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Abstract We introduce a new concept of dissipative measure-valued solution to the com-
pressible Navier–Stokes system satisfying, in addition, a relevant form of the total energy
balance. Then we show that a dissipative measure-valued and a standard smooth classical solu-
tion originating from the same initial data coincide (weak-strong uniqueness principle) as long
as the latter exists. Such a result facilitates considerably the proof of convergence of solutions
to various approximations including certain numerical schemes that are known to generate
a measure-valued solution. As a byproduct we show that any measure-valued solution with
bounded density component that starts from smooth initial data is necessarily a classical one.

Mathematics Subject Classification Primary 35Q30; Secondary 35A02 · 76D05

1 Introduction

The concept of measure-valued solution to partial differential equations was introduced by
DiPerna [6] in the context of conservation laws. He used Young measures in order to conve-
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niently pass to the artificial viscosity limit and in some situations (e.g. the scalar case) proved
a posteriori that the measure-valued solution is atomic, i.e. it is in fact a solution in the sense
of distributions.

For general systems of conservation laws there is no hope to obtain (entropy) solutions in
the distributional sense and therefore there seems to be no alternative to the use of measure-
valued solutions or related concepts. In the realm of inviscid fluid dynamics, the existence
of measure-valued solutions has been established for a variety of models [7,16,25].

Measure-valued solutions to problems involving viscous fluids were introduced in the
early nineties in [21] and may seem obsolete nowadays in the light of the theory proposed
by P.-L. Lions [20] and extended by Feireisl et al. [11] in the framework of weak solutions
for the barotropic Navier-Stokes system

∂t� + divx (�u) = 0

∂t (�u) + divx (�u ⊗ u) + ∇x p(�) = divxS(∇xu), (1.1)

where � is the density, u the velocity, p the given pressure function, and S the Newtonian
viscous stress.

The reason we consider measure-valued solutions nevertheless is twofold: First, the results
of this paper pertain to any adiabatic exponent greater than one, whereas the known existence
theory for weak solutions requires γ > 3/2; second, there remains a vast class of approximate
problems including systems with higher order viscosities and solutions to certain numerical
schemes for which it is rather easy to show that they generate a measure-valued solution
whereas convergence to a weak solution is either not known or difficult to prove. This moti-
vates the present study, where we introduce a new concept of (dissipative) measure valued
solution to the system (1.1).

The main novelty is that we have to deal with nonlinearities both in the velocity and its
derivative, since we need to make sense of the energy inequality

∂t

∫
�

[
1

2
�|u|2 + P(�)

]
dx +

∫
�

[S(∇xu) : ∇xu] dx ≤ 0

in the measure-valued framework. Indeed, Neustupa [25] considered measure-valued solu-
tions of (1.1), but his theory does not involve the energy. Young measures do not seem suitable
to describe the limit distributions of a map and its gradient simultaneously, as it is unclear
how the information that one component of the measure is in some sense the gradient of the
other component is encoded in the measure. We solve this issue by introducing a “dissipation
defect” (see Definition 2.1), which encodes all conceivable concentration effects in the den-
sity and the velocity, and concentration and oscillation effects in the gradient of the velocity.
It then turns out that postulating a Poincaré-type inequality [see (2.23)], which is satisfied by
any measure generated by a reasonable approximating sequence of solutions for (1.1), already
suffices to ensure weak-strong uniqueness. As a side effect, we thus avoid the notationally
somehow heavy framework of Alibert and Bouchitté [1] and give the most extensive defini-
tion of dissipative measure-valued solution that still complies with weak-strong uniqueness
(cf. also the discussion in Sect. 2.2).

Indeed, the proof of weak-strong uniqueness for our dissipative measure-valued solutions
is the main point of this paper (Theorem 4.1). Weak-strong uniqueness means that classical
solutions are stable within the class of dissipative measure-valued solutions. For the incom-
pressible Navier-Stokes equations, a weak-strong uniqueness principle was shown for the first
time in the classical works of Prodi [29] and Serrin [30]. Surprisingly, even in the measure-
valued setting, weak-strong uniqueness results have been proved: For the incompressible
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Euler equations and bounded solutions of conservation laws this was done in [2], and for
the compressible Euler system and a related model for granular flow in [17]. In the context
of elastodynamics, dissipative measure-valued solutions and their weak-strong uniqueness
property were studied in [5]. Here, we give the first instance of weak-strong uniqueness for
measure-valued solutions of a viscous fluid model.

We also identify a large class of problems generating dissipative measure-valued solutions
including the pressure-density equations of state that are still beyond the reach of the current
theory of weak solutions. We make a similar observation for certain numerical schemes, thus
adopting the viewpoint of Fjordholm et al. [13], who argue (in the context of hyperbolic sys-
tems of conservation laws) that dissipative measure-valued solutions are a more appropriate
solution concept compared to weak entropy solutions, because the former are obtained as
limits of common numerical approximations whereas the latter aren’t.

As a further application of weak-strong unqiueness, we show (Theorem 6.1) that every
approximate sequence of solutions of (1.1) with uniformly bounded density converges to the
unique smooth solution.

2 Definition and existence of dissipative measure-valued solutions

2.1 Motivation: Brenner’s model in fluid dynamics

To motivate our definition of measure-valued solution, we consider a model of a viscous
compressible fluid proposed by Brenner [3], where the density � = �(t, x) and the velocity
u = u(t, x) satisfy

∂t� + divx (�u) = K�� (2.1)

∂t (�u) + divx (�u ⊗ u) + ∇x p(�) = divxS(∇xu) + Kdivx (u ⊗ ∇x�), (2.2)

where K > 0 is a parameter, and S the standard Newtonian viscous stress

S(∇xu) = μ

(
∇xu + ∇ t

xu − 2

3
divxuI

)
+ ηdivxuI, μ > 0, η ≥ 0. (2.3)

Note that S depends only on the symmetric part of its argument. Problem (2.1–2.3) may be
supplemented by relevant boundary conditions, here

u|∂� = 0, ∇x� · n|∂� = 0, (2.4)

where � ⊂ RN , N = 2, 3 is a regular bounded domain.
In addition, sufficiently smooth solutions of (2.1–2.4) obey the total energy balance:

∂t

∫
�

[
1

2
�|u|2 + P(�)

]
dx +

∫
�

[
S(∇xu) : ∇xu + K P ′′(�)|∇x�|2] dx = 0, (2.5)

where P denotes the pressure potential,

P(�) = �

∫ �

1

p(z)

z2 dz.

