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Abstract Taking any p > 1, we consider the asymptotically p-linear problem

{− div(a(x, u,∇u)) + At (x, u,∇u) = λ∞|u|p−2u + g∞(x, u) in �,

u = 0 on ∂�,

where � is a bounded domain inRN , N ≥ 2, A(x, t, ξ) is a real function on �×R×R
N which

grows with power p with respect to ξ and has partial derivatives At (x, t, ξ) = ∂A
∂t (x, t, ξ),

a(x, t, ξ) = ∇ξ A(x, t, ξ). If A(x, t, ξ) → A∞(x, t) and g∞(x,t)
|t |p−1 → 0 as |t | → +∞,

suitable assumptions, variational methods and either the cohomological index theory or its
related pseudo-index one, allow us to prove the existence of multiple nontrivial bounded
solutions in the non-resonant case, i.e. if λ∞ is not an eigenvalue of the operator associated
to ∇ξ A∞(x, ξ). In particular, while in [14] the model problem A(x, t, ξ) = A(x, t)|ξ |p with
p > N is studied, here our goal is twofold: extending such results not only to a more general
family of functions A(x, t, ξ), but also to the more difficult case 1 < p ≤ N .
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1 Introduction

Let us consider the nonlinear problem

(GP)

{− div(a(x, u,∇u)) + At (x, u,∇u) = f (x, u) in �,

u = 0 on ∂�,

where � ⊂ R
N is a bounded domain, N ≥ 2, f (x, t) is a given real function on � × R and

A(x, t, ξ) is a real function on � × R × R
N , with At (x, t, ξ) = ∂A

∂t (x, t, ξ), a(x, t, ξ) =
∇ξ A(x, t, ξ).

If we set F(x, t) = ∫ t
0 f (x, s)ds, problem (GP) can be associated to the functional

J (u) =
∫

�

A(x, u,∇u)dx −
∫

�

F(x, u) dx . (1.1)

If A(x, t, ξ) depends on t , the derivative dJ is not defined in the Sobolev space W 1,p
0 (�)

and its natural domain contains X := W 1,p
0 (�) ∩ L∞(�) where it is also continuous (see

Proposition 3.5). Moreover, u is a weak solution of (GP) if∫
�

(a(x, u,∇u) · ∇v + At (x, u,∇u)v)dx −
∫

�

f (x, u)vdx = 0 for all v ∈ X;

thus, we prove that u belongs to X and is a critical point of J . Hence, in order to solve (GP),
we can use variational tools.

Model problems can be written by considering

A2(x, t, ξ) =
N∑

i, j=1

ai, j (x, t)ξiξ j or Ap(x, t, ξ) = (A2(x, t, ξ))
p
2 ,

where (ai, j (x, t))1≤i, j≤N is an elliptic matrix.
An example is given by A(x, t, ξ) = A(x, t)|ξ |p with p > 1, so that the equation in

(GP) is reduced to the quasi-p-linear equation

− div(A(x, u) |∇u|p−2 ∇u) + 1

p
At (x, u) |∇u|p = f (x, u) in �, (P)

which is studied in [13,14] if p > N . In this setting, the related functional is

JA(u) = 1

p

∫
�

A(x, u) |∇u|p dx −
∫

�

F(x, u) dx . (1.2)

Roughly speaking, we say that problem (GP) is asymptotically p-linear, if both A(x, t, ξ)

and F(x, t) admit the limit as |t | → +∞, so that, taking

A∞(x, ξ) = lim|t |→+∞ A(x, t, ξ) and F(x, t) = λ∞

p
|t |p + G∞(x, t), (1.3)

A∞(x, ξ) is a positively p-homogeneous function with respect to ξ equivalent to |ξ |p , while
G∞(x, t) is at worst an infinity of lower order with respect to |t |p (for more details, see
Sect. 3).

Thus, our aim is to investigate the existence of weak solutions of the nonlinear elliptic
problem (GP) when it is asymptotically p-linear but in the non-resonant case, i.e., when λ∞
in (1.3) is not an eigenvalue of the operator associated to ∇ξ A∞(x, ξ).

For A(x, t, ξ) = |ξ |p or, at worst, for A(x, t, ξ) = Ā(x)|ξ |p , i.e., for A(x, t) ≡ 1
or A(x, t) ≡ Ā(x) independent of t , a variational approach was first used for p = 2 in
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the asymptotically linear case (see the seminal papers [1,5]) and then if p �= 2 (see, e.g.,
[2,4,6,16,17,20–22,25], or the survey in the book [24]). Furthermore, in the model case (P)

some multiplicity results have already been proved if p > N (see [13,14]).
We want to prove that the multiplicity results in [14] can also be stated in the general case

(GP) and not only if p > N , but also in the complementary condition 1 < p ≤ N (for the
complete statements, see Sect. 5).

We note that if 1 < p ≤ N and λ∞ is not an eigenvalue of the operator associated to
∇ξ A∞(x, ξ), in quite general suitable assumptions, a Palais–Smale sequence of J in X can

have subsequences converging in W 1,p
0 (�), but not in L∞(�) (see Example 4.3). Therefore,

the classical Palais–Smale condition does not hold. This is why the geometric conditions are
given by making use of the topology of W 1,p

0 (�). As typical of such a problem, we consider

subsets of neighbourhoods of zero and of infinity, but with respect to the norm in W 1,p
0 (�)

and not to that in X . Hence, in both cases we have no information about the L∞-norm for
the elements of such sets.

In any case, we prove the existence of multiple nontrivial solutions according to the
behaviour of F(x, t), both in zero and at infinity, and by considering A0(x, ξ) = A(x, 0, ξ)

for the geometric conditions in zero and the limit function A∞(x, ξ) for those at infinity (see
Theorems 5.6, 5.7 and 5.8).

Finally, let us point out that no global p-homogeneity assumption on function A(x, t, ξ)

is required, but only that A0(x, ξ) and A∞(x, ξ) have to be positively p-homogeneous with
respect to ξ . Moreover, also in the non-resonant case, the proof of the boundedness of the
Palais–Smale sequences is rather hard and our results imply the previous ones obtained when
the term A(x, t, ξ) does not depend on t .

This paper is organized as follows. In Sect. 2 we introduce the weak Palais–Smale condition
and prove the related abstract multiplicity results, both with the cohomological index and
the related pseudo-index. In Sect. 3 we introduce the hypotheses for (GP) and prove the
first properties of J in X , while the weak Palais–Smale condition is proved in Sect. 4. In
Sect. 5 the main results are stated (see Theorems 5.6, 5.7 and 5.8) and, once the geometric
conditions have been checked, their proofs are given in Sect. 6, for solutions with negative
critical levels via the index theory, and in Sect. 7, for solutions with positive critical levels
via the related pseudo-index.

2 The abstract variational setting

We denote N = {1, 2, . . . } and, throughout this section, let us assume that:

• (X, ‖ · ‖X ) is a Banach space with dual (X ′, ‖ · ‖X ′),
• (W, ‖ · ‖W ) is another Banach space such that X ↪→ W continuously, i.e. X ⊂ W and a

constant σ0 > 0 exists such that

‖u‖W ≤ σ0 ‖u‖X for all u ∈ X, (2.1)

• J :D ⊂ W → R and J ∈ C1(X,R) with X ⊂ D.

Furthermore, fixing β, β1, β2 ∈ R and a set C ⊂ X , let us denote

• K J = {u ∈ X : d J (u) = 0} the set of the critical points of J in X ,
• K J

β = {u ∈ X : J (u) = β, d J (u) = 0} the set of the critical points of J in X at level
β,

• Jβ = {u ∈ X : J (u) ≤ β} the sublevel of J with respect to level β,
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• Jβ2
β1

= {u ∈ X : β1 ≤ J (u) ≤ β2} the closed “strip” between β1 and β2,
• IC = {su ∈ X : u ∈ C, s ∈ [0, 1]} the cone with base C,

while, taking u0 ∈ X , r > 0, by pointing out the two different norms ‖ · ‖W and ‖ · ‖X , for
‡ = W or ‡ = X we put

• B‡
r (u0) = {u ∈ X : ‖u − u0‖‡ < r},

• B̄‡
r (u0) = {u ∈ X : ‖u − u0‖‡ ≤ r},

• d‡(u, C) = inf
v∈C ‖u − v‖‡,

• N ‡
r (C) = {u ∈ X : d‡(u, C) ≤ r}.

In any case, in order to avoid any ambiguity and to simplify, where possible, the notations,
from now on we denote by X the space equipped with its given norm while, if a different
norm is involved, we write it down explicitely. Accordingly, we denote by C the closure of a
set C ⊂ X with respect to the norm ‖ · ‖X .

For investigating the number of critical points of a C1 functional J in the Banach space
X , let us introduce suitable variational tools.

For simplicity, taking β ∈ R, we say that a sequence (un)n ⊂ X is a Palais–Smale
sequence at level β, briefly (PS)β -sequence, if

lim
n→+∞ J (un) = β and lim

n→+∞ ‖d J (un)‖X ′ = 0. (2.2)

Hence, the functional J satisfies the Palais–Smale condition at level β in X , briefly (PS)β ,
if every (PS)β -sequence converges in (X, ‖ · ‖X ), up to subsequences (see [23]).

Different versions of the (classical) Palais–Smale condition can be introduced (see, e.g.,
[9,12,15]). In particular, as in [9], we say that the functional J satisfies the Brézis–Coron–
Nirenberg condition at level β, if the following statement holds:

“If a (PS)β -sequence exists, then β is a critical value”.
Unfortunately, in order to find multiple solutions to our model problem (P), both the

previous definitions are not useful. In fact, for the Palais–Smale condition, the convergence
of a sequence in the intersection space W 1,p

0 (�)∩ L∞(�) requires the convergence not only

in the norm of W 1,p
0 (�), but also in that of L∞(�), which may not hold (see Example 4.3).

However, even if the Brézis–Coron–Nirenberg condition allows us to prove some existence
results (see [9, Theorem 2]), contrary to the classical Palais–Smale it is not sufficient for
finding multiple critical points if they occur at the same critical level.

For this reason, following some ideas developed in [12], in our setting we introduce a new
condition, which considers both the involved norms and is weaker than the Palais–Smale but
stronger than the Brézis–Coron–Nirenberg.

Definition 2.1 The functional J satisfies a weak version of the Palais–Smale condition at
level β (β ∈ R), briefly (wPS)β , if, for every (PS)β -sequence (un)n , u ∈ X exists, such
that

(i) lim
n→+∞ ‖un − u‖W = 0 (up to subsequences),

(ii) J (u) = β, d J (u) = 0.

If J satisfies (wPS)β at each level β ∈ I , I real interval, we say that J satisfies (wPS) in I .

The following lemmas are direct consequences of Definition 2.1.

Lemma 2.2 If J satisfies (wPS)β at a level β ∈ R, then K J
β is compact with respect to

‖ · ‖W .
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Lemma 2.3 If J satisfies (wPS)β at level β ∈ R, then, for each 	 > 0, some ε	, μ	 > 0
exist, such that

u ∈ J
β+ε	

β−ε	
, dW (u, K J

β ) ≥ 	 �⇒ ‖d J (u)‖X ′ ≥ μ	.

Proof Arguing by contradiction, we assume that 	̄ > 0 and a sequence (un)n ⊂ X exist, so
that (2.2) holds and

dW (un, K
J
β ) ≥ 	̄ for all n ∈ N. (2.3)

However, by (wPS)β u ∈ X exists, such that ‖un − u‖W → 0 (up to subsequences) and
u ∈ K J

β , in contradiction with (2.3). ��
Now our aim is to generalize the classical Deformation Lemma (see, e.g., [26, Theorem

A.4] or [27, Theorem 3.3.4]), when the Palais–Smale condition is replaced by its weak version
in Definition 2.1.

Proposition 2.4 Let J be a C1 functional which satisfies (wPS) inR. Taking β ∈ R, for any
fixed 	 > 0 and ε0 > 0 a constant ε∗ > 0, 2ε∗ < ε0, exists, such that for each ε ∈ ]0, ε∗] a
homeomorphism � : X → X exists which satisfies the following conditions:

(i) �(u) = u for all u /∈ Jβ+ε0
β−ε0

;

(ii) �(Jβ+ε\NW
	 (K J

β )) ⊂ Jβ−ε and �(Jβ+ε) ⊂ Jβ−ε ∪ NW
	 (K J

β ).

Furthermore, � is odd if J is even.

Proof The proof is essentially similar to the classical one in [26, Theorem A.4] but checking
carefully the change of norm when necessary. Thus, here we just outline the differences with
respect to such a proof.

From Lemma 2.3 ε	, μ	 > 0 exist, such that

u ∈ J
β+ε	

β−ε	
, dW (u, K J

β ) ≥ 	

8
�⇒ ‖d J (u)‖X ′ ≥ μ	.

