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Abstract We examine lower order perturbations of the harmonic map problem fromR
2 to S2

including chiral interaction in form of a helicity term that prefers modulation, and a potential
term that enables decay to a uniform background state. Energy functionals of this type arise in
the context of magnetic systems without inversion symmetry. In the almost conformal regime,
where these perturbations are weighted with a small parameter, we examine the existence
of relative minimizers in a non-trivial homotopy class, so-called chiral skyrmions, strong
compactness of almost minimizers, and their asymptotic limit. Finally we examine dynamic
stability and compactness of almost minimizers in the context of the Landau–Lifshitz–Gilbert
equation including spin-transfer torques arising from the interaction with an external current.

Mathematics Subject Classification 49S05 · 35Q82 · 82D40

1 Introduction and main results

Isolated chiral skyrmions are homotopically nontrivial field configurations m : R2 → S
2

occurring as relative energy minimizers in magnetic systems without inversion symmetry. In
such systems the leading-order interaction is Heisenberg exchange in terms of the Dirichlet
energy

D(m) = 1

2

∫
R2
|∇m|2 dx .
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Chiral interactions, in magnetism known as antisymmetric exchange or Dzyaloshinskii–
Moriya interactions, are introduced in terms of Lifshitz invariants, the components of the
tensor∇m×m. A prototypical form is obtained by taking the trace, which yields the helicity
functional

H(m) =
∫
R2

m · (∇ × m) dx,

well-defined for moderately smooth m that decay appropriately to a uniform background
state. Extensions to the canonical energy space will be discussed later.

Chiral interactions are sensitive to independent rotations and reflections in the domain R
2

and the target S2, and therefore select specific field orientations. The helicity prefers curling
configurations. The uniform background state m(x)→ ê3 as |x | → ∞ is fixed by a potential
energy V (m) = Vp(m) depending on a power 2 ≤ p ≤ 4 with

Vp(m) = 1

2p

∫
R2
|m − ê3|p dx .

The borderline case p = 2 corresponds to the classical Zeeman interaction with an external
magnetic field. The case p = 4 turns out to play a particular mathematical role in connection
with helicity. From the point of view of physics, since 1

4 |m− ê3|4 = |m− ê3|2+(m · ê3)
2−1,

the case p = 4 features a specific combination of Zeeman and in-plane anisotropy interaction.
Upon scaling, the governing energy functional

Eε(m) = D(m)+ ε
(
H(m)+ V (m)

)
only depends on one coupling constant ε > 0. For p = 2 variants of this functional have
been examined in physics literature, see e.g. [3,4,11], predicting the occurrence of specific
topological defects, so-called chiral skyrmions, arranged in a regular lattice or as isolated
topological soliton. In our scaling, tailored towards an asymptotic analysis, the parameter
ε corresponds to the inverse of the renormalized strength of the applied field. The almost
conformal regime 0 < ε � 1 features the ferromagnetic phase of positive energies, where
H is dominated by D and V , i.e. Eε(m) � D(m) + εV (m). In this case the configuration
space

M = {m : R2 → S
2 : D(m)+ V (m) <∞},

admits the structure of a complete metric space (see below). In the ferromagnetic regime,
m ≡ ê3 is the unique global energy minimizer, while chiral skyrmions are expected to occur
as relative energy minimizers in a nontrivial homotopy class. In the case p = 2 and for
0 < ε � 1 this has been proven in [21].

Homotopy classes are characterized by the topological charge (Brouwer degree)

Q(m) = 1

4π

∫
R2

m · (∂1m × ∂2m) dx ∈ Z,

which decomposes the configuration space into its path-connected components, the topolog-
ical sectors. In view of the background state ê3, the specific topological charge Q(m) = −1
is energetically selected by the presence of helicity interaction. In fact, for all 2 ≤ p ≤ 4 we
have

inf {Eε(m) : m ∈M with Q(m) = −1} < 4π for ε > 0,

less than the classical topological lower bound for the Dirichlet energy, while

inf {Eε(m) : m ∈M with Q(m) /∈ {0,−1}} > 4π for ε � 1,
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a consequence of the energy bounds provided in Sect. 2.
These properties are in contrast to two-dimensional versions of the classical Skyrme

functional (see e.g. [2,24]) featuring full rotation and reflection symmetry. Here, the helicity
term is replaced by the the Skyrme term

S(u) = 1

4

∫
R2
|∂1u × ∂2u|2 dx,

a higher order perturbation of D(u), which prevents a finite energy collapse of the topological
charge due to concentration effects. In particular, the energy functional D(u) + λS(u) +
μV (u), for positive coupling constants λ,μ, has an energy range above 4π in every non-
trivial homotopy class. In the case p = 4, the attainment of least energies for unit charge
configurations and topologically non-trivial configurations has been examined in [16–18]
and [18], respectively. Explicit minimizers arise for p = 8, see [24]. We shall recover this
situation in the chiral case for p = 4.

Our first result confirms existence of (global) minimizers of Eε in M, subject to the
constraint Q = −1, extending the result in [21] for p = 2 to the whole range 2 ≤ p ≤ 4 of
exponents:

Theorem 1 (Existence of minimizers) Suppose 2 ≤ p ≤ 4 and 0 < ε � 1. Then the
infimum of Eε in M subject to the constraint Q = −1 is attained by a continuous map mε

in this homotopy class such that

4π(1− 4ε) ≤ Eε(mε) ≤ 4π
(
1− 2(p − 2)ε

)
. (1)

For p = 2 and 0 < ε � 1, we have, more precisely,

Eε(mε) ≤ 4π
(

1− (4+ o(1)) ε
|ln ε|

)
.

If p = 4, minimizers are characterized by the equation

D1m + m ×D2m = 0 where Dim = ∂im − 1
2 êi × m. (2)

For 2 ≤ p < 4, Theorem 1 is obtained by a concentration-compactness argument similar to
[17,21]: Provided “vanishing” holds, we prove that the helicity functional becomes negligible,
so that the energy of a minimizing sequence approaches 4π , which contradicts the upper
bound coming from Lemma 3 below. If “dichotomy” holds, the cut-off result Lemma 8 (see
“Appendix 1”) yields a comparison function with an energy well below the global minimium
in its homotopy class. Hence, neither vanishing nor dichotomy appear.

The case p = 4 is special in the sense that vanishing can no longer be ruled out within
our approach. However, upper and lower energy bounds match, so that an explicit energy-
minimizer in form of a specifically adapted stereographic map m0 is available. It follows that
m0 belongs to the class

C :=
{
m : R2 → S

2 : D(m) = 4π, Q(m) = −1, lim
x→∞m(x) = ê3

}

consisting of anti-conformal (harmonic) maps of minimal energy. Recall that harmonic maps
on R

2 with finite energy extend to harmonic maps on S
2 (cf. [25]) with a well-defined limit

as x →∞.
Anti-conformal maps are characterized by the equation ∂1m−m× ∂2m = 0, a geometric

version of the Cauchy–Riemann equation. Hence, identifying R
2 	 C, the moduli space of

C is C\{0} × C. More precisely, C agrees with the two-parameter family of maps m0(z) =
�(az + b) for z ∈ C, where (a, b) ∈ C\{0} × C and � : R2 	 C→ S

2 is a stereographic
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map of negative degree with limx→∞�(x) = ê3, cf. [5, Lemma A.1]. Note that C ∩M is
empty in the limit case p = 2.

In the context of the energies Eε, the degeneracy of a map m0 ∈ C with respect to the
complex scaling parameter a is lifted if

(i) it safisfies the Bogomolny type equation (2), i.e. is also an energy minimizer subject to
Q = −1 for p = 4 and ε > 0 arbitrary, or

(ii) it is obtained from a family of chiral skyrmions {mε}ε�1, which we prove for 2 < p < 4
and conjecture in the limit cases p ∈ {2, 4}:

Theorem 2 (Compactness of almost minimizers) Suppose 2 < p < 4 and {mε}ε�1 ⊂M
is a family such that

Q(mε) = −1 and Eε(mε) ≤ 4π − C0ε

for some constant C0 > 0. Then, we have:

(i) There exists m0 ∈ C so that for ε→ 0, up to translations and a subsequence,

∇mε → ∇m0 strongly in L2(R2)

and

mε − m0 ⇀ 0 weakly in L p(R2).

(ii) If {mε}ε�1 satisfies the more restrictive upper bound

Eε(mε) ≤ 4π + ε min
m∈C

(
H(m)+ V (m)

)+ o(ε) for ε→ 0,

then, modulo translations, the whole family converges to a unique limit m0 ∈ C, which
is determined by

H(m0)+ V (m0) = min
m∈C

(
H(m)+ V (m)

) = −8π(p − 2),

such that mε − m0 → 0 strongly in L p(R2). Moreover,

lim
ε→0

ε−1(Eε(mε)− 4π) = min
m∈C

(
H(m)+ V (m)

)
.

We also have weak or strong L
p
2 subconvergence of 1−mε,3 in claim (i) and (ii), respec-

tively. Theorem 2 applies in particular to the family {mε}ε>0 of minimizers that has been
constructed in Theorem 1. Fixing the adapted stereographic map

� : R2 → S
2, �(x) =

(
2x⊥

1+ |x |2 ,−1− |x |2
1+ |x |2

)
, (3)

so that Q(�) = −1 and limx→∞�(x) = ê3, we have

m0(x) = �

(
x

2(p − 2)

)
for x ∈ R

2.

It remains an open question whether for positive ε the minimizers mε of Eε in the homotopy
class {Q = −1} are actually unique (up to translations) and axially symmetric. As a first step
and for 2 < p < 4, Theorem 2 implies that mε is at least close in Ḣ1 and L p to the unique,
axially symmetric vector field m0 given above.