Leaving apart the physical relevance of Brenner’s model, discussed and criticized in several
studies (see, e.g., Öttinger, Struchtrup, and Liu [26]), we examine the limit of a family of
solutions {�K , uK }K>0 for K → 0. Interestingly, system (2.1–2.3) is almost identical to
the approximate problem used in [8] in the construction of weak solutions to the barotropic
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Navier–Stokes system, in particular, the existence of {�K , uK }k>0 for a fairly general class
of initial data may be established by the method detailed in [8, Chapter 7]. A more general
model of a heat-conducting fluid based on Brenner’s ideas has been also analyzed in [12].

We suppose that the energy of the initial data is bounded
∫

�

[
1

2
�K

0 |uK
0 |2+P(�K

0 )

]
dx ≤ c

uniformly for K → 0. In order to deduce uniform bounds, certain coercivity assumption
must be imposed on the pressure term:

p ∈ C[0, ∞) ∩ C2(0,∞), p(0)=0, p′(�) > 0 for � > 0, lim inf
�→∞ p′(�) > 0, lim inf

�→∞
P(�)

p(�)
>0.

(2.6)
Seeing that P ′′(�) = p′(�)/� we deduce from the energy balance (2.5) the following bounds

sup
τ∈[0,T ]

∫
�

P(�K )(τ, ·) dx ≤ c ⇒ sup
τ∈[0,T ]

∫
�

�K log(�K )(τ, ·) dx ≤ c,

sup
τ∈[0,T ]

∫
�

�K |uK |2(τ, ·) dx ≤ c,

∫ T

0

∫
�

S(∇xuK ) : ∇xuK dx ≤ c ⇒ (Korn inequality)
∫ T

0

∫
�

|∇xuK |2 dx ≤ c

⇒ (Poincaré inequality)

∫ T

0

∫
�

|uK |2 dx ≤ c,

K
∫ T

0

∫
�

p′(�K )

�K
|∇x�

K |2 dx ≤ c (2.7)

uniformly for K → 0.
Now, system (2.1, 2.1) can be written in the weak form
[∫

�

�Kψ dx

]t=τ

t=0
=

∫ τ

0

∫
�

[
�K ∂tψ + �KuK · ∇xψ − K∇x�

K · ∇xψ
]

dx dt (2.8)

for any ψ ∈ C1([0, T ] × �),
[∫

�
�K uK · ϕ dx

]t=τ

t=0
=

∫ τ

0

∫
�

[
�K uK · ∂tϕ + �K (uK ⊗ uK ) : ∇xϕ+p(�K )divxϕ

]
dx dt

−
∫ τ

0

∫
�

[
S(∇xuK ) : ∇xϕ + K (uK ⊗ ∇x�

K ) : ∇xϕ
]

dx dt

(2.9)

for any ϕ ∈ C1([0, T ] × �), ϕ|∂� = 0.
The first observation is that the K -dependent quantities vanish in the asymptotic limit

K → 0 as long as (2.7) holds. To see this, note that

K
∫ τ

0

∫
�

∇x�
K · ∇xψ dx dt = √

K
∫ τ

0

∫
�

√
K

∇x�
K√

�K
·
√

�K∇xψ dx dt,

K
∫ τ

0

∫
�

(uK ⊗ ∇x�
K ) : ∇xϕ dx dt = √

K
∫ τ

0

∫
�

(√
�KuK ⊗ √

K
∇x�

K√
�K

)
: ∇xϕ dx;

(2.10)

123



Dissipative measure-valued solutions to the compressible… Page 5 of 20 141

whence, by virtue of hypothesis (2.6), these integrals are controlled by (2.7) at least on the
set where �K ≥ 1. In order to estimate ∇x�

K on the set where �K is small, we multiply (2.1)
on b′(�K ) obtaining

∂t b(�
K ) + divx (b(�

K )uK ) +
(
b′(�K )�K − b(�K )

)
divxuK

= Kdivx
(
b′(�K )∇xb(�

K )
)

− Kb′′(�K )|∇x�
K |2. (2.11)

Such a step can be rigorously justified for the solutions of Brenner’s problem discussed in
[12] provided, for instance, b ∈ C∞

c [0,∞). Thus taking b such that b(�) = �2 for � ≤ 1,
integrating (2.11) and using (2.7) we deduce that

K
∫ ∫

{�K≤1}
|∇x�

K |2 dx dt ≤ c uniformly for K → 0,

which provides the necessary bounds for the integrals in (2.10) on the set where �K ≤ 1.
Indeed using the fact that b is bounded and the bounds established in (2.7) we deduce

∣∣∣∣K
∫ T

0

∫
�

b′′(�K )|∇x�
K |2 dx dt

∣∣∣∣ ≤ c.

On the other hand, thanks to our choice of b,

K
∫ ∫

{�K≤1}
|∇x�

K |2 dx dt = K
∫ T

0

∫
�

b′′(�K )|∇x�
K |2 dx dt

−K
∫ ∫

{�K>1}
b′′(�K )|∇x�

K |2 dx dt,

where the right-most integral is bounded in view of (2.7), hypothesis (2.6) and the fact that
b′′(�K ) vanishes for large �K .

Consequently, we may, at least formally, let K → 0 in (2.8), in (2.9) and also in (2.5)
obtaining a measure-valued solution to the barotropic Navier–Stokes system:

∂t� + divx (�u) = 0, (2.12)

∂t (�u) + divx (�u ⊗ u) + ∇x p(�) = divxS(∇xu), (2.13)

u|∂� = 0. (2.14)

More specifically, as all integrands in (2.8), (2.9) admit uniform bounds at least in the
Lebesgue norm L1, it is convenient to use the well developed framework of parametrized
measures associated to the family of equi-integrable functions {�K , uK }K>0 generating a
Young measure

νt,x ∈ P
(
[0,∞) × RN

)
for a.a. (t, x) ∈ (0, T ) × �,

cf. Pedregal [27, Chapter 6, Theorem 6.2]. We will systematically use the notation

F(�, u)(t, x) = 〈νt,x ; F(s, v)〉 for the dummy variables s ≈ �, v ≈ u.

