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Abstract We study the nonlinear Schrödinger equation inRn without making any periodicity
assumptions on the potential or on the nonlinear term. This prevents us from using concen-
tration compactness methods. Our assumptions are such that the potential does not change
the essential spectrum of the linear operator. This results in [0,∞) being the absolutely con-
tinuous part of the spectrum. If there are an infinite number of negative eigenvalues, they
will converge to 0. In each case we obtain nontrivial solutions. We also obtain least energy
solutions.

Mathematics Subject Classification Primary 35J65 · 58E05 · 49B27

1 Introduction

We consider the semilinear Schrödinger equation

− �u + V (x)u = f (x, u), u ∈ H1(Rn), (1)

where V (x) is a given potential. One wishes to find solutions and, in particular, the so
called “least energy solutions.” These are solutions that minimize the corresponding energy
functional. The existence of solutions depends both on the linear operatorA and the nonlinear
term f (x, u).

Many authors have studied the problem for the Schrödinger equation (1) under various
stipulations (cf., e.g., [1–20,23,25,26,28–32] and references quoted in them). In almost all
cases it was required to stipulate that the spectrum of the linear operator Au = −�u +
V (x)u have a gap. This caused writers to make various assumptions on the potential V (x)
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to guarantee that this is the case. However, many of these assumptions caused the nature of
the spectrum to be far different from that of −�u. Thus, any theorem proved for

Au = −�u + V (x)u

did not hold for Au = −�u.

Some authors assumed

inf
Rn

V (x) > 0; lim|x |→∞ V (x) = ∞.

Others assumed that there exists a constant B such that V (x) ≤ B for all x ∈ R
n, V (x) →

B as |x | → ∞ and σ(−�+ V (x)) > 0 together with other assumptions. Another approach
assumes that for every M > 0 the set ω = {x ∈ R

n : V (x) < M} has finite Lebesgue
measure. Others assumed that V (x) is in some combination of L p(Rn) spaces. In each
case the growth of f (x, t) is controlled by the growth of V (x). In most cases the resulting
spectrum of A = −� + V (x) is discrete, consisting only of isolated eigenvalues of finite
multiplicity tending to +∞. All of these assumptions cause restrictions on the the nonlinear
term depending on V . In most cases the hypothesis

μF(x, t) ≤ t f (x, t), |x | > R,

is used, where μ > 2 and

F(x, t) =
∫ t

0
f (x, s) ds.

A different approach is to assume that the potential is periodic in the coordinates of Rn

and then apply concentration compactness methods. In this case the resulting spectrum of
A = −� + V (x) is absolutely continuous and consists of a finite number of disjoint closed
intervals. In order to apply this method, f (x, t) must be periodic in x as well. In the few
publications where 0 is permitted to be in σ(−� + V (x)), an interval of the form (−ε, 0) is
required to be free of the spectrum.

The purpose of the present paper is solve the Eq. (1) under assumptions on V (x) such
that the essential spectrum of A = −� + V (x) is the the same as that of −�, i.e., [0,∞).

The situation is different if there are no negative eigenvalues, one negative eigenvalue or two
or more negative eigenvalues. If there are no negative eigenvalues, one can solve under the
same hypotheses for f (x, t) that can be used for the equation

− �u = f (x, u), u ∈ H1(Rn). (2)

Otherwise, the hypotheses on f (x, t) need only take the negative eigenvalues into consider-
ation. We can even deal with the case where the negative eigenvalues converge to 0. We do
not need an interval of the form (−ε, 0) to be free of the spectrum. In each of these cases
different methods must be employed, requiring different assumptions on the nonlinear term.

Concerning the function V (x) we make the following assumptions:

(V1)

sup
y

∫
|x−y|<δ

|V (x)| ω2(x − y) dx → 0 as δ → 0,

and
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(V2) ∫
|x−y|<1

|V (x)| ω2(x − y) dx → 0 as |y| → ∞,

where

ωs(x) =

⎧⎪⎨
⎪⎩

|x |s−n, 0 < s < n

1 − ln |x |2, s = n

1, s > n.

These assumptions imply that there is a forms extension A of the operator

−�u(x) + V (x)u(x)

on the space H = H1,2(Rn) having essential spectrum equal to [0,∞) and a (possibly empty)
discrete, countable negative spectrum consisting of isolated eigenvalues of finite multiplicity
with a finite lower bound −L

− ∞ < −L ≤ λ0 < λ1 < λ2 < . . . < λl < · · · < 0. (3)

For each l > 0, define the subspaces M = Ml and N = Nl of H as

N =
⊕
k < l

E(λk) , M = N⊥ , H = M ⊕ N .

