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Abstract We study k-radially symmetric solutions corresponding to topological defects of
charge k

2 for integer k �= 0 in the Landau-de Gennes model describing liquid crystals in
two-dimensional domains. We show that the solutions whose radial profiles satisfy a natural
sign invariance are stable when |k| = 1 (unlike the case |k| > 1 which we treated before).
The proof crucially uses the monotonicity of the suitable components, obtained by making
use of the cooperative character of the system. A uniqueness result for the radial profiles is
also established.
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1 Introduction

We consider the Landau-de Gennes model describing nematic liquid crystals through func-
tions taking values into the space S0 of the so-called Q-tensors:

S0 =
{
Q ∈ R

3×3 : Q = Qt , tr(Q) = 0

}
,

where Qt and tr(Q) are the transpose and the trace of Q.
We study critical points of the following Landau-de Gennes free energy functional:

F (Q) =
∫

�

[1

2
|∇Q|2 + fbulk(Q)

]
dx, Q ∈ H1

loc(�,S0), (1.1)

where

fbulk(Q) = −a2

2
tr(Q2) − b2

3
tr(Q3) + c2

4

(
tr(Q2)

)2
,

a2 ≥ 0, b2, c2 > 0 and

� = BR ⊂ R
2

is the disk centered at the origin of radius R ∈ (0,∞] (if R = ∞, then � = R
2). These

critical points satisfy the Euler–Lagrange system of equations:

�Q = −a2Q − b2
[
Q2 − 1

3
|Q|2 I3

]
+ c2|Q|2 Q in �, (1.2)

where 1
3 |Q|2 = 1

3 tr(Q2) is the Lagrange multiplier associated to the tracelessness constraint.
Recall that every critical point Q of F is smooth inside �, see for instance [34].

The main goal of this article is to investigate the profile and energetic stability properties
of certain symmetric solutions, the k-radially symmetric solutions, with k = ±1, that are
physically relevant in describing the so-called “point defect” patterns.

Definition 1.1 Let � = BR with R ∈ (0,∞]. For k ∈ Z\{0}, we say that a Lebesgue
measurable map Q : � → S0 is k-radially symmetric if the following conditions hold for
almost every x = (x1, x2) ∈ �:

(H1) The vector e3 = (0, 0, 1) is an eigenvector of Q(x).
(H2) The following identity holds

Q

(
P2

(R2(ψ)x̃
)) = Rk(ψ)Q(x)Rt

k(ψ), for almost every ψ ∈ R,

where x̃ = (x1, x2, 0), P2 : R3 → R
2 is the projection given as P2(x1, x2, x3) = (x1, x2)

and

Rk(ψ) :=
⎛
⎜⎝

cos
( k

2ψ
) − sin

( k
2ψ

)
0

sin
( k

2ψ
)

cos
( k

2ψ
)

0

0 0 1

⎞
⎟⎠ (1.3)

is the k
2 -winding rotation around the vertical axis e3.

Remark 1.2 In the previous work [26], we showed that if k is an odd integer, then a map
Q ∈ H1(�,S0) satisfying (H2) automatically verifies (H1) (see Proposition 2.1 in [26]).
Therefore for the case |k| = 1 the hypothesis (H2) is sufficient.
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We showed in [26] that when � is a ball BR of radius R ∈ (0,∞] then k-radially symmetric
solutions of (1.2) have a simple structure:

Q(x) = u(|x |)√2

(
n(x) ⊗ n(x) − 1

2
I2

)
+ v(|x |)

√
3

2

(
e3 ⊗ e3 − 1

3
I3

)
, (1.4)

where the vector field n is given by

n(r cos ϕ, r sin ϕ) = (
cos

( k
2ϕ

)
, sin

( k
2ϕ

)
, 0

)
, r > 0, ϕ ∈ [0, 2π), (1.5)

I3 is the 3 × 3 identity matrix, I2 = I3 − e3 ⊗ e3, and (u, v) satisfies on (0, R) the following
system of ODEs:

{
u′′ + u′

r − k2u
r2 = h(u, v)

v′′ + v′
r = g(u, v),

(1.6)

with

h(u, v) = u
[

− a2 +
√

2

3
b2v + c2 (u2 + v2) ], (1.7)

g(u, v) = v
[

− a2 − 1√
6
b2v + c2 (u2 + v2) ] + 1√

6
b2u2. (1.8)

We couple the Eq. (1.2) with the boundary conditions that are physically motivated and
compatible with the k-radial symmetry:

Q(x) = Qk(x) := s+
(
n(x) ⊗ n(x) − 1

3
I3

)
as x ∈ ∂BR, (1.9)

where the map n : ∂Br → S
2 is given by (1.5) and

s+ = b2 + √
b4 + 24a2c2

4c2 > 0. (1.10)

When R = ∞, Eq. (1.9) should be understood as

lim|x |→∞ |Q(x) − Qk(x)| = 0.