Focusing on the energy balance (2.5) we first take advantage of the no-slip boundary condi-
tions and rewrite the viscous dissipation term in a more convenient form∫

�

S(∇xuK ) : ∇xuK dx =
∫

�

[
μ|∇xuK |2 + λ|divxuK |2

]
dx, λ = μ

3
+ η > 0.
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Now, we identify[
1

2
�K |uK |2 + P(�K )

]
(τ, ·) ∈ M(�) bounded uniformly for τ ∈ [0, T ];

[
μ|∇xuK |2 + λ|divxuK |2

]
bounded in M+([0, T ] × �);

whence, passing to a subsequence as the case may be, we may assume that[
1

2
�K |uK |2 + P(�K )

]
(τ, ·) → E weakly-(*) in L∞

weak(0, T ;M(�)),

[
μ|∇xuK |2 + λ|divxuK |2

]
→ σ weakly-(*) in M+([0, T ] × �).

Thus, introducing new (non-negative) measures

E∞ = E − 〈νt,x ; 1

2
s|v|2 + P(s)〉 dx,

σ∞ = σ −
[
μ|∇〈νt,x ; v〉|2 + λ

(
tr|∇〈νt,x ; v〉|)2

]
dx dt,

we may perform the limit K → 0 in the energy balance (2.5) obtaining
∫

�

(
1

2
�|u|2 + P(�)

)
(τ, ·) dx + E∞(τ )[�]

+
∫ τ

0

∫
�

μ|∇xu|2 + λ|divxu|2 dx dt + σ∞[[0, τ ] × �]

≤
∫

�

(
1

2
�0|u0|2 + P(�0)

)
dx + E∞(0)[�] (2.15)

for a.a. τ ∈ (0, T ).
Applying a similar treatment to (2.8) we deduce

[∫
�

�ψ dx

]t=τ

t=0
=

∫ τ

0

∫
�

[
�∂tψ + �u · ∇xψ

]
dx dt (2.16)

for any ψ ∈ C1([0, T ] × �). Note that (2.16) holds for any τ as the family {�K }K>0

is precompact in Cweak([0, T ]; L1(�)). Indeed precompactness follows from the uniform
bound for {ρK } in L log L in (2.7).

Our final goal is to perform the limit K → 0 in (2.9). This is a bit more delicate as both the
convective term �KuK ⊗ uK and p(�K ) are bounded only in L∞(L1). We use the following
result:

Lemma 2.1 Let {Zn}∞n=1, Zn : Q → RN be a sequence of equi-integrable functions gener-
ating a Young measure νy , y ∈ Q, where Q ⊂ RM is a bounded domain. Let

G : RN → [0,∞)

be a continuous function such that

sup
n≥0

‖G(Zn)‖L1(Q) < ∞,

and let F be continuous such that

F : RN → R |F(Z)| ≤ G(Z) for all Z ∈ RN .
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Denote

F∞ = F̃ − 〈νy, F(Z)〉dy, G∞ = G̃ − 〈νy,G(Z)〉dy,
where F̃ ∈ M(Q), G̃ ∈ M(Q) are the weak-star limits of {F(Zn)}n≥1, {G(Zn)}n≥1 in
M(Q).

Then

|F∞| ≤ G∞.

Proof Write

< F̃, φ >= lim
n→∞

∫
|Zn |≤M

F(Zn)φ dy + lim
n→∞

∫
|Zn |>M

F(Zn)φ dy,

< G̃, φ >= lim
n→∞

∫
|Zn |≤M

G(Zn)φ dy + lim
n→∞

∫
|Zn |>M

G(Zn)φ dy.

Applying Lebesgue theorem, we get

lim
M→∞

(
lim
n→∞

∫
|Zn |≤M

F(Zn)φ dy

)
=

∫
Q
〈νy; F(Z)〉 dy,

lim
M→∞

(
lim
n→∞

∫
|Zn |≤M

G(Zn)φ dx

)
=

∫
Q
〈νy;G(Z)〉 dy.

Consequently,

〈F∞;φ〉 = lim
M→∞

(
lim
n→∞

∫
|Zn |>M

F(Zn)φ dy

)
, 〈G∞;

φ〉 = lim
M→∞

(
lim
n→∞

∫
|Zn |>M

G(Zn)φ dy

)
.

As |F | ≤ G the desired result follows. ��

Seeing that

|�uiu j | ≤ �|u|2 and, by virtue of hypothesis (2.6), p(�) ≤ aP(�) for � >> 1,

we may let K → 0 in (2.9) to deduce

[∫
�

�u · ϕ dx

]t=τ

t=0
=

∫ τ

0

∫
�

[
�u · ∂tϕ + �(u ⊗ u) : ∇xϕ + p(�)divxϕ

]
dx dt

−
∫ τ

0

∫
�

S(∇xu) : ∇xϕ dx dt +
∫ τ

0
〈rM ; ∇xϕ〉 dt (2.17)

for any ϕ ∈ C1([0, T ] × �), ϕ|∂� = 0, where

rM =
{
rMi, j

}N

i, j=1
rMi, j ∈ L∞

weak(0, T ;M(�)), |rMi, j (τ )| ≤ cE∞(τ ) for a.a. τ ∈ (0, T ).
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2.2 Dissipative measure-valued solutions to the Navier–Stokes system

Motivated by the previous considerations, we introduce the concept of dissipative measure
valued solution to the barotropic Navier–Stokes system.

Definition 2.1 We say that a parameterized measure {νt,x }(t,x)∈(0,T )×�,

ν ∈ L∞
weak

(
(0, T ) × �;P

(
[0,∞) × RN

))
, 〈νt,x ; s〉 ≡ �, 〈νt,x ; v〉 ≡ u

is a dissipative measure-valued solution of the Navier–Stokes system (2.12 – 2.14) in (0, T )×
�, with the initial conditions ν0 and dissipation defect D,

D ∈ L∞(0, T ), D ≥ 0,

if the following holds.

