||uε||2,� ≤ C, ||∇uε||2,� ≤ C√
ε
, ||�uε||2,� ≤ C

ε7/2 .

Due to Sobolev embeddings, uε ∈ C0,1/2
loc (�).
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We further present the following estimate of how large certain integrals of the phase-fields
uε outside [−1, 1] can be.

Lemma 2.2 [11, Proposition 3.5] For n = 2, 3, � ⊆ R
n, ε > 0, uε ∈ C2(�), vε ∈ C0(�),

−ε�uε + 1

ε
W ′(uε) = vε in �,

and �′ � �, 0 < r < dist(�′, ∂�), we have∫
{|uε |≥1}∩�′

W ′(uε)
2 ≤ Ck(1 + r−2kε2k)ε2

∫
�

v2
ε + Ckr

−2kε2k
∫

{|uε |≥1}∩�

W ′(uε)
2

for all k ∈ N0.

Together, these statements imply the following.

Corollary 2.3 Let �′ � �. Then

1

ε3

∫
�′∩{|uε |>1}

W ′(uε)
2 dx ≤ C

and

lim sup
ε→0

1

ε3

∫
�′∩{|uε |>1}

W ′(uε)
2 dx ≤ αε(�).

A key tool in our argument is a simplified monotonicity formula. Notably, it contains the
Radon measures given by

ξε,+(U ):=
∫
U∩�

(
ε

2
|∇uε|2 − 1

ε
W (uε)

)
+

dx

on open sets U ⊂ R
n . These and their absolute value versions

|ξε|(U ):=
∫
U∩�

∣∣∣∣ ε2 |∇uε|2 − 1

ε
W (uε)

∣∣∣∣ dx

are also known as the discrepancy measures because they control the deviation from the
natural situation of equipartition of energy in the Modica-Mortola functional. Intuitively, a
blow up of phase fields resembles solutions to the stationary Allen-Cahn equation

−�u + W ′(u) = 0

on R
n and due to a classical estimate of Modica [8], these satisfy |∇u|2 ≤ W (u), so that at

least ξε,+ may be expected to vanish. For an optimal profile type sequence, |ξε|(Rn) → 0
exponentially fast in ε, and due to [11, Proposition 4.9] the same is true for general finite
energy sequences. The positive part ξε,+ can be estimated quantitatively using a small param-
eter δ > 0 as follows.

Lemma 2.4 [11, Lemma 3.1] Let n = 2, 3 and assume that uε ∈ W 2,2(B1(0)). Then there
are C, δ0 > 0 and M � 1 such that for all 0 < δ ≤ δ0, 0 < ε ≤ ρ and

ρ0:= max{2, 1 + δ−Mε} ρ
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we have

ρ1−nξε,+(Bρ) ≤ C

{
δ ρ1−n με(B2ρ)+ε2δ−Mρ1−n

(
αε(Bρ0 )+

∫
Bρ0 ∩{|uε |>1}

1

ε3 W ′(uε) dx

)
+ εδ

ρ

}
.

With this in mind, we may state our estimated monotonicity formula. A similar estimate
is also given in [11, Proposition 4.3]; see also [4, Lemma 3.6].

Lemma 2.5 Let 0 < r < R ≤ 1, x ∈ � such that BR(x) � �. Denote Bρ :=Bρ(x). Then

r1−nμε(Br ) ≤ 3 R1−n με(BR) + 3 αε(BR) + 2
∫ R

r

ξε,+(Bρ)

ρn
dρ.

In the case that uε satisfies the boundary conditions (4.1), the following Lemma was
already proved in [4, Lemma 3.1], but the proof also goes through in our case. Set

�ε := {x ∈ � | B2ε(x) ⊂ �}.
Lemma 2.6 There is Cᾱ,μ̄,n > 0 such that

||uε||∞,�ε ≤ Cᾱ,μ̄,n .

Take x ∈ �ε and set Bε:=Bε(x). Then uε is Hölder-continuous on Bε with

|uε(y) − uε(z)| ≤ Cᾱ,μ̄,n,γ

εγ
|y − z|γ

for all y, z ∈ Bε and γ ≤ 1/2 if n = 3, γ < 1 if n = 2.

Optimal interfaces have precisely these Hölder-coefficients, so they cannot be improved.
With Corollary 2.3, the regularity Lemma could be extended to the case without boundary
conditions on compactly contained sets.

Remark 2.7 Note that �ε is growing as ε → 0, so that the local boundedness and Hölder
continuity hold on every set �′ � � with constants independent of �′, at least for small
enough ε > 0. We shall make use of this in the following.

Corollary 2.8 Let 1 ≤ p < ∞. Then uε → u in L p(�′) for all �′ � �.

Proof We know that uε → u in L1(�) and that the sequence uε is bounded uniformly in
L∞(�′). Hölder’s inequality does the rest. ��
2.2 Essentially uniform convergence

In this section, we will investigate the convergence of uε in n = 3 dimensions. As we shall
see in Example 4.1, uniform convergence away from the interface does not hold in this case.
Therefore, we are forced to introduce a new notion of convergence which is better adapted
to phase field problems.

Definition 2.9 LetU ⊂ R
n , fε, f : U → R continuous functions. Then we say that fε → f

essentially uniformly (e.u.) if the sets

�τ :=
{
x ∈ U | ∃ xε → x such that lim sup

ε→0
| fε(xε) − f (x)| ≥ τ

}

are finite for all τ > 0.
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Since we assume f to be continuous, locally uniform convergence corresponds to �τ = ∅
for all τ > 0 and implies essentially uniform convergence. Even without the assumption of
continuity, e.u. convergence implies convergence pointwise everywhere on the complement
of a countable set. With this definition, our results on convergence in three dimensions can
be summarised as

uε → u e.u. on � \ spt(μ) and (|uε| − 1)+ → 0 e.u. on �.