Moreover, as J is a C1 functional on X , then V : X → X pseudogradient vector field of J
exists, such that V (u) = 0 if u ∈ K J and

‖d J (u)‖X ′ ≤ ‖V (u)‖X ≤ 2‖d J (u)‖X ′ , 〈d J (u), V (u)〉 ≥ ‖d J (u)‖2
X ′ (2.4)

for all u ∈ X , and V can be chosen odd if J is even (see [27, Chapter II]).
Now, taking ε∗ > 0, such that

2ε∗ < min

{
ε0, ε	,

	 μ	

4σ0

}
,

with σ0 as in (2.1), for any ε ∈ ]0, ε∗], we can define a Lipschitz continuous cut-off function
χε : X → [0, 1], such that

χε(u) =
{

0 if u /∈ Jβ+2ε
β−2ε

1 if u ∈ Jβ+ε
β−ε

. (2.5)

On the other hand, taking

NW = NW
	/8(K

J
β ), CW = {u ∈ X : dW (u, K J

β ) ≥ 	

4
},

(both closed also with respect to ‖ · ‖X ) with NW ∩ CW = ∅, we can define

ϑ(u) = dW (u, NW )

dW (u, NW ) + dW (u,CW )
.
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By direct computations and from (2.1) it follows that ϑ : X → [0, 1] is a Lipschitz continuous
function, such that

ϑ(u) =
{

0 if u ∈ NW

1 if u ∈ CW . (2.6)

Defining

Vε(u) =
⎧⎨
⎩

− χε(u) ϑ(u)
V (u)

‖V (u)‖X if u /∈ K J

0 if u ∈ K J
, (2.7)

for any “initial point” u ∈ X , we consider the Cauchy problem{
∂η
∂s (s; u) = Vε(η(s; u)),

η(0; u) = u.
(2.8)

By construction, the function Vε is locally Lipschitz continuous and bounded with respect
to ‖ · ‖X ; hence, for each u ∈ X a unique C1 function η(·; u) : R → X exists which solves
(2.8). Moreover, η(s; ·) : X → X is a homeomorphism for each s ∈ R and is odd if J is
even.

We note that, from definitions (2.5) and (2.6), η(s; u) = u not only if s = 0 for all u ∈ X
(initial datum in (2.8)), but also for all s ∈ R, if u /∈ Jβ+2ε

β−2ε or u ∈ NW
	/8(K

J
β ). In particular,

if u /∈ J β+ε0
β−ε0

, η(s; u) ≡ u for all s ∈ R.
From (2.4), (2.7) and (2.8) it follows that

s ∈ R �→ J (η(s; u)) ∈ R is decreasing for any fixed u ∈ X, (2.9)

thus, J (η(s; u)) ≤ J (u) for all s ≥ 0.
We point out that, taking any u ∈ X , (2.1) and (2.8) imply that

‖η(s1; u) − η(s2; u)‖W ≤ σ0‖η(s1; u) − η(s2; u)‖X ≤ σ0|s1 − s2|;
whence

‖η(s; u) − u‖W ≤ σ0s for all s ≥ 0,

so, fixing s∗ = 	
2σ0

, we have that

‖η(s∗; u) − u‖W ≤ 	

2
. (2.10)

Now, let u ∈ Jβ+ε. If u /∈ NW
	 (K J

β ), s ∈ [0, s∗] exists, such that η(s; u) ∈ Jβ−ε , then (2.9)

implies η(s∗; u) ∈ Jβ−ε . On the contrary, if u ∈ NW
	 (K J

β ), either s ∈]0, s∗] exists, such

that η(s; u) ∈ NW
	/2(K

J
β ), thus (2.10) implies that η(s∗; u) ∈ NW

	 (K J
β ), or η(s∗; u) ∈ Jβ−ε.

Hence, we choose � = η(s∗; ·). ��
Now, we assume that J is even and J (0) = 0 and, in order to obtain multiple critical

points, we quote the main tools on the Z2-cohomological index on a Banach space X , as
introduced by Fadell and Rabinowitz in [18].

Firstly, let us recall the definition and some basic properties of the cohomological index
i(·), defined in the Banach space (X, ‖ · ‖X ).

Taking
P = {P ⊂ X\{0} : P symmetric, i.e. − u ∈ P if u ∈ P}, (2.11)

for P ∈ P we denote by
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• P̃ = P/Z2 the quotient space of P with each u and −u identified,
• f : P̃ → RP∞ the classifying map of P̃ ,
• f ∗ : H∗(RP∞) → H∗(P̃) the induced homomorphism of the Alexander–Spanier

cohomology rings.

Then the cohomological index of P ∈ P is defined by

i(P) =
{

sup
{
m ≥ 1 : f ∗(ωm−1) �= 0

}
if P �= ∅,

0 if P = ∅,

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) = Z2[ω].
Here we list the basic properties of the cohomological index (see, e.g., [24, Proposition

2.12]).

Proposition 2.5 Index i : P → N ∪ {0,+∞} has the following properties:

(i1) Definiteness: taking P ∈ P , i(P) = 0 if and only if P = ∅;
(i2)Monotonicity: let B be a topological space and let η : X → B be an odd continuous
map, then i(P) ≤ i(η(P)) for any P ∈ P . Hence, the equality holds when the map
is an odd homeomorphism. In particular, if P1, P2 ∈ P are such that P1 ⊂ P2, then
i(P1) ≤ i(P2);
(i3) Dimension: taking any finite dimensional space X0 ⊂ X and P ∈ P , such that
P ⊂ X0, then i(P) ≤ dim X0;
(i4)Continuity: If P ∈ P is closed, then there is a closedneighbourhoodU ∈ P of P, such
that i(U ) = i(P). When P is compact, then U may be chosen to be a 	-neighbourhood
N X

	 (P);
(i5) Subadditivity: If P1, P2 ∈ P are closed, then i(P1 ∪ P2) ≤ i(P1) + i(P2);
(i6) Stability: taking P ∈ P , if SP is the suspension of P �= ∅, obtained as the quotient
space of P × [−1, 1] with P × {1} and P × {−1} collapsed at different points, then
SP ∈ P and i(SP) = i(P) + 1;
(i7) Piercing property: If P, P0, P1 ∈ P are closed and ϕ : P × [0, 1] → P0 ∪ P1 is a
continuous map, such that ϕ(−u, s) = −ϕ(u, s) for all (u, s) ∈ P×[0, 1], ϕ(P×[0, 1])
is closed,ϕ(P×{0}) ⊂ P0, andϕ(P×{1}) ⊂ P1, then i(ϕ(P×[0, 1])∩P0∩P1) ≥ i(P);
(i8) Neighbourhood of zero: If U is a bounded closed symmetric neighbourhood of 0
contained in a finite dimensional subspace X0 ⊂ X, then ∂U ∈ P and i(∂U ) = dim X0.

Remark 2.6 Since in our setting X is continuously imbedded in W , namely a continuous
map jW : X → W exists, for simplicity we put iW (P) = i( jW (P)) if P ∈ P . Thus, from
the monotonicity property (i2) it follows that

i(P) ≤ iW (P) for all P ∈ P. (2.12)

We point out that our problem deals with a functional J : X → R, which is C1 with
respect to ‖ · ‖X , but cannot satisfy the Palais–Smale condition in the same Banach space,
as such a norm is “too strong”. Hence, the classical multiplicity theorem in [24, Proposition
3.36] cannot be applied and has to be generalized. Here we state an abstract multiplicity
theorem by working with the stronger norm ‖ · ‖X , but assuming (wPS), so that Proposition
2.4 holds.

To this aim, for any integer k ∈ N let us define

ck := inf
P∈Pk

sup
u∈P

J (u), (2.13)
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with

Pk = {P ⊂ X\{0} : P symmetric and compact in X with i(P) ≥ k}.
Since Pk+1 ⊂ Pk , then

ck ≤ ck+1.

Furthermore, for any k-dimensional subspace X0 of X and δ > 0, from (i8) we have ∂BX
δ (0)∩

X0 ∈ Pk , while from the continuity of J in (X, ‖ · ‖X ) we have

sup
u∈∂BX

δ (0)

J (u) → J (0) as δ → 0;

hence,
ck ≤ J (0) = 0. (2.14)

Theorem 2.7 Let J : X → R be an even functional of class C1, such that J (0) = 0, which
satisfies (wPS) in R. If h, m ∈ N exist, such that

− ∞ < ch ≤ · · · ≤ ch+m−1 < 0, (2.15)

then J has at least m distinct pairs of nontrivial critical points in X with a negative critical
level. Furthermore, if

− ∞ < ck < 0 for all sufficiently large k, (2.16)

then ck ↗ 0 and J has infinitely many distinct pairs of nontrivial critical points in X.

Proof The proof can be essentially split into three parts.

Step 1. If k ∈ N is such that −∞ < ck < 0, then level ck is critical. In fact, otherwise
Proposition 2.4, with NW

	 (K J
β ) = ∅, β = ck , yields a contradiction.

Step 2. If (2.15) holds, from Step 1. it is enough to prove that, if k ∈ {h, . . . , h + m − 2}
and j ∈ N exist, such that β = ck = · · · = ck+ j , then the critical point set K J has infinitely
many elements.

From Lemma 2.2, K J
β ∈ P is compact in (W, ‖ · ‖W ), then the continuity property (i4) in

Proposition 2.5 implies the existence of a radious 	 > 0, such that

iW (NW
	 (K J

β )) = iW (K J
β ). (2.17)

Fixing ε0 > 0, such that β + ε0 < 0, from Proposition 2.4 for ε ∈]0, ε0[ small enough an
odd homeomorphism � : X → X exists, such that (i) and (i i) in Proposition 2.4 hold. Thus,
from ck+ j < β +ε a set Pε ∈ Pk+ j exists, such that Pε ⊂ Jβ+ε and from (i5) in Proposition
2.5, (2.12) and (2.17) it follows that

k + j ≤ i(Pε) ≤ i(Pε\NW
	 (K J

β )) + i(NW
	 (K J

β ))

≤ i(�(Pε\NW
	 (K J

β ))) + iW (NW
	 (K J

β )) ≤ k − 1 + iW (K J
β ),

as β − ε < ck implies that �(Pε\NW
	 (K J

β )) is a compact symmetric subset of X\{0} but it

is not in Pk . Hence, iW (K J
β ) ≥ j + 1 ≥ 2 and then K J

β has infinitely many elements.

Step 3. Now, let us assume condition (2.16). Since a large enough k ∈ N can be fixed so that
condition (2.15) holds for all m ∈ N, then Step 2. implies that J has infinitely many distinct
pairs of nontrivial critical points in X . So, we have only to prove that the increasing sequence
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of critical levels (ck)k goes to zero. Arguing by contradiction, we assume that ck ↗ c̄ with
c̄ = sup

k∈N
ck < 0. By reasoning as in Step 1., it follows that c̄ is also a critical level of J in X ;

hence, from Lemma 2.2 and property (i4) in Proposition 2.5, a radious 	 > 0 exists, such
that (2.17) holds with β = c̄. Fixing ε0 > 0, such that c̄ + ε0 < 0, from Proposition 2.4 for
ε ∈]0, ε0[ small enough an odd homeomorphism � : X → X exists, such that (i) and (i i)
in Proposition 2.4 hold. Moreover, a large enough integer k exists, so that

c̄ − ε < ck ≤ ck+ j ≤ c̄ < c̄ + ε < 0 for all j ∈ N.

Hence, reasoning as in Step 2. with β = c̄, we prove that iW (K J
β ) ≥ j + 1 for all j ∈ N, i.e.

iW (K J
c̄ ) = +∞ in contradiction with Lemma 2.2. ��

Remark 2.8 Theorem 2.7 holds also if the assumption of compactness is weakened, i.e., Pk

is the set of symmetric subsets of X\{0}, which are closed in X with i(P) ≥ k.

Since all the critical levels defined as in (2.13), by using the cohomological index, are non-
positive (see (2.14)), in order to deal with positive levels we have to replace the cohomological
index i(·) with the related pseudo-index introduced by Benci in [7]. So, we recall the definition
of the pseudo-index and some of its basic properties (here, we consider the pseudo-index
when X is equipped with ‖ · ‖X ).

Let P∗ denote the class of symmetric subsets of X , let M ∈ P be closed in X (see (2.11)),
and define

H = {γ : X → X : γ is an odd homeomorphism, such that

γ (u) = u for all u ∈ J 0}.
Then, the pseudo-index of P ∈ P∗ related to i(·), M and H is defined by

i∗(P) = min
γ∈H i(γ (P) ∩ M). (2.18)

Proposition 2.9 The pseudo-index i∗ : P∗ → N ∪ {0,+∞} has the following properties:

(i∗1 ) if P1, P2 ∈ P∗ are such that P1 ⊂ P2, then i∗(P1) ≤ i∗(P2);
(i∗2 ) if η ∈ H and P ∈ P∗, then i∗(P) = i∗(η(P));
(i∗3 ) if P ∈ P∗ and B ∈ P are closed, then i∗(P ∪ B) ≤ i∗(P) + i(B).

As already pointed out, here we want to apply the pseudo-index theory to our setting and
we have to generalize the classical statement in [24, Proposition 3.42].

For any integer k ≥ 1, such that k ≤ i(M), let

P∗
k = {P ⊂ X : P symmetric and compact in X with i∗(P) ≥ k}

and set

c∗
k := inf

P∈P∗
k

sup
u∈P

J (u).

From P∗
k+1 ⊂ P∗

k , it follows that c∗
k ≤ c∗

k+1.