• Equation of continuityThere exists a measure rC ∈ L1([0, T ];M(�)) and χ ∈ L1(0, T )

such that for a.a. τ ∈ (0, T ) and every ψ ∈ C1([0, T ] × �),∣∣∣〈rC (τ ); ∇xψ〉
∣∣∣ ≤ χ(τ)D(τ )‖ψ‖C1(�) (2.18)

and ∫
�

〈ντ,x ; s〉ψ(τ, ·) dx −
∫

�

〈ν0; s〉ψ(0, ·) dx

=
∫ τ

0

∫
�

[
〈νt,x ; s〉∂tψ + 〈νt,x ; sv〉 · ∇xψ

]
dx dt

+
∫ τ

0
〈rC ; ∇xψ〉 dt. (2.19)

• Momentum equation.

u = 〈νt,x ; v〉 ∈ L2(0, T ;W 1,2
0 (�; RN )),

and there exists a measure rM ∈ L1([0, T ];M(�)) and ξ ∈ L1(0, T ) such that for a.a.
τ ∈ (0, T ) and every ϕ ∈ C1([0, T ] × �; RN ), ϕ|∂� = 0,∣∣∣〈rM (τ ); ∇xϕ〉

∣∣∣ ≤ ξ(τ )D(τ )‖ϕ‖C1(�) (2.20)

and ∫
�

〈ντ,x ; sv〉 · ϕ(τ, ·) dx −
∫

�

〈ν0; sv〉 · ϕ(0, ·) dx

=
∫ τ

0

∫
�

[
〈νt,x ; sv〉 · ∂tϕ + 〈νt,x ; s(v ⊗ v)〉 : ∇xϕ + 〈νt,x ; p(s)〉divxϕ

]
dx dt

−
∫ τ

0

∫
�

S(∇xu) : ∇xϕ dx dt +
∫ τ

0
〈rM ; ∇xϕ〉 dt. (2.21)

• Energy inequality
∫

�

〈ντ,x ;
(

1

2
s|v|2 + P(s)

)
〉 dx +

∫ τ

0

∫
�

S(∇xu) : ∇xu dx dt + D(τ )

≤
∫

�

〈ν0;
(

1

2
s|v|2 + P(s)

)
〉 dx (2.22)

123



Dissipative measure-valued solutions to the compressible… Page 9 of 20 141

for a.a. τ ∈ (0, T ). In addition, the following version of “Poincaré’s inequality” holds
for a.a. τ ∈ (0, T ): ∫ τ

0

∫
�

〈νt,x ; |v − u|2〉 dx dt ≤ cPD(τ ). (2.23)

Remark 2.1 Hypothesis (2.23) is motivated by the following observation: Suppose that

uε → u weakly in L2(0, T ;W 1,2
0 (�; RN )),

then ∫ τ

0

∫
�

〈νt,x ; |v − u|2〉 dx dt = lim
ε→0

∫ τ

0

∫
�

|uε − u|2 dx dt

≤ cP lim
ε→0

∫ τ

0

∫
�

|∇uε − ∇u|2 dx dt

= cP lim
ε→0

∫ τ

0

∫
�

|∇uε|2 − |∇u|2 dx dt ≤ cPD(τ ),

provided the dissipation defectD “contains” the oscillations and concentrations in the velocity
gradient.

We tacitly assume that all integrals in (2.19–2.23) are well defined, meaning, all integrands
are measurable and at least integrable.

Notice that S(∇xu) : ∇xu ≥ 0 so that the dissipative term in the energy inequality is
nonnegative.

The function D represents a dissipation defect usually attributed to (hypothetical) singu-
larities that may appear in the course of the fluid evolution. The measure-valued formulation
contains a minimal piece of information encoded in system (2.12–2.14). In contrast with the
definition introduced by Neustupa [25], the oscillatory and concentration components are
clearly separated and, more importantly, the energy balance is included as an integral part of
the present approach.

Although one often uses the framework of Alibert and Bouchitté [1] in order to han-
dle oscillations and concentrations (for instance in [2,16,17]), we choose here to give a
somewhat simpler representation of the concentration effects, thereby avoiding usage of the
concentration-angle measure. Indeed, the generalized Young measures of Alibert-Bouchitté
capture information on all nonlinear functions of the generating sequence with suitable
growth, whereas for our purposes this information is not fully needed, as we deal only with
specific nonlinearities (such as ρu⊗u, |∇xu|2, etc.), which are all encoded in the dissipation
defect D. This approach is inspired by [5]. We feel that the present formulation improves
readability, and, more importantly, extends considerably the class of possible applications of
the weak-strong uniqueness principle stated below. Indeed, it is possible to define dissipative
measure-valued solutions in the framework of Alibert-Bouchitté and show that they give rise
to a dissipative measure-valued solutions as defined above, but presumably not vice versa.
Let us also point out that an analogue of our dissipative measure-valued solutions could be
considered also for the incompressible and compressible Euler system and might thus lead
to a slight simplification and generalization of the results in [2] and [17].

The considerations of Sect. 2.1 immediately yield the following existence result:

Theorem 2.1 Suppose� is a regular bounded domain in R2 or R3, and suppose the pressure
satisfies (2.6). If (ρ0, u0) is initial data with finite energy, then there exists a dissipative
measure-valued solution with initial data

ν0 = δ(ρ0,u0). (2.24)

123



141 Page 10 of 20 E. Feireisl et al.

Proof For every K > 0, we find a weak solution to Brenner’s model with initial data
uK

0 ∈ C∞
c (�) and ρK

0 ∈ C∞(�) such that ∇xρ
K
0 · n|∂� = 0 and such that ρK

0 → ρ0,
ρK

0 uK
0 → ρ0u0, and

1

2
ρK

0 |uK
0 |2 + P(ρK

0 ) → 1

2
ρ0|u0|2 + P(ρ0)

in L1(�), respectively. Indeed, it is easy to see that such an approximation of the initial
density exists (use a simple truncation and smoothing argument). Then, the arguments of
Sect. 2.1 yield a dissipative measure-valued solution with

D(τ ) = E∞(τ )[�] + σ∞[[0, τ ] × �]
for a.a. τ ∈ (0, T ). Moreover, we have rC = 0 and χ ≡ 0, ξ ≡ c. The Poincaré-Korn
inequality (2.23) is an easy consequence of the respective inequality for each uK . ��

Note that our definition of dissipative measure-valued solutions is arguably broader than
necessary: For instance, any approximation sequence with a uniform bound on the energy will
not concentrate in the momentum, whence rC = 0. We choose to include such an effect in
our definition anyway since even in this potentially larger class of measure-valued solutions
we can still show weak-strong uniqueness: a measure-valued and a smooth solution starting
from the same initial data coincide as long as the latter exists. In other words, the set of
classical (smooth) solutions is stable in the class of dissipative measure-valued solutions.
Showing this property is the main goal of the present paper.