Remark 2.10 Essentially uniform convergence is a powerful tool for our purposes, but still
quite far from uniform convergence. The following properties are easy to establish.

(1) Assume that fε → f e.u. on U . Then � = ⋃
τ>0 �τ = ⋃∞

k=1 �1/k is countable and
fε(x) → f (x) for all x ∈ U \ �.

(2) Let K � U \ �. Then fε → f uniformly on K .
(3) � is countable and may lie dense in U , in which case the previous point is vacuous. In

particular, it may happen that fε → f e.u. but there exists no open set U ′ ⊂ U such
that fε → f uniformly on U ′. We shall see in Example 4.1 that this may happen in our
case of finite energy sequences uε.

In one space dimension, the same kind of convergence was used by Dal Maso and Iurlano
for phase-fields governed by a Modica-Mortola energy [5, Proof of Proposition 1]. In one
dimension, the Modica-Mortola functional controls functions well enough to show essentially
uniform convergence. In Remark 2.19 we discuss under what assumptions our techniques
can be adapted to prove essentially uniform convergence in higher dimensions.

We begin by proving convergence from outside [−1, 1], also at spt(μ).

Theorem 2.11 Let τ > 0 and x ∈ � a point for which there exists a sequence xε → x such
that lim supε→0 |uε(xε)| ≥ 1 + τ . Then there exists θ̄ > 0 depending only on ᾱ, μ̄ and τ

such that α({x}) ≥ θ̄ . In particular, there are only finitely many such points.

Proof Passing to a subsequence and replacing τ by τ/2, we may assume that |uε(xε)| ≥ 1+τ

for all ε. Since � is open, there exists r > 0 such that B4r (x) ⊂ �. Thus B3r (x) ⊂ �ε for
all sufficiently small ε, so we may use Lemma 2.6 with uniform constants. Since xε → x ,
for all sufficiently small ε > 0 we have Bε(xε) ⊂ Br (x), and by Hölder-continuity of uε,
there is 0 < c < 1 such that

|uε| ≥ 1 + τ

2
on Bcε(xε)

which implies that

με(Br (x)) ≥ με(Bcε(xε)) ≥ ωn (cε)n
W (1 + τ/2)

ε
.

Using Corollary 2.3, we find that α(B2r ) ≥ ωn cn W (1 + τ/2) where c only depends on the
Hölder constant of uε on Bcε(xε) and thus only on the energy bounds. Taking r → 0, we see
that

α({x}) ≥ Cᾱ,μ̄,τ .

A point with the properties of x is therefore an atom of α with a minimal size depending on
ᾱ, μ̄ and τ . In particular, since ᾱ < ∞, there are only finitely many such points. ��

Note that we had to use the limiting measure α. Its existence may always be achieved by
taking a subsequence ε → 0. On the other hand, if we add bumps as Example 4.1 based at
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points along a dense sequence in some �′ � � \ spt(μ), we see that all points x ∈ �′ are
limits of bad sequences. Thus the existence of α is of critical importance for the argument
above.

The following result is the three dimensional version of [4, Lemma 3.9], obtained with a
slightly improved estimate and streamlined argument. We slightly abuse notation and denote
by Wε, Sε, Eε also the functionals given by the same formulae as above on the function space
L1(B1(0)) instead of L1(�).

Lemma 2.12 Let n = 2, 3, B = B1(0) ⊂ R
n, θ ∈ [0, 1) and

Xθ :={u ∈ W 2,2(B) | |u(0)| ≤ θ}.
Then the function

e : [0, 1) → R, e(θ):= lim inf
ε→0

inf
u∈Xθ

Eε(u)

is strictly positive.

Proof For a contradiction, assume that there is θ ∈ [0, 1) and a sequence uε ∈ Xθ such that
Eε(uε) → 0. As usual, denote Bρ :=Bρ(0) and the diffuse mass and Willmore measures by
με and αε , respectively, despite the change of domain. Consider the densities

fε(ρ):=ρ1−nμε(Bρ)

for ρ ∈ [ε, 1]. By the Hölder continuity on B1/2 from Lemma 2.6, we get fε(ε) =
ε1−nμε(Bε) ≥ c̄ > 0 for a uniform constant depending only on θ by the same argument as in
Theorem 2.11 (since μ̄ = ᾱ = 0 by assumption). In the next step, we will apply Lemma 2.4
with δ = ηε (ε/ρ)β for some 0 < β < 1/M and ηε → 0 so slowly that

(1) η−M
ε αε(B) → 0 and

(2) η−M
ε ε1−Mβ ≤ 1.

Note that the second condition also implies that δ−Mε = (ε/ρ)−Mβ η−M
ε ε ≤ 1 for ρ ≥ ε.

In particular, δ < δ0 independently of ρ ≥ ε for all small enough ε > 0. Using the estimated
monotonicity formula from Lemma 2.5 for ε = r < R = 1/3 together with the estimates for

– ξε,+ from Lemma 2.4 for the δ given above, for
– ||uε||∞,B2/3 from Lemma 2.6 and for

–
∫
B2/3∩{|uε |>1}

1
ε3 W

′(uε)
2 dx as in Corollary 2.3,

we obtain

fε(ε) ≤ 3 R1−n με(BR) + 3 αε(BR) + 2
∫ R

r

ξε,+(Bρ)

ρn
dρ

≤ 3 R1−n με(BR) + 3 αε(BR) + 2C
∫ R

r
ηε

εβ

ρ1+β
ρ1−n με(B2ρ) dρ

+
∫ R

r

ε2−Mβ

ρn−Mβ
η−M

ε

(
αε(B2ρ) +

∫
B2ρ∩{|uε |>1}

1

ε3 W
′(uε)