For the operator A there are three possibilities: (a) it has no negative eigenvalues, (b) it
has only one negative eigenvalue, and (c) it has two or more negative eigenvalues. What is
interesting is that each of these possibilities must be dealt with differently. We shall study all
of them separately.

The following notation will be used throughout the paper:

‖u‖q :=
(∫

Rn
|u(x)|qdx

)1/q

, ‖u‖ = ‖u‖2,

(u, v) =
∫
Rn

u(x)v(x) dx, a(u, v) = (Au, v), a(u) = a(u, u).

Let q be any number satisfying

2 < q ≤ 2n/(n − 2), n > 2 (3.1.3)

2 < q < ∞, n ≤ 2

and let f (x, t) be a Carathéodory function on R
n ×R. This means that f (x, t) is continuous

in t for a.e. x ∈ R
n and measurable in x for every t ∈ R. We make the following assumptions

(A) The function f (x, t) satisfies

| f (x, t)| ≤ S(x)q(|t |q−1 + W (x))

and

f (x, t)/S(x)q = o
(|t |q−1) as |t | → ∞,

where S(x) > 0 is a function in Lq(Rn) satisfying

‖Su‖q ≤ C‖u‖H , u ∈ H,
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and W is a function in L∞(Rn). Here

‖u‖q :=
(∫

Rn
|u(x)|qdx

)1/q

.

Our other hypotheses depend only on the primitive

F(x, t) =
∫ t

0
f (x, s) ds

of f (x, t).
Let

G(u) = (Au, u) − 2
∫
Rn

F(x, u) dx, u ∈ H. (4)

It follows that G is a continuously differentiable functional on the whole of H (cf., e.g., [25]).
It is easily checked that u ∈ H is a (weak) solution of (1) iff it is a critical point of G(u). Our
methods will make use of this fact. They involve finding linking sets A, B which separate
G, i.e., are such that

sup
A

G ≤ inf
B

G.

If the spectrum of A has no gap, i.e., consists only of the interval [0,∞), the choice of the
sets A, B is very limited. If it has one gap, the subspace in the gap is very useful. If it has two
gaps, we obtain two useful subspaces. In our situation, if there are no negative eigenvalues,
there are no gaps. If there is one negative eigenvalue, there is one gap. If there are two or
more negative eigenvalues, there are at least two gaps. Therefore we consider three different
situations.

2 The space N1

We let N1 be the set of measurable functions h(x) on R
n satisfying

sup
u

‖hu‖
‖u‖H

< ∞.

It is clear that bounded functions are in N1. It can be shown that L p(Rn) ⊂ N1 for p ≥ n.

For a general description of this space, cf. [21]. These functions will be used in our theorems
because of the following properties:

Lemma 1 If g−1 ∈ N1, the following statements are true:

1. there is a constant C such that

‖u‖H ≤ C‖u‖′
H , u ∈ H, (5)

where

(‖u‖′
H )2 = ‖∇u‖2 + ‖gu‖2.

2. If A has no negative eigenvalues, then there is an ε > 0 such that

a(u) + ‖gu‖2 ≥ ε‖u‖2
H , u ∈ H. (6)
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3. If A has only one negative eigenvalue λ0, then there is an ε > 0 such that

a(u) + ‖gu‖2 ≥ ε‖u‖2
H , u ∈ M. (7)

4. If A has negative eigenvalues λl−1, λl , then there is an ε > 0 such that

a(u) − λl‖u‖2 + ‖gu‖2 ≥ ε‖u‖2
H , u ∈ M. (8)

If g ∈ N1, then there is a constant C such that

‖u‖′
H ≤ C‖u‖H , u ∈ H. (9)

If g, g−1 ∈ N1, then the two norms are equivalent.

Lemma 1 will be proved in Sect. 8.

3 No negative eigenvalues

In this case,

a(u) = (Au, u) ≥ 0, u ∈ H.

There are no gaps in the spectrum of A.

We have

Theorem 2 Assume

1. There is a function g(x) such that g, g−1 ∈ N1 and

2F(x, u) ≤ −g(x)2|u|2 + W (x), u ∈ R, x ∈ R
n,

where W (x) ∈ L1(Rn).