3 Relative energy

The commonly used form of the relative energy (entropy) functional in the context of weak
solutions to the barotropic Navier–Stokes system reads

E
(
�, u

∣∣∣r, U
)

=
∫

�

[
1

2
�|u − U|2 + P(�) − P ′(r)(� − r) − P(r)

]
dx,

where �, u is a weak solution and r and U are arbitrary “test” functions mimicking the basic
properties of �, u, specifically, r is positive and U satisfies the relevant boundary conditions,
see Feireisl et al. [10], Germain [15], Mellet and Vasseur [22], among others. Here, the crucial
observation is that

E
(
�, u

∣∣∣r, U
)

=
∫

�

[
1

2
�|u|2 + P(�)

]
dx −

∫
�

�u · U dx +
∫

�

1

2
�|U|2 dx

−
∫

�

P ′(r)� dx +
∫

�

p(r) dx,

where all integrals on the right-hand side may be explicitly expressed by means of either the
energy inequality or the field equations. Accordingly, a relevant candidate in the framework
of (dissipative) measure valued solutions is

Emv

(
�, u

∣∣∣r, U
)

(τ ) =
∫

�

〈ντ,x ; 1

2
s|v − U|2 + P(s) − P ′(r)(s − r) − P(r)〉 dx

=
∫

�

〈ντ,x ; 1

2
s|v|2 + P(s)〉 dx −

∫
�

〈ντ,x ; sv〉 · U dx

+
∫

�

1

2
〈ντ,x ; s〉|U|2 dx −

∫
�

〈ντ,x ; s〉P ′(r) dx +
∫

�

p(r) dx .
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Our goal in the remaining part of this section is to express all integrals on the right hand side
in terms of the energy balance (2.22) and the field equations (2.19), (2.21).

3.1 Density dependent terms

Using the equation of continuity (2.19) with test function 1
2 |U|2, we get

∫
�

1

2
〈ντ,x ; s〉|U|2(τ, ·) dx −

∫
�

1

2
〈ν0,x ; s〉|U|2(0, ·) dx

=
∫ τ

0

∫
�

[〈νt,x ; s〉U · ∂tU + 〈νt,x ; sv〉 · U · ∇xU
]

dx dt +
∫ τ

0

∫
�

〈rC ; 1

2
∇x |U|2〉 dx dt

(3.1)

provided U ∈ C1([0, T ] × �; RN ).
Similarly, testing with P ′(r) we can write

∫
�

〈ντ,x ; s〉P ′(r)(τ, ·) dx −
∫

�

〈ν0,x ; s〉P ′(r)(0, ·) dx

=
∫ τ

0

∫
�

[〈νt,x ; s〉P ′′(r)∂t r + 〈νt,x ; sv〉 · P ′′(r) · ∇xr
]

dx dt +
∫ τ

0

∫
�

〈rC ; P ′(r)〉 dx dt

=
∫ τ

0

∫
�

[
〈νt,x ; s〉 p

′(r)
r

· ∂t r + 〈νt,x ; sv〉 p
′(r)
r

· ∇xr

]
dx dt

+
∫ τ

0

∫
�

〈rC ; ∇x P
′(r)〉 dx dt (3.2)

provided r > 0 and r ∈ C1([0, T ]×�), and P is twice continuously differentiable in (0,∞).

3.2 Momentum dependent terms

Analogously to the preceding part, we use (2.21) to compute

∫
�

〈ντ,x ; sv〉 · U(τ, ·) dx −
∫
�

〈ν0,x ; sv〉 · U(0, ·) dx

=
∫ τ

0

∫
�

〈νt,x ; sv〉 · ∂tU dx dt +
∫ τ

0

∫
�

[〈νt,x ; sv ⊗ v〉 : ∇xU + 〈νt,x ; p(s)〉divxU
]

dx dt

−
∫ τ

0

∫
�

〈νt,x ; S(D)〉 : ∇xU dx dt +
∫ τ

0
〈rM ; ∇xU〉 dt

=
∫ τ

0

∫
�

〈νt,x ; sv〉 · ∂tU dx dt +
∫ τ

0

∫
�

[〈νt,x ; sv ⊗ v〉 : ∇xU + 〈νt,x ; p(s)〉divxU
]

dx dt

−
∫ τ

0

∫
�
S(∇xu) : ∇xU dx dt +

∫ τ

0
〈rM ; ∇xU〉 dt (3.3)

for any U ∈ C1([0, T ] × �; RN ), U|∂� = 0.
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3.3 Relative energy inequality

Summing up the previous discussion we may deduce a measure-valued analogue of the
relative energy inequality:

Emv

(
�, u

∣∣∣r, U
)

+
∫ τ

0
S(∇xu) : (∇xu − ∇xU) dx dt + D(τ )

≤
∫

�

〈ν0,x ; 1

2
s|v − U0|2 + P(s) − P ′(r0)(s − r0) − P(r0)〉 dx

−
∫ τ

0

∫
�

〈νt,x , sv〉 · ∂tU dx dt

−
∫ τ

0

∫
�

[〈νt,x ; sv ⊗ v〉 : ∇xU + 〈νt,x ; p(s)〉divxU
]

dx dt

+
∫ τ

0

∫
�

[〈νt,x ; s〉U · ∂tU + 〈νt,x ; sv〉 · U · ∇xU
]

dx dt

+
∫ τ

0

∫
�

[
〈νt,x ;

(
1 − s

r

)
〉p′(r)∂t r − 〈νt,x ; sv〉 · p′(r)

r
∇xr

]
dx dt

+
∫ τ

0
〈rC ; 1

2
∇x |U|2 − ∇x P

′(r)〉 dt −
∫ τ

0
〈rM ; ∇xU〉dt. (3.4)

As already pointed out, the relative entropy inequality (3.4) holds for any r ∈ C1([0, T ]×�),
r > 0, and any U ∈ C1([0, T ] × �; RN ), U|∂� = 0.