Similar to the existence of minimizers of Eε , Theorem 2 is proven by means of P. L.
Lions’ concentration-compactness principle. However, since the minimal energy tends to 4π
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as ε→ 0, the argument of Theorem 1 needs to be modified in a suitable way. In fact, in order
to rule out “dichotomy”, we will use the boundedness of the lower-order correction H + V
to the Dirichlet energy D, which comes from the matching upper and lower a-priori bounds
to the minimal energy and is preserved by the cut-off result Lemma 8. As a consequence, we
obtain a comparison vector-field of non-zero degree with Dirichlet energy strictly below 4π ,
contradicting the classical topological lower bound D(m) ≥ 4π |Q(m)|. “Vanishing”, on the
other hand, would imply that the helicity functional becomes negligible along a sequence of
(almost-)minimizers, which is again ruled out by the a-priori bounds.

The second part of this paper addresses the dynamic stability of spin-current driven chiral
skyrmions in the almost conformal regime ε � 1. This is ultimately a question of regularity
for the Landau–Lifshitz–Gilbert equation, for which finite time blow-up, typically accompa-
nied by topological changes, has to be expected if energy accumulates to the critical threshold
of 4π . In the presence of an in-plane spin-velocity v ∈ R

2 the Landau–Lifshitz–Gilbert equa-
tion is given by

∂tm + (v · ∇)m = m ×
[
α ∂tm + β(v · ∇)m − hε(m)

]
(4)

where α and β are positive constants and

hε(m) = −grad Eε(m)

is the effective field, see [8,14,15,22,26,28] for a mathematical account. In the Galilean
invariant case α = β traveling wave solutions are obtained by transporting equilibria m ×
hε = 0 along c = v. In the conformal case ε = 0, as observed in [14], traveling wave
solutions are obtained for arbitrary α and β by transporting conformal or anti-conformal
equilibria of unit degree along c ∈ R

2 determined by the free Thiele equation

(c − v)⊥ = αc − βv.

We are interested in the regime 0 < ε � 1 in the case p = 4, where the effective field

hε(m) = 
m − ε (2∇ × m + f (m))

admits the smooth potential term

f (m) = 1

4
|m − ê3|2(m − ê3).

Taking into account the asymptotic behavior of almost minimizers, it is natural to pass to the
moving frame

m(x, t) �→ m(x + ct, t) where (c − v)⊥ = αc − βv. (5)

After a rigid rotation in space (see “Appendix 3”), this yields the pulled back equation

(∂t − ν∂z)m = m ×
[
α(∂t − ν∂z)m − hε(m)

]
(6)

with effective coupling parameter

ν = 2(α − β)v

1+ α2 ,

where v > 0 is now the intensity of the spin current, and with the Cauchy–Riemann operator

∂zm = 1

2
(∂1m − m × ∂2m)
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revealing the conformal character of (4).
Observe that any m ∈ C, which is also an equilibrium for the energy, is a static solution

of the pulled back dynamic equation, i.e. a traveling wave profile for (4). For ε = 0, the
pure Heisenberg model, every m ∈ C is a minimizer, hence an equilibrium, recovering the
observation from [14]. For p = 4 and ε > 0 the matching upper energy bound characterizes
m(x) = �(x/4) with � given by (3) not only as explicit energy minimizer within the class
{Q = −1} but also as an explicit static solution of (6), i.e. an explicit traveling wave profile
of (4).

Theorem 3 (Existence, stability, compactness) Suppose p = 4 and 0 < ε � 1.

(i) There exists m ∈ C independent of ε, which minimizes the energy in its homotopy class
and is a static solution of (6) and therefore a traveling wave profile for (4).

(ii) Suppose {m0
ε}ε�1 ⊂M is a family of initial data with ∇m0

ε ∈ H2(R2) and such that
for a constant c > 0 independent of ε

Q(m0
ε) = −1 and Eε(m0

ε) ≤ 4π − cε.

Then there exists a unique family {mε}ε�1 of local solutions of (6) with initial data
mε(t = 0) = m0

ε such that mε ∈ C0([0; T ];M) ∩ C∞(R2 × (0, T ]) for every
0 < T <

cα

32π(1+ α2)ν2 .

(iii) If ∇m0
ε → ∇m0 strongly in L2(R2) for some m0 ∈ M as ε → 0, then m0 ∈ C and

∇mε(t)→ ∇m0 in L2(R2) for every t ∈ [0, T ].
1.1 Outline of the paper

The remainder of the paper is structured as follows: First, in Sect. 2, we prove the upper
and lower bounds (1) to the minimal energy Eε in the homotopy class {Q = −1}, i.e.
Lemmas 2 and 3. In particular, we obtain the Eq. (2) characterizing minimizers in the case
p = 4.

In Sect. 3, we exploit the energy bounds and derive the first two main results, i.e.
Theorems 1 and 2. In fact, both will be rather straightforward corollaries of a separate
concentration-compactness result in the spirit of [21], i.e. Proposition 1.

Section 4 contains the proof of Theorem 3. The main point are regularity arguments in
the spirit of [29], which exploit the energy bounds to rule out blow-up on a uniform time
interval.

Finally, in the “Appendix”, we provide a few supplementary, technical results: a cut-off
lemma similar to the ones used for example in [17,21], which enters the proof of Proposition 1;
the explicit construction of a “stream function” that is needed in the upper-bound construction
in Lemma 3 for p = 2; and the derivation of (6).

1.2 Notation and preliminaries

Throughout the paper, we shall use the convention

∇ × m =
( ∇×m3∇×m

)
for m = ( m

m3

)
,

where

∇ × m = ∂1m2 − ∂2m1 and ∇ × m3 = −∇⊥m3 =
(

∂2m3−∂1m3

)
.
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We equip the space M = {m : R2 → S
2 ∈ H1

loc(R
2) with D(m) + V (m) < ∞} with

the metric d given as

d(m, n) = ‖∇(m − n)‖L2 + ‖ê3 · (m − n)‖
L

p
2
.

Completeness with respect to this metric follows from the fact that by virtue of the geometric
constraint |m|2 = 1 we have 1− m3 = 1

2 |m − ê3|2, so that

V (m) = 2−
p
2

∫
R2

(1− m3)
p
2 dx .

Depending on the context, it is convenient to use this alternative representation. In order to
extend the helicity to the configuration space M we recall that according to a variant (see
e.g. [6]) of the approximation result by Schoen and Uhlenbeck [27]

M0 = {m : R2 → S
2 : m − ê3 ∈ C∞0 (R2;R3)}

is a dense subclass of M with respect to the metric d . The compact support property can be
achieved by a suitable cut-off as in Lemma 8. We have for m ∈M0

H(m) =
∫
R2

(m − ê3) · ∇ × m dx

while

(m − ê3) · ∇ × m = m · ∇ × m3 − (1− m3)∇ × m.

Integration by parts yields for m ∈M0

H(m) = −2
∫
R2

(1− m3)∇ × m dx = −2
∫
R2

m · ∇ × m3 dx . (7)

The first integral extends continuously to M since L
p
2 -convergence implies L2-convergence

for sequences of uniformly bounded functions. A closer inspection shows that this extension
can also be expressed in terms of the full helicity density. In fact, the second density in (7)
satisfies |m · ∇ × m3| ≤ (1− m2

3)|∇m| since

|∇m3|2
1− m2

3

= |∇m3|2 + |∇|m||2 ≤ |∇m|2.

Therefore (m − ê3) · ∇ × m ∈ L1(R2) for m ∈M with

|(m − ê3) · ∇ × m| ≤ c (1− m3)|∇m|. (8)

The validity of the integration by parts formula and (7) is a consequence of a simple decay
estimate for the boundary integrals

∫
∂BR

(1 − m3) dH1 → 0 for a suitable choice of radii
R→∞. In fact, there are radii n ≤ Rn ≤ 2n so that

n
∫

∂BRn

(1− m3)
p
2 dH1 ≤ n−

∫ 2n

n

∫
∂Br

(1− m3)
p
2 dH1 ≤

∫
R2\Bn

(1− m3)
p
2 dx .

As n→∞ we obtain by Jensen’s inequality and 2 ≤ p ≤ 4,
∫

∂BRn

(1− m3) dH1 ≤ Rn

(
−
∫

∂BRn

(1− m3)
p
2 dx

) 2
p � R

p−4
p

n

(∫
R2\Bn

(1− m3)
p
2 dx

) 2
p → 0.
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Accordingly the energy Eε(m) = D(m) + ε (H(m)+ V (m)), initially defined on M0,
extends to a continuous integral functional on M

Eε(m) =
∫
R2

eε(m) dx

with integrable density

eε(m) = 1
2 |∇m|2 + ε

(
(m − ê3) · ∇ × m + 1

2p |m − ê3|p
)
. (9)

For later purpose it will be convenient to introduce the topological charge density

ω(m) = m · (∂1m × ∂2m)

entering the definition of topological charge

Q(m) = 1

4π

∫
R2

ω(m) dx ∈ Z

for m ∈ M0, which uniquely extends to M by virtue of Wente’s inequality [13,32], and
satisfies the classical topological lower bound

D(m) ≥ 4π |Q(m)| for all m ∈M.

2 Energy bounds

Both the treatments of the static and dynamic problem rely on good upper and lower bounds
to the energy Eε in terms of 0 < ε � 1. In fact, a major problem in extending our analysis
to the physically relevant case p = 2 consists in the lack of a lower bound that matches the
logarithmic upper bound in Theorem 1. Due to the quadratic decay of the stereographic map
� for |x | � 1, which leads to a logarithmically growing potential energy V if p = 2, we
conjecture the logarithmic upper bound to be optimal in terms of scaling.

From the above representations of H and V it follows
(
H(m)

)2 ≤ 32D(m)V (m) ∀m ∈M. (10)

By Young’s inequality we immediately infer the following lower energy bound:

Lemma 1 (Boundedness in M) Suppose 2 ≤ p ≤ 4 and ε > 0. Then,

Eε(m) ≥ (1− 16ε)D(m)+ ε
2V (m) for any m ∈M.