2 dx

)
+ ε1+β ηε

ρ2+β
dρ

≤ 3 R1−n με(BR) + 3 αε(BR) +
∫ R

r

2C ηε εβ

ρ1+β
fε(2ρ) dρ

+ C

1 + β
ε1+β

[
r−(1+β) − R−(1+β)

]
ηε
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+ C

n − 1 − Mβ
ε2−Mβ

{
r1−n+Mβ − R1−n+Mβ

}
η−M

ε

·

⎧⎪⎨
⎪⎩αε(B2R) +

1 −
(

5ε
R

)3

1 − 5 ε
R

αε(B2R) + 1

ε2

(
5 ε

R

)3

||uε||∞,B2R · 4 με(B2R)

⎫⎪⎬
⎪⎭

≤ γε +
∫ 2R

r

2C ηε εβ

ρ1+β
fε(ρ) dρ

with γε → 0 as ε → 0. We may now use Grönwall’s inequality backwards in time to deduce
that

fε(ε) ≤ γε exp

(∫ 2/3

ε

C ηε εβ

ρ1+β
dρ

)
≤ C γε.

This is a contradiction since γε → 0, but on the other hand fε(ε) ≥ c̄ > 0 due to Hölder
continuity. ��

In the next step of our program, we will reduce the problem of uniform convergence to this
minimisation problem. The central tool in doing so is the following rescaling result, compare
e.g. the proof of [11, Theorem 5.1].

Lemma 2.13 Let uε : B(x, r) → R, λ > 0 and ûε : B(0, r/λ) → R with

ûε(y) = uε(x + λy).

Set r̂ :=r/λ, ε̂:=ε/λ,

μ̂ε:= 1

c0

(
ε̂

2
|∇ûε|2 + 1

ε̂
W (ûε)

)
Ln, α̂ε:= 1

c0 ε̂

(
ε̂ �ûε − 1

ε̂
W ′(ûε)

)2

Ln .

Then

r̂1−nμ̂ε(B(0, r̂)) = r1−n με(B(x, r)), r̂3−n α̂ε(B(0, r̂)) = r3−n αε(B(x, r)).

With this in mind, we proceed to our main result on convergence away from spt(μ) in
three dimensions. The proof resembles that of [4, Theorem 2.1], where uniform convergence
in two dimensions was established.

Theorem 2.14 Let τ > 0 and x ∈ � \ spt(μ) such that there exists a sequence xε → x with
the property that

lim sup
ε→0

|uε(xε) − u(x)| ≥ τ.

Then there exists θ̄ depending only on τ such that α({x}) ≥ θ̄ . In particular, there are only
finitely many such points.

Proof Since convergence from outside [−1, 1] is already clear, we only consider x that admit
a sequence xε → x such that

lim inf
ε→0

|uε(xε)| ≤ 1 − τ.

Without loss of generality, we may assume that u(x) = 1. Assume that there is a subsequence
xε → x such that uε(xε) < 0. Since uε → u in L1(�) (so pointwise almost everywhere,
up to a subsequence), and u is locally constant, there is also a sequence x̃ε → x such that
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uε(x̃ε) ≥ 1 − τ/2. Using the continuity of uε, we obtain a sequence x ′
ε → x such that

|uε(x ′
ε)| ≤ 1 − τ . Passing to a subsequence in ε, we may assume that this holds for all ε.

So assume that xε → x ∈ � and |uε(xε)| ≤ 1 − τ . Since � \ spt(μ) is open, there is
r > 0 such that B(x, 3r) ⊂ � \ spt(μ). As xε → x , B(xε, r) ⊂ B(x, 2r) for almost all
ε > 0. We have μ(B(x, 3r)) = 0, so (using the terminology of Lemmas 2.12 and 2.13)

α(B3r (x)) ≥ α(B2r (x))

≥ lim sup
ε→0

(
αε(B2r (x) + r1−nμε(B2r (x))

)

≥ lim sup
ε→0

(
αε(Br (xε)) + r1−nμε(Br (xε))

)

= lim sup
ε̂→0

(
α̂ε(B1(0)) + μ̂ε(B1(0))

)

≥ lim sup
ε̂→0

inf
u∈X1−τ

(Wε̂ + Sε̂) (u)

≥ θ̄

with ûε(y) = uε(xε + ry) and ε̂ = ε/r . Letting r → 0, we establish that

α({x}) ≥ θ̄

where θ̄ only depends on τ . Again, x is an atom of a fixed minimal size, so there are only
finitely many such points. ��
Corollary 2.15 Assume that �′ � � \ spt(μ). Then the following hold true.

(1) For all τ > 0 there exists c̄τ > 0 such that if α has no atoms of size at least c̄ in �′, then∣∣ |uε| − 1
∣∣ < τ on �′.

(2) If α has no atoms in �′ at all, then uε → u uniformly on �′.
(3) If μ is the mass measure of a varifold V and α(�) = W(V ) (i.e. uε is a recovery

sequence for its limit), then uε → u locally uniformly in � \ spt(μ).

Proof All but the last point are obvious. Clearly, it suffices to show that α has no atoms
outside spt(μ). For a contradiction, assume that x0 /∈ spt(μ) is an atom of α and choose
�′ = � \ Br (x0) such that Br (x0) � � \ spt(μ). Then consider the sequence ūε = uε

pointwise. Clearly still μ̄ε
∗
⇀ μ, but lim infε→0 Wε(ūε) < W(V ) contradicting the � −

lim inf inequality from [11]. ��
The following is an easy corollary once essentially uniform convergence is established.

We state it here in order to illustrate the properties of this mode of convergence.

Corollary 2.16 There exists a countable set � ⊂ � \ spt(μ), such that uε → u pointwise
everywhere on � \ (spt(μ) ∪ �). In particular, for C � � \ spt(μ), s > 0 such that
Hs(C) < ∞ we have that uε → u Hs |C-almost everywhere.
Proof The statement follows from Remark 2.10 point (1), which is evident from the definition
of essentially uniform convergence. ��

A few remarks are in order.