Then the Eq. (1) has a solution.

Remark 3 It is clear from the equation that the solution obtained will be nontrivial if

f (x, 0) = 0.

To guarantee that a solution will be nontrivial even when f (x, 0) = 0, we have

Theorem 4 Assume

1. There are constants 0 < α < 2, δ > 0, and a function g(x) such that g, g−1 ∈ N1 and

2F(x, u) ≤ −g(x)2|u|2, u ∈ R, x ∈ R
n, |u| < δ,

≤ −g(x)2|u|2 + S(x)q |u|α, u ∈ R, x ∈ R
n, |u| > δ.

2. There is a locally bounded function h(t) such that

2F(x, u) ≥ −h(u), u ∈ R, x ∈ R
n,

and

c0 = sup
R

h(u)/u2 < ∞.

Then the Eq. (1) has a nontrivial solution.
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4 Only one negative eigenvalue

Let λ0 < 0 be the eigenvalue. In this case

a(u) ≥ λ0‖u‖2, u ∈ H.

We can make use of the fact that there is a gap in the spectrum of A. We have

Theorem 5 Assume

1.

2F(x, u) ≥ λ0|u|2, u ∈ R, x ∈ R
n .

2. There are constants 0 < α < 2, δ > 0, and a function g(x) such that g, g−1 ∈ N1 and

2F(x, u) ≤ −g(x)2|u|2, u ∈ R, x ∈ R
n, |u| < δ,

≤ −g(x)2|u|2 + S(x)q |u|α, u ∈ R, x ∈ R
n, |u| > δ.

Then the Eq. (1) has a solution.

To obtain a nontrivial solution we have

Theorem 6 Assume

1.

2F(x, u) ≥ λ0|u|2, u ∈ R, x ∈ R
n .

2. There are constants 0 < α < 2, δ > 0, and a function g(x) such that g, g−1 ∈ N1 and

2F(x, u) ≤ −g(x)2|u|2, u ∈ R, x ∈ R
n, |u| < δ,

≤ −g(x)2|u|2 + S(x)q |u|α, u ∈ R, x ∈ R
n, |u| > δ.

3. There is a locally bounded function h(t) such that

2F(x, u) ≥ −h(u), u ∈ R, x ∈ R
n,

and

c0 = sup
R

h(u)/u2 < ∞.

Then the Eq. (1) has a nontrivial solution.

5 Two or more negative eigenvalues

Here again we can make use of the fact that there is more than one gap in the spectrum. This
allows us to use more complicated linking methods.

Let λl−1, λl be two consecutive negative eigenvalues of A. We have

Theorem 7 Assume

1.

2F(x, u) ≥ λl−1|u|2, u ∈ R, x ∈ R
n,
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2. There are constants 0 < α < 2, δ > 0, and a function g(x) such that g, g−1 ∈ N1 and

2F(x, u) ≤ −g(x)2|u|2 + λl |u|2, u ∈ R, x ∈ R
n, |u| < δ,

≤ −g(x)2|u|2 + λl |u|2 + S(x)q |u|α, u ∈ R, x ∈ R
n, |u| > δ.

Then the Eq. (1) has a solution.

To obtain a nontrivial solution we have

Theorem 8 Assume

1.

2F(x, u) ≥ λl−1|u|2, u ∈ R, x ∈ R
n,

2. There are constants 0 < α < 2, δ > 0, and a function g(x) such that g, g−1 ∈ N1 and

2F(x, u) ≤ −g(x)2|u|2 + λl |u|2, u ∈ R, x ∈ R
n, |u| < δ,

≤ −g(x)2|u|2 + λl |u|2 + S(x)q |u|α, u ∈ R, x ∈ R
n, |u| > δ.

3. There is a locally bounded function h(t) such that

2F(x, u) ≥ −h(u), u ∈ R, x ∈ R
n,

and

c0 = sup
R

h(u)/u2 < ∞.

Then the Eq. (1) has a nontrivial solution.

Remark 9 Note that the hypothesis of Theorem 2 is stronger than hypotheses 1 and 2 of
Theorem 5. Hypothesis 1 of Theorem 5 requires

2F(x, u) ≥ λl |u|2, u ∈ R, x ∈ R
n,

which is stronger than hypothesis 1 of Theorem 7. Consequently, the hypotheses of Theorem
4 are stronger than those of Theorem 6 which are stronger than those of Theorem 8.