Using the helical derivatives (11), we can further improve the lower bound:

Lemma 2 (Lower bound) Suppose 2 ≤ p ≤ 4, ε > 0 and m ∈M\{m ≡ ê3}. Then
Eε(m) ≥ 4πQ(m)+ ε

(
1− 2ε

V4(m)
Vp(m)

)
Vp(m)

and

Eε(m) ≥
(

1− 2ε
V4(m)
Vp(m)

)
D(m)+ 8π ε

V4(m)
Vp(m)

Q(m).

The second lower bound is attained if and only if

Dκ
1m + m ×Dκ

2m = 0, where Dκ
i m = ∂im − κ êi × m, (11)
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holds for κ = V4(m)
2Vp(m)

. In particular, for Q(m) = −1

Eε(m) ≥ D(m)
(

1− 4ε
V4(m)
Vp(m)

)
≥ 4π(1− 4ε).

A corresponding upper bound in the homotopy class Q(m) = −1 is obtained by rescaling
the stereographic map � appropriately. For p = 2, an additional cut-off procedure is needed.

Lemma 3 (Upper bound) Suppose 2 ≤ p ≤ 4 and ε > 0. Then, there exists a smooth
representative m̃ ∈M in the homotopy class Q = −1 such that

inf {Eε(m) : m ∈M, Q(m) = −1} ≤ Eε(m̃){= 4π
(
1− 2(p − 2) ε

)
, if 2 < p ≤ 4,

≤ 4π
(

1− (
4+ o(1)

)
ε
|ln ε|

)
, if p = 2 and 0 < ε � 1.

For p = 4, upper and lower bounds match, so that the vector field m̃ actually is a minimizer
of Eε in the homotopy class Q = −1.

Proof of Lemma 2 As in [21] we will employ the helical derivatives Dκ
i as given in (11) and

appeal to the following relation from [21, Proof of Lemma 3.2]:

Step 1: For any m ∈M, we have

1
2 |∇m|2 − ω(m)+ κ

(
(m − ê3) · ∇ × m + κ

2 (1− m3)
2)

= |Dκ
1m + m ×Dκ

2m|2 ≥ 0.

Indeed, using |Dκ
1m+m×Dκ

2m|2 = |Dκ
1m|2+ |m×Dκ

2m|2+ 2Dκ
1m · (m×Dκ

2m), the
claim immediately follows from

|Dκ
1m|2 + |m ×Dκ

2m|2 = |∇m|2 + κ2(1+ m2
3)+ 2κ m · ∇ × m

and

Dκ
1m · (m ×Dκ

2m) = −ω(m)− κ2m3 − κ ê3 · ∇ × m.

Step 2: Conclusion. Recall that for 2 ≤ p ≤ 4

V (m) = Vp(m) =
∫
R2

( 1
2 (1− m3)

) p
2 dx .

Choosing κ = ε in Step 1 and integrating over R2, the first claim follows as in [21].

With the choice of κ = Vp(m)

2V4(m)
it follows that

D(m)− 4πQ(m)+ Vp(m)

2V4(m)

(
H(m)+ Vp(m)

) ≥ 0,

i.e.

H(m)+ V (m) ≥ −2 V4(m)
Vp(m)

(
D(m)− 4πQ(m)

)
.

Hence, we obtain the second lower bound:

Eε(m) = D(m)+ ε
(
H(m)+ V (m)

) ≥ D(m)− 2ε
V4(m)
Vp(m)

(
D(m)− 4πQ(m)

)
.

In particular, Step 1 implies that the inequality is sharp if and only if (11) holds for κ = Vp(m)

2V4(m)
.
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r

fR

R 2R

ln(1 + r2)

Fig. 1 A sketch of the “stream function” fR that the upper-bound construction for p = 2 is based on

If Q(m) = −1, we can use the classical topological lower bound D(m) ≥ 4π |Q(m)| =
4π to conclude

Eε(m) ≥ D(m)− 2ε
V4(m)
Vp(m)

(
D(m)− 4πQ(m)

)

≥
(

1− 4ε
V4(m)
Vp(m)︸ ︷︷ ︸
≤1

)
D(m) ≥ 4π(1− 4ε).

��

Proof of Lemma 3 If 2 < p ≤ 4, we may just define

m̃ : R2 → S
2, m̃(x) := �λ(x) := �(λx),

with � as in (3) and λ > 0 yet to be determined. Since D(�) = 4π , H(�) = −8π ,
V (�) = 2π/(p − 2) and

Eε(�λ∗) = min
λ>0

Eε(�λ) = D(�)− εH(�)2

4V (�)
, λ∗ = −2V (�)

H(�)
,

by a simple scaling argument, we obtain the claim with λ = λ∗ = (2(p − 2))−1.
For p = 2, however, � /∈M, since the potential energy V (�) diverges logarithmically.

Thus, � needs to be cut off in a suitable way. To this end, for R � 1 to be chosen later,
we fix a smooth function fR : [0,∞)→ R (see Fig. 1 and the “Appendix 2” for an explicit
construction) so that

fR(r) =
{

ln(1+ r2), for 0 ≤ r ≤ R,

const., for r ≥ 2R,

and, denoting by 0 < C < ∞ a generic, universal constant, whose value may change from
line to line:

0 ≤ f ′R(r) ≤ 2r
1+r2 , 0 ≤ − f ′′R(r) ≤ C

1+r2 , for all r ≥ R.

Then, we define a smooth vector field �R : R2 → S
2 via

�R(x) :=
(
f ′R(|x |) x

⊥

|x | , sgn
(|x | − 1

)√
1− (

f ′R(|x |))2
)T

, x ∈ R
2.

Note that �R = � on BR and �R = ê3 on R
2\B2R . On AR := B2R\BR , we have

|∇�R(x)|2 ≤ C
|x |4 , |�R(x)− ê3|2 ≤ C

|x |2 , x ∈ AR .
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Hence, we compute in polar coordinates
∫
BR

1
2 |∇�R |2dx = 4π

∫ R

0

2r
(1+r2)2 dr ≤ 4π,

∫
BR

1
4 |�R − ê3|2dx = π

∫ R

0

2r
1+r2 dr = π ln(1+ R2),

∫
AR

1
2 |∇�R |2dx ≤ C

∫ 2R

R

1
r3 dr = C

R2 ,

∫
AR

1
4 |�R − ê3|2dx ≤ C

∫ 2R

R

1
r dr = C.

The region R
2\B2R does not contribute to the energy. In particular, we have

|Q(�)− Q(�R)| ≤ C
∫
BC
R

|∇�|2 + |∇�R |2 dx � 1 provided R � 1,

so that Q(�R) = Q(�R) = −1.
In order to estimate the contribution from the helicity, we exploit that

(
�1,R
�2,R

)
(x) · ∇ ×�3,R(x) = sgn

(|x | − 1
) (

f ′R(|x |))2
f ′′R(|x |)√

1− (
f ′R(|x |))2

{
= −8 |x |2

(1+|x |2)3 , for 0 ≤ |x | ≤ R,

≤ 0, for |x | ≥ R.

Hence, using d
dr

r4

(1+r2)2 = 4 r3

(1+r2)3 , we find

H(�R) = 2
∫
R2

(
�1,R
�2,R

)
· ∇ ×�3,R dx ≤ −32π

∫ R

0

( r
1+r2

)3
dr = −8π R4

(1+R2)2 .

Summarizing, for sufficiently large R � 1, we have obtained

D(�R) ≤ 4π + C
R2 ,

H(�R) ≤ −8π
( R2

R2+1

)2 ≤ −8π + C
R2 ,

V (�R) ≤ π ln(1+ R2)+ C.

Defining

m̃ : R2 → S
2, m̃(x) = �R(λx),

where λ > 0 will be chosen below, and rescaling, we arrive at

Eε(m̃) = D(�R)+ ελ−1(H(�R)+ λ−1V (�R)
)

≤ 4π + C
R2 + ελ−1(−8π + λ−1π ln(1+ R2)+ C(R−2 + λ−1)

)
.

Now, choose R = ε− 1
2 |ln ε| and let λ = L|ln ε| for L > 0 fixed and 0 < ε � 1. Then,

Eε(m̃) ≤ 4π + ε
|ln ε|

(− 8π
L + π

L2 + o(1)
)

for 0 < ε � 1,

which turns into the claim for L = 1
4 . ��
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3 Compactness and proofs of Theorems 1 and 2

In this section, we prove existence of minimizers mε of Eε under the constraint Q = −1,
and their strong convergence to a unique harmonic map m0 ∈ C as ε → 0. In fact, both
results rely on P. L. Lions’ concentration-compactness principle. We state the common part
as a separate compactness result – Proposition 1 – from which Theorems 1 and 2 can be
deduced easily:

Proposition 1 Suppose 2 ≤ p < 4 and consider positive numbers {εk}k∈N ⊂ R so that
ε∞ := limk→∞ εk exists and satisfies 0 ≤ ε∞ � 1. Define

I := inf
m∈M

Q(m)=−1

Eε∞(m)

{
= 4π, if ε∞ = 0,

< 4π, if ε∞ > 0.

Moreover, let {mk}k ⊂ M be asymptotically minimizing in the homotopy class Q = −1;
that is, suppose that

Q(mk) = −1 and lim
k→∞ Eεk (mk) = I.

Finally, assume

lim inf
k→∞

(−H(mk)
)

> 0 as well as lim sup
k→∞

(
V (mk)− H(mk)

)
<∞.

Then, up to translations and a subsequence, there exists m∞ ∈M with Q(m∞) = −1 so
that

∇mk ⇀ ∇m∞ weakly in L2(R2),

mk ⇀ m∞ weakly in Lq(R2) for all p ≤ q <∞,

1− m3,k ⇀ 1− m3,∞ weakly in Lq(R2) for all p
2 ≤ q <∞,

mk → m∞ strongly in Lq
loc(R

2) for all 1 ≤ q <∞,

and

lim inf
k→∞ Eεk (mk) ≥ Eε∞(m∞).