Remark 2.17 The only difference to the case n = 2 lies in the different rescaling properties
of αε in two and three dimensions. There, we could deduce that α(B3r (x)) ≥ θ̄/r , which
gives a contradiction as r → 0 and establishes uniform convergence of |uε| → 1 on sets
�′ � � \ spt(μ).
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Remark 2.18 As pointed out, if �′ � � and μ(�′) = α(�′) = 0, then |uε| → 1 uniformly
on every �′′ � �′. However, the convergence has no a priori rate in ε in n = 3 dimensions.
Functions like

uε = 1 + f (ε) g( (x − x0)/ε)

will not lead to atoms ofα if g ∈ C∞
c (Rn) and f (ε) → 0 as ε → 0. For similar considerations,

see Example 4.1. In two dimensions, the optimal rate of convergence is
√

ε as shown in [10]
from outside [−1, 1]. The argument can also be applied in general.

Remark 2.19 The argument presented above can clearly be adapted to other situations with
the following ingredients:

(1) a sequence of functions uε which induces two sequences of Radon measures με, αε

uniformly bounded on compact subsets

(2) Limiting objects such that uε → u, με
∗
⇀ μ and αε

∗
⇀ α,

(3) an infinitesimal generation of mass property like

|uε(x) − u(x)| ≥ θ ⇒ ε1−nμε(Bε) ≥ c̄θ ,

(4) a monotonicity formula resembling

R1−nμε(BR) ≥ c1 r
1−nμε(Br ) − c2 αε(BR) + �ε, c1, c2 > 0, ε ≤ r ≤ R

for με which involves only με, αε and an error term �ε which goes to zero and
(5) a critical or sub-critical rescaling property for αε and an invariance property for the

‘density’ r1−nμε(Br ).

Then we can re-write the problem of uniform convergence into a minimisation problem
and employ the same arguments as above. Depending on the nature of the rescaling property,
we may be able to obtain uniform convergence this way (as for n = 2) or essentially uniform
convergence (as for n = 3).

2.3 Hausdorff convergence

In applications, we like to think of spt(μ) as being approximated by the set {uε = 0}. This
is rigorously justified in the next theorem.

Theorem 2.20 Let I � (−1, 1) be non-empty, not necessarily open. Then, up to a subse-
quence, u−1

ε (I ) converges to a compact set K ⊂ � in Hausdorff distance such that

(1) K ∩ � = spt(μ) ∩ � if n = 2 or n = 3 and α has no atoms in � \ spt(μ),
(2) K ∩ � = (spt(μ) ∩ �) ∪ ⋃N

k=1{xk} for finitely many points xk ∈ � if n = 3. The
number N of points can be bounded in terms of I and lim supε→0 Eε(uε).

Proof In accordance with convention, we may replace u−1
ε (I ) with its closure without affect-

ing the limit. Since u−1
ε (I ) ⊂ � is bounded, there is a compact set K ⊂ � and a subsequence

such that

u−1
ε (I ) → K

in Hausdorff distance. K can be calculated as the Kuratowski limit

K = {
x ∈ � | ∃ xε ∈ u−1

ε (I ) such that xε → x
}
.

In [4, Theorem 2.2 and Lemma 3.15], we showed that spt(μ) ⊂ K under the assumption that
uε ∈ −1+W 2,2

0 (�). Our original argument had to be more sophisticated to imply a stronger
result, so we shall sketch a simplified version of the proof.
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(1) spt(μ) is rectifiable and when we introduce the diffuse normal direction νε = ∇uε|∇uε | , the
varifolds Vε:=με ⊗ νε converge to the varifold introduced by μ as Radon measures on
R
n × G(n, n − 1) due to [11, Proposition 4.1]. The discrepancy measures

|ξε|(U ) =
∫
U

∣∣∣∣ ε2 |∇uε|2 − 1

ε
W (uε)

∣∣∣∣ dx

vanish as |ξε| ∗
⇀ 0 [11, Proposition 4.9].

(2) Since points x at which μ possesses a tangent space Txμ and which are Lebesgue points
of the density θ and not atoms of α lie dense in spt(μ), it suffices to show the following:
For x as specified and r > 0, there is z ∈ u−1

ε (I )∩Br (x) for all sufficiently small ε > 0.

Blowing up along a suitable sequence of dilations ũε(y) = uε(x +λε y) with λε → ∞,
ε λε → 0, we can further reduce this to the case in which μ = θ Hn−1|Txμ, α = 0 like
in [11, Theorem 5.1].

(3) Let 0 < τ < 1 − 1/
√

2 and L , γ > 0 to be specified later. When we use this varifold

convergence and |ξε| ∗
⇀ 0, for all sufficiently small ε > 0 we can find a point y = yε ∈

Br/2(x) such that |uε(y)| ≤ 1 − τ and (up to rotation)

|ξε|(B4Lε(y)) +
∫
B4Lε(y)

1 − 〈νε, en〉2 dμε ≤ γ (4Lε)n−1.

Imagining L to be large and γ small, this roughly expresses that ∇uε points in the
direction en on average over B4Lε(y) and that the discrepancy measure over the ball is
small.

(4) If we choose L large enough and γ small, then [4, Lemma 3.12] or the proof of [11,
Proposition 5.5] show that uε is C0-close to an optimal profile in direction en over
B4Lε(y) and makes an almost full transition from −1 to 1 within that ball. We thus find
z ∈ B4Lε(y) ⊂ Br (x) such that uε(z) ∈ I .

For the other direction, assume that x ∈ � ∩ K \ spt(μ). Take r > 0 such that Br (x) ⊂
� \ spt(μ). If n = 2 or n = 3 and α has no atoms in Br (x), we see that |uε| → 1 uniformly
on Br (x), which leads to a contradiction. If n = 3 in general, then x must be an atom of α

with a minimal size depending only on

sup
θ∈I

|θ | < 1.