Theorem 2.10 Let J : X → R be an even functional of class C1 which satisfies (wPS) in
R and is such that J (0) = 0. If h, m ∈ N exist, such that

0 < c∗
h ≤ · · · ≤ c∗

h+m−1 < +∞,

then J has at least m distinct pairs of nontrivial critical points in X with a positive critical
level.
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Proof Firstly, we claim that each β = c∗
k , k ∈ {h, . . . , h + m − 1}, is a critical level of J in

X . Otherwise, fixing ε0 > 0 such that β − ε0 > 0, from Proposition 2.4 for small enough
ε < ε0 a map � ∈ H exists, such that �(Jβ+ε) ⊂ Jβ−ε. On the other hand, from definition
P∗

ε ∈ P∗
k exists, such that P∗

ε ∈ Jβ+ε . Hence, the properties of � imply that not only
�(P∗

ε ) ∈ P∗
k , but also �(P∗

ε ) ⊂ Jβ−ε, i.e. β ≤ sup J (�(P∗
ε )) ≤ β − ε: a contradiction.

Now, in order to complete the proof, it is sufficient to investigate what happens if k ∈
{h, . . . , h + m − 2} and j ∈ N exist, such that β = c∗

k = · · · = c∗
k+ j > 0. Accordingly

to these assumptions, by reasoning as in the proof of Theorem 2.7, 	 > 0 exists, such that
(2.17) holds. Then, fixing ε0 > 0, such that β + ε0 > 0, from Proposition 2.4 for small
enough ε ∈]0, ε0[ a map � ∈ H exists, such that (i i) in Proposition 2.4 holds. Thus, from
Proposition 2.9, (2.12) and (2.17) it follows that

i∗(Jβ+ε) ≤ i∗(Jβ+ε\NW
	 (K J

β )) + i(NW
	 (K J

β ))

≤ i∗(�(Jβ+ε\NW
	 (K J

β ))) + iW (NW
	 (K J

β ))

≤ i∗(�(Jβ+ε\NW
	 (K J

β ))) + iW (K J
β ),

and, as in Theorem 2.7, it has to be iW (K J
β ) ≥ 2. ��

Remark 2.11 Theorem 2.10 holds also if P∗
k is the set of the symmetric subsets which are

closed in X with i∗(P) ≥ k.

3 Hypotheses and first properties

From now on, we investigate the existence of weak solutions of the nonlinear problem (GP),
where � ⊂ R

N is a bounded domain, N ≥ 2, so the notations introduced for the abstract
setting at the beginning of Sect. 2 are referred to our problem with (X, ‖ · ‖X ) the Banach
space defined as

X := W 1,p
0 (�) ∩ L∞(�), ‖u‖X = ‖u‖W + |u|∞, (3.1)

with

‖u‖W =
(∫

�

|∇u|p dx
) 1

p

, |u|∞ = ess sup
x∈�

|u(x)|

(here and in the following, | · | will denote the standard norm on any Euclidean space as the
dimension of the considered vector is clear and no ambiguity arises), while (W, ‖ · ‖W ) =
(W 1,p

0 (�), ‖ · ‖W ), and J = J the functional in (1.1). Moreover, we denote by

• (W−1,p′
(�), ‖ · ‖W−1) the dual space of (W 1,p

0 (�), ‖ · ‖W ),
• Lq(�) the Lebesgue space equipped with the canonical norm | · |q for any 1 ≤ q ≤ +∞,
• meas(·) the usual Lebesgue measure in R

N ,
• �u

r = {x ∈ � : |u(x)| > r} if u : � → R, r > 0,

and let us recall that, from the Sobolev Imbedding Theorem, σp > 0 exists, such that∫
�

|u|pdx ≤ σp

∫
�

|∇u|pdx for all u ∈ W 1,p
0 (�) (3.2)

and the imbedding W 1,p
0 (�) ↪→↪→ L p(�) is compact.
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From definition, X ↪→ W 1,p
0 (�) and X ↪→ L∞(�) with continuous imbeddings and

(2.1) holds with σ0 = 1. Moreover, in the stronger assumption p > N , we have

|u|∞ ≤ σ∞ ‖u‖W for all u ∈ W 1,p
0 (�); (3.3)

hence, in this case X = W 1,p
0 (�) and the two norms ‖ · ‖X and ‖ · ‖W are equivalent.

Here and in the following, let us consider problem (GP), where

A : (x, t, ξ) ∈ � × R × R
N �→ A(x, t, ξ) ∈ R

is a Carathéodory function of class C1, i.e. measurable with respect to x in � for all (t, ξ) ∈
R×R

N andC1 with respect to (t, ξ) inR×R
N for a.e. x ∈ �, with At (x, t, ξ) = ∂A

∂t (x, t, ξ),
a(x, t, ξ) = ∇ξ A(x, t, ξ) = ( ∂A

∂ξ1
(x, t, ξ), . . . , ∂A

∂ξN
(x, t, ξ)), which satisfies the following

conditions:

(H1) p > 1 exists and some positive continuous functions � j : R → R, j ∈ {0, 1}, and
φi : R → R, i ∈ {0, 1, 2}, are such that

|A(x, t, ξ)| ≤ �0(t) + φ0(t) |ξ |p, (3.4)

|a(x, t, ξ)| ≤ �1(t) + φ1(t) |ξ |p−1, (3.5)

|At (x, t, ξ)| ≤ φ2(t) |ξ |p (3.6)

for a.e. x ∈ � and all (t, ξ) ∈ R × R
N ;

(H2) α0 > 0 exists, such that

a(x, t, ξ) · ξ ≥ α0|ξ |p a.e. in �, for all (t, ξ) ∈ R × R
N ;

(H3) α1 > 0 exists, such that

A(x, t, ξ) ≥ α1|ξ |p a.e. in �, for all (t, ξ) ∈ R × R
N ;

(H4) a (Carathéodory) function

A∞ : (x, ξ) ∈ � × R
N �→ A∞(x, ξ) ∈ R

exists, which is positively p-homogeneous in ξ for a.e. x ∈ �, and satisfies the following
condition: for all ε > 0 a constant rε > 0 exists, such that

|t | ≥ rε �⇒ ∣∣A(x, t, ξ) − A∞(x, ξ)
∣∣ ≤ ε|ξ |p for a.e. x ∈ �, all ξ ∈ R

N ;
(H5) a (Carathéodory) vector field

a∞ : (x, ξ) ∈ � × R
N �→ a∞(x, ξ) = (a∞

1 (x, ξ), . . . , a∞
N (x, ξ)) ∈ R

N

exists, which satisfies the following condition: for all ε > 0 a constant rε > 0 exists,
such that

|t | ≥ rε �⇒ ∣∣a(x, t, ξ) − a∞(x, ξ)
∣∣ ≤ ε|ξ |p−1 for a.e. x ∈ �, all ξ ∈ R

N ;
(H6) for all ξ , ξ∗ ∈ R

N , ξ �= ξ∗,

[a(x, t, ξ) − a(x, t, ξ∗)] · [ξ − ξ∗] > 0 a.e. in �, for all t ∈ R.

Remark 3.1 Since a(x, t, ·) is continuous for a.e. x ∈ � and all t ∈ R, hypothesis (H2)

implies that
a(x, t, 0) = 0 for a.e. x ∈ �, all t ∈ R (3.7)
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(it is sufficient to fix any ξ �= 0 and apply (H2) once to sξ , then to −sξ , and in both passing
to the limit as s → 0+).

Moreover, from (3.5), (H5) and direct computations, it follows that M1, M2 > 0 exist,
such that ∣∣a∞(x, ξ)

∣∣ ≤ M1 + M2|ξ |p−1 for a.e. x ∈ �, all ξ ∈ R
N . (3.8)

On the other hand, (3.4), (H3) and (H4) imply that α2 > 0 exists, such that

α1|ξ |p ≤ A∞(x, ξ) ≤ α2|ξ |p for a.e. x ∈ �, all ξ ∈ R
N . (3.9)

If (3.8) holds, we can consider the nonlinear operator associated to a∞(x, ξ), namely,

A∞
p : u ∈ W 1,p

0 (�) �→ A∞
p u ∈ W−1,p′

(�),

such that

〈A∞
p u, v〉 =

∫
�

a∞(x,∇u) · ∇v dx for any u, v ∈ W 1,p
0 (�), (3.10)

and denote its spectrum by σ(A∞
p ).

By definition, λ ∈ σ(A∞
p ) if some u ∈ W 1,p

0 (�), u �≡ 0, exist, such that
∫

�

a∞(x,∇u) · ∇ϕ dx = λ

∫
�

|u|p−2uϕ dx for all ϕ ∈ W 1,p
0 (�).

Lemma 3.2 Assume that A(x, t, ξ) and its gradient with respect to ξ , namely a(x, t, ξ),
satisfy the growth estimate (3.5) and the hypotheses (H2), (H4)–(H6). Then, the nonlinear
operator A∞

p defined in (3.10) is:

(i) continuous from the reflexive Banach space W 1,p
0 (�) to its dual W−1,p′

(�);
(ii) a potential operator such as a∞(x, ξ) = ∇ξ A∞(x, ξ) for a.e. x ∈ �, all ξ ∈ R

N ;
(iii) (p − 1)-homogeneous and it is odd if A∞(x, ·) is even for a.e. x ∈ �;
(iv) uniformly positive as

a∞(x, ξ) · ξ ≥ α0|ξ |p a.e. in �, for all ξ ∈ R
N ;

(v) of type (S): if (un)n ⊂ W 1,p
0 (�) and u ∈ W 1,p

0 (�) are such that

un ⇀ u weakly in W 1,p
0 (�), 〈A∞

p un, un − u〉 → 0,

then un → u strongly in W 1,p
0 (�), up to subsequences.

Proof (i) The proof follows from the growth estimate (3.8) of the Carathéodory vector field
a∞(x, ξ) and the properties of the related Nemitskii operator.

(ii) Fixing i ∈ {1, . . . , N }, ξ ∈ R
N , h ∈ R, for a.e. x ∈ �, we have that

A(x, t, ξ + hei ) − A(x, t, ξ) = h
∫ 1

0
ai (x, t, ξ + θhei )dθ,

for all t ∈ R, where (H4) implies

A(x, t, ξ + hei ) − A(x, t, ξ) → A∞(x, ξ + hei ) − A∞(x, ξ) as |t | → +∞,

while from (H5) it follows that

ai (x, t, ξ + θhei ) → a∞
i (x, ξ + θhei ) as |t | → +∞

123



Multiplicity results for some nonlinear elliptic problems… Page 13 of 39 72

uniformly with respect to θ ∈ [0, 1], hence,

∫ 1

0
ai (x, t, ξ + θhei )dθ →

∫ 1

0
a∞
i (x, ξ + θhei )dθ as |t | → +∞.

On the other hand, as A∞(x, ·) is p-homogeneous with p > 1, then it is differentiable
and ∂A∞

∂ξi
(x, ξ) exists for a.e. x ∈ �, all ξ ∈ R

N , while the continuity of a∞
i (x, ·), (3.8)

and the Lebesgue’s dominated convergence theorem imply

∫ 1

0
a∞
i (x, ξ + θhei )dθ → a∞

i (x, ξ) as h → 0.

Hence, ∂A∞
∂ξi

(x, ξ) = a∞
i (x, ξ).

(iii) It follows from (i i) and the properties of homogeneous functions.
(iv) It is a direct consequence of (H2) and (H5).
(v) From assumption (H6), it is a direct consequence of [8, Lemma 5] (see also [10, pp.

27]).
��

Remark 3.3 From assumptions (H1), (H4), (H5), the properties of homogeneous functions
and direct computations it follows that some constants M0, M1, M2 > 0 exist, such that

|a∞(x, ξ)| ≤ M0|ξ |p−1 for a.e. x ∈ �, all ξ ∈ R
N , (3.11)

|A(x, t, ξ)| ≤ M1 + M2|ξ |p for a.e. x ∈ �, all (t, ξ) ∈ R × R
N , (3.12)

|a(x, t, ξ)| ≤ M1 + M2|ξ |p−1 for a.e. x ∈ �, all (t, ξ) ∈ R × R
N . (3.13)

Moreover, suppose that

f : (x, t) ∈ � × R �→ f (x, t) ∈ R

is a Carthéodory function, i.e. measurable with respect to x in � for all t ∈ R and continuous
with respect to t in R for a.e. x ∈ �, which satisfies the hypotheses:

(h1) for any r > 0 we have

sup
|t |≤r

| f (·, t)| ∈ L∞(�);

(h2) λ∞ ∈ R and a (Carathéodory) function g∞ : � × R → R exist, such that

f (x, t) = λ∞ |t |p−2 t + g∞(x, t), (3.14)

where

lim|t |→+∞
g∞(x, t)

|t |p−1 = 0 uniformly a.e. in �. (3.15)

Now and in the following, we set

F(x, t) =
∫ t

0
f (x, s)ds.