In particular, the infimum I is attained by m∞ ∈M.

In the case p = 2 with ε∞ = 0, the above result does not apply to families of minimizers
{mε}ε of Eε , since we are unable to verify the bounds on −H(mε) and V (mε) as ε → 0
(in fact, in the given scaling, we expect H(mε) → 0 as ε → 0). For p = 4, on the other
hand, the proof fails, since we cannot exclude “vanishing” in the concentration-compactness
alternative – in the derivation of Theorem 1, we will instead exploit the matching upper and
lower bounds to Eε .

Before turning to the proof of Proposition 1, however, we will deduce both Theorem 1
and Theorem 2:

Proof of Theorem 1 Step 1 (The case p = 4): For p = 4, we may appeal to the matching
upper and lower bounds Lemmas 2 and 3. That is,

mε : R2 → S
2, mε(x) := �

( x
2(p−2)

)
,
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is a minimizer of Eε in the homotopy class Q = −1. Moreover, by Lemma 2, any minimizer
m̃ ∈M of Eε must satisfy (11) for κ = V4(m̃)

2V4(m̃)
= 1

2 .

Step 2 (The case 2 ≤ p < 4): When V = Vp represents the classical Zeeman interaction,
that is for p = 2, the existence of a minimizer mε of Eε in the homotopy class Q = −1
has been shown in [21]. However, the same approach can be used for the whole range
2 ≤ p < 4: Consider a minimizing sequence {mk}k∈N ⊂M for Eε with Q(mk) = −1, and
let 0 < εk := ε � 1. Lemma 3 yields for 2 < p < 4

lim
k→∞ Eε(mk) = inf{Eε(m) : m ∈M, Q(m) = −1} ≤ 4π(1− 2(p − 2)ε).

Hence, using that D(mk)+ εV (mk) ≥ 4π due to Q(mk) = −1, we obtain

lim inf
k→∞

(
−εH(mk)

)
= lim inf

k→∞

(
D(mk)+ εV (mk)− Eε(mk)

)

≥ 4π − 4π(1− 2(p − 2)ε) = 8π(p − 2)ε > 0.

If p = 2, we can use the upper bound 4π
(
1 − (

4 + o(1)
)

ε
|ln ε|

)
< 4π to arrive at the same

conclusion lim infk→∞
(−H(mk)

)
> 0.

On the other hand, we may use Lemma 1 to obtain

√
ε lim sup

k→∞
|H(mk)|

(10)
� lim sup

k→∞
(
D(mk)+ εV (mk)

) Lem. 1
� lim sup

k→∞
Eε(mk) ≤ 4π,

i.e.

lim sup
k→∞

(
V (mk)− H(mk)

)
<∞.

Hence, we may apply Proposition 1 to obtain convergence (up to a subsequence and transla-
tions) of {mk}k∈N to a limit m∞ ∈M with Q(m∞) = −1 and

I = lim
k→∞ Eε(mk) ≥ Eε(m∞) ≥ I.

Thus, m∞ minimizes Eε in the class M, subject to the constraint Q = −1. By the H1

continuity of the topological charge Q(m), the constrained minimizer m∞ ∈M constructed
before is a local minimizer of Eε(m) in M and as such an almost harmonic map with an L2

perturbation as considered in [23] (see also [13]). Hence, m∞ is Hölder continuous. ��
Proof of Theorem 2 By the lower bound Lemma 2, we may assume w.l.o.g. that the constant
0 < C0 <∞ satisfies

4π − C−1
0 ε ≤ Eε(mε) ≤ 4π − C0ε. (12)

Step 1 (Verification of the assumptions of Proposition 1): We prove

lim
ε→0

D(mε) = 4π, lim inf
ε→0

(−H(mε)
)

> 0 and lim sup
ε→0

(
V (mε)− H(mε)

)
<∞.

Indeed, we have

−H(mε) = 1
ε

(
D(mε)+ εV (mε)− Eε(mε)

) (12)≥ 1
ε

(
4π − (4π − C0ε)

)
= C0,

so that lim infε→0
(−H(mε)

)
> 0. On the other hand, Lemma 2 and the topological lower

bound yield

4π ≤ D(mε) ≤ 1
1−4ε

Eε(mε)
(12)≤ 4π−C0ε

1−4ε
→ 4π as ε→ 0.
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60 Page 14 of 30 L. Döring, C. Melcher

Hence, D(mε)→ 4π for ε→ 0.
Due to (10), it remains to prove that V (mε) is bounded uniformly in 0 < ε � 1. Indeed,

from Lemma 1, we obtain

ε
2V (mε) ≤ Eε(mε)︸ ︷︷ ︸

(12)≤ 4π

−4π(1− 16ε) ≤ 64πε ∀0 < ε � 1.

Thus, lim supk→∞
(
V (mk)− H(mk)

)
<∞.

Step 2 (Proof of part i)): By Step 1, we may apply Proposition 1. Hence, there exists m0 ∈M
with Q(m0) = −1 so that in the limit ε → 0, along a subsequence and up to translations
(not relabeled):

∇mε ⇀ ∇m0 weakly in L2(R2),

mε ⇀ m0 weakly in Lq(R2) for all p ≤ q <∞,

1− m3,ε ⇀ 1− m3,0 weakly in Lq(R2) for all p
2 ≤ q <∞,

mε → m0 strongly in Lq
loc(R

2) for all 1 ≤ q <∞,

Since, by Step 1 and Q(m0) = −1, we have 4π = lim infε→0 D(mε) ≥ D(m0) ≥ 4π ,
weak convergence ∇mε ⇀ ∇m0 upgrades to strong convergence in L2(R2). In particular,
m0 ∈ C, which proves the first part of the claim.

Step 3 (Proof of part ii)): Assume that

Eε(mε) ≤ 4π + ε min
m∈C

(
H(m)+ V (m)

)+ o(ε)

holds as ε→ 0, i.e.

lim sup
ε→0

ε−1(Eε(mε)− D(m0)
) ≤ min

m∈C
(
H(m)+ V (m)

)
.

By Step 2, we have ∇mε → ∇m0 strongly in L2(R2) and 1− m3,ε ⇀ 1− m3,0 weakly in
L

p
2 (R2) and L2(R2) along a suitable subsequence as ε→ 0. Thus, we obtain

lim
ε→0

H(mε) = H(m0), lim inf
ε→0

V (mε) ≥ V (m0),

and, using that D(mε) ≥ 4π = D(m0),

lim inf
ε→0

ε−1(Eε(mε)− D(m0)
) ≥ H(m0)+ V (m0) ≥ min

m∈C
(
H(m)+ V (m)

)
.

Therefore,

ε−1(Eε(mε)− D(m0)
)→ min

m∈C
(
H(m)+ V (m)

) = H(m0)+ V (m0) as ε→ 0.

In particular, we obtain

lim
ε→0

ε−1(D(mε)− D(m0)
) = 0 and lim

ε→0
V (mε) = V (m0).

Hence, mε − m0 → 0 strongly in L p(R2) as ε → 0, up to translations and a suitable
subsequence.

Recall that (with the identification R
2 	 C) m ∈ C may be represented as

m(x) = m(ρ,ϕ)(x) = �(ax + b) = eiϕ�(ρx + b̃)
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for two complex numbers a = ρeiϕ �= 0 and b, with b̃ = a−1b. Thus, dropping b due to the
translation invariance of the problem, minimization is a finite dimensional problem; in fact,
we have

H(m(ρ,ϕ))+ V (m(ρ,ϕ)) = cos ϕ
ρ

H(�)+ V (�)

ρ2 = − 8π cos ϕ
ρ
+ 2π

ρ2(p−2)
,

which obviously is minimized by ϕ ∈ 2πZ and ρ = 1
2(p−2)

. Hence, up to translation, the
unique minimizer of H + V in C is given by

m0(x) = �(ρx) with ρ = 1
2(p−2)

= −2 V (�)
H(�)

.

In particular, the whole sequence {mε}ε>0 converges with respect to d , up to translations, to
the unique limit m0. ��

It remains to prove Proposition 1:

Proof of Proposition 1 We first remark that in view of (10) and Lemma 1, the assumptions
also imply

lim sup
k→∞

D(mk) <∞ and lim inf
k→∞ V (mk) > 0.

Moreover, we will use the symbol � to indicate that an inequality holds up to a universal,
multiplicative constant that may change from line to line.

Step 1: We prove:

|H(mk)| �
(

sup
y∈R2

(∫
B1(y)
|∇mk |2 dx

) 1
2 + sup

y∈R2

(∫
B1(y)
|∇mk |2 dx

) 2
p− 1

2
)

×
(
D(mk)+ V (mk)

)

for all k ∈ N. Indeed, choose δ > 0 so that ∪y∈δZ2 B1(y) = R
2. Then, we have

∣∣∣
∫
R2

(1− m3,k)(∇ × mk) dx
∣∣∣ �

∑
y∈δZ2

(∫
B1(y)

(m3,k − 1)2︸ ︷︷ ︸
= 1

4 |mk−ê3|4
dx

) 1
2
(∫

B1(y)
|∇mk |2dx

) 1
2
.

Moreover, the Sobolev embedding theorem and Jensen’s inequality yield

(∫
B1(y)
|mk − ê3|4 dx

) 1
2 �

∫
B1(y)
|∇mk |2 + |mk − ê3|2 dx

�
∫
B1(y)
|∇mk |2dx +

(∫
B1(y)

1
2p |mk − ê3|p dx

) 2
p
,

so that, using Young’s inequality in the last step,

|H(mk)| �
∑
y∈δZ2

(∫
B1(y)
|∇mk |2 dx

) 3
2

+
∑
y∈δZ2

(∫
B1(y)
|∇mk |2 dx

) 1
2
(∫

B1(y)

1
2p |mk − ê3|p dx

) 2
p
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≤ sup
y∈R2

(∫
B1(y)
|∇mk |2 dx

) 1
2
D(mk)

+ sup
y∈R2

(∫
B1(y)
|∇mk |2 dx

) 2
p− 1

2 (
D(mk)+ V (mk)

)
,

which is the claim.