Since there can only be finitely many such points, the theorem is proven. ��
Remark 2.21 In the case where we have uε ∈ −1 + W 2,2

0 (�), we can extend uε to a larger
domain as a constant function outside �. Thus we obtain the stronger result that u−1

ε (I ) →
spt(μ) if n = 2 (or if n = 3 and α does not have atoms outside spt(μ)) and u−1

ε (I ) →
spt(μ)∪ {x1, . . . , xN } (up to a subsequence) if n = 3 for a finite collection of points xi ∈ �.
If n = 2 or n = 3 and α has no atoms, the uniqueness of the limit implies that actually
the whole sequence u−1

ε (I ) converges to spt(μ). The same holds for periodic boundary
conditions.

Without boundary conditions, the relationship of K ∩ ∂� and spt(μ) ∩ ∂� is more com-
plicated. If ∂� ∈ C2, we may consider an optimal interface transition for ∂� such that only
the positive part of the transition lies inside �. This induces the measure μ = 1/2Hn−1|∂�.
So μ may well fail to be an integral varifold at the boundary, and the inclusion spt(μ)∩∂� �⊂
K ∩ ∂� need not hold (take I � (−1, 0)). Further details are given in a forthcoming publi-
cation [6].
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3 Applications

3.1 Enforcing connectedness in limits of phase fields

Our research into the uniform convergence was motivated by difficulties in [4] where we
needed phase fields to converge along curves (thus objects of co-dimension 2) also in dimen-
sion n = 3. Accordingly, our results can be used to simplify the proof of [4, Theorem 2.5],
but there are many other applications.

Remark 3.1 In the proof of [4, Theorem 2.5], once we have shown that (in the terminology
of that Theorem) uε ∈ [θ1, θ2] � (−1, 1) on a connected set Kε bounded away from spt(με)

which contains two distinct points with a uniformly positive separation, we can obtain a
contradiction more directly. All points in the Hausdorff limit K of Kε must have have the
distance property, and since K is connected and contains two distinct points, it is not a
finite collection of points. Since furthermore K ⊂ � \ spt(μ), this poses a contradiction to
Theorem 2.14.

3.2 Minimising sequences converge uniformly

In the second application, we demonstrate how essentially uniform convergence can be used
to obtain uniform convergence under additional assumptions. It formalises the intuition that
phase fields have no energetic incentive not to converge uniformly in three dimensions.

Lemma 3.2 Let X = −1 + W 2,2
0 (�), S, V ∈ R, λ > 0, χ ≥ 0 and

Eε : X → [0,∞), Eε(u) = Wε(u) + λ (Sε(u) − S)2 + χ

(
1

2

∫
�

(u + 1) dx − V

)2

an associated energy functional. Furthermore, assume that uε ∈ X and u ∈ BV (�) are
such that

Eε(uε) = min
v∈X Eε(v), uε → u in L1(�).

As usual, let με
∗
⇀ μ, αε

∗
⇀ α. Then spt(α) ⊂ spt(μ). In particular, uε → u uniformly on

compact sets K ⊂ � \ spt(μ).

The parameters S and V play the roles of a preferred surface area and enclosed volume
and λ, χ express the strength of the preference.

The existence of minimisers of Eε follows from the direct method of the calculus of
variations and Sobolev embedding theorems. A similar statement holds if X is W 2,2(�) or
the subspace of W 2,2(�) with vanishing normal derivatives.

Proof Note that the sequence ūε ≡ −1 keeps Eε uniformly bounded, so we have
lim supε→0 Eε(uε) < ∞. Let us consider a subsequence ε → 0 such that all three terms
in the energy have a limit.

By Corollary 2.15,uε → u locally uniformly in�\spt(μ) ifα has no atoms outside spt(μ),
so it suffices to show the inclusion spt(α) ⊂ spt(μ). By extending uε to a slightly larger
domain �′ as a constant function, we only need to consider the case that spt(α) � �. Recall
that the support of a measure is the collection of all points for which any neighbourhood has
positive measure. Thus for a contradiction, we may assume that there exists a ball B2r (x) ⊂
� \ spt(μ) such that α(Br (x)) > 0.

123



Uniform regularity and convergence of phase-fields… Page 15 of 22 90

Since there are only finitely many points x ∈ � \ spt(μ) such that there exists a sequence
xε → x with the property that lim supε→0 | |uε(xε)| − 1| ≥ τ for any given τ > 0, we can
choose two radii r < r1 < r2 < 2r and the ring domain

R:={y ∈ � | r1 < |x − y| < r2}
such that |uε| ≥ 1/

√
2 on R′ for all sufficiently small ε and a slightly larger set R′ such

that R � R′. We now need a statement similar to Corollary 2.3, but from below +1. Since
for phase-fields which stay close enough to ±1, there is no significant difference between
u = 1 + (u − 1) and ū = 1 − (u − 1), it is clear that such an estimate should hold. The proof
of [11, Proposition 3.5] can be sharpened to show that

με(Br ∩ {1 − τ ≤ |uε| ≤ 1} ≤ τ με(B2r ∩ {|uε| ≤ 1 − τ }) + ε2 αε(B2r ) + o(ε2), (3.1)

and thus in our case με(Br ) = o(ε2). Details will be given in a future publication. Since we
know that ∫

R

1

ε
W ′(uε)

2 dx ≤ C ε2,

we can pick a ring

Rε = {
y ∈ � | rε < |x − y| < rε + | log(ε)|−1} � R

such that

ε−2 με(Rε) +
∫
Rε

1

ε3 W ′(uε)
2 dx ≤ C | log(ε)|−1.