Clearly, from the assumptions on f (x, t), it follows that both the functionals associated to f
and F are continuous in L p(�).
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Remark 3.4 From (3.14) it follows that

F(x, t) = λ∞

p
|t |p + G∞(x, t), with G∞(x, t) =

∫ t

0
g∞(x, s)ds. (3.16)

Furthermore, (h1) and (3.14) imply that

sup
|t |≤r

|g∞(·, t)| ∈ L∞(�) for any r > 0; (3.17)

while (3.17), respectively (3.15), implies that

sup
|t |≤r

|G∞(·, t)| ∈ L∞(�) for any r > 0, (3.18)

lim|t |→+∞
G∞(x, t)

|t |p = 0 uniformly a.e. in � (3.19)

and then

lim|t |→+∞
F(x, t)

|t |p = λ∞

p
uniformly a.e. in �. (3.20)

Hence, (3.15) and (3.17), respectively (3.18) and (3.19), imply that for any ε > 0 a constant
Lε > 0 exists, such that

|g∞(x, t)| ≤ ε|t |p−1 + Lε for a.e. x ∈ �, all t ∈ R, (3.21)

|G∞(x, t)| ≤ ε|t |p + Lε for a.e. x ∈ �, all t ∈ R; (3.22)

so (3.14) and (3.21) imply

| f (x, t)| ≤ (|λ∞| + ε
) |t |p−1 + Lε for a.e. x ∈ �, all t ∈ R, (3.23)

while (3.16) and (3.22) imply

|F(x, t)| ≤
( |λ∞|

p
+ ε

)
|t |p + Lε for a.e. x ∈ �, all t ∈ R. (3.24)

Hence, in particular, suitable constants D1, D2 > 0 exist, such that

|F(x, t)| ≤ D1|t |p + D2 for a.e. x ∈ �, all t ∈ R. (3.25)

Firstly, we need to prove that problem (GP) has a variational structure, since, effectively,
its weak solutions are critical points of J in the Banach space X .

The following proposition can be stated (the proof is essentially the same as in [11,
Proposition 3.1]).

Proposition 3.5 Let us assume that A(x, t, ξ) satisfies the growth estimates (3.5), (3.6) and
(3.12), while f (x, t) is such that (h1)–(h2) hold. If (un)n ⊂ X, u ∈ X are such that

‖un − u‖W → 0 then J (un) → J (u) as n → +∞.

Furthermore, if r > 0 exists so that

|un |∞ ≤ r for all n ∈ N,

then also

‖dJ (un) − dJ (u)‖X ′ → 0 as n → +∞.
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In particular, J is continuous on X equipped with ‖ · ‖W , while C1 on X equipped with the
stronger norm ‖ · ‖X , and its derivative dJ : X → X ′ is such that

〈dJ (u), v〉 =
∫

�

(a(x, u,∇u) · ∇v + At (x, u,∇u)v)dx −
∫

�

f (x, u)vdx (3.26)

for any u, v ∈ X.

In order to apply variational methods to the study of critical points of J in the asymptot-
ically p-linear case, we introduce the following further conditions:

(H7) for all ε > 0 a constant rε > 0 exists, such that

|t | ≥ rε �⇒ |At (x, t, ξ)t | ≤ ε|ξ |p for a.e. x ∈ �, all ξ ∈ R
N ;

(H8) α3 > 0, α3 ≤ 1, exists, such that

a(x, t, ξ) · ξ + At (x, t, ξ)t ≥ α3 a(x, t, ξ) · ξ (3.27)

for a.e. x ∈ �, all (t, ξ) ∈ R × R
N .

Remark 3.6 From hypothesis (H4) it follows that r0 > 0 exists, such that

A(x, t, 0) = 0 for a.e. x ∈ � if |t | ≥ r0, (3.28)

while (3.6) implies
At (x, t, 0) = 0 for a.e. x ∈ �, all t ∈ R. (3.29)

Furthermore, (3.6) and (H7) imply that L > 0 exists, such that∣∣At (x, t, ξ)
∣∣ ≤ L|ξ |p for a.e. x ∈ �, all (t, ξ) ∈ R × R

N . (3.30)

As useful in the following, taking any r > 0 we define the truncation function

Tr : R → R, such that Tr t =
{
t if |t | ≤ r
r t

|t | if |t | > r (3.31)

and its remainder

Rr t = t − Tr t =
{

0 if |t | ≤ r
t − r t

|t | if |t | > r . (3.32)

Remark 3.7 The properties of Tr and Rr and direct computations imply that not only their
Nemitskii operators are continuous from the Lebesgue space (L p(�), | · |p) in itself, but

also Tr , Rr : W 1,p
0 (�) → W 1,p

0 (�) are continuous with respect to ‖ · ‖W ; hence, Tr ,

Rr : X → X are continuous. Furthermore, if (un)n ⊂ W 1,p
0 (�), u ∈ W 1,p

0 (�) are such that

un ⇀ u weakly in W 1,p
0 (�), then Trun ⇀ Tru weakly in W 1,p

0 (�), too.

4 The weak Palais–Smale condition

In hypotheses (3.5), (3.6), (3.12) and (h1)–(h2) we can consider the C1 functional J in (1.1)
on the Banach space X defined in (3.1) (see Proposition 3.5). Taking any β ∈ R, the aim
of this section is to exploit the properties of the (PS)β -sequences of J in X , i.e. sequences
(un)n ⊂ X , such that

lim
n→+∞J (un) = β and lim

n→+∞ ‖dJ (un)‖X ′ = 0. (4.1)
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Proposition 4.1 Assume that the hypotheses (H1)–(H8), (h1)–(h2) hold and λ∞ /∈ σ(A∞
p ).

Then, for all β ∈ R, each (PS)β -sequence of J in X is bounded in the W 1,p
0 -norm. Hence,

the critical point set KJ
β is bounded in W 1,p

0 (�).

Furthermore, some strictly positive constants R̄, ε̄, μ̄ exist, such that

u ∈ J β+ε̄
β−ε̄ , ‖u‖W ≥ R̄ �⇒ ‖dJ (u)‖X ′ ≥ 2μ̄. (4.2)

Proof Let (un)n ⊂ X be a (PS)β -sequence. Arguing by contradiction, we suppose that

‖un‖W → +∞ and define vn = un
‖un‖W . As ‖vn‖W = 1 for each n ∈ N, then v ∈ W 1,p

0 (�)

exists, such that, up to subsequences, we have that vn ⇀ v weakly in W 1,p
0 (�), vn → v

strongly in Ls(�) for each s ∈ [1, p∗[ and vn(x) → v(x) a.e. in �. Rearranging conveniently
the arguments developed in [14, Proposition 3.5] for the model case (1.2), we prove that

1. v �≡ 0;
2. a constant b > 0 exists, such that for any μ > 0 an integer nμ ∈ N exists, such that∫

�\�n
μ

|∇vn |pdx ≤ b max{μ,μ2} for all n ≥ nμ,

with �n
μ = {x ∈ � : |vn(x)| > μ};

3. for all ε > 0 an integer nε ∈ N exists, such that for all n ≥ nε we have that∣∣∣∣
∫

�

a∞(x,∇vn) · ∇ϕ dx − λ∞
∫

�

|vn |p−2vnϕ dx

∣∣∣∣ ≤ ε‖ϕ‖X for all ϕ ∈ X;

hence, fixing any ϕ ∈ X we obtain∫
�

a∞(x,∇vn) · ∇ϕ dx − λ∞
∫

�

|vn |p−2vnϕ dx → 0 as n → +∞. (4.3)

Now, taking any r > 0 and the corresponding truncation function Tr in (3.31), we have
that ‖Trvn − Trv‖X ≤ 2r + ‖v‖W for all n ∈ N; hence, from the previous Step 3 with
ϕ = Trvn − Trv, it follows that∫

�

a∞(x,∇vn) · ∇(Trvn − Trv) dx − λ∞
∫

�

|vn |p−2vn(Trvn − Trv) dx → 0,

which implies ∫
�

a∞(x,∇vn) · ∇(Trvn − Trv) dx → 0,

as Trvn → Trv strongly in L p(�). On the other hand, we note that∫
�

a∞(x,∇vn) · ∇(Trvn − Trv) dx =
∫

�\�n
r

a∞(x,∇vn) · ∇(vn − Trv) dx

−
∫

�n
r \�v

r

a∞(x,∇vn) · ∇v dx,

where (3.11), Hölder inequality and meas(�n
r \�v

r ) → 0 imply∫
�n
r \�v

r

a∞(x,∇vn) · ∇v dx → 0;
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hence, ∫
�\�n

r

a∞(x,∇vn) · ∇(vn − Trv) dx → 0.

Then, as vn = Trvn in �\�n
r , while a∞(x,∇(Trvn)) = a∞(x, 0) = 0 in a.a. �n

r , we have
∫

�

a∞(x,∇(Trvn)) · ∇(Trvn − Trv) dx → 0 as n → +∞,

with Trvn ⇀ Trv weakly in W 1,p
0 (�); whence, Trvn → Trv strongly in W 1,p

0 (�) from

Lemma 3.2(v). From the arbitrariness of r > 0 we have that vn → v strongly in W 1,p
0 (�)

too, and passing to the limit as n → +∞ in (4.3) we obtain λ∞ ∈ σ(A∞
p ) in contradiction

with the hypotheses.
Finally, if (4.2) does not hold, a (PS)β -sequence (un)n ⊂ X exists, such that ‖un‖W →

+∞, in contradiction with the first part of this proof. ��

Proposition 4.2 Assume p > N and that the hypotheses of Proposition 4.1 hold. Then the
functional J satisfies (PS)β in W 1,p

0 (�) at each level β ∈ R.

Proof For the proof, it is sufficient to conveniently rearrange the arguments developed in
[14, Proposition 3.6] for the model case (1.2) to our general setting. ��

Unfortunately, if p < N the same statement cannot hold as Palais–Smale sequences of J
exist which converge in ‖ · ‖W but not in ‖ · ‖X .

Example 4.3 Suppose that the hypotheses (H1), (H4)–(H5), (H7), (h1)–(h2) are satisfied
and, without loss of generality, assume that the closed unit ball of RN , namely B1(0) = {x ∈
R

N : |x | ≤ 1}, is contained in �. Taking u ∈ X , such that dJ (u) = 0, put β = J (u) and
consider a smooth function v ∈ C∞

0 (RN ), such that

v(x) ≥ 0 in R
N , v(x) = 0 if |x | ≥ 1, v(0) > 0 and

∫
B1(0)

|∇v|pdx = 1.

If p < N , then θ > 0 exists, such that N
p − 1 − θ > 0 and for each n ∈ N we define

vn(x) = n
N
p −1−θ

v(nx) and un(x) = u(x) + vn(x).

By definition, vn ∈ W 1,p
0 (�) and vn(x) = 0 for each x ∈ �\{0} if n is large enough; hence,

un ∈ W 1,p
0 (�) and un(x) → u(x) and ∇un(x) → ∇u(x) for a.e. x ∈ �. Moreover, direct

computations imply that

‖vn‖W = n−θ ; hence , ‖un − u‖W → 0 as n → +∞.

On the other hand, since the functionals associated to f and F are continuous in L p(�),
from (3.12), (3.13) and the Lebesgue’s Dominated Convergence Theorem, it follows that
J (un) → β and ‖dJ (un)‖X ′ → 0, i.e. (un)n is a (PS)β -sequence. In any case,

|un − u|∞ = |vn |∞ ≥ n
N
p −1−θ

v(0) → +∞,

so (un)n has no converging subsequence in X .
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As already mentioned, the proof of Proposition 4.2 strongly requires the assumption
p > N , but if p ≤ N we can prove that the weaker condition (wPS)β in Definition 2.1
holds. To this aim, firstly we need to find sufficient conditions for the boundedness of a
W 1,p

0 -function.

Lemma 4.4 Let 1 < p ≤ N and take u ∈ W 1,p
0 (�). If b0 > 0 and k0 ∈ N exist, such that

the inequality ∫
�u
r

|∇u|pdx ≤ b0

(
r p meas(�u

r ) +
∫

�u
r

|u|pdx
)

(4.4)

holds for all r ≥ k0, then u ∈ L∞(�), with |u|∞ bounded from above by a positive constant
which can be chosen so that it depends only on meas(�), N , p, b0, k0, ‖u‖W .

Proof It is a direct consequence of [19, Theorem 5.1 in Chapter 2] (see
[11, Lemma 4.5]). ��
Proposition 4.5 Let p > 1 and assume that the hypotheses (H1)–(H8), (h1)–(h2) hold.
Then, if λ∞ /∈ σ(A∞

p ), functional J satisfies (wPS)β in X at each level β ∈ R.

Proof Fixing β ∈ R, let (un)n ⊂ X be a (PS)β -sequence of J in X , i.e. (4.1) holds. Then,
from Proposition 4.1 a constant L > 0 exists, such that

‖un‖W ≤ L for all n ∈ N. (4.5)

Hence, u ∈ W 1,p
0 (�) exists, such that, up to subsequences, we have

un ⇀ u weakly in W 1,p
0 (�), (4.6)

un → u strongly in L p(�), (4.7)

therefore,
un → u a.e. in � and in measure, (4.8)

and a positive function ν ∈ L p(�) exists, such that

|un(x)| ≤ ν(x) for a.e. x ∈ �, all n ∈ N. (4.9)

For simplicity, our proof is divided into several steps:

1. u ∈ L∞(�);
2. fixing r ≥ |u|∞ + 1, we have that∫

�n
r

|∇un |pdx → 0 as n → +∞, (4.10)

where, in general, we put �n
μ = {x ∈ � : |un(x)| > μ} for any μ ≥ 0;

3. taking r ≥ max{|u|∞ + 1, r0}, with r0 > 0 as in (3.28), as n → +∞ we have

J (Trun) → β and ‖dJ (Trun)‖X ′ → 0 (4.11)

and
Trun → u strongly in W 1,p

0 (�), (4.12)

with the truncation function Tr as in (3.31);
4. un → u strongly in W 1,p

0 (�) and J (u) = β, dJ (u) = 0.
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For simplicity, here and in the following we use the notation (εn)n for any infinitesimal
sequence depending only on (un)n , while (εμ,n)n for any infinitesimal sequence depending
not only on (un)n , but also on some fixed real number μ.