Step 2 (Concentration-compactness): We consider the full energy density (9) to define ρk :=
eε(mk) ≥ 0. Note that we have

ρk � |∇mk |2 + εk
1

2p |mk − ê3|p ∀k ∈ N

and

lim
k→∞

∫
R2

ρk dx = I > 0.

Hence, we may apply the concentration-compactness lemma (see, e.g., [19]) to the sequence
{ρk}k∈N of non-negative densities and obtain that, up to a subsequence, one of the following
holds:

• Compactness: There exists a sequence {yk}k∈N ⊂ R
2 so that

∀δ > 0 : ∃R <∞:
∫
R2\BR(yk )

ρk dx ≤ δ.

• Vanishing: We have

lim
k→∞ sup

y∈R2

∫
BR(y)

ρk dx = 0 ∀R <∞.

• Dichotomy: There exist a(1), a(2) > 0 so that a(1) + a(2) = I and for all δ > 0, there
exist k0 ∈ N, {yk}k∈N ⊂ R

2, R <∞, and a sequence Rk →∞, so that for k ≥ k0:
∣∣∣a(1) −

∫
BR(yk )

ρk dx
∣∣∣+

∣∣∣a(2) −
∫
R2\BRk (yk )

ρk dx
∣∣∣+

∣∣∣
∫
BRk (yk )\BR(yk )

ρk dx
∣∣∣ ≤ δ.

In order to conclude, we need to rule out vanishing and dichotomy.

Step 2a (Ruling out “Vanishing”): Suppose vanishing holds. Since ρk controls 1
2 |∇mk |2,

while V (mk) is bounded by assumption, Step 1 yields limk→∞ H(mk) = 0, contradicting
the assumption lim infk→∞

(−H(mk)
)

> 0.

Step 2b (Ruling out “Dichotomy”): Suppose dichotomy holds. In particular, for fixed 0 <

δ � 1 (to be specified later), we have∫
BRk \BR

|∇mk |2 + εk
1

2p |mk − ê3|pdx �
∫
BRk \BR

ρk dx ≤ δ.

W.l.o.g., we may assume that R2δ
p−2

2 ≥ 1 and k � 1, so that Rk ≥ 4R.
If ε∞ = 0, we may apply Lemma 8 in “Appendix 1” with σ = 0, otherwise with σ = 1,

and define m(i)
k ∈M, i = 1, 2, so that for some constant C(δ, R) and ck ∈ [R, 2R]:

m(1)
k = mk on Bck , V (m(1)

k ) � C(δ, R),

m(2)
k = mk on R

2\B2ck , V (m(2)
k ) � V (mk)+ C(δ, R),
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and ∫
R2\Bck

|∇m(1)
k |2 + σ εk

1
2p |m(1)

k − ê3|p dx

+
∫
B2ck

|∇m(2)
k |2 + σ εk

1
2p |m(2)

k − ê3|p dx

� δ + σ( δ
R2 )2/p � δ.

In particular, we have

∣∣Q(m(1)
k )+ Q(m(2)

k )− Q(mk)
∣∣ ≤

∣∣∣ 1
4π

∫
B2ck \Bck

ω(mk) dx
∣∣∣

+
∣∣∣Q(m(1)

k )− 1
4π

∫
Bck

ω(mk) dx
∣∣∣+

∣∣∣Q(m(2)
k )− 1

4π

∫
R2\B2ck

ω(mk) dx
∣∣∣ � δ.

Hence, since Q(mk) = −1 and Q(m(i)
k ) ∈ Z, i = 1, 2, we obtain

Q(m(1)
k )+ Q(m(2)

k ) = Q(mk) = −1.

Moreover, using the estimate

|H(m(i)
k )|

(10)
�

(
D(m(i)

k )

�C<∞︷ ︸︸ ︷
V (m(i)

k )
) 1

2
,

which also holds localized to B2ck and R
2\Bck , respectively, the “dichotomy” condition

yields

E(m(i)
k ) ≤ a(i) + C

√
δ < I ≤ 4π if δ � 1, for i = 1, 2. (13)

If |Q(m(i)
k )| ≥ 2 for some i ∈ {1, 2}, Lemma 2 and the inequality D(m) ≥ 4π |Q(m)| imply

4π > E(m(i)
k )

Lem. 1≥ (1− 16ε)D(m(i)
k ) ≥ 3π |Q(m(i)

k )| ≥ 6π if 0 < ε � 1,

a contradiction. Moreover, Q(m(i)
k ) = 1 for some i ∈ {1, 2} yields Q(m(3−i)

k ) = −2, which
leads to the same contradiction as above.

Thus, we have Q(m(i)
k ) ∈ {−1, 0} for i = 1, 2, i.e. there exists i0 ∈ {1, 2}with Q(m(i0)

k ) =
−1.

If ε∞ > 0, we directly obtain a contradiction, since m(i0)
k is admissible in the variational

problem I , hence

I ≤ E(m(i0)
k )

(13)
< I.

If ε∞ = 0, we use that H(m(i0)
k )+V (m(i0)

k ) remains bounded by construction (see Lemma 8
and (10), and note that R and hence also C(δ, R) depend on δ, but not on k), and thus

4π
(13)
> a(i0) + C

√
δ ≥ lim inf

k→∞ Eεk (m
(i0)
k ) ≥ lim inf

k→∞ D(m(i0)
k ) ≥ 4π,

a contradiction. Therefore, dichotomy cannot occur.

Step 3 (Conclusion): By Step 2, we may assume that compactness holds in the concentration-
compactness alternative. W.l.o.g., yk = 0 for all k ∈ N. By passing to a subsequence and
using Rellich’s theorem, we may assume that there exists m∞ ∈ Ḣ1(R2;S2) such that
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∇mk ⇀ ∇m∞ weakly in L2(R2),

mk ⇀ m∞ weakly in L p(R2),

1− m3,k ⇀ 1− m3,∞ weakly in L
p
2 (R2),

mk
�

⇀ m∞ weak-* in L∞(R2),

mk → m∞ strongly in L p
loc(R

2) for 1 ≤ p <∞.

Since compactness holds, we have (see [21, Lemma 4.1])

I = lim inf
k→∞

(
Eεk (mk)+ 4πQ(mk)

)+ 4π ≥ Eε∞(m∞)+ 4πQ(m∞)+ 4π.

If ε∞ > 0, i.e. I < 4π , we may immediately exclude Q(m∞) ≥ 0. On the other
hand, Lemma 1 in form of the inequality Eε∞(m∞) ≥ 4π(1 − 16ε∞)|Q(m∞)| rules out
|Q(m∞)| ≥ 2, if ε∞ is sufficiently small. Hence, we have Q(m∞) = −1 If ε∞ = 0, i.e.
I = 4π , we may argue similarly to obtain Q(m∞) ∈ {−1, 0}. Moreover, if Q(m∞) = 0, we
obtain Eε∞(m∞) = D(m∞) = 0, i.e. m∞ = const. In particular, using the “compactness”
condition and the initial assumption lim supk→∞ V (mk) < ∞ to reduce the problem to a
bounded set, we obtain H(mk) → 0, a contradiction. Hence, also for ε∞ = 0, we have
Q(m∞) = −1. ��

4 Regularity of the dynamic problem and proof of Theorem 3

In this section we address existence and regularity issues for the pulled back Landau–Lifshitz–
Gilbert equation (6) central for the proof of Theorem 3. We shall keep the discussion of the by
now classical methodology brief and rather focus on the substantial new difficulties arising
from chiral and spin–torque interactions.

4.1 Local well-posedness

Starting from spatial discretization as in [1,7,30] or spectral truncation as in [20,31] one
obtains for initial data m0 ∈ M such that ∇m0 ∈ H2(R2) a local solution m : R2 ×
[0, T ∗)→ S

2 for some terminal time T ∗ > 0, which is bounded below in terms of ‖∇m0‖H2 ,
such that for all T < T ∗

Eε(m) ∈ L∞(0, T ) and ∇m ∈ L∞
(
0, T ; H2(R2)

) ∩ L2 (
0, T ; H3(R2)

)
.

Initial data m0 and ∇m0 is continuously attained in M and H2(R2), respectively, see [31].
As∇m ∈ W 1,∞ (

0, T ; L2(R2)
)
, interpolation and Sobolev embedding yield uniform Hölder

continuity of∇m inR2×[0, T ]. Uniqueness in this class can be shown by means of a Gronwall
argument as in [20,31]. Due to the slow decay of m − ê3, the conventional L2-distance is
replaced by a suitably weighted L2-distance, e.g.

‖u‖2
L2∗
:=

∫
R2

|u(x)|2
1+ |x |2 dx � ‖u‖2

L4 .

As ∇m(t) ∈ H3(R2) for almost every t < T ∗, uniqueness and a bootstrap argument imply
∇m ∈ L∞loc(0, T ∗; Hk(R2)) for arbitrary k ∈ N, in particular m is smooth for positive times.
Now one may deduce the following Sobolev estimate from [20] (which equally holds true
for approximate equations)
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sup
0≤t≤T

‖∇m(t)‖2
Hk+

∫ T

0
‖∇m(t)‖2

Hk+1 dt (14)

≤ c
(

1+ sup
t∈[0,T ]

‖∇m(t)‖2
L∞

) ∫ T

0
‖∇m(t)‖2

Hk dt

for all 0 ≤ k ≤ 2 and 0 < T < T ∗ (cf. Lemma 4 below). Hence, if T ∗ <∞, then

lim sup
t↗T ∗

‖∇m(t)‖L∞ = ∞.