Then we choose a cut-off function η such that η ≡ 1 inside Brε (x), η ≡ 0 outside
Brε+| log ε|−1(x), |∇η| ≤ 2 | log ε|, |�ε| ≤ C | log ε|2 and define

ûε = (1 − η) uε + η.

Since |uε| ≥ 1/
√

2 on R, we can suppose that without loss of generality uε ≥ 1/
√

2. It
follows directly from ûε ≥ uε > 0 that

∫
R

1

ε
W (ûε) dx ≤

∫
R

1

ε
W (uε) dx

and furthermore 0 = μ̂ε(Br1(x)) ≤ με(Br1(x)). Finally, we note that
∫
R

ε

2
|∇ûε|2 dx ≤ ε

∫
R

|∇uε|2 (1 − η)2 + (uε − 1)2 |∇η|2 dx = O(ε2 | log ε|2)

due to (3.1), so in particular that μ̂ε
∗
⇀ μ and limε→0 Sε(ûε) = limε→0 Sε(uε). Since uε → 1

in L1(B2r (x)) already before the modification, we do not change the limiting integral either:

lim
ε→0

∫
�

ûε dx = lim
ε→0

∫
�

uε dx .

Hence the last two terms in Eε converge to the same limits as before. Thus it suffices to show
that lim infε→0 Wε(ûε) < lim infε→0 Wε(uε) to see that

lim inf
ε→0

Eε(ûε) < lim inf
ε→0

Eε(uε),
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which means that uε cannot be a minimiser of Eε for some small ε > 0. This is the contra-
diction we are looking for. So calculate

α̂ε(Brε+| log ε|−1(x)) = α̂ε(Rε)

= 1

c0 ε

∫
Rε

(
ε �ûε − 1

ε
W ′(ûε)

)2

dx

≤ 1 + δ

c0 ε

∫
Rε

(
ε �uε − 1

ε
W ′(uε)

)2

(1 − η)2 dx

+
(

1 + 1

δ

)
1

c0 ε

∫
Rε

(−2ε 〈∇η,∇uε〉 + ε (1 − uε)�η

+1

ε

[
W ′(uε)(1 − η) − W ′(ûε)

])2

dx

≤ 1 + δ

c0 ε

∫
Rε

(
ε �uε − 1

ε
W ′(uε)

)2

η2 dx

+
(

1 + 1

δ

)
3

c0 ε3

∫
Rε

[
W ′(uε)(1 − η) − W ′(ûε)

]2 dx

+
(

1 + 1

δ

)
3 ε

c0

∫
Rε

4 〈∇η,∇uε〉2 + (uε − 1)2 (�η)2 dx

≤ (1 + δ) αε(Rε) +
(

1 + 1

δ

)
3

c0 ε3

∫
Rε

W ′(uε)
2 dx

+
(

1 + 1

δ

)
C

(
ε2 | log ε|2 + ε4 | log ε|4)

≤ (1 + δ) αε(Rε) +
(

1 + 1

δ

)
3

c0 | log ε|
+

(
1 + 1

δ

)
C

(
ε2 | log ε|2 + ε4 | log ε|4)

for δ > 0. Here we used that ûε is a convex combination of uε and 1 pointwise, so that the
estimate in the middle integral works. Taking first ε → 0 and then δ → 0, it follows that

α̂(B2r ) = α(B2r \ Br0) < α(B2r )

where r0 = limε→0 rε > r . This implies the contradiction and concludes the proof. ��
Cases of independent geometric interest are the formal limits λ = χ = ∞ and λ = ∞,

χ = 0. The problem becomes more complex, and in the first case, solutions can only exist
if V < Ln(�) and S > c0 for some c0 depending on V through the isoperimetric inequality
and the geometry of �. These limits can be expressed in phase field models for example in
the choice of the function space

Xε(�) = {u ∈ −1 + W 2,2
0 (�) | Sε(u) = S}

or by choosing λ = λε = ε−1, and similarly in the first case. Our simple modification clearly
does not go through in either scenario, but we believe that the same result should still hold.
We will see that uniform convergence still holds for a penalised functional when we add a
version of the topological term discussed in [4]. For simplicity, we restrict ourselves to the
case discussed there, but a total integral term could easily be included.
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Let us briefly recall the structure of the topological functionals. Take φ1 ∈ Cc(1/
√

2, 1)

to be a non-negative function with connected support, φ1 �≡ 0 and F1 ≥ 0 a continuous
function such that F1 · φ1 ≡ 0 and F1(±1) > 0. Set φ2(t) = φ1(−t) and F2(t) = F1(−t).
Then we have the geodesic distances

dFi (u)(x, y) = inf

{∫
K
Fi (u) dH1

∣∣ K connected and x, y ∈ K

}

and the topological energies

Ci
ε(u) = 1

ε2

∫
�×�

φi (u(x)) φi (u(y)) dFi (u)(x, y) dx dy

for i = 1, 2.

Lemma 3.3 Let X = −1 + W 2,2
0 (�), σ ∈ (0, 4), κ > 3 and

Eε : X → [0,∞), Eε(u) = Wε(u) + ε−σ (Sε(u) − S)2 + ε−κ
(
C1

ε + C2
ε

)
(u).

Assume that uε ∈ X are minimisers of Eε and u, α, μ as usual. Then spt(α) ⊂ spt(μ) and
uε → u locally uniformly in � \ spt(μ).