Step 1. From the Sobolev Imbedding Theorem, the proof is required only if p ≤ N . So, under
this assumption, taking r > 0, any ρ > r and considering the truncation function Tρ , as in
(3.31), and the remainder function Rr , as in (3.32), define the new sequence of functions
ϕn
r,ρ(x) = Tρ(Rr (un(x))), namely,

ϕn
r,ρ(x) =

⎧⎪⎨
⎪⎩

0 if |un(x)| ≤ r,
un(x) − r un(x)|un(x)| if r < |un(x)| ≤ ρ + r,

ρ
un(x)|un(x)| if |un(x)| > ρ + r.

(4.13)

By definition

∇ϕn
r,ρ(x) =

{
0 a.e. in �\�n

r,ρ,

∇un(x) a.e. in �n
r,ρ,

(4.14)

with �n
r,ρ = {x ∈ � : r < |un(x)| ≤ ρ + r}; hence, from (4.5) and the properties of Tρ and

Rr it follows that ϕn
r,ρ ∈ X with

‖ϕn
r,ρ‖X ≤ L + ρ for all n ∈ N. (4.15)

On the one hand, from (4.1) and (4.15) it follows that

|〈dJ (un), ϕ
n
r,ρ〉| ≤ εn(L + ρ) for all n ∈ N. (4.16)

On the other hand, from (3.26), (4.13), (4.14), (H2), (H8) with α3 ≤ 1, and direct computa-
tions we prove that

〈dJ (un), ϕ
n
r,ρ〉 =

∫
�n
r,ρ

(
1 − r

|un |
) (

a(x, un,∇un) · ∇un + At (x, un,∇un)un
)
dx

+
∫

�n
r,ρ

r

|un | a(x, un,∇un) · ∇un dx +
∫

�n
ρ+r

At (x, un,∇un)ρ
un
|un | dx

−
∫

�

f (x, un)ϕ
n
r,ρdx

≥ α3

∫
�n
r,ρ

a(x, un,∇un) · ∇un dx +
∫

�n
ρ+r

ρ

|un | At (x, un,∇un)un dx

−
∫

�

f (x, un)ϕ
n
r,ρdx

≥ α0α3

∫
�n
r,ρ

|∇un |p dx −
∫

�n
ρ+r

|At (x, un,∇un)un | dx

−
∫

�

f (x, un)ϕ
n
r,ρdx .

Hence, by summing up these last estimates and (4.16), for all ρ > r and all n ∈ N, we have
that

α0α3

∫
�n
r,ρ

|∇un |p dx ≤ εn(L + ρ) +
∫

�n
ρ+r

|At (x, un,∇un)un | dx

+
∫

�

f (x, un)ϕ
n
r,ρdx .

(4.17)
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Now, fix any ε > 0 and r ≥ 1. From (H7), a constant ρε > r exists, such that for any ρ ≥ ρε

we have

|At (x, un,∇un)un | ≤ ε

L p
|∇un |p for a.e. x ∈ �n

ρ+r , all n ∈ N;

hence, from (4.5) it follows

lim sup
n→+∞

∫
�n

ρ+r

|At (x, un,∇un)un | dx ≤ ε for any ρ ≥ ρε. (4.18)

Furthermore, taking any ρ ≥ ρε , from (4.8), (4.9) and the continuity of the involved maps,
the Lebesgue’s Dominated Convergence Theorem applies and we have

lim
n→+∞

∫
�

f (x, un)ϕ
n
r,ρdx =

∫
�

f (x, u)ϕr,ρdx, (4.19)

where ϕr,ρ(x) = Tρ(Rr (u(x))) and from (3.23) and direct computations a constant b0 =
b0(λ

∞) > 0 exists, such that∣∣∣∣
∫

�

f (x, u)ϕr,ρdx

∣∣∣∣ ≤ b0

∫
�u
r

|u|pdx for all ρ > r. (4.20)

Finally, (4.6) and the weak lower semicontinuity of the norm ‖ · ‖W imply
∫

�r,ρ

|∇u|p dx ≤ lim inf
n→+∞

∫
�n
r,ρ

|∇un |p dx, (4.21)

with �r,ρ = {x ∈ � : r < |u(x)| ≤ ρ + r}. Hence, summing up, as n → +∞ in (4.17),
from (4.18)–(4.21) it results that

α0α3

∫
�r,ρ

|∇u|p dx ≤ ε + b0

∫
�u
r

|u|pdx for all ρ ≥ ρε, (4.22)

thus, as ε is arbitrary small, (4.4) holds for all r ≥ 1. Then, by applying Lemma 4.4, we have
that u ∈ L∞(�) and |u|∞ is smaller than a constant which depends only on meas(�), N , p,
α0, α3, λ∞ and ‖u‖W .

Step 2. Now, let r ≥ |u|∞ + 1 in all the formulae of the proof of Step 1. With this choice the
limit in (4.19) becomes

lim
n→+∞

∫
�

f (x, un)ϕ
n
r,ρdx = 0 for any ρ > r,

thus for any ε > 0 a constant ρε > r exists, such that, by passing to the maximum limit as
n → +∞ in (4.17), from (4.18) it follows that

α0α3 lim sup
n→+∞

∫
�n
r,ρ

|∇un |p dx ≤ ε for all ρ ≥ ρε;

hence, (4.10) holds.

Step 3. As r > |u|∞, Tru = u; hence, from Remark 3.7 and (4.6) we have that

Trun ⇀ u weakly in W 1,p
0 (�) (4.23)
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and also, from (4.7),

Trun → u and Trun − un → 0 strongly in L p(�), (4.24)

meas(�n
r ) → 0,

Trun → u a.e. in �. (4.25)

Since r ≥ r0, from (3.28) and the definitions (1.1) and (3.31) it follows that

J (Trun) =J (un) −
∫

�n
r

A(x, un,∇un)dx

−
∫

�n
r

(F(x, Trun) − F(x, un))dx,

where (3.12), (4.10) and (4.25) imply that∫
�n
r

A(x, un,∇un)dx = εr,n,

while from the continuity of the functional associated to F in L p(�) and (4.24) we have that

∫
�n
r

(F(x, Trun) − F(x, un))dx = εr,n .

Hence,

J (Trun) = J (un) + εr,n

and the first limit in (4.11) follows from (4.1).
Now, taking ϕ ∈ X , from (3.7), (3.29) and direct computations it follows that

|〈dJ (Trun), ϕ〉| ≤ ‖dJ (un)‖X ′ ‖ϕ‖X +
∫

�n
r

|a(x, un,∇un)||∇ϕ|dx

+
∫

�n
r

|At (x, un,∇un)||ϕ|dx +
∫

�n
r

| f (x, Trun) − f (x, un)||ϕ|dx .

From (3.13), (4.10), (4.25), the Hölder inequality and direct computations it follows that∫
�n
r

|a(x, un,∇un)||∇ϕ|dx ≤ εr,n‖ϕ‖W .

Furthermore, (3.30) and (4.10) imply∫
�n
r

|At (x, un,∇un)||ϕ|dx ≤ εr,n |ϕ|∞,

while from the continuity of the functional associated to f in L p(�) and (4.24) it follows
that ∫

�n
r

| f (x, Trun) − f (x, un)||ϕ|dx ≤ εr,n |ϕ|∞.

Hence,

|〈dJ (Trun), ϕ〉| ≤ (‖dJ (un)‖X ′ + εr,n) ‖ϕ‖X for all ϕ ∈ X,

and the second limit in (4.11) follows from (4.1).
Finally, (4.12) follows from (4.10), the second limit in (4.11), (4.23), the given set of

hypotheses once we repeat the proof of Step 4 in [11, Proposition 4.6].
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Step 4. Since un = Trun + Rrun , with ‖Rrun‖p
W =

∫
�n
r

|∇un |pdx , then (4.10) and (4.12)

imply un → u strongly in W 1,p
0 (�). Hence, as |Trun |∞ ≤ r for all n ∈ N, Proposition 3.5

implies

J (Trun) → J (u), ‖dJ (Trun) − dJ (u)‖X ′ → 0.

Then the end of the proof follows from (4.11). ��

Essentially following some of the ideas introduced in the proof of Step 1 of Proposition
4.5, but replacing the global condition (H8) with (3.27), only if t is large enough we can
prove a boundedness result similar to [3, Lemma 1.4], but with different hypotheses.

Proposition 4.6 Assume that the hypotheses (H2), (H7), (h1), (h2) hold and that ρ0 ≥ 0
exists, such that (3.27) holds for a.e. x ∈ �, all ξ ∈ R

N if |t | ≥ ρ0. If u ∈ W 1,p
0 (�) is such

that ∫
�

a(x, u,∇u) · ∇ϕdx +
∫

�

At (x, u,∇u)ϕdx −
∫

�

f (x, u)ϕdx = 0 (4.26)

for all ϕ ∈ X, then a positive constant ru > 0 exists, which depends only on meas(�), N , p,
α0, α3, λ∞ and ‖u‖W , such that |u|∞ ≤ ru. Hence, u ∈ X.

Proof From the Sobolev Imbedding Theorem, the proof is required only if p ≤ N . So, by
fixing r ≥ ρ0 + 1, taking any ρ > r , using ϕr,ρ(x) = Tρ(Rr (u(x))) as the test function in
(4.26), and reasoning as in the proof of Step 1 in Proposition 4.5, we obtain

α0α3

∫
�r,ρ

|∇u|p dx ≤
∫

�u
ρ+r

|At (x, u,∇u)u| dx +
∫

�

f (x, u)ϕr,ρdx,

with �r,ρ = {x ∈ � : r < |u(x)| ≤ ρ + r}, as

a(x, u,∇u) · ∇u + At (x, u,∇u)u ≥ a(x, u,∇u) · ∇u a.e. in �r,ρ .

Thus, (4.22) is satisfied, since (4.20) still holds while from (H7) for all ε > 0, a constant
ρε > r exists, such that

∫
�u

ρ+r

|At (x, u,∇u)u| dx ≤ ε for any ρ ≥ ρε.

Therefore, (4.4) follows and Lemma 4.4 applies. ��

Corollary 4.7 In the hypotheses of Proposition 4.1, if β ∈ R is such that KJ
β �= ∅, then a

constant rβ > 0 exists, such that |u|∞ ≤ rβ for all u ∈ KJ
β . Hence, the critical point set KJ

β

is compact with respect to the W 1,p
0 -norm, while it is bounded with respect to the L∞-norm.

Proof If p > N the statement is a direct consequence of Proposition 4.1 and (3.3). On the
other hand, if p ≤ N , from Proposition 4.6 each u ∈ KJ

β is bounded by a constant which

depends on ‖u‖W , while from Proposition 4.1 it follows that KJ
β is bounded with respect to

‖ · ‖W . ��
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5 Main results

In addition to the hypotheses (H1)–(H8), (h1)–(h2), we assume that:

(H9) A0(x, ξ) is positively p-homogeneous in ξ for a.e. x ∈ �, with

A0(x, ξ) = A(x, 0, ξ);
(H10) A(x, t, ξ) is even in (t, ξ) for a.e. x ∈ �;
(h3) λ0 ∈ R and a (Carathéodory) function g0 : � × R → R exist, such that

f (x, t) = λ0 |t |p−2 t + g0(x, t),

with

lim
t→0

g0(x, t)

|t |p−1 = 0 uniformly a.e. in �;

(h4) f (x, ·) is odd for a.e. x ∈ �.

Remark 5.1 Conditions (3.12), (H3) and (H9) imply that α4 > 0 exists, such that

α1|ξ |p ≤ A0(x, ξ) ≤ α4|ξ |p for a.e. x ∈ �, all ξ ∈ R
N . (5.1)

Moreover, from (3.6) it follows that

|A(x, t, ξ) − A0(x, ξ)| ≤ ∣∣ ∫ t

0
φ2(s)ds

∣∣ |ξ |p for a.e. x ∈ �, all (t, ξ) ∈ R × R
N ;

hence, for all ε > 0 a constant rε > 0 exists, such that

|t | ≤ rε �⇒ ∣∣A(x, t, ξ) − A0(x, ξ)
∣∣ ≤ ε|ξ |p for a.e. x ∈ �, all ξ ∈ R

N . (5.2)

Remark 5.2 From (h3) it follows that

F(x, t) = λ0

p
|t |p + G0(x, t), with G0(x, t) =

∫
�

g0(x, s)ds, (5.3)

and

lim
t→0

G0(x, t)

|t |p = 0 uniformly a.e. in �; (5.4)

thus,

lim
t→0

F(x, t)

|t |p = λ0

p
uniformly a.e. in �. (5.5)

Furthermore, from (h1), (3.20), (5.5) and direct computations it follows that D > 0 exists,
such that

|F(x, t)| ≤ D|t |p for a.e. x ∈ �, all t ∈ R. (5.6)

Defining a0(x, ξ) = a(x, 0, ξ), as in (3.10), we introduce the operator

A0
p : u ∈ W 1,p

0 (�) �→ A0
pu ∈ W−1,p′

(�)

as

〈A0
pu, v〉 =

∫
�

a0(x,∇u) · ∇v dx for any u, v ∈ W 1,p
0 (�), (5.7)

and denote its spectrum by σ(A0
p).
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Remark 5.3 If the hypotheses (3.5), (H2), (H6), (H9)–(H10) hold, from direct computations
and [8, Lemma 5] the nonlinear operator A0

p in (5.7) has the following properties:

(i) it is continuous from the reflexive Banach space W 1,p
0 (�) to its dual W−1,p′

(�),
(ii) it admits a potential operator, as it is a0(x, ξ) = ∇ξ A0(x, ξ) for a.e. x ∈ �;

(iii) by assumption, it is (p − 1)-homogeneous and odd;
(iv) it is uniformly positive, as a0(x, ξ) · ξ ≥ α0|ξ |p a.e. in �, for all ξ ∈ R

N ;
(v) it is of type (S): if (un)n ⊂ X and u ∈ X are such that

un ⇀ u weakly in W 1,p
0 (�) and 〈A0

pun, un − u〉 → 0,

then un → u strongly in W 1,p
0 (�), up to subsequences.