4.2 Local Sobolev estimates for blow-up solutions

Due to lower order perturbations, (6) is translation- but not dilation-invariant. However, with
respect to transformations m̃(x, t) = m(x0 + λx, t0 + λ2t) the parameters ε and ν exhibit
the following scaling behavior ε̃ = λε and ν̃ = λν while f̃ (m) = λ f (m). Hence, the
coefficients of the lower order perturbations are uniformly bounded for ε ≤ ε0 and in the
blow-up regime λ ≤ 1. In this case we shall call m̃ = m a blow-up solution. We shall need
a localized version of (14). For R > 0 and a space-time point z = (x, t)

PR(z) = BR(x)× [t − R2, t]
denotes the closed parabolic cylinder and accordingly PR = PR(0).

Lemma 4 Suppose k ∈ N and m is a blow-up solution in a neighborhood of PR for some
R > 0. Then

‖∇m(0)‖2
Hk (BR/2)

+
∫ 0

−(R/2)2
‖∇m(t)‖2

Hk+1(BR/2)
dt

≤ c
(

1+ ‖∇m‖2
L∞(PR)

) ∫ 0

−R2
‖∇m(t)‖2

Hk (BR)
dt

for a constant c, which is independent of m and uniform for ε ≤ ε0 and λ ≤ 1.

These estimates are inhomogeneous and depend on R. We shall apply it to blow-up
solutions as above with ε ≤ ε0 and λ ≤ 1 and radii R in a finite range.

Proof (Sketch of proof) The Landau-Lifshitz form of the equation reads

(1+ α2) ∂tm = α
(

m + |∇m|2m)− ∇ · (m ×∇m)+ F(∇m,m),

for a smooth tangent field F that is linear in ∇m. The standard procedure uses test functions
∂ν(φ2∂νm), where ν is a multi index of length 1 ≤ |ν| ≤ k+1, and φ(x, t) = ϕ(x)η(t) is an
appropriate space-time cut-off function 0 ≤ φ ≤ 1 where ϕ ∈ C∞0 (B1) with ϕ|B1/2 = 1 and
η ∈ C∞(R) with η(t) = 0 for t < −1 and η(t) = 1 for t > −1/4. In the case R �= 1 one uses
suitable rescalings of ϕ and η. Let us only estimate the contribution from the non-coercive
term of second order ∇ · (m ×∇m):

I = 〈∂ν(m ×∇m),∇(φ2∂νm)〉 = 〈(m × ∂ν∇m + Rν

)
,
(
φ2∂ν∇m + 2φ ∇φ ∂νm

)〉,
which is bounded by

‖φ ∂ν∇m‖L2

(
2‖∇φ ∂νm‖L2 + ‖φ Rν‖L2

)
+ 2‖φ Rν‖L2‖∇φ ∂νm‖L2 ,
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where |Rν | � ∑
|�1|+|�2|=|ν|−1 |∇�1(∇m)⊗∇�2(∇m)|. Hence for t ∈ [−1, 0] fixed

‖φ Rν‖L2 ≤ ‖φ Rν‖L2(B1)
≤ c‖∇m‖L∞(B1)‖∇m‖Hk (B1)

.

In fact, by Sobolev extension (preserving L∞ bounds) of ∇m|B1 to a map g ∈ L∞ ∩
Hk(R2;R6) with an equivalent L∞ ∩ Hk bound, Moser’s product estimate applies. Hence
for arbitrary δ > 0

|I | ≤ δ‖φ ∂ν∇m‖2
L2 + C(δ)

(
1+ ‖∇m‖2

L∞(P1)

)
‖∇m(t)‖2

Hk (B1)

so that the first term can be absorbed for δ � α. ��
4.3 Energy estimates

In proving Theorem 3 we shall argue on the level of energy. We have the following energy
inequality for regular solutions m = mε of (6) on a time interval [0, T ].
Lemma 5 (Energy inequality) There exists a universal constant λ > 0 such that for ε ≥ 0,
0 < T < T ∗ and ϕ : R2 → R smooth with compactly supported gradient

α

2

∫ T

0

∫
R2
|∂tm|2ϕ2dxdt +

[∫
R2

eε(m(t))ϕ2 dx

]T

t=0

≤ λ

α

∫ T

0

∫
R2

[
(1+ α2)ν2|∂zm(t)|2ϕ2 + (|∇m|2 + ε2|m − ê3|4

) |∇ϕ|2
]
dxdt.

Proof The claim follows from a standard argument based on the identity

α|∂tm|2 − ν(α∂zm + m × ∂zm) · ∂tm = hε(m) · ∂tm,

where the right hand side produces the time derivative of the density up to a divergence. The
corresponding identity for the helicity term reads

(∇ × m) · ∂tm = ∂t [(m3 − 1)∇ × m]− ∇ × [(m3 − 1)∂tm] .

Integration by parts and Young’s inequality implies the claim. ��
If ϕ ≡ 1 one can take λ = 1

2 and obtains in the case Q(m) = −1

α

2

∫ T

0

∫
R2
|∂tm|2 dxdt +

[
Eε(m(t))

]T
t=0
≤ (1+ α2)ν2

4α

∫ T

0

[
D(m(t))− 4π

]
dt

where we used that

2
∫
R2
|∂zm(t)|2 dx = D(m)− 4π.

Lemma 2 implies for ε ≤ 1/8 and Eε(m) < 4π that

D(m)− 4π < 32πε.

Proposition 2 Suppose 0 < ε ≤ 1/8 and Eε(m(0)) ≤ 4π − cε, then

Eε(m(T )) < 4π for all 0 < T < min

{
cα

32π(1+ α2)ν2 , T ∗
}

.

Moreover as ε→ 0

sup
0≤t≤T

∫
R2
|∂zm(t)|2 dx = O(ε) and

∫ T

0

∫
R2
|∂tm|2 dxdt = O(ε).
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Next we show that the energy density eε(m(t)) : R2 → [0,∞) remains concentrated
along the flow. To this end we invoke Lemma 5 with ϕR(x) = ϕ(x/R), where ϕ(x) = 1 for
|x | ≥ 2 and ϕ(x) = 0 for |x | ≤ 1. By virtue of Hölder’s inequality we obtain the estimate

α

2

∫ T

0

∫
R2
|∂tm|2ϕ2

Rdxdt +
[∫

R2
eε(m(t))ϕ2

R dx

]T

t=0

≤ c
∫ T

0
ν2

[
D(m)− 4π

]
+ R−2Eε(m) dt

for generic constants c that only depend on α and ϕ from which we obtain:

Lemma 6 There exists a constant c = c(α) such that∫
{|x |>2R}

eε(m(t)) dx ≤
∫
{|x |>R}

eε(m(0)) dx + c T
(
εν + 1/R2)

for all 0 ≤ t ≤ T , R > 0 and ε > 0.

4.4 Small energy regularity

The main strategy for proving regularity has been developed in the context of harmonic
flows and is well-established [10,12,29]. The terminal time T ∗ of first blow-up depends on
the initial data and the parameters entering the equation. The only possible scenario of finite
time blow-up is |∇m(xk, tk)| → ∞ for some sequence xk ∈ R

2 and tk ↗ T ∗. We shall show
that for moderately small ε, this scenario can be ruled out as long as Eε(m(t)) < 4π .

Proposition 3 For 0 < T0 <∞ there exists ε0 > 0 with the following property: If 0 < ε <

ε0 and Eε(m(t)) < 4π for all t up to a terminal time T ∗ ≤ T0, then

lim sup
t↗T ∗

Eε(m(t)) = 4π.

It is customary to prove small-energy regularity using Schoen’s trick, which is well-
established for harmonic maps and flows.

Lemma 7 There exists δ0 > 0 such that if m is a blow-up solution in Pr (z0) with r ≤ 1,
then ∫

Br (x0)

|∇m(s)|2dy < δ0 for all s ∈ [t0 − r2, t0]

then

|∇m| ≤ 2/r in Pr/2(z0).

Proof Since the claim of the Lemma is invariant with respect to the transformation (x, t) �→
(x0 + r x, t0 + r2t), inducing an admissible blow-up solution for 0 < r ≤ 1, we can assume
z0 = 0 and r = 1. There exists ρ ∈ [0, 1) such that

(1− ρ)2 sup
Pρ

|∇m|2 = max
σ∈[0,1](1− σ)2 sup

Pσ

|∇m|2.

We set s0 = supPρ
|∇m| = |∇m(z0)| for some z0 ∈ Pρ(0) and assume

(1− ρ)2s2
0 ≤ 1.
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Then it follows that supP1/2
|∇m|2 ≤ 4(1− ρ)2s2

0 ≤ 4, which implies the claim.

If otherwise (1−ρ)2s2
0 > 1, then in particular s0 > 1

1−ρ
≥ 1. So λ = 1/s0 is an admissible

scaling parameter. For (x, t) ∈ P1/2 we consider the blow-up solution

m̃(x, t) = m(x0 + s−1
0 x, t0 + s−2

0 t),

for which

sup
P1/2

|∇m̃|2 ≤ s−2
0 sup

P1/(2s0)(z0)

|∇m|2 ≤ s−2
0 sup

P(1−ρ)/2(z0)

|∇m|2 ≤ 4.

Hence it follows from Sobolev embedding H2(B1/16) ↪→ L∞(B1/16) and Lemma 4 applied
three times to m̃ (being a blow-up solution) that for a generic constant c

1 = |∇m̃(0, 0)|2 ≤ c ‖∇m̃(0)‖2
H2(B1/16)

≤ c
∫ 0

−1/4
‖∇m̃(t)‖2

L2(B1/2)
dt.