Moreover, in accordance with Definition 2.1, we have∣∣∣∣
∫ τ

0
〈rC ; 1

2
∇x |U|2 − ∇x P

′(r)〉 dt −
∫ τ

0
〈rM ; ∇xU〉dt

∣∣∣∣
≤ c

(
‖∇xU‖C([0,T ]×�;RN×N ) + ‖r‖C([0,T ]×�) + ‖∇xr‖C([0,T ]×�;RN )

) ∫ τ

0
(χ(t)

+ ξ(t))D(t) dt.

Thus the validity of (3.4) can be extended to the following class of test functions by a simple
argument:

U,∇xU, r,∇xr ∈ C([0, T ] × �), ∂t r, ∂tU ∈ L1(0, T ;C(�)), r > 0, U|∂� = 0. (3.5)

4 Weak-strong uniqueness

Now, we suppose that the test functions r , U belong to the class (3.5), and, in addition, solve
the Navier–Stokes system (2.12–2.14). Our goal is to show that the measure valued solution
and the strong one are close in terms of the “distance” of the initial data. We proceed in
several steps.

4.1 Continuity equation

In addition to the general hypotheses that guarantee (3.4) suppose that r, U satisfy the equation
of continuity

∂t r + divx (rU) = 0. (4.1)
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Accordingly, we may rewrite (3.4) as

Emv

(
�, u

∣∣∣r, U
)

+
∫ τ

0

∫
�

S(∇xu) : (∇xu − ∇xU) dx dt + D(τ )

≤
∫

�

〈ν0,x ; 1

2
s|v − U0|2 + P(s) − P ′(r0)(s − r0) − P(r0)〉 dx

−
∫ τ

0

∫
�

〈νt,x , sv〉 · ∂tU dx dt −
∫ τ

0

∫
�

〈νt,x ; sv ⊗ v〉 : ∇xUdx dt

+
∫ τ

0

∫
�

[〈νt,x ; s〉U · ∂tU + 〈νt,x ; sv〉 · U · ∇xU
]

dx dt

+
∫ τ

0

∫
�

〈νt,x ; sU − sv〉 · p′(r)
r

∇xr dx dt

−
∫ τ

0

∫
�

〈νt,x ; p(s) − p′(r)(s − r) − p(r)〉divxU dx dt

+ c
∫ τ

0
(χ(t) + ξ(t))D(t)dt (4.2)

where the constant c depends only on the norms of the test functions specified in (3.5).

4.2 Momentum equation

In addition to (4.1) suppose that r, U satisfy also the momentum balance

∂tU + U · ∇xU + 1

r
∇x p(r) = 1

r
divxS(∇xU).

Indeed, it is easily seen that this follows from the momentum equation in conjunction
with (4.1). Accordingly, relation (4.2) reduces to

Emv

(
�, u

∣∣∣r, U
)

+
∫ τ

0

∫
�

S(∇xu) : (∇xu − ∇xU) dx dt + D(τ )

≤
∫

�

〈ν0,x ; 1

2
s|v − U0|2 + P(s) − P ′(r0)(s − r0) − P(r0)〉 dx

+
∫ τ

0

∫
�

〈νt,x , sv − sU〉 · ∇xU · U dx dt

−
∫ τ

0

∫
�

〈νt,x ; sv ⊗ v〉 : ∇xUdx dt

+
∫ τ

0

∫
�

〈νt,x ; sv〉 · ∇xU · U dx dt

+
∫ τ

0

∫
�

〈νt,x ; sU − sv〉 · 1

r
divxS(∇xU) dx dt

+
∫ τ

0

∫
�

〈νt,x ; p(s) − p′(r)(s − r) − p(r)〉divxU dx dt

+c
∫ τ

0
(χ(t) + ξ(t))D(t)dt (4.3)
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where, furthermore,∫ τ

0

∫
�

〈νt,x ; (sv − sU)〉 · ∇xU · U dx dt −
∫ τ

0

∫
�

〈νt,x ; sv ⊗ v〉 : ∇xUdx dt

+
∫ τ

0

∫
�

〈νt,x ; sv〉 · ∇xU · U dx dt

=
∫ τ

0

∫
�

〈νt,x ; (sv − sU)〉 · ∇xU · U dx dt +
∫ τ

0

∫
�

〈νt,x ; sv · ∇xU · (U − v)〉dx dt

=
∫ τ

0

∫
�

〈νt,x ; s(v − U) · ∇xU · (U − v)〉dx dt.

Thus, finally, (4.3) can be written as

Emv

(
�, u

∣∣∣r, U
)

+
∫ τ

0

∫
�

S(∇xu − ∇xU) : (∇xu − ∇xU) dx dt + D(τ )

≤
∫

�

〈ν0,x ; 1

2
s|v − U0|2 + P(s) − P ′(r0)(s − r0) − P(r0)〉 dx

+
∫ τ

0

∫
�

〈νt,x ; s(v − U) · ∇xU · (U − v)〉dx dt

−
∫ τ

0

∫
�

(∇xu − ∇xU) : S(∇xU) dx dt

+
∫ τ

0

∫
�

〈νt,x ; sU − sv〉 · 1

r
divxS(∇xU) dx dt

+
∫ τ

0

∫
�

〈νt,x ; p(s) − p′(r)(s − r) − p(r)〉divxU dx dt

+c
∫ τ

0
(χ(t) + ξ(t))D(t)dt. (4.4)

4.3 Compatibility

Our last goal is to handle the difference
∫ τ

0

∫
�

〈νt,x ; sU − sv〉 · 1

r
divxS(∇xU) dx dt −

∫ τ

0

∫
�

(∇xu − ∇xU) : S(∇xU) dx dt.