For each j ≥ 1 let us define:

λ0
j = inf

Q∈S j
max
u∈Q

∫
�

A0(x,∇u)dx

1

p

∫
�

|u|pdx
, (5.8)

λ∞
j = inf

Q∈S j
max
u∈Q

∫
�

A∞(x,∇u)dx

1

p

∫
�

|u|pdx
, (5.9)

with

S j = {Q ⊂ SW : Q symmetric and compact in W 1,p
0 (�), with iW (Q) ≥ j},

where

SW = {u ∈ W 1,p
0 (�) : ‖u‖W = 1}

and iW (·) is the cohomological index defined on the Banach space W 1,p
0 (�).

As direct consequence of Lemma 3.2 and Remark 5.3 we have

〈A∞
p u, u〉 = pA∞(x,∇u) and 〈A0

pu, u〉 = pA0(x,∇u) if u ∈ W 1,p
0 (�).

Moreover, [24, Theorem 4.6] applies and the following proposition can be pointed out.

Proposition 5.4 Assume that the hypotheses (3.5), (H2), (H4)–(H6) and (H9)–(H10) hold.
Then, taking � = 0,∞, we have that (λ

�
j ) j is a nondecreasing sequence of eigenvalues of

the nonlinear operator A�
p, such that λ�

j ↗ +∞, as j → +∞ and the smallest eigenvalue,
called the first eigenvalue, is

λ
�
1 = min

u∈W 1,p
0 (�)\{0}

∫
�

A�(x,∇u)dx

1

p

∫
�

|u|pdx
> 0.

Remark 5.5 Since both if � = ∞ and if � = 0 the function A�(x, ξ) is positively p-
homogeneous in ξ (from (H4), respectively (H9)), the eigenvalues (λ

�
j ) j can be characterized
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as

λ
�
j = inf

Q∈W j
max
u∈Q

∫
�

A�(x,∇u)dx

1

p

∫
�

|u|pdx
, (5.10)

where

W j = {Q ⊂ W 1,p
0 (�)\{0} : Q symmetric and compact in W 1,p

0 (�),

with iW (Q) ≥ j}.
In fact, taking j ∈ N, firstly we note that S j ⊂ W j implies

inf
Q∈W j

max
u∈Q

∫
�

A�(x,∇u)dx

1

p

∫
�

|u|pdx
≤ λ

�
j .

On the contrary, since the radial projection

π : u ∈ W 1,p
0 (�)\{0} �→ π(u) = u

‖u‖W ∈ SW

is odd and continuous, property (i2) in Proposition 2.5 implies that if Q ∈ W j , then π(Q) ∈
S j , with

max
u∈Q

∫
�

A�(x,∇π(u))dx

1

p

∫
�

|π(u)|pdx
= max

u∈Q

∫
�

A�(x,∇u)dx

1

p

∫
�

|u|pdx
;

hence, (5.10) holds.

Now, we are able to state our main results.

Theorem 5.6 Assume that (H1)–(H10) and (h1)–(h4) hold for some p > 1. If λ∞ /∈ σ(A∞
p )

and k, h ∈ N exist, such that

λ0
k < λ0, λ∞ < λ∞

h , with k > h − 1, (5.11)

then problem (GP) has at least k − h + 1 distinct pairs of nontrivial bounded solutions with
strictly negative critical levels.

Theorem 5.7 Assume that (H1)–(H10) and (h1)–(h4) hold for some p > 1. If λ∞ /∈ σ(A∞
p )

and k, h ∈ N exist, such that

λ0 < λ0
k , λ∞

h < λ∞, with k < h + 1, (5.12)

then problem (GP) has at least h − k + 1 distinct pairs of nontrivial bounded solutions with
strictly positive critical levels.

In the same hypotheses of the previous Theorem 5.6, but replacing conditions (h3) and
(5.11) with F super-p-linear at zero, we are able to prove that (GP) has infinitely many
solutions.

123



72 Page 26 of 39 A. M. Candela, G. Palmieri

Theorem 5.8 Assume that (H1)–(H10), (h1)–(h2) and (h4) hold for some p > 1. If λ∞ /∈
σ(A∞

p ) and

lim
t→0

F(x, t)

|t |p = +∞ uniformly a.e. in �, (5.13)

then problem (GP) has an infinite number of distinct pairs of nontrivial bounded solutions
(uk)k ⊂ X, with negative critical levels, such that J (uk) ↗ 0.

Before going on with the proofs of our main theorems, we note that in the definitions of
the eigenvalues (λ0

j ) j and (λ∞
j ) j (see (5.8), respectively (5.9)) or in their characterization

(5.10), only the space W 1,p
0 (�) is involved. In any case, our natural setting is X , so we need

to characterize them accordingly.

Proposition 5.9 Assume that (3.5), (H2)–(H6) and (H9)–(H10) hold. Taking � = 0,∞, for
each j ≥ 1 we define

λ̃
�
j = inf

Q∈W̃ j

max
u∈Q

∫
�

A�(x,∇u)dx

1

p

∫
�

|u|pdx
,

with

W̃ j = {Q ∈ W j : ∃ V subspace of X, dim V < +∞, such that Q ⊂ V }.
Then,

λ̃
�
j = λ

�
j .

Proof Taking any j ≥ 1, by definition it is W̃ j ⊂ W j , then (5.10) implies λ
�
j ≤ λ̃

�
j . Now,

we have just to prove that
λ̃

�
j ≤ λ

�
j . (5.14)

To this aim, fixing Q ∈ S j and any ε ∈]0, 1[, we split our proof into two steps:

1. Qε ∈ W j exists, such that Qε is a bounded subset of X and

max
v∈Qε

∫
�

A�(x,∇v)dx

1

p

∫
�

|v|pdx
≤ 1

1 − ε
max
u∈Q

∫
�

A�(x,∇u)dx

1

p

∫
�

|u|pdx
, (5.15)

2. Q̃ε ∈ W̃ j exists, such that

max
w∈Q̃ε

∫
�

A�(x,∇w)dx

1

p

∫
�

|w|pdx
≤ ε max

v∈Qε

∫
�

A�(x,∇v)dx

1

p

∫
�

|v|pdx
. (5.16)

Step 1. Firstly we note that, by definition, Q is a subset of W 1,p
0 (�) contained in SW , so from

the Sobolev Imbedding Theorem, Q is compact in L p(�), with 0 /∈ Q; hence, not only the
minimum of the L p-norm in Q is strictly positive, i.e. b > 0 exists, such that

1

p

∫
�

|u|pdx ≥ b for all u ∈ Q, (5.17)
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but also from (3.2) and (5.17) a constant δ1,ε > 0 exists, such that for any measurable subset
E ⊂ � with meas(E) < δ1,ε we have∫

E
|u|pdx ≤ ε|u|pp for all u ∈ Q. (5.18)

On the other hand, from (3.2) we have |u|pp ≤ σp for all u ∈ SW ; hence, rε = rε(δ1,ε) > 0
exists, so that

meas(�u
rε ) < δ1,ε for any u ∈ SW . (5.19)

Thus, from (5.18) and (5.19) it follows that∫
�u
rε

|u|pdx ≤ ε|u|pp for all u ∈ Q,

which implies that ∫
�

|Trεu|pdx ≥ (1 − ε)

∫
�

|u|pdx for all u ∈ Q, (5.20)

with Trε as in (3.31).
Now, defining Qε = Trε (Q), by construction it is not only Qε ⊂ L∞(�), but also

|v|∞ ≤ rε for all v ∈ Qε,

while the properties of Trε and property (i2) in Proposition 2.5 also imply that Qε ∈ W j .
On the other hand, since∫

�

A�(x,∇(Trεu))dx ≤
∫

�

A�(x,∇u)dx,

from (5.20) we have that∫
�

A�(x,∇(Trεu))dx

1

p

∫
�

|Trεu|pdx
≤ 1

1 − ε

∫
�

A�(x,∇u)dx

1

p

∫
�

|u|pdx
for all u ∈ Q,

which implies (5.15).

Step 2. From Step 1. two constants L1, L2 exist, such that

0 < L1 ≤ ‖v‖W ≤ L2 for all v ∈ Qε. (5.21)

Moreover, since the map

w �→

∫
�

A�(x,∇w)dx

1

p

∫
�

|w|pdx

is continuous on W 1,p
0 (�)\{0} and Qε is compact in the same space, δ2,ε > 0 exists (without

loss of generality, δ2,ε < L1), such that for all v ∈ Qε , w ∈ W 1,p
0 (�)\{0}, we have∣∣∣∣∣∣∣∣

∫
�

A�(x,∇v)dx

1

p

∫
�

|v|pdx
−

∫
�

A�(x,∇w)dx

1

p

∫
�

|w|pdx

∣∣∣∣∣∣∣∣
< ε if ‖v − w‖W < δ2,ε. (5.22)
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On the other hand, again the compactness of Qε in W 1,p
0 (�) and Qε ⊂ X imply that v1, . . . ,

vl ∈ Qε exist, such that

Qε ⊂
l⋃

i=1

BW
δ2,ε

(vi ). (5.23)

Let V be the finite dimensional subspace of X generated by {v1, . . . , vl}. From (5.23) it
follows that

dW (v, V ) < δ2,ε < L1 for all v ∈ Qε. (5.24)

We claim that for each v ∈ Qε, one and only one w(v) ∈ V \{0} exists, such that ‖v −
w(v)‖W = dW (v, V ).

In fact, from (5.24) we can take a sequence (wn)n ⊂ V , such that
‖v − wn‖W → dW (v, V ) and ‖v − wn‖W ≤ δ2,ε for each n.

Hence, (5.21) implies that (wn)n ⊂ {w ∈ V : ‖w‖W ≤ δ2,ε + L2} which is compact in V ,
thus w̄ ∈ V exists, such that

‖wn − w̄‖W → 0 (up to subsequences) and ‖v − w̄‖W = dW (v, V ).

The uniqueness follows from the strong convexity of the space W 1,p
0 (�). Furthermore, from

(5.21) and (5.24), ‖w(v)‖W ≥ L1 − δ2,ε > 0.
Then, the map

ϕε : v ∈ Qε �→ w(v) ∈ V \{0}
is well defined, odd and continuous with respect to ‖·‖W . Hence, Q̃ε = ϕε(Qε) is symmetric
and compact both in W 1,p

0 (�) and in X , with

j ≤ iW (Qε) ≤ iW (Q̃ε)

from the monotonicity of the index; thus, Q̃ε ∈ W j and, by construction, Q̃ε ⊂ V . Moreover,
(5.22) implies (5.16).

Finally, (5.14) is a direct consequence of the previous steps for (5.8) and (5.9), respectively,
and the arbitrariness of ε and Q ∈ S j . ��

6 Looking for negative critical levels

Throughout this section, we assume that (H1)–(H10), (h1)–(h2) and (h4) hold. Moreover,
suppose J (0) = 0 (true from (H9) if either (h3) or (5.13) is satisfied).

Remark 6.1 If λ∞ ≤ 0, from (H3), (3.2), (3.16) and (3.22) with ε small enough, it follows
that

inf J (X) > −∞.

Since from (H10) and (h4) it follows that J is an even functional in X , we can use the
cohomological index theory and its related pseudo-index, as stated in Sect. 2. To this aim,
for all j ∈ N, we define

P j = {P ⊂ X\{0} : P symmetric and compact in X with i(P) ≥ j},
where i(·) is the cohomological index on (X, ‖ · ‖X ), and, as in (2.13), but with X as in (3.1),
W = W 1,p

0 (�) and J = J , we take

c j = inf
P∈P j

max
u∈P

J (u). (6.1)

123



Multiplicity results for some nonlinear elliptic problems… Page 29 of 39 72

Remark 6.2 Taking any j ∈ N, firstly let us point out that, if W̃ j is as in Proposition 5.9,
then

Q ∈ W̃ j �⇒ Q ∈ P j . (6.2)

In fact, if Q ∈ W̃ j , a finite dimensional subspace V of X exists, such that Q ⊂ V ; hence,
Q ⊂ X\{0} is symmetric and compact in X , with i(Q) = iW (Q) ≥ j .