6 Least energy solutions

Let M be the set of all solutions of (1). A solution ũ is called a “least energy solution” if it
minimizes the functional

G(u) = a(u) − 2
∫
Rn

F(x, u) dx (10)

over the set M.

We have

Theorem 10 If we add the following hypothesis to Theorems 2–8, then Eq. (1) has a least
energy solution: The function given by

H(x, u) = u f (x, u) − 2F(x, u) (11)

satisfies
H(x, u) ≥ −W (x) ∈ L1(Rn), u ∈ R, x ∈ R

n . (12)
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We shall prove Theorems 2–10 in Sect. 8. In the next section we describe the construction
of the operator A. We obtain the largest self-adjoint extension of A0 which preserves the
essential spectrum.

7 The operator A
The following was proved in [21] (Theorem 10.9, ch. 6, p. 153.)

Theorem 11 Let P(D) be an elliptic constant coefficient operator of order 2 on R
n, and let

V(x) be a function satisfying (V1) and (V2). If ρ(P0) is not empty, then P(D)+V has a forms
extension operator A such that σe(A) = σe(P0).

Here P0 is the closure of the operator P(D) restricted to C∞
0 (Rn), and σe is the essential

spectrum. Any point not in the essential spectrum is either a point in the resolvent or an isolated
eigenvalue of finite multiplicity. If P(D) = −�, then σ(P0) = [0,∞). Consequently, in our
case, the negative spectrum of A can have at most a countable number of isolated eigenvalues
of finite multiplicity having a finite lower bound. The theorem is proved by showing that the
bilinear form

a(u, v) = (P(D)u, v) + (V u, v), u, v ∈ H

is bounded and closed on H. Moreover, if the coefficients of P(D) and the function V (x)

are real, then the bilinear form is symmetric and A is selfadjoint.

8 Proof of Lemma 1.

Proof We have

(u, u) = (gu, g−1u) ≤ ‖gu‖ · ‖g−1u‖ ≤ C‖gu‖ · ‖u‖H ≤ ε‖u‖2
H + Kε‖gu‖2.

Hence,

‖u‖2
H ≤ ε‖u‖2

H + ‖∇u‖2 + Kε‖gu‖2.

To prove (6), assume that there is a sequence u(k) ∈ H such that ‖u(k)‖′
H = 1 and a(u(k)) +

‖gu(k)‖2 → 0, where

(‖u‖′
H )2 = ‖∇u‖2 + ‖gu‖2.

Since

ρk = ‖u(k)‖H ≤ C,

there is a renamed subsequence such that u(k) converges to a limit u ∈ H weakly in H,

strongly in L2
loc(R

n) and a.e. in R
n . Since a(u(k)) ≥ 0, we have a(u(k)) → 0 and ‖gu(k)‖ →

0. By our hypothesis on V (x), there is a renamed subsequence of u(k) such that b(u(k)) →
b(u), where b(u) = (V u, u). Thus, 1 + b(u) = 0, showing that u = 0. Since gu(k) → gu
a.e., we have u = 0, providing a contradiction. The same proof can be used to prove (7) if
we keep in mind that (7) holds only on M. To prove (8), assume that there is a sequence
u(k) ∈ M such that ‖u(k)‖′

H = 1 and a(u(k)) − λl‖u(k)‖2 + ‖gu(k)‖2 → 0. Since

ρk = ‖u(k)‖′
H ≤ C,
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there is a renamed subsequence such that u(k) converges to a limit u ∈ H weakly in
H, strongly in L2

loc(R
n) and a.e. in R

n . Also, there is a renamed subsequence such that
‖∇u(k)‖ → ν and ‖gu(k)‖ → τ, where ν2 + τ 2 = 1. Since a(u(k)) − λl‖u(k)‖2 ≥ 0 in
M, we have a(u(k)) − λl‖u(k)‖2 → 0 and ‖gu(k)‖ → 0. By our hypothesis on V (x), there
is a renamed subsequence of u(k) such that b(u(k)) → b(u), where b(u) = (V u, u). Since
a(u(k)) − λl‖u(k)‖2 → 0, and a(u(k)) → ν2 + b(u), we see that ν2 + b(u) ≤ 0. Since
gu(k) → gu a.e. and ‖gu(k)‖ → 0, we have τ = 0 and u = 0. But then, ν = 1 and
1 + b(u) ≤ 0, showing that u = 0, providing a contradiction. ��

9 Proofs of the Theorems

We now give the proof of Theorem 2.