To this end, we need slightly more regularity than required in (3.5), namely

divxS(∇xU) ∈ L2(0, T ; L∞(�; RN×N )) or, equivalently ∂tU ∈ L2(0, T ; L∞(�; RN )).

Now, since

u ∈ L2((0, T );W 1,2
0 (�; RN )),

we get
∫ τ

0

∫
�

〈νt,x ; sU − sv〉 · 1

r
divxS(∇xU) dx dt −

∫ τ

0

∫
�

(∇xu − ∇xU) : S(∇xU) dx dt

=
∫ τ

0

∫
�

〈νt,x ; (sU − sv + rv − rU)〉 · 1

r
divxS(∇xU) dx dt

=
∫ τ

0

∫
�

〈νt,x ; (s − r)(U − v)〉 · divxS(∇xU)

r
dx dt.
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Now, we write

〈νt,x ; (s − r)(U − v)〉
= 〈νt,x ;ψ(s)(s − r)(U − v)〉 + 〈νt,x ; (1 − ψ(s))(s − r)(U − v)〉,

where

ψ ∈ C∞
c (0,∞), 0 ≤ ψ ≤ 1, ψ(s) = 1 for s ∈ (inf r, sup r).

Consequently, we get

〈νt,x ;ψ(s)(s − r)(U − v)〉 ≤ 1

2
〈νt,x ; ψ(s)2

√
s

(s − r)2〉 + 1

2
〈νt,x ; ψ(s)2

√
s

s|U − v|2〉,

where, as ψ is compactly supported in (0,∞), both terms can be controlled in (4.4) by Emv ,
as is easily verified.

Next, we write

〈νt,x ; (1 − ψ(s))(s − r)(U − v)〉
= 〈νt,x ;ω1(s)(s − r)(U − v)〉 + 〈νt,x ;ω2(s)(s − r)(U − v)〉,

where

supp[ω1] ⊂ [0, inf r), supp[ω2] ⊂ (sup r,∞], ω1 + ω2 = 1 − ψ.

Accordingly,

〈νt,x ;ω1(s)(s − r)(U − v)〉 ≤ c(δ)〈νt,x ;ω2
1(s)(s − r)2〉 + δ〈νt,x ; |U − v|2〉

where the former term on the right-hand side is controlled by Emv while the latter can be
absorbed by the left hand side of (4.4) by virtue of Poincaré inequality stipulated in (2.23)
provided δ > 0 has been chosen small enough. Indeed, on one hand,

〈νt,x ; |U − v|2〉 = |U|2 − 2u · U + |u|2 + 〈νt,x ; |v|2 − |u|2〉
= |u − U|2 + 〈νt,x ; |v − u|2〉;

whence, by virtue of (2.23) and the standard Poincaré-Korn inequality,∫ τ

0

∫
�

〈νt,x ; |U − v|2〉 dx dt

≤ cP

(∫ τ

0

∫
�

(S(∇xu − ∇xU)) : (∇xu − ∇xU) dx dt + D(τ )

)
.

Finally,

〈ω2(s)(s − r)(U − v)〉 ≤ c 〈νt,x ;ω2(s)
(
s + s(U − v)2)〉,

where both integrals are controlled by Emv .
Summing up the previous discussion, we deduce from (4.4) that

Emv

(
�, u

∣∣∣r, U
)

+ 1

2
D(τ )

≤
∫

�

〈ν0,x ; 1

2
s|v − U(0, ·)|2 + P(s) − P ′(r(0, ·))(s − r(0, ·)) − P(r(0, ·))〉 dx

+ c

(∫ τ

0
Emv

(
�, u

∣∣∣r, U
)

dt +
∫ τ

0
(χ(t) + ξ(t))D(t) dt

)
.
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Thus applying Gronwall’s lemma, we conclude that

Emv

(
�, u

∣∣∣r, U
)

(τ ) + D(τ )

≤ c(T )

∫
�

〈ν0,x ; 1

2
s|v − U(0, ·)|2 + P(s) − P ′(r(0, ·))(s − r(0, ·)) − P(r(0, ·))〉 dx

(4.5)

for a.a. τ ∈ [0, T ].
We have shown the main result of the present paper.

Theorem 4.1 Let � ⊂ RN , N = 2, 3 be a bounded smooth domain. Suppose the pressure
p satisfies (2.6). Let {νt,x ,D} be a dissipative measure-valued solution to the barotropic
Navier–Stokes system (2.12–2.14) in (0, T ) × �, with the initial state represented by ν0,
in the sense specified in Definition 2.1. Let [r, U] be a strong solution of (2.12–2.14) in
(0, T ) × � belonging to the class

r, ∇xr, U, ∇xU ∈ C([0, T ] × �), ∂tU ∈ L2(0, T ;C(�; RN )), r > 0, U|∂� = 0.

Then there is a constant � = �(T ), depending only on the norms of r , r−1, U, χ , and ξ in
the aforementioned spaces, such that

∫
�

〈ντ,x ; 1

2
s|v − U|2 + P(s) − P ′(r)(s − r) − P(r)〉 dx

+
∫ τ

0

∫
�

|∇xu − ∇xU|2 dx dt + D(τ )

≤ �(T )

∫
�

〈ν0,x ; 1

2
s|v − U(0, ·)|2 + P(s) − P ′(r(0, ·))(s − r(0, ·)) − P(r(0, ·))〉 dx

for a.a. τ ∈ (0, T ). In particular, if the initial states coincide, meaning

ν0,x = δ[r(0,x),U(0,x)] for a.a. x ∈ �

then D = 0, and

ντ,x = δ[r(τ,x),U(τ,x)] for a.a. τ ∈ (0, T ), x ∈ �.

5 Examples of problems generating measure-valued solutions

Besides the model of Brenner discussed in Sect. 1, there is a vast class of problems—
various approximations of the barotropic Navier–Stokes system (2.12–2.14)—generating
(dissipative) measure-valued solutions. Below, we mention three examples among many
others.