Sketch of Proof The proof proceeds in two steps. In the first one, we assume that if x ∈ spt(μ)

and y ∈ � such that yε → y and uε(yε) ∈ supp(φ1). Then we deduce that

lim inf
ε→0

(
1

ε

∫
Br (x)

φ1(uε(x)) dx

)(
1

ε3

∫
Br (y)

φ1(uε(y)) dy

)
> 0

for all r > 0 using [4, Lemma 3.15] on the first term and infinitesimal Hölder regularity on the
second. Repeating the proof of [4, Theorem 2.4], we obtain a contradiction. Having excluded
the situation of Example 4.2, we use the same modification as in Lemma 3.2 on uε in the
second step of the proof. Since we know that |uε| ≥ 1/

√
2 on the whole ball Br2(x) rather

than just the ring domain R, the difference in the diffuse area functional can be controlled to
be o(εσ ) for all σ < 2. Thus the same argument as above goes through. ��
3.3 Hausdorff-convergence of manifolds with bounded Willmore energy

Last but not least we show how our results can be used to obtain results on the interplay
between varifold and Hausdorff convergence using only our PDE techniques and just a bare
minimum of geometric measure theory.

Lemma 3.4 Let Mk be a sequence of compact orientable C2-manifolds embedded inR3 and
Vk their induced varifolds. Assume that V is a varifold with mass measure ||V || such that

Vk
∗
⇀ V, lim sup

k→∞
[W(Vk) + H2(Mk)

]
< ∞.

Then limk→∞ Mk = spt(V ) ∪ {x1, . . . , xN } for a finite collection of points xi , i = 1, . . . , N
in the sense of convergence in Hausdorff distance for every subsequence along which the
limit exists. Moreover, if Mk is connected for all k ∈ N or limk→∞ W(Vk) = W(V ), then

spt(||V ||) = lim
k→∞ Mk .
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Proof Due to an improved estimate of L. Simon [12, Lemma 1], the manifolds have uniformly
bounded diameter

diam(Mk) ≤ 2

π

√
H2(Mk)W(Mk) .

If they go off to infinity, ||V || ≡ 0 and the Hausdorff limit is empty, so there is nothing to
show. Thus we may assume that Mk ⊂ BR(0) for a suitably big R > 0. If we wished to avoid
geometric measure theory altogether, we could alternatively assume that the manifolds Mk

are a priori all contained in some bounded subset of R3.
A simple contradiction shows that spt(||V ||) ⊂ limk→∞ Mk , so only the inverse direction

is difficult. This concerns the uniform or essentially uniform convergence of phase fields
away from uε which we established using exclusively PDE techniques and no geometric
measure theory at all.

As Mk is compact, orientable and embedded, it is the boundary of a set Ek ⊂ R
3. Since

furthermore Mk ∈ C2, there is a sequence εk → 0 such that the signed distance function
sdist(·, Mk) is C2-smooth on

Uk = {x ∈ R
n | dist(x, Mk) < 2

√
εk }

and we can consider the sequence

uk : BR+1(0) → R, uk(x) = qεk (sdist(x, Mk)/εk).

By construction, uk ∈ −1+W 2,2
0 (BR+1(0)) and Mk ≡ {uk = 0}. If we choose εk sufficiently

small, it becomes obvious that

lim
k→∞ μk = ||V ||, lim

k→∞ αk(R
3) = lim

k→∞W(Mk).

We can therefore invoke Corollary 2.20 (with boundary values) to see that

lim
k→∞ Mk = lim

k→∞{uk = 0} = spt(||V ||) ∪ {x1, . . . , xN }

for a finite collection of points x1, . . . , xN ∈ BR(0). Now assume additionally that Mk is
connected for all k ∈ N. Then, by standard results on Hausdorff convergence, limk→∞ Mk

is connected, so the finite collection of points must be empty.
Last, assume that we have a recovery sequence, i.e. limk→∞ W(Mk) = W(V ). If we

choose εk sufficiently small also Wεk (uk) → W(V ), thus

lim
k→∞ Mk = lim

k→∞{uk = 0} = spt(||V ||)

as explained in Corollary 2.15. ��
Corollary 3.5 If Mk is connected for all k ∈ N, then also spt(||V ||) is connected.

In particular, we have shown with phase field techniques that the problem of minimising
Willmore’s energy in the class of connected surfaces arising as the limits of boundaries is well
posed in three dimensions. This is by no means immediate since it is not obvious whether
thin cylinders connecting bigger pieces of the manifolds Mk can collapse away in measure
with bounded Willmore energy while keeping the bigger parts at a positive distance.

It is easy to give an example Vk
∗
⇀ V with additional points in the Hausdorff limit.

Namely, Take Mk ≡ M ∪ ∂Brk (x) for some M , x /∈ M and rk → 0. Then, if V denotes the
varifold induced by M , we have
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Vk
∗
⇀ V, spt(V ) = M, lim

k→∞ Mk = M ∪ {x}, W(Mk) ≡ W(M) + 16π.

A diffuse analogue of this example will be discussed in Example 4.2.

4 Counterexamples to uniform convergence

In this section, we give examples showing that our results are optimal. All constructions are
simple perturbations of an optimal interface recovery sequence.

Example 4.1 Let E � � with ∂E ∈ C2 and denote by d(x) = sdist(x, ∂E) the signed
distance function from ∂E . Like in the introduction, we take an optimal interface transition
uε(x) = qε(d(x)/ε) where qε is constant for arguments larger than ε−1/2. Now take x0 /∈ ∂E ,
g ∈ C∞

c (Rn) and set

uε
g(x):=uε(x) + εβ g(ε−γ (x − x0)).

For small enough ε > 0, we know that uε ≡ ±1 close to x0, which simplifies the energies
of the modified functions. We may assume that uε ≡ 1 around x0. If γ > 0 (or γ = 0 and g
has sufficiently small support), this implies the following identities.

Sε(u
ε
g) =Sε(u

ε) + ε1+2β+(n−2)γ

∫
Rn

1

2
|∇g|2 dx + ε2β+nγ−1

∫
Rn

g2 (2 + εβg)2

4
dx,

Wε(u
ε
g) =Wε(u

ε)

+
∫
Rn

1

ε

(
ε1+β−2γ �g − εβ−1 g (1 + εβ g) (2 + εβ g)

)2

(ε−γ (x − x0)) dx .