On the other hand, either if � = 0 or if � = ∞, from (2.12) it follows that, if P ∈ P j , then
P ∈ W j , hence (5.10) implies that

max
u∈P

∫
�

A�(x,∇u)dx

1

p

∫
�

|u|pdx
≥ λ

�
j for any P ∈ P j . (6.3)

Finally, denoting
∂B�

1 = {u ∈ X :
∫

�

A�(x,∇u)dx = 1}, (6.4)

we have that the projection

π� : u ∈ X\{0} �→ π�(u) = u(∫
�

A�(x,∇u)dx

) 1
p

∈ ∂B�
1 (6.5)

is odd and continuous; then, from property (i2) in Proposition 2.5, it follows that
P ∈ P j �⇒ π�(P) ∈ P j . (6.6)

In order to prove Theorems 5.6 and 5.8 by applying Theorem 2.7, firstly we have to show
that ch > −∞ for some h ∈ N (here ch is as in (6.1)). To this aim, we note that, fixing
any τ > 0 and P ∈ Ph , from (3.2) and (3.24), direct computations imply the existence of
a constant c(τ ) ∈ R, so that, if u0 ∈ P exists with ‖u0‖W ≤ τ , then maxJ (P) ≥ c(τ ).
Thus, the existence of a uniform lower bound has to be proved only for the maxima of J
on sets P , such that ‖u‖W > τ for all u ∈ P . In order to achieve this, it is quite natural to
approximate A(x, t, ξ) with A∞(x, ξ), but such a replacement is allowed only if |t | > r̄ with
r̄ large enough, while for every u ∈ W 1,p

0 (�) set {x ∈ � : |u(x)| ≤ r} is nontrivial for all
r > 0. Hence, we have to split � into two parts: the set in which Rr (π

∞(u(x))) �= 0 (with
the remainder Rr as in (3.32)) and its complementary set. Obviously, taking r̄ and a suitable
r > 0, a related τ can be fixed, so that ‖u‖W > τ and |π∞(u(x))| > r imply |u(x)| > r̄ ;
hence, the approximating scheme can be used.

More precisely, even if both assumption (h3) and (5.13) do not hold, the following state-
ment can be proved.

Proposition 6.3 If h ∈ N is such that λ∞ < λ∞
h , then

inf
P∈Ph

max
u∈P

J (u) > −∞. (6.7)

Proof If λ∞ ≤ 0, then (6.7) follows from Remark 6.1.
Now, we assume that λ∞ > 0. As 0 < λ∞ < λ∞

h , fix ε > 0, such that

ε < min

{
1,

(
α1

α2D1meas(�)

) 1
p
}

, (6.8)

λ∞ + εp < (1 − ε) λ∞
h

(
1 − εp

(
α2D1meas(�)

α1

) 1
p
)

, (6.9)
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with α1 as in (H3), α2 as in (3.9) and D1 as in (3.25).
Taking P ∈ Ph , two cases may occur:

(i) u0 ∈ P exists, such that |π∞(u0)|p ≤
(

α1
α2D1

) 1
p
,

(ii) for all u ∈ P: |π∞(u)|p >
(

α1
α2D1

) 1
p
,

where π∞ is as in (6.5).
Case (i) From (H3), (3.9) and (3.25) it follows that

max
u∈P

J (u) ≥ J (u0)

≥
(

α1

α2
− D1|π∞(u0)|pp

) ∫
�

A∞(x,∇u)dx − D2meas(�)

≥ −D2meas(�).

Case (ii) In this case, (6.8) and direct computations imply that

|v|∞ > ε for all v ∈ π∞(P), (6.10)

while, from (3.2) and (3.9) it follows that∫
�

|v|pdx ≤ σp

α1
for all v ∈ π∞(P). (6.11)

Now, since from (6.6) we have π∞(P) ∈ Ph , from definition (3.32), Remark 3.7 and the
monotonicity property (i2) in Proposition 2.5 it follows that also Rε(π

∞(P)) ∈ Ph ; hence,
(6.3) implies that

max
v∈π∞(P)

∫
�

A∞(x,∇Rε(v))dx

1

p

∫
�

|Rε(v)|pdx
≥ λ∞

h .

Thus, uε ∈ P exists, such that, if vε = π∞(uε), we have∫
�

A∞(x,∇Rε(vε))dx ≥ λ∞
h

p

∫
�

|Rε(vε)|pdx . (6.12)

We note that (H4) and (3.9) imply that a constant rε > 0 exists, such that

|t | > rε �⇒ A(x, t, ξ) ≥ (1 − ε)A∞(x, ξ) for a.e. x ∈ �, all ξ ∈ R
N . (6.13)

Moreover, (3.24) holds for a suitable Lε > 0, while as |t |p is a primitive of p |t |p−1t , direct
computations imply that

|t |p ≤ |Rε(t)|p + εp |t |p−1 for all t ∈ R. (6.14)

For simplicity, we put 	ε := (∫
�
A∞(x,∇uε)dx

) 1
p , so uε = 	εvε and two cases may occur:

(a) ε	ε ≤ rε,
(b) ε	ε > rε .

Case (a) Since A(x, t, ξ) is positive, from (3.25) and (6.11) it follows that

J (uε) ≥ −D1|uε|pp − D2meas(�) ≥ −D1σp

α1

(rε
ε

)p − D2meas(�).
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Case (b) Taking �ε = �
vε
ε = {x ∈ � : |vε(x)| > ε}, from (6.10) we have meas(�ε) > 0

and

|uε(x)| > rε for all x ∈ �ε.

Therefore, since A(x, t, ξ) is positive, from (3.24), (6.13), and then (H4), (3.32), and (6.12),
(6.14) we have that

J (uε) ≥ (1 − ε)

∫
�ε

A∞(x,∇uε)dx −
(

λ∞

p
+ ε

) ∫
�

|uε|pdx − Lεmeas(�)

= (1 − ε) 	p
ε

∫
�

A∞(x,∇Rε(vε))dx −
(

λ∞

p
+ ε

)
	p

ε

∫
�

|vε|pdx − Lεmeas(�)

≥ (1 − ε)
λ∞
h

p
	p

ε

∫
�

|Rε(vε)|pdx −
(

λ∞

p
+ ε

)
	p

ε

∫
�

|vε|pdx
− Lεmeas(�)

≥ (1 − ε)
λ∞
h

p
	p

ε

(∫
�

|vε|pdx − εp
∫

�

|vε|p−1dx

)

−
(

λ∞

p
+ ε

)
	p

ε

∫
�

|vε|pdx − Lεmeas(�).

Summing up, from Hölder inequality, condition (ii) and direct computations it follows that

J (uε) ≥ 	
p
ε

p
|vε|pp

(
(1 − ε)λ∞

h

(
1 − εp

(
α2D1meas(�)

α1

) 1
p
)

− (
λ∞ + εp

))

− Lεmeas(�);
hence, (6.9) implies J (uε) ≥ − Lεmeas(�).

Thus, the thesis follows. ��

Remark 6.4 The statement in Proposition 6.3 is optimal as, if λ∞ > λ∞
h , condition (6.7)

does not hold (for more details, see Remark 7.4).

Proposition 6.5 If (h3) holds and k ∈ N is such that λ0
k < λ0, then we have

inf
P∈Pk

max
u∈P

J (u) < 0.

Proof Firstly, let us point out that from Lagrange’s Theorem and (3.6) it follows that a
constant b1 > 0 exists, such that

|t | ≤ 1 �⇒ |A(x, t, ξ) − A0(x, ξ)| ≤ b1|t ||ξ |p for a.e. x ∈ �, all ξ ∈ R
N . (6.15)

Now, being λ0
k < λ0, we can choose ε > 0 so small that

(
1 + ε

b1

α1

)
(λ0

k + ε) + ε < λ0, (6.16)

with α1 as in (H3). Then, from (5.4) a constant rε > 0 exists, such that

|t | ≤ rε �⇒ |G0(x, t)| ≤ ε

p
|t |p a.e. in �. (6.17)
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On the other hand, from Proposition 5.9 a set Q0 ∈ W̃k exists, such that

max
u∈Q0

∫
�

A0(x,∇u)dx

1

p

∫
�

|u|pdx
< λ0

k + ε (6.18)

and, since from (6.2) we have Q0 ∈ Pk , Q0 is also compact in X and a constant 	0 > 0
exists, such that |u|∞ < 	0 for all u ∈ Q0. Thus, we can define

P0
ε = {v = 	εu ∈ X : u ∈ Q0} with 	ε = 1

	0
min{1, ε, rε}.

Since the map u ∈ X �→ 	εu ∈ X is an odd homeomorphism on (X, ‖ · ‖X ), then property
(i2) in Proposition 2.5 and (6.2) also imply that P0

ε ∈ Pk .
Taking any v = 	εu ∈ P0

ε , u ∈ Q0, from |v|∞ < min{1, ε, rε} and (5.3), (6.15), (6.17),
hypotheses (H3), (H9) and (6.18), it follows that

J (v) ≤
∫

�

A0(x,∇v)dx + b1|v|∞
∫

�

|∇v|pdx − λ0 − ε

p

∫
�

|v|pdx

≤
(

1 + b1

α1
ε

)
	p

ε

∫
�

A0(x,∇u)dx − (
λ0 − ε

) 	
p
ε

p

∫
�

|u|pdx

≤
((

1 + b1

α1
ε

)
(λ0

k + ε) − (λ0 − ε)

)
	
p
ε

p

∫
�

|u|pdx .

Therefore, since the minimum of the L p-norm in the compact set Q0 is strictly positive,
assumption (6.16) implies that max

u∈P0
ε

J (u) < 0 and the thesis is true. ��

Proof of Theorem 5.6 The hypotheses imply thatJ is an even functional, such thatJ (0) = 0.
Moreover, from Propositions 3.5 and 4.5 we have that J is C1 in (X, ‖ · ‖X ) and satisfies the
(wPS) condition in R. Then, assumption (5.11) allows us to apply Propositions 6.3 and 6.5,
so definition (6.1) implies that (2.15) holds with m = k − h + 1. Hence, the thesis follows
from the first statement of Theorem 2.7. ��

Proof of Theorem 5.8 As in the proof of Theorem 5.6, in order to apply the second statement
of Theorem 2.7, we have just to prove that h ∈ N exists, so that −∞ < ck < 0 for all k ≥ h,
with ck as in (6.1).

To this aim, firstly we note that, taking any k ∈ N, if we fix λ̄ > λ0
k , from (5.13) a constant

r̄ > 0 exists, such that

|t | ≤ r̄ �⇒ F(x, t) ≥ λ̄|t |p for a.e. x ∈ �.

Then, reasoning as in the proof of Proposition 6.5, but with λ̄ in the place of λ0 and r̄ in the
place of rε, we can find a subset P0

ε ∈ Pk , such that

ck ≤ max
u∈P0

ε

J (u) < 0.

On the other hand, from Proposition 5.4 an integer h ∈ N exists, such that λ∞
h > λ∞. Hence,

Proposition 6.3 implies that ck ≥ ch > −∞ for all k ≥ h. ��
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7 Looking for positive critical levels

Throughout this section, we assume that (H1)–(H10) and (h1)–(h4) hold and, in order to find
critical points with positive critical level by applying Theorem 2.10, we require some useful
information for the pseudo-index theory. To this aim, we need to evaluate the maximum of
J in a family of subsets of X , which are part of a neighbourhood of the origin in W 1,p

0 (�),
so that it is quite natural to approximate A(x, t, ξ) with A0(x, ξ). Unfortunately, for the L∞-
norm of the elements of such sets no uniform a priori bound is given. So, for a suitable K > 0
we split � into two parts: one where we can evaluate the truncation map TK (defined as in
(3.31)) to apply the approximating scheme and its complementary set, where the remainder
is small enough.

More precisely, the following statement can be proved.

Proposition 7.1 If λ0
h > λ0, then a suitable ε0 > 0 can be found, such that for all ε ∈ ]0, ε0],

a radius τ = τ(ε) > 0 and a constant cε > 0 exist, so that

max
u∈P

J (u) ≥ cε > 0 for all P ∈ Ph such that P ⊂ ∂B0
τ , (7.1)

with

∂B0
τ = {

u ∈ X :
∫

�

A0(x,∇u)dx = τ p}.
Proof Fix ε ∈]0, ε0] with ε0 > 0 and

ε0 < min

{
1,

α1

2σp + α1
,

λ0
h − λ0

4(λ0
h + p)

,
2(λ0

h − λ0)α1

3(λ0
h − λ0)α1 + 4Dλ0

hσp

}
, (7.2)

where α1 is as in (H3), σp as in (3.2), α4 as in (5.1) and D as in (5.6).
Then, we note that from (5.1) and (5.2), respectively (5.4), a constant rε > 0 exists, such

that
|t | ≤ rε �⇒ A(x, t, ξ) ≥ (1 − ε)A0(x, ξ) and |G0(x, t)| ≤ ε|t |p (7.3)

for a.e. x ∈ �, all ξ ∈ R
N .