5.1 Artificial pressure approximation

The theory of weak solutions proposed by Lions [20] and later developed in [11] does not
cover certain physically interesting cases. For the sake of simplicity, consider the pressure p
in its iconic form

p(�) = a�γ , a > 0, γ ≥ 1
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obviously satisfying (2.6). The existence of weak solutions is known in the following cases:

N = 2, γ ≥ 1 and N = 3, γ >
3

2
.

Note that the critical case γ = 1 for N = 2 was solved only recently by Plotnikov and
Weigant [28].

This motivates the following approximate problem

∂t� + divx (�u) = 0, (5.1)

∂t (�u) + divx (�u ⊗ u) + ∇x p(�) + δ∇x�
� = divxS(∇xu), (5.2)

u|∂� = 0, (5.3)

where δ > 0 is a small parameter and � > 1 is large enough to ensure the existence of weak
solutions.

Repeating the arguments applied in Sect. 2.1 to Brenner’s model, it is straightforward to
check that a family of weak solutions {�δ, uδ}δ>0, satisfying the energy inequality, generates
a dissipative measure-valued solution in the sense of Definition 2.1. Indeed it is enough to
observe that

p(�) + δ�� ≤ c

(
P(�) + δ

� − 1
��

)
for all � ≥ 1,

where the constant is uniform with respect to δ → 0.
We conclude that the weak solutions of the problem with vanishing artificial pressure

generate a dissipative measure-valued solution. In particular, as a consequence of Theorem
4.1, they converge to the (unique) strong solution provided it exists and the initial data
are conveniently adjusted. We remark that strong solutions to the barotropic Navier–Stokes
system exist at least locally in time provided

• The pressure is a sufficiently smooth function of �,
• The domain � has a regular boundary, and
• The initial data are smooth enough and satisfy the necessary compatibility conditions as

the case may be,

see e.g. Cho, Choe and Kim [4], Valli and Zaja̧czkowski [32].

5.2 Multipolar fluids

The theory of multipolar fluid was developed by Nečas and Šilhavý [24] in the hope to
develop an alternative approach to regularity for compressible fluids. The problems may take
various forms depending on the shape of the viscous stress

T(u,∇xu, ∇2
xu, . . . ) = S(∇xu) + δ

k−1∑
j=1

(
(−1) jμ j�

j (∇xu + ∇ t
xu) + λ j�

jdivxu I

)

+ non-linear terms.

The resulting system has a nice variational structure and, for k large enough, admits global
in time smooth solutions, see Nečas, Novotný and Šilhavý [23].

It is natural to conjecture that the (smooth) solutions of the multipolar system will converge
to their weak counterparts as δ → 0 at least in the cases where the pressure complies with the
requirements of Lions’ theory. However, this is to the best of our knowledge an open problem.
Instead, such a process may and does generate a (dissipative) measure valued solutions at
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least for a certain class of boundary conditions studied in [23] that may be schematically
written as

no-slip u|∂� = 0 + natural boundary conditions of Neumann type.

Then the proof is basically the same as for Brenner’s model.

5.3 Numerical schemes

Theorem 4.1 may be useful in the study of convergence to certain dissipative numerical
schemes for the barotropic Navier–Stokes system, meaning schemes preserving some form
of the energy inequality. Such a scheme was proposed by Karlsen and Karper [18], and a
rigorous proof of convergence to weak solutions finally was finally established by Karper
[19]. Karper’s result applies to a certain class of pressures, notably

p(�) = a�γ for γ > 3, N = 3.

On the other hand, however, the consistency estimates cover a larger set for γ > 3/2, see
Gallouët et al. [14]. It can be shown that the consistency estimate imply that the family of
numerical solutions generate a (dissipative) measure-valued solution. In accordance with the
conclusion of Theorem 4.1, the numerical solutions will converge to a classical exact solution
as soon as the latter exists. In fact this has been shown in [9] by means of a discrete analogue
of the relative energy inequality.

6 Measure valued solutions with bounded density field

We conclude our discussion by a simple example that indicates that the measure-valued
solutions may be indeed an artifact of the theory as long as they emanate from sufficiently
regular initial data. The following result is a direct consequence of Theorem 4.1 and a regu-
larity criterion proved by Sun, Wang, and Zhang [31] stating that solutions of the barotropic
Navier–Stokes system starting from smooth initial data remain smooth as long as their den-
sity component remains bounded. Since Theorem 4.1 requires slightly better regularity than
[31], we restrict ourselves to very regular initial data for which the necessary local existence
result was proved in [9, Proposition 2.1].

Theorem 6.1 In addition to the hypotheses of Theorem 4.1, suppose that μ > 0, η = 0, and
{νt,x ,D} is a dissipative measure-valued solution to the barotropic Navier–Stokes system in
(0, T ) × � emanating from smooth data, specifically,

ν0,x = δ[r0(x),U0(x)] for a.a. x ∈ �,

where

r0 ∈ C3(�), r0 > 0, U0 ∈ C3(�), U0|∂� = 0, ∇x p(r0) = divxS(∇xU0).

Suppose that the measure valued solution νt,x has bounded density component, meaning the
support of the measure νt,x is confined to a strip

0 ≤ s ≤ � for a.a (t, x) ∈ (0, T ) × �.

ThenD = 0 and νt,x = δ[r(τ,x),U(τ,x)] for a.a. τ ∈ (0, T ), x ∈ �, where [r, U] is a classical
smooth solution of the barotropic Navier–Stokes system in (0, T ) × �.
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Remark 6.1 Note that ∇x p(r0) = divxS(∇xU0) is the standard compatibility condition asso-
ciated to (2.14).

Proof As stated in [9, Proposition 2.1], the compressible Navier–Stokes system (2.12–2.14)
endowed with the initial data [r0, U0] admits a local in time classical solutions fitting the
regularity class required in Theorem 4.1. Thus the measure-valued solution coincides with
the classical one on its life span. However, as the density component is bounded, the result
of Sun, Wang, and Zhang [31] asserts that the classical solution can be extended up to the
time T . ��

Remark 6.2 The assumption that the bulk viscosity η vanishes is a technical hypothesis used
in [31].
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