In the bending energy, both terms scale differently unless

1 + β − 2γ = β − 1 ⇔ γ = 1.

In this situation, we can simplify the integral to give

Wε(u
ε
γ ) ≈ Wε(u

ε) + ε2β−3+n
∫
Rn

(�g − 2 g)2 dx

under the assumption that β > 0. For a compactly supported non-zero function g the last
term cannot be zero, so we have the heuristic condition

2β − 3 + n ≥ 0 ⇔ β ≥ 3 − n

2

for the energy to remain finite. Conversely, it is easy to see that the energy does remain finite
in these cases in both n = 2 and n = 3 dimensions. Setting β = 0 shows that uε need not
converge uniformly to ±1 away from the interface in three dimensions. In two dimensions,
setting β = 1/2 shows that we cannot obtain a convergence rate better than

√
ε.

Note in particular that we have με
g(Br (x)) = O(ε2) if αg has an atom at x and

με
g(Br (x)) = o(ε2) otherwise, both in two and three dimensions. In three dimensions, we

can consider the function

e : [0, 1) → (0,∞), e(θ):= inf
{[W1 + S1](u) | u ∈ 1 + W 2,2

0 (B1(0)), u(0) = θ
}
.
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It is positive and monotone decreasing and satisfies limθ→1 f (θ) = 0, so we can take a
sequence θn → 1 such that

∞∑
n=1

f (θn) < ∞.

Then we take corresponding minimisers gn , a dense subsequence xn in � \ ∂E and define

εn = min

{
min

1≤i �= j≤n

|xi − x j |
2

,

(
min

1≤i≤n
dist(xi , ∂E)/2

)2
}

,

un(x) =
{

±gn((x − xi )/εn) in Bεn (xn)

u(x) else

with the choice of sign for gn such that the function is continuous. Then εn → 0, un → u in
L1(�) and essentially uniformly, but there exists no open set �′ � �\∂E such that un → u
uniformly on �′.

The next example gives a different modification in three dimensions only. It shows that in
R

3, uniform convergence away from the interface may fail even if the discrepancy measures
|ξε| vanish faster than polynomially in ε. Another implication is that there is no guaranteed
rate of convergence for με(�

′) → 0 for �′ � � \ spt(μ).

Example 4.2 Consider a set �′ � � \ spt(μ) and x0 ∈ �′. Assume that uε is an optimal
profile type recovery sequence, or at least that uε is constant on �′. Let r > 0 such that
Br (x0) � �′ and ε3/4 < rε < r/2. Then the functions

ūε(x) =
{
uε(x) x /∈ Br (x0)

±qε(sdist(x, ∂Brε (x0))) x ∈ Br (x0)

areC2-smooth (if the sign of the optimal profile is chosen correctly and qε is constant beyond√
ε). This is a recovery-type sequence for ∂E with an additional interface at spheres ∂Brε (x0)

and can easily be seen to satisfy

μ̄ε
∗
⇀ μ, μ̄ε(�

′) ≈ 4π r2
ε

3
, αε(�

′) ≈ 16π

since spheres of any radius have Willmore energy 16π in three dimensions with our normal-
isation of the Willmore functional. As rε may go to zero arbitrarily slowly, so can με(�

′).
Due to the optimal interface construction, |ξε|(�′) ≤ C εγ for all γ ∈ (0,∞).

This shows that no penalisation of the discrepancy measures can enforce uniform conver-
gence away from the interface in three dimensions. In two dimensions, this does not work
since small circles have large elastica energy while the Willmore functional on surfaces in
R

3 is scaling invariant.
We have investigated similar problems in a previous article [4] with a different focus and

under the additional assumption that

uε ∈ W 2,2
loc (Rn) and uε ≡ −1 outside �, (4.1)

although essentially uniform convergence could not be established. By extension theorems,
these conditions are equivalent to uε ∈ −1 + W 2,2

0 (�) and thus implied if ∂� ∈ C2 and
uε ≡ −1, ∂νuε ≡ 0 on ∂�. This is a suitable model for some problems in biological
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applications where we are interested in minimising W among a class of connected surfaces
confined to the container �. If we assume boundary conditions (4.1) or periodic boundary
conditions, the results may be sharpened as follows:

(1) uε is bounded on � and uε → u in L p(�) for all p < ∞,
(2) it is Hölder continuous with constants as above on every ball Bε(x) ∩ � for x ∈ �,
(3) we may replace “finitely many points in � (or � \ spt(μ))” with “finitely many points

in � (or � \ spt(μ))”,
(4) the Hausdorff limit is K = spt(μ) if α has no atoms outside spt(μ), and K = spt(μ) ∪

{x1, . . . , xN } in general.

In this article, all regularity and convergence results we obtained were valid only in the
interior of �, away from the boundary. The treatment of boundary values is different, since
their blow-ups are at most governed by solutions to the stationary Allen-Cahn equation on
half-space, which gives us much less control than the same equation on the whole space. For
example, the Modica gradient bound clearly fails.

In certain situations, one may be tempted to prescribe boundary conditions uε ≡ +1 on
�+ ⊂ ∂� and uε ≡ −1 on �− ⊂ ∂� and leave uε free on ∂� \ (�+ ∪ �−) to make an
optimal transition. However (for simple geometries), it can be seen that the infimum energy
of functionals of the type

Eε = Wε + ε−2σ (Sε − S)2

under these boundary conditions is identically zero, where minimising sequence is given by
the superposition of optimal profiles for a minimal surface spanning a suitable boundary curve
and a solution to the stationary Allen-Cahn equation on half space with suitable boundary
values and rescaled, inserted at a convex boundary point. The super-position still has almost
zero Willmore energy and the boundary modification can be scaled precisely to create an
atom of μ of the right size. More explicit constructions (and boundary values that prevent
these pathological examples) will be presented in [6].
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