But then 1 ≤ c
∫ 0
−1 ‖∇m(t)‖2

L2(B1)
dt < c δ0, impossible for appropriate δ0 > 0. ��

Proof of Proposition 3 Suppose m is a fixed solution up to some terminal time T ∗ ≤ T0 with
Eε(m(t)) < 4π for all 0 ≤ t < T ∗. Recall that by (8)

|∇m|2 � eε(m) � |∇m|2 + |m − ê3|4 (15)

uniformly for ε sufficiently small. It follows from Lemma 6 that there exist ε0 > 0 and
R0 > 0, which only depends on m(0) but not explicitly on ε, such that

∫
{|x |>2R0}

|∇m(t)|2 dx < δ0 for all 0 < t < T ∗

if ε < ε0. But then, according to Lemma 7, |∇mε(x, t)| is uniformly bounded for |x | > 3R0

and 0 < t < T ∗. It follows that blow-up can only occur in a finite domain, and it remains to
perform a bubbling analysis as in [29]:

Note that by Lemma 7 the singular set must be finite. Hence after translation and dilation
we may assume m ∈ C∞(P2\{(0, 0)}) and claim that if ε is sufficiently small and m has a
singularity at the origin, then

lim sup
t↗0

Eε(m(t); B2(0)) ≥ 4π.

If (0, 0) is a singularity then by virtue of Lemma 7
∫
Brk (xk )

|∇m(tk)|2dx = sup
x∈B1

∫
Brk (x)

|∇m(tk)|2dy = δ0

4

for suitable sequences xk → 0, tk ↗ 0 and rk ↘ 0. Moreover, invoking the local energy
inequality in the style of Lemma 6 and (15) we find 0 < σ0 ≤ 1/4 such that

sup
x∈B1/2(xk )

∫
Brk /2(x)

|∇m(t)|2dx ≤ δ0

2
for all tk − r2

k σ0 ≤ t ≤ tk

for sufficiently large k and small ε. According to Lemma 7, the blow-up solutions

mk(x, t) = m(xk + rk x, tk + r2
k t) for (x, t) ∈ R

2 × [−σ0, 0]
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admit for x ∈ B1/2rk and t ∈ [−σ0/2, 0] a uniform gradient bound. Local higher order
Sobolev bounds then follow from a variant of Lemma 4. We consider mk as a solution of the
perturbed Landau–Lifshitz–Gilbert equation

∂tmk = mk × (α∂tmk −
mk)+ f k

for a field f k ⊥ mk with

| f k | � rk |∇mk | + r2
k |mk − ê3|3

hence‖ f k(t)‖L2 = O(rk)uniformly for all admissible t . It follows from the energy inequality
for m that

∫ 0
−σ0

∫
R2 |∂tmk |2 dxdt → 0 as k →∞, hence vk = (∂tmk)(τk) and wk = f k(τk)

converge to zero in L2(R2) for some sequence τk ↗ 0. Note that uk = mk(τk) is an almost
harmonic map in the sense that

uk ×
uk = α uk × vk − vk + wk

and subconvergence strongly in H1
loc(R

2) to a harmonic map u of finite energy in R
2. To

show that u is non-constant we invoke the local energy equality for mk∫
B1

|∇mk(0)|2 dx −
∫
B2

|∇mk(τk)|2 dx ≤ c
∫ 0

τk

∫
B2

(|∇mk |2 + | f k |2
)
dxdt = O(τk),

which implies that ∫
B2

|∇uk |2 dx =
∫
B2

|∇mk(τk)|2dx ≥ δ

4
+ O(τk).

By local strong convergence
∫
B2
|∇u|2 dx > 0, and by virtue of the well-known theory about

harmonic maps 1
2

∫
R2 |∇u|2 dx = 4π . According to (8) and Young’s inequality, the rescaled

energy densities

eε,k(u) := |∇u|
2

2
+ εrk

(
(u − ê3) · (∇ × u)+ rk

16
|u − ê3|4

)

are non-negative for ε sufficiently small, independently of k. Hence by letting sk = tk +
r2
k τk → 0 we have for arbitrary R0 > 0∫

B2(0)

eε(m(sk)) dx ≥
∫
B1(xk )

eε(m(sk)) dx =
∫
B1/rk

eε,k(uk) dx ≥
∫
BR0

eε,k(uk) dx

for k > k0 depending on R0, and
∫
BR0

eε,k(uk) dx = 1
2

∫
BR0
|∇uk |2 dx + O(rk) as k →∞

which implies the claim by strong L2(BR0) compactness of ∇uk . ��
Proof of Theorem 3 The first claim has been discussed in the forefront of the theorem. The
second follows from Propositions 2 and 3. For the third claim we deduce from Lemma
2 as in the proof of Theorem 2 that lim supε→0 V (m0

ε) < ∞ and limε→0 D(m0
ε) = 4π ,

hence m0 ∈ C. Moreover, it follows from Proposition 2 that for every sequence εk ↘ 0 the
corresponding solutions mεk subconverge weakly to a weak solution of m of the standard
Landau–Lifshitz–Gilbert equation

∂tm = α m × ∂tm − ∇ · (m ×∇m) with m(0) = m0.

Since ∂tm = 0 by Proposition 2, it follows that m ≡ m0. Now for every t ∈ [0, T ] the
sequence ∇mεk (t) converges weakly to ∇m0 with limk→∞ D(mεk (t)) = 4π , which implies
strong convergence. Finally we deduce convergence of the whole family as ε ↘ 0. ��
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Appendix 1: Cut-off lemma

The following cut-off result in the spirit of [9,17,21] is crucial for the proof of Proposition 1:

Lemma 8 Suppose m : R2 → S
2 satisfies

∫
R2 |∇m|2 dx <∞ and

∫
B4R\BR

|∇m|2 dx + σ

∫
B4R\BR

1
2p |m − ê3|p dx < δ

for some 0 < δ � 1, R ≥ 1, σ ∈ {0, 1}. Then, there exist

m(1),m(2) : R2 → S
2 with

∫
R2
|∇m(i)|2 dx <∞ for i = 1, 2,

some c ∈ [R, 2R] and a constant C = C(δ, R) <∞ so that

m(1) = m on Bc, V (m(1)) � C,∫
R2\Bc

|∇m(1)|2 dx + σ

∫
R2\Bc

1
2p |m(1) − ê3|p dx � δ + σ( δ

R2 )2/p,

and

m(2) = m on R
2\B2c, V (m(2)) � V (m)+ C,∫

B2c

|∇m(2)|2 dx + σ

∫
B2c

1
2p |m(2) − ê3|p dx � δ + σ( δ

R2 )2/p.

Proof We proceed in several steps. The symbol � will denote an inequality that holds up to
a generic, universal multiplicative constant that may change from line to line.

Step 1 (Choice of radius c): We consider m in polar coordinates and write m(x) = m(r, θ).
Moreover, we define

g : [R, 4R] → R, g(r) :=
∫ 2π

0

(|∂rm|2 + | 1r ∂θm|2 + σ 1
2p |m − ê3|p︸ ︷︷ ︸
=2−

p
2 (1−m3)

p
2

)
dθ.

Poincaré’s inequality yields

‖m(r, ·)− m̄(r)‖2∞ �
∫ 2π

0
|∂θm(r, θ)|2dθ ∀r > 0,

where m̄(r) := −∫ 2π

0 m(r, θ) dθ . Hence, we may choose c ∈ [R, 2R] so that

δ
R ≥ 1

R

∫
B4R\BR

|∇m|2 + σ 1
2p |m − ê3|p dx = 1

R

∫ 4R

R
g(r) r dr

� −
∫ 2R

R

(
g(r)+ g(2r)

)
r dr ≥ (

g(c)+ g(2c)
)
c.

By definition of g, we obtain
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1− |m̄(r)|2 = −
∫ 2π

0
|m(r, θ)− m̄(r)|2 dθ � ‖m(r, ·)− m̄(r)‖2∞

�
∫ 2π

0
|∂θm(r, θ)|2dθ � Rg(r)r � δ for r = c, 2c,

and

σ
(
1− m̄3(r)

) = σ 2−
∫ 2π

0

(
1− m3(r, θ)

)
dθ � σ

(
σ

∫ 2π

0

(
1− m3(r, θ)

) p
2 dθ

) 2
p

� σ
(
g(r)

) 2
p � σ( δ

R2 )
2
p for r = c, 2c.

In particular, we may assume |m̄(c)| ≥ 1
2 .

Step 2 (Definition of m(1)):
Let

e :=
{

m̄(c)
|m̄(c)| , σ = 0

ê3, σ = 1

}
∈ S

2,

so that for σ = 0 we have

‖m(c)− e‖2∞ � ‖m(c, ·)− m̄(c)‖2∞︸ ︷︷ ︸
�δ

+ |m̄(c)− e|2︸ ︷︷ ︸
=(1−|m̄(c)|)2�δ2

� δ.

If σ = 1, we may modify the second estimate as follows:

|m̄(c)− ê3|2 ≤ −
∫ 2π

0
|m(c, θ)− ê3|2︸ ︷︷ ︸
=2(1−m3(c,θ))

dθ � (1− m̄3(c)) � ( δ
R2 )2/p.

Hence, in either situation,

‖m(c, ·)− e‖2∞ � δ + σ( δ
R2 )2/p � 1.

We will define m(1) : R2 → S
2 in two steps:

Step 2a (Definition of m(1) on B2c): Let η : R → [0, 1] be a smooth cut-off function with
η(s) = 1 for s ≤ 0 and η(s) = 0 for s ≥ 1. We define

m(1)(r, θ) =
⎧⎨
⎩

η( r−cc )m(c,θ)+(1−η( r−cc ))e
|η( r−cc )m(c,θ)+(1−η( r−cc ))e| , c < r < 2c,

m(r, θ), 0 ≤ r ≤ c.

so that m(1) has a well-defined trace across ∂Bc. Using the inequality

|∂i (ρm(1))|2 = ρ2|∂im(1)|2 + |∂iρ|2 ≥ 1
4 |∂im(1)|2, i = r, θ,

where

ρ = ∣∣η( r−cc )m(c, θ)+ (
1− η( r−cc )

)
e
∣∣ ≥ 1

2 ,

we obtain for c ≤ r ≤ 2c that

|∂rm(1)(r, θ)|2 � | 1cη′( r−cc )(m(c, θ)− e)|2 � 1
c2 ‖m(c, ·)− e‖2∞ � δ+(δR−2)

2
p

r2 .
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and

| 1r ∂θm(1)(r, θ)|2 �
∣∣ 1
r ∂θm(c, θ)η( r−cc )

∣∣2 � 1
r2 |∂θm(c, θ)|2.