Proof We define

G(u) = a(u) − 2
∫
Rn

F(x, u(x)) dx, u ∈ H. (13)

By Lemma 1 there is an ε > 0 such that

a(u) + ‖gu‖2 ≥ ε‖u‖2
H , u ∈ H. (14)

Thus
G(u) → ∞, ‖u‖H → ∞, (15)

i.e., G(u) is coercive. Let

c = inf
H

G.

By Corollary 3.22, p. 29, of [24] there is a sequence {u(k)} ⊂ H such that

G(u(k)) = a(u(k)) − 2
∫
Rn

F
(

x, u(k)(x)
)

dx → c, (16)

(
G ′(u(k)), z

)
/2 = a

(
u(k), z

)
−

∫
Rn

f
(

x, u(k)
)

· z(x) dx → 0, z ∈ H (17)

and (
G ′(u(k)), u(k)

)
/2 = a

(
u(k)

)
−

∫
Rn

f (x, u(k)) · u(k) dx → 0. (18)

Since G(u) is coercive,

ρk = ‖u(k)‖′
H ≤ C,

where

(‖u‖′
H )2 = ‖∇u‖2 + ‖gu‖2.

Thus there is a renamed subsequence such that u(k) converges to a limit u ∈ H weakly in H,

strongly in L2
loc(R

n) and a.e. in R
n . From (17) we see that

(G ′(u), z)/2 = a(u, z) −
∫
Rn

f (x, u(x)) · z(x) dx = 0, z ∈ C∞
0 (Rn),

from which we conclude easily that u is a solution of (1). ��
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Proof of Theorem 4 By Lemma 1, there is an ε > 0 such that

a(u) + ‖gu‖2 ≥ ε‖u‖2
H , u ∈ H. (19)

Consequently,

G(u) ≥ ε‖u‖2
H −

∫
|u|>δ

S(x)q |u(x)|α ≥ ε‖u‖2
H − C‖u‖q

H

by Hypothesis (A). As a consequence, there are positive constants η, ρ such that

G(u) ≥ η, ‖u‖H = ρ. (20)

Since 0 ∈ σe(A), there is a ϕ ∈ H such that ‖ϕ‖ = 1 and a(ϕ) = (Aϕ, ϕ) < η/2.

Consequently,

G(sϕ) = s2a(ϕ) − 2
∫

F(x, sϕ) ≤ s2η/2 +
∫

h(sϕ).

Thus,

lim sup
s→∞

G(sϕ)/s2 ≤ η/2 + C,

since

lim sup
s→∞

∫
h(sϕ)

s2ϕ2 ϕ2 ≤ C‖ϕ‖2.

This implies that there is a sequence u(k) in H such that

G(u(k)) → c ≥ η/2, G ′(u(k))/(‖u(k)‖H + 1)2 → 0 (21)

(Theorem 2.7.1 of [22]).
If

ρk = ‖u(k)‖′
H ≤ C,

there is a renamed subsequence such that u(k) converges to a limit u ∈ H weakly in H,

strongly in L2
loc(R

n) and a.e. in R
n . In particular we have

(
G ′(u(k)), z

)
/2 = a

(
u(k), z

)
−

∫
f
(

x, u(k)
)

· z(x) dx → 0, z ∈ H. (22)

From this we see that

(
G ′(u), z

)
/2 = a(u, z) −

∫
f (x, u(x)) · z(x) dx = 0, z ∈ C∞

0 (Rn),

from which we conclude easily that u is a solution of (1). Moreover, since ‖u(k)‖′
H is bounded,

(21) implies G(u) = c ≥ η/2 (Theorem 3.4.1 of [22]). Since, G(0) = 0, we see that u = 0.