Moreover, from (5.1) the set ∂B0
1 is bounded in W 1,p

0 (�), so it is compact in L p(�) and
Kε > 0 exists, such that∫

�v
Kε

|v|pdx < ε
α1

2α4D
for all v ∈ ∂B0

1 . (7.4)

Now, put

τ = rε
Kε

. (7.5)

Taking P ∈ Ph such that P ⊂ ∂B0
τ , two cases may occur:

(i) u0 ∈ P exists such that |π0(u0)|p ≤
(

α1
2α4D

) 1
p
,

(ii) for all u ∈ P: |π0(u)|p >
(

α1
2α4D

) 1
p
,

where π0 is as in (6.5).
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Case (i) From definitions (6.4) and (6.5) we have π0(u0) ∈ ∂B0
1 with u0 = τπ0(u0), then

from (H3), (5.1) and (5.6), assumption (i) implies that

max
u∈P

J (u) ≥ J (u0) ≥ α1

α4

∫
�

A0(x,∇u0)dx − D
∫

�

|u0|pdx

= τ p
(

α1

α4
− D

∫
�

|π0(u0)|pdx
)

≥ τ p α1

2α4
.

(7.6)

Case (ii) Firstly, suppose λ0 ≤ 0. From (6.4) and (6.5), for each u ∈ ∂B0
τ we have u = τv

with v = π0(u) ∈ ∂B0
1 . We note that from (5.1) we have∫

�

|∇v|pdx ≥ 1

α4
. (7.7)

Moreover, (7.5) implies

|u(x)| ≤ rε for a.e. x ∈ �\�v
Kε

.

From (H3), (5.3), (5.6), then (7.3), and from (3.2), (7.4) we have

J (u) ≥ α1

∫
�

|∇u|pdx −
∫

�\�v
Kε

G0(x, u)dx − D
∫

�v
Kε

|u|pdx

≥ α1τ
p
∫

�

|∇v|pdx − ετ p
∫

�\�v
Kε

|v|pdx − Dτ p
∫

�v
Kε

|v|pdx

≥ (α1 − εσp) τ p
∫

�

|∇v|pdx − ετ p α1

2α4
.

Thus, summing up, estimate (7.2) and (7.7) imply

max
u∈P

J (u) ≥ inf
u∈∂B0

τ

J (u) ≥ τ p α1

2α4
. (7.8)

On the contrary, consider λ0 > 0. We point out that from (6.5) and (6.6), it follows that
π0(P) ∈ Ph and π0(P) ⊂ ∂B0

1 . Hence, if we consider the truncation map TKε as in (3.31),
from Remark 3.7 and property (i2) in Proposition 2.5 we also have TKε (π

0(P)) ∈ Ph , and
(6.3) implies

max
v∈π0(P)

∫
�

A0(x,∇TKε (v))dx

1

p

∫
�

|TKε (v)|pdx
≥ λ0

h .

Thus, uε ∈ P exists, such that uε = τvε with vε = π0(uε), and
∫

�

A0(x,∇TKε (vε))dx ≥ λ0
h

p

∫
�

|TKε (vε)|pdx . (7.9)

If we define �ε = �
vε

Kε
= {x ∈ � : |vε(x)| > Kε}, from (7.5) it follows that

|uε(x)| ≤ rε for a.e. x ∈ �\�ε.

Furthermore, in case (ii), estimate (7.4) implies∫
�ε

|vε|pdx < ε |π0(uε)|pp. (7.10)
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Then, since A(x, t, ξ) is positive, from (5.3), (5.6) and (7.3), assumption (H9) and (3.31)
imply that

J (uε) ≥ (1 − ε)

∫
�\�ε

A0(x,∇uε)dx −
(

λ0

p
+ ε

) ∫
�\�ε

|uε|pdx

− D
∫

�ε

|uε|pdx

≥ (1 − ε)τ p
∫

�

A0(x,∇TKε (vε))dx −
(

λ0

p
+ ε

)
τ p

∫
�

|TKε (vε)|pdx

− Dτ p
∫

�ε

|vε|pdx .

We note that, from (7.2), inequality (7.9) implies that

(1 − ε)

∫
�

A0(x,∇TKε (vε))dx −
(

λ0

p
+ ε

) ∫
�

|TKε (vε)|pdx

≥ 3

4

λ0
h − λ0

λ0
h

∫
�

A0(x,∇TKε (vε))dx,

where from (5.1) and also (3.2), (3.31) and the characterization of vε , it follows that∫
�

A0(x,∇TKε (vε))dx ≥ α1

σp

∫
�\�ε

|vε|pdx

= α1

σp

(
|π0(uε)|pp −

∫
�ε

|vε|pdx
)

.

Hence, summing up, from (7.2), (7.10) and direct computations, it follows that

J (uε) ≥ τ p

(
(1 − ε)

3α1(λ
0
h − λ0)

4λ0
hσp

− εD

)
|π0(uε)|pp

≥ τ p α1(λ
0
h − λ0)

4λ0
hσp

|π0(uε)|pp;

hence, condition (ii) implies

max
u∈P

J (u) ≥ J (uε) ≥ τ p α2
1(λ0

h − λ0)

8α4λ
0
h Dσp

. (7.11)

Thus, taking

cε = τ p min

{
α1

2α4
,
α2

1(λ0
h − λ0)

8α4λ
0
h Dσp

}
> 0,

(7.1) follows from (7.6), (7.8) and (7.11). ��
In order to obtain ‘information at infinity’, we need the following technical lemma (for

more details, see Step (a) in the proof of [14, Lemma 4.3]).

Lemma 7.2 If P is a compact subset of W 1,p
0 (�), taking any ε > 0 a costant ρ = ρ(P, ε) >

0 exists, such that ∫
�\�u

ρ

|∇u|pdx < ε for all u ∈ P.
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Proposition 7.3 If λ∞
k < λ∞, then a suitable ε∞ > 0 exists, such that for all ε ∈ ]0, ε∞]

a constant R∗
ε > 0 can be found, such that for each R ≥ R∗

ε a suitable subset P R
ε exists, so

that
max
u∈PR

ε

J (u) ≤ 0 with PR
ε ∈ Pk such that P R

ε ⊂ ∂B∞
R , (7.12)

where

∂B∞
R = {

u ∈ X :
∫

�

A∞(x,∇u)dx = Rp}.
Proof Since λ∞

k < λ∞, then ε∞ > 0 exists, such that

(λ∞
k + ε)(1 + ε(M2 + 1)) + εp < λ∞ for all 0 < ε ≤ ε∞, (7.13)

with M2 > 0 as in (3.12). Fixing any 0 < ε ≤ ε∞, from (H4) and (3.9), a constant rε > 0
exists, such that

|t | > rε �⇒ A(x, t, ξ) ≤ (1 + ε)A∞(x, ξ) for a.e. x ∈ �, all ξ ∈ R
N . (7.14)

Moreover, from Proposition 5.9 a set Qε ∈ W̃k exists, such that

max
v∈Qε

∫
�

A∞(x,∇v)dx

1

p

∫
�

|v|pdx
< λ∞

k + ε. (7.15)

From (6.2) we have Qε ∈ Pk and, for simplicity, we can define Pε = π∞(Qε) ∈ ∂B∞
1 , with

π∞ as in (6.5). By definition, we have
∫

�

A∞(x,∇v)dx

1

p

∫
�

|v|pdx
= 1

1

p

∫
�

|π∞(v)|pdx
for all v ∈ Qε;

hence, (6.6) and (7.15) imply

1

λ∞
k + ε

≤ 1

p

∫
�

|w|pdx for all w ∈ Pε, with Pε ∈ Pk . (7.16)

Moreover, since Pε is also compact in W 1,p
0 (�), from Lemma 7.2 ρ = ρ(ε) > 0 exists, such

that ∫
�\�w

ρ

|∇w|pdx < ε for all w ∈ Pε. (7.17)

Then, fixing any R > Rε with Rε = rε
ρ

, we can define

PR
ε = {u = Rw ∈ X : w ∈ Pε}. (7.18)

Since the map w ∈ Pε �→ Rw ∈ PR
ε is an odd homeomorphism from X in itself, from (i2)

in Proposition 2.5 it follows that PR
ε ∈ Pk , while PR

ε ⊂ ∂B∞
R from (H4).

Now, we note that, if u = Rw ∈ PR
ε with w ∈ Pε, then

|u(x)| > rε if x ∈ �w
ρ ,
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so, (3.12), (3.16), (3.22), (7.14), (H4) and direct computations imply that

J (u) ≤ (1 + ε)Rp
∫

�w
ρ

A∞(x,∇w)dx + M2R
p
∫

�\�w
ρ

|∇w|pdx

− (λ∞ − εp)
Rp

p

∫
�

|w|pdx + b1,ε.

with b1,ε = (M1 + Lε)meas(�).
As Pε ⊂ ∂B∞

1 and (7.13) imply λ∞ − εp > 0, from (7.16), (7.17) and the last inequality,
it follows that

J (u) ≤ b2,ε Rp + b1,ε for all u ∈ PR
ε , (7.19)

with b2,ε = 1 + ε(1 + M2) − λ∞−εp
λ∞
k +ε

. Thus, since (7.13) implies b2,ε < 0, a large enough

R∗
ε > rε

ρ
can be choosen, so that the second term of (7.19) is negative for all R ≥ R∗

ε ; hence,
(7.12) holds. ��
Remark 7.4 If k ∈ N is such that λ∞

k < λ∞, then

inf
P∈Pk

max
u∈P

J (u) = −∞.

In fact, reasoning as in the proof of Proposition 7.3 and taking ε ≤ ε∞ as in (7.13), for any
R > Rε we can consider PR

ε as in (7.18), so that PR
ε ∈ Pk and inequality (7.19) hold with

b2,ε < 0; hence,

lim
R→+∞ max

u∈PR
ε

J (u) = −∞.

Proof of Theorem 5.7 The hypotheses imply thatJ is an even functional such thatJ (0) = 0.
Moreover, from Proposition 3.5 and Theorem 4.5 we have that J is C1 in (X, ‖ · ‖X ) and
satisfies the (wPS) condition in R.

Now, in order to prove Theorem 5.7, let h, k ∈ N be such that (5.12) holds, so we can
fix 0 < ε ≤ min{ε0, ε∞}, with ε0 as in Proposition 7.1 and ε∞ as in Proposition 7.3, and
take τ = τ(ε) > 0 and ∂B0

τ as in Proposition 7.1. Then, we consider the pseudo-index i∗(·)
related to the cohomological index i(·) on X , the set M = ∂B0

τ (closed in W 1,p
0 (�) and then

in X ) and

H = {γ : X → X : γ odd homeomorphism, such that γ (u) = u ∀u ∈ J 0},
which is defined as in (2.18) on any symmetric subset P ⊂ X .

Thus, as in Sect. 2, for all j ∈ N, we define

P∗
j = {P ⊂ X : P symmetric and compact in X with i∗(P) ≥ j}

and

c∗
j = inf

P∈P∗
j

max
u∈P

J (u).

Firstly, taking any P ∈ P∗
h , since the identity map on X is in H, from definition (2.18), it

follows that h ≤ i∗(P) ≤ i(P∩M). Thus, the properties of P andM imply that P∩M ∈ Ph

and P ∩ M ⊂ ∂B0
τ ; hence, from Proposition 7.1 we have that

max
u∈P

J (u) ≥ max
u∈P∩MJ (u) ≥ cε
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and, from the arbitrariness of P ,
c∗
h ≥ cε > 0. (7.20)

Now, take

R > max

{
R∗

ε ,

(
α2

α1

) 1
p

τ

}
, (7.21)

with R∗
ε > 0 as in Proposition 7.3 and α1 as in (H3), α2 as in (3.9), and consider PR

ε , such
that (7.12) holds. By defining

I P R
ε = {u = sv ∈ X : s ∈ [0, 1], v ∈ PR

ε },
the properties of PR

ε imply that I P R
ε is a symmetric compact subset of X .

We claim that
i∗(I P R

ε ) ≥ k; hence , I P R
ε ∈ P∗

k . (7.22)

To this aim, let us consider the closed subsets

P0 = {u ∈ X :
∫

�

A0(x, u)dx ≤ τ p}, P1 = X\P0,

and, from (3.9), (5.1), (7.12) and (7.21), it follows that

PR
ε ⊂ ∂B∞

R ⊂ P1. (7.23)

Taking any γ ∈ H, from (7.12) the restriction of γ to PR
ε is the identity. Thus, the map

ϕ : (v, s) ∈ PR
ε × [0, 1] �→ γ (sv) ∈ X = P0 ∪ P1

is continuous, odd in v, and such that

ϕ(PR
ε × [0, 1]) = γ (I P R

ε )

is closed, while (7.23) implies that

ϕ(PR
ε × {0}) = {0} ⊂ P0, ϕ(PR

ε × {1}) = γ (PR
ε ) = PR

ε ⊂ P1.

So, the piercing property (i7) in Proposition 2.5 applies, and then from (7.12) it follows that

k ≤ i(PR
ε ) ≤ i(ϕ(PR

ε × [0, 1]) ∩ P0 ∩ P1) = i(γ (I P R
ε ) ∩ ∂B0

τ ).

Thus, (7.22) follows from the arbitrariness of γ ∈ H and (2.18). Finally, since (7.22) implies

c∗
k ≤ max

u∈I P R
ε

J (u) < +∞, (7.24)

the thesis follows from (7.20), (7.24) and Theorem 2.10, with m = k + 1 − h. ��
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