Hence,
∫ 2c

c

∫ 2π

0

(|∂rm(1)(r, θ)|2 + | 1r ∂θm(1)|2)dθ r dr

�
∫ 2c

c

∫ 2π

0

(
δ+(δR−2)

2
p

r2 + 1
r2 |∂θm(c, θ)|2)dθ r dr

�
∫ 2c

c

dr
r︸ ︷︷ ︸

=ln 2

(
δ + ( δ

R2 )
2
p +

∫ 2π

0
|∂θm(c, θ)|2dθ

︸ ︷︷ ︸
�δ

)
� δ + ( δ

R2 )
2
p .

Finally, since

1 = |m| = ∣∣ηm + (1− η)e+ (1− η)(m − e)
∣∣ ≤ ∣∣ηm + (1− η)e

∣∣+ |m − e|
implies

1− ∣∣ηm + (1− η)e
∣∣ ≤ |m − e|,

we obtain for ρ as above

|m(1) − e| ≤ ∣∣m(1) − ρm(1)|︸ ︷︷ ︸
=1−ρ≤|m(c,θ)−e|

+ ∣∣(ηm(c, θ)+ (1− η)e
)− e

∣∣︸ ︷︷ ︸
=η|m(c,θ)−e|

≤ 2|m(c, θ)− e|.

Hence, in the case σ = 1
∫ 2c

c

∫ 2π

0

1
2p |m(1) − ê3|p dθ r dr �

∫ 2c

c

∫ 2π

0
|m(c, θ)− ê3|p dθ r dr

�
∫ 2c

c

∫ 2π

0

(
1− m3(c, θ)

) p
2 dθ

︸ ︷︷ ︸
� δ

R2

c dr � δ.

Therefore, we have∫
B2c\Bc

|∇m(1)|2 dx + σ

∫
B2c\Bc

1
2p |m(1) − ê3|p dx � δ + σ

(
δ
R2

) 2
p

Step 2b (Definition of m(1) on R
2\B2c): If σ = 1, there is nothing left to be done and we

may just set m(1) ≡ ê3 on R
2\B2c. Otherwise, we will define m(1) on (2c, 2c+ L) for some

L � 2c (to be chosen later) by interpolating e with ê3. Indeed, let γ : [0, 1] → S
2 denote

a smooth curve that connects γ (0) = e with γ (1) = ê3. Assume w.l.o.g. that | dds γ (s)| � 1
independently of e ∈ S

2. We introduce a logarithmic cut-off function

ηL : [2c, 2c + L] → [0, 1], ηL(r) := ln( r
2c )

ln( 2c+L
2c )

,

and let

m(1)(r, θ) =
{

γ (ηL (r)), 2c ≤ r ≤ 2c + L

ê3, 2c + L < r.
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Then, m(1) has a well-defined trace both across ∂B2c and ∂B2c+L , and

d
dr m

(1)(r) = ( d
ds γ )(ηL(r))

r ln( 2c+L
2c )

.

Hence, ∂θm(1) = 0 and
∫ 2c+L

2c

∫ 2π

0
|∂rm(1)(r, θ)|2︸ ︷︷ ︸
� 1

r2 ln−2( 2c+L
2c )

dθ r dr � 1
ln2(1+ L

2c )

∫ 2c+L

2c

dr
r = 1

ln(1+ L
2c )

� δ,

if L = 2c(e
1
δ − 1).

Thus, we may conclude for σ ∈ {0, 1}:∫
R2\B2c

|∇m(1)|2 dx + σ

∫
R2\B2c

1
2p |m(1) − ê3|p dx � δ + σ

(
δ
R2

) 2
p ,

and

V (m(1)) =
∫
B2c+L

1
2p |m(1) − ê3|p︸ ︷︷ ︸

≤1

dx � (2c + L)2 =: C(δ, R).

Step 3 (Definition of m(2)): In order to define m(2), we proceed as in Step 2. Let

e := m̄(2c)
|m̄(2c)| ∈ S

2.

Then

‖m(2c, ·)− e‖2∞ � δ + σ
(

δ
R2

) 2
p � 1,

and, using the same cut-off function η : R→ [0, 1] as before, we may define m(2) : R2 → S
2

as

m(2)(r, θ) :=

⎧⎪⎪⎨
⎪⎪⎩

e, r ≤ c,
η( r−cc )e+(1−η( r−cc ))m(2c,θ)

|η( r−cc )e+(1−η( r−cc ))m(2c,θ)| , c < r < 2c,

m(r, θ), r ≥ 2c,

so that m(2) has a well-defined trace across ∂Bc and ∂B2c.
As before, we estimate for c < r < 2c

|∂rm(2)(r, θ)|2 � δ+(δR−2)
2
p

r2 and | 1r ∂θm(2)(r, θ)|2 � 1
r2 |∂θm(2c, θ)|2,

so that ∫ 2c

c

∫ 2π

0

(|∂rm(2)(r, θ)|2 + | 1r ∂θm(2)|2)dθ r dr � δ + (
δ
R2

) 2
p .

Moreover, by the same argument as in Step 2, for σ = 1:
∫ 2c

c

∫ 2π

0

1
2p |m(2) − ê3|p dθ r dr � δ.

Hence, we may conclude for σ ∈ {0, 1}:∫
B2c

|∇m(2)|2 dx + σ

∫
B2c

1
2p |m(2) − ê3|p dx � δ + σ

(
δ
R2

) 2
p ,
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and

V (m(2)) =
∫
R2\B2c

1
2p |m − ê3|p dx

︸ ︷︷ ︸
≤V (m)

+
∫
B2c

1
2p |m(2) − ê3|p︸ ︷︷ ︸

≤1

dx � V (m)+ (2c)2︸ ︷︷ ︸
=:C(δ,R)

. ��

Appendix 2: Construction of a stream function

Lemma 9 Given R > 1, there exists a smooth function fR : [0,∞)→ R so that

fR(r) =
{

ln(1+ r2), for 0 ≤ r ≤ R,

const., for r ≥ 2R,

and

0 ≤ f ′R(r) ≤ 2r
1+r2 , 0 ≤ − f ′′R(r) ≤ C

1+r2 for all r ≥ R.

Proof Let h : [0,∞) → R be given by (in fact, h is a regularization of the function y �→
min(y, 0))

h(y) =
∫ y

0
η(s) ds,

where η : R→ [0, 1] is a smooth, non-increasing function with

η(s) = 1 for s ≤ 0, η(s) = 0 for s ≥ 1
2 , 0 ≤ −η′(s) ≤ C ∀s ∈ R.

Then,

fR(r) := h
(
ln(1+ r2)− ln(1+ R2)

)+ ln(1+ R2), r ≥ 0,

satisfies the claim.
Indeed, we have h(y) = y for y ≤ 0 and h(y) = ∫∞

0 η(s) ds for y ≥ 1
2 . Since ln(1 +

r2) − ln(1 + R2) ≤ 0 for r ≤ R, we therefore obtain fR(r) = ln(1 + r2). On the other
hand, r ≥ 2R ≥ 2 yields ln(1 + r2) − ln(1 + R2) ≥ ln( 1+4R2

1+R2 ) ≥ ln( 5
2 ) ≥ 1

2 , so that

fR(r) = ∫∞
0 η(s) ds + ln(1+ R2).

Finally, we have

f ′R(r) = η
(
ln(1+ r2)− ln(1+ R2)

)
︸ ︷︷ ︸

∈[0,1]

2r
1+r2

and

f ′′R(r) = η′
(
ln(1+ r2)− ln(1+ R2)

)
︸ ︷︷ ︸

≤0

( 2r
1+r2

)2 + η
(
ln(1+ r2)− ln(1+ R2)

)
︸ ︷︷ ︸

∈[0,1]

2(1−r2)

(1+r2)2 .

In particular, 0 ≤ f ′R(r) ≤ 2r
1+r2 for r ≥ R and 0 ≤ − f ′′R(r) ≤ C

1+r2 . ��
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Appendix 3: Pulled back Landau–Lifshitz–Gilbert equation

We shall argue on the level of the Landau–Lifshitz form

(1+ α2)∂tm + (1+ αβ)(v · ∇)m

= − [(α − β)m × (v · ∇)m + m × hε + α m × m × hε] ,

see e.g. [22], rather than the Gilbert form (4). Solving Thiele’s equation we have

(1+ α2)c = (1+ αβ)v − (α − β)v⊥.

Now we compute

(1+ α2)
d

dt
m(x + ct, t) = (1+ α2)∂tm + (1+ α2)(c · ∇)m

= (1+ α2)∂tm + (1+ αβ)(v · ∇)m − (α − β)(v ×∇)m

= −(α − β)� − (m × hε + α m × m × hε),

where with the notation v ×∇ = v1∂2 − v2∂1

� = (v ×∇)m + m × (v · ∇)m

= v1 ( ∂2m + m × ∂1m)− v2 ( ∂1m − m × ∂2m)

= 2v1m × ∂zm − 2v2∂zm.

where ∂zm = 1
2 (∂1m − m × ∂2m). Upon the transformation m(x + ct, t) �→ m(x, t) and

with effective coupling parameters νi = 2(α − β)vi

1+ α2 this can be written as

(1+ α2) (∂tm + ν1m × ∂zm − ν2∂zm)+ m × hε + α m × m × hε = 0.

A rigid rotation yields for ν =
√

ν2
1 + ν2

2

(1+ α2) (∂tm − ν∂zm)+ m × hε + α m × m × hε = 0,

which easily recasts into (6).
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