If

ρk = ‖u(k)‖′
H → ∞,

let ũ(k) = u(k)/ρk . Then, ‖ũ(k)‖′
H = 1. There is a renamed subsequence such that ũ(k)

converges to a function ũ(x) ∈ H weakly in H, strongly in L2
loc(R

n), a.e. inRn, and such that
‖∇ũ(k)‖ → ν and ‖gũ(k)‖ → τ, where ν2+τ 2 = 1. Let b(u, v) = (V u, v), b(u) = b(u, u).
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Since ũ(k) converges to ũ weakly in H, we see that b(ũ(k)) → b(ũ). Hence, ‖∇ũ(k)‖2 +
b(ũ(k)) + ‖gũ(k)‖2 → ν2 + b(ũ) + τ 2. Note that

∫
Sq |u|α ≤

(∫
|Su|α·(q/α)

)(α/q) (∫
S(q−α)·q/(q−α)

)(q−α)/q

≤ ‖Su‖α
q · ‖S‖q−α

q .

Thus,

0 ← G(u(k))/ρ2
k ≥ ‖∇ũ(k)‖2 + b(ũ(k)) + ‖gũ(k)‖2 − O(ρα−2

k ) → ν2 + b(ũ) + τ 2. (23)

Thus, 1 + b(ũ) = ν2 + b(ũ) + τ 2 ≤ 0. This implies that b(ũ) = 0, and consequently
ũ(x) ≡ 0. But gũ(k) → gũ a.e. This means that ũ = 0, a contradiction. Hence, the ρk are
bounded, and the proof is complete. ��
Proof of Theorem 5 We follow the proof of Theorem 4. By Lemma 1 there is an ε > 0 such
that (7) holds. This implies that there are positive constants η, ρ such that

G(u) ≥ η, ‖u‖H = ρ, u ∈ M (24)

by the argument given there. Note that

G(v) = a(v) − 2
∫

F(x, v) = λ0‖v‖2 − 2
∫

F(x, v) ≤ 0, v ∈ N

by Hypothesis 1. Define A = M ∩ Bρ, B = N , where

Bρ = {u ∈ H : ‖u‖H < ρ}.
Then A links B (Example 2, p. 38 of [22]). If G1 = −G, then

sup
A

G1 ≤ inf
B

G1.

By Theorem 13.7, p. 259 of [22] or Corollary 3.22, p. 29 of [24] there is a sequence {u(k)} ⊂ H
such that

G
(

u(k)
)

= a
(

u(k)
)

− 2
∫
Rn

F
(

x, u(k)(x)
)

dx → c, (25)

(
G ′(u(k)), z

)
/2 = a

(
u(k), z

)
−

∫
Rn

f
(

x, u(k)
)

· z(x) dx → 0, z ∈ H (26)

and (
G ′(u(k)), u(k)

)
/2 = a

(
u(k)

)
−

∫
Rn

f
(

x, u(k)
)

· u(k) dx → 0. (27)

If

ρk = ‖u(k)‖′
H ≤ C,

where (‖u‖′
H

)2 = ‖∇u‖2 + ‖gu‖2,

then there is a renamed subsequence such that u(k) converges to a limit u ∈ H weakly in H,

strongly in L2
loc(R

n) and a.e. in R
n . From (26) we see that

(
G ′(u), z

)
/2 = a(u, z) −

∫
Rn

f (x, u(x)) · z(x) dx = 0, z ∈ C∞
0 (Rn),

from which we conclude easily that u is a solution of (1).
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If

ρk = ‖u(k)‖′
H → ∞,

let ũ(k) = u(k)/ρk . Then, ‖ũ(k)‖′
H = 1. There is a renamed subsequence such that ũ(k)

converges to a function ũ(x) ∈ H weakly in H, strongly in L2
loc(R

n), a.e. in R
n, and such

that ‖∇ũ(k)‖ → ν and ‖gũ(k)‖ → τ, where ν2 + τ 2 = 1. Let b(u, v) = (V u, v), b(u) =
b(u, u). Since ũ(k) converges to ũ weakly in H, we see that b(ũ(k)) → b(ũ). Hence, 0 ≤
‖∇ũ(k)‖2 +b(ũ(k))+‖gũ(k)‖2 → ν2 +b(ũ)+τ 2. Since a(ũ(k)) ≥ 0, we have ν2 +b(ũ) ≥ 0.

Note that
∫

Sq |u|α ≤
(∫

|Su|α·(q/α)

)(α/q) (∫
S(q−α)·q/(q−α)

)(q−α)/q

≤ ‖Su‖α
q · ‖S‖q−α

q .

Moreover,

G
(

u(k)
)

/ρ2
k = ‖∇ũ(k)‖2 + b

(
ũ(k)

)
+ ‖gũ(k)‖2 + O

(
ρα−2

k

)
→ ν2 + b(ũ) + τ 2 = 0.

This implies ν2 + b(ũ) = 0 and τ 2 = 0. But gũ(k) → gũ a.e. This means that ũ = 0 and
ν = 1, so that

1 + b(ũ) = 0.

But this implies that b(ũ) = 0, and consequently ũ(x) ≡ 0, a contradiction. Hence, the ρk

are bounded, and the proof is complete. ��
Proof of Theorem 6 We follow the proof of Theorem 4. By Lemma 1 there is an ε > 0 such
that (7) holds. This implies that there are positive constants η, ρ such that

G(u) ≥ η, ‖u‖H = ρ, u ∈ M (28)

as in the proof of Theorem 4. Note that

G(v) = a(v) − 2
∫

F(x, v) = λ0‖v‖2 − 2
∫

F(x, v) ≤ 0, v ∈ N

by Hypothesis 1. Since A is not invertible on M , there is a ϕ ∈ M such that ‖ϕ‖ = 1 and
a(ϕ) = (Aϕ, ϕ) < η. For R > ρ, let

AR = [N ∩ BR] ∪ {v + sϕ : s ≥ 0, ‖v + sϕ‖ = R}
B = M ∩ ∂Bρ,

where

Bρ = {u ∈ H : ‖u‖H < ρ}.
By Example 3, p.38 of [22], AR, B link each other. Now

G(v + sϕ) ≤ a(v) + s2η +
∫

h(v + sϕ)

(v + sϕ)2 (v + sϕ)2

≤ λ0‖v‖2 + s2η + c0‖v + sϕ‖2

≤ (c0 + λ0)‖v‖2 + (c0 + η)s2

≤ (2c0 + λ0 + η)R2.
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We can now apply Theorem 2.7.3 of [22] to conclude that there is a sequence u(k) in H such
that

G
(

u(k)
)

→ c ≥ η, G ′ (u(k)
)

/
(
‖u(k)‖H + 1

)2 → 0. (29)

We can now follow the proofs of Theorem 5 to reach the desired conclusion. ��
Proof of Theorem 7 Define the subspaces M and N of H as before:

N =
⊕
k < l

E(λk) , M = N⊥ , H = M ⊕ N .

Let

G(u) = a(u) − 2
∫
Rn

F(x, u) dx . (30)

We note that Hypothesis 1 implies

G(v) ≤ 0, v ∈ N . (31)

In fact, we have

G(u) = a(u) − 2
∫
Rn

F(x, u) dx ≤
∫
Rn

[
λl−1u2 − 2 f (x, u)

]
dx ≤ 0, u ∈ N .

In view of inequality (8), we see that there are positive constants η, ρ such that

G(u) ≥ η, ‖u‖H = ρ, u ∈ M. (32)

Take

A = ∂Bρ ∩ M,

B = N ,

where

Bρ = {u ∈ H : ‖u‖H < ρ}.
By Example 8, p. 22 of [24], A links B. Moreover,

sup
A

[−G] ≤ 0 ≤ inf
B

[−G]. (33)

Hence, we may apply Corollary 2.8.2 of [22] to conclude that that there is a sequence
{u(k)} ⊂ H such that

G
(

u(k)
)

= a
(

u(k)
)

− 2
∫
Rn

F
(

x, u(k)(x)
)

dx → c ≤ 0, (34)

(
G ′(u(k)), z

)
/2 = a

(
u(k), z

)
−

∫
Rn

f
(

x, u(k)
)

· z(x) dx → 0, z ∈ H (35)

and (
G ′(u(k)), u(k)

)
/2 = a

(
u(k)

)
−

∫
Rn

f
(

x, u(k)
)

· u(k) dx → 0. (36)

If

ρk = ‖u(k)‖′
H ≤ C,
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there is a renamed subsequence such that u(k) converges to a limit u ∈ H weakly in H
strongly in L2

loc(R
n) and a.e. in R

n . From (35) we see that

(
G ′(u), z

)
/2 = a(u, z) −

∫
Rn

f (x, u(x)) · z(x) dx = 0, z ∈ C∞
0 (Rn),

from which we conclude easily that u is a solution of (1). We can now follow the proof of
Theorem 4 until we reach (23). In our case this becomes

G
(

u(k)
)

/ρ2
k ≥ ‖∇ũ(k)‖2 + b

(
ũ(k)

)
+ ‖gũ(k)‖2 − λl‖ũ(k)‖2 − O

(
ρα−2

k

)
. (37)

Since λl ≤ 0,

G
(

u(k)
)

/ρ2
k → 0,

and

‖∇ũ(k)‖2 + b(ũ(k)) + ‖gũ(k)‖2 → ν2 + b(ũ) + τ 2,

we again have 1 + b(ũ) ≤ 0, which leads to the desired conclusion. ��
Proof of Theorem 8 We follow the proof of Theorem 7. We note that Hypothesis 1 implies

G(v) ≤ 0, v ∈ N . (38)

In fact, we have

G(u) = a(u) − 2
∫
Rn

F(x, u) dx ≤
∫
Rn

[
λl−1u2 − 2 f (x, u)

]
dx ≤ 0, u ∈ N .

In view of inequality (8), we see that there are positive constants η, ρ such that

G(u) ≥ η, ‖u‖H = ρ, u ∈ M. (39)

Let ϕ be an eigenfunction of A corresponding to λl and satisfying ‖ϕ‖ = 1. For R > ρ, let

AR = [N ∩ BR] ∪ {v + sϕ : s ≥ 0, ‖v + sϕ‖ = R}
B = M ∩ ∂Bρ,

where

Bρ = {u ∈ H : ‖u‖H < ρ}.
By Example 3, p.38 of [22], AR, B link each other. Now

G(v + sϕ) ≤ a(v) + s2λl +
∫

h(v + sϕ)

(v + sϕ)2 (v + sϕ)2

≤ λl−1‖v‖2 + s2λl + c0‖v + sϕ‖2

≤ (c0 + λl−1)‖v‖2 + (c0 + λl)s
2

≤ (2c0 + λl−1 + λl)R2.

We can now apply Theorem 2.7.3 of [22] to conclude that there is a sequence u(k) in H such
that

G
(

u(k)
)

→ c ≥ η/2, G ′ (u(k)
)

/
(
‖u(k)‖H + 1

)2 → 0. (40)
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We can now follow the proof of Theorem 4 until we reach (23). In our case this becomes

G
(

u(k)
)

/ρ2
k ≥ ‖∇ũ(k)‖2 + b

(
ũ(k)

)
+ ‖gũ(k)‖2 − λl‖ũ(k)‖2 − O

(
ρα−2

k

)
. (41)

Since λl ≤ 0,

G
(

u(k)
)

/ρ2
k → 0,

and

‖∇ũ(k)‖2 + b
(

ũ(k)
)

+ ‖gũ(k)‖2 → ν2 + b(ũ) + τ 2,

we again have 1 + b(ũ) ≤ 0, which leads to the desired conclusion. ��

Proof of Theorem 10. Let

α = inf
M

G(u).

There is a sequence {u(k)} ∈ M such that

G
(

u(k)
)

= a
(

u(k)
)

− 2
∫
Rn

F
(

x, u(k)(x)
)

dx → α, (42)

(
G ′(u(k)), z

)
/2 = a

(
u(k), z

)
−

∫
Rn

f
(

x, u(k)
)

· z(x) dx = 0, z ∈ H (43)

and (
G ′(u(k)), u(k)

)
/2 = a

(
u(k)

)
−

∫
Rn

f
(

x, u(k)
)

· u(k) dx = 0. (44)

Thus,
∫
Rn

H
(

x, u(k)(x)
)

dx = G
(

u(k)
)

→ α.

In view of assumption (11), we see that α ≥ − ∫
W > −∞. In view of the arguments given

in the proofs of Theorems 2–8, we see that

ρk = ‖u(k)‖H ≤ C.

Hence, there is a renamed subsequence such that u(k) converges to a limit u ∈ H, weakly in
H, strongly in L2

loc(R
n) and a.e. in R

n . From (43) we see that

(
G ′(u), z

)
/2 = a(u, z) −

∫
Rn

f (x, u(x)) · z(x) dx = 0, z ∈ C∞
0 (Rn),

from which we conclude easily that u is a solution of (1). Hence, u ∈ M. Moreover,

G(u) =
∫
Rn

H(x, u(x)) dx ≤ lim inf
∫
Rn

H(x, u(k)(x)) dx = lim inf G(u(k)) = α.

Thus, G(u) = α. If α = 0, then u = 0. This completes the proof.
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