These boundary conditions also carry a topological information by having in a suitable sense
a “ k

2 degree” for n, see the next subsection for details. Moreover, the boundary condition
(1.9), together with the singular character of the ODE at the origin lead to the following
boundary conditions for the ODE system:

u(0) = 0, v′(0) = 0, u(R) = 1√
2
s+, v(R) = − 1√

6
s+. (1.11)

(When R = ∞ we naturally define the boundary conditions in the limiting sense.)
The physical reasons for the study of these solutions are given in the next subsection,

that the mathematically-oriented reader may safely skip to reach the subsection detailing the
main results.
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1.1 Physical background

The Q-tensors describe the main characteristic feature of the nematic liquid crystal material,
namely the local orientational ordering of the rod-like molecules and can be regarded as a
crude measure of the local alignment (see [14,36] for details).

The simplest predictions are obtained by using Q-tensor valued maps in a free energy,
whose minimizers describe equilibrium states. The type of free energy that we consider here
is the simplest one that still captures fundamental physical aspects. The gradient part of the
free energy density of a Q-tensor map, namely |∇Q|2 = ∑2

k=1
∑3

i, j=1

( ∂Qi j
∂xk

)2 penalises the
spatial variations while the bulk potential fbulk(Q) captures the specific liquid crystal aspects.
It can be regarded as a Taylor-expansion (around the isotropic state Q = 0) that respects the
physical invariance fbulk(Q) = fbulk(RQRt ) for R ∈ SO(3) (see [14,36] for details). The
regime we consider (by choosing the sign of the coefficient in front of tr(Q)2 in fbulk) is the
deep nematic regime, in which case the isotropic state Q = 0 is an unstable critical point of
the bulk potential. In general, thanks to suitable scalings [18,26] one can physically think of
the regime when a2, c2 fixed and b2 → 0 as the “low temperature regime”, and we will use
this terminology throughout the paper.

Set

s− = b2 − √
b4 + 24a2c2

4c2 < 0. (1.12)

The bulk potential has two sets of local minima, namely,{
s−

(
n ⊗ n − 1

3
I3

)
, n ∈ S

2
}

and

{
s+

(
n ⊗ n − 1

3
I3

)
, n ∈ S

2
}

,

where the former set contains local minimizers while the latter one contains all the global
minimizers.

We choose the boundary conditions that are k-radially symmetric and belong to the set
of global minimizers, as this allows for a direct comparison with the simpler director or
Oseen-Frank theory and most importantly leads to a study of liquid crystal defect profiles.
Furthermore, one notes that the set

S∗ =
{
s+

(
n ⊗ n − 1

3
I3

)
: n ∈ S

2
}

(1.13)

is homeomorphic to RP2 while the smaller set in which we consider boundary conditions,
namely

S lim∗ =
{
s+

(
n ⊗ n − 1

3
I3

)
, n ∈ S

1
}

(1.14)

is homeomorphic to RP1. Moreover, if we consider Qk given by (1.9) as an RP1-valued
map on R

2\{0}, then it has degree k/2 about the origin. (For a definition of the degree for
RP1-valued maps, see for instance [8, pp. 685–686]).

This model can be seen as the 2D reduction of the physical situation of a 3D cylindrical
boundary domain, with so-called “homeotropic” lateral boundary conditions where the con-
figurations are invariant in the vertical direction (see for instance [6]). Its main validation at a
physical level is related to its capacity of describing certain patterns which provide the most
striking optical signature of the liquid crystal and the very reason for the “nematic” name
(with nematic being related to a Greek word meaning “thread”). These patterns are referred
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to as “defect” patterns and are characterised by significant and highly localised variations in
the material properties. There are several types of defect patterns, the point defects being the
simplest (see [10,29,30]). Nevertheless, despite their apparent simplicity the analytical inves-
tigation of their structure and profile generates very challenging nonlinear analysis problems
[3–5,9,12,15,17,22,24–27,33].

One can classify topologically the 2D point defects, by the topological degree of the so-
called “optical eigenvector” namely the eigenvector corresponding to the largest eigenvalue
(assuming that this is also restricted to a plane). Thus the symmetric solutions we described
are the prototypical types of defects, the most symmetrical such types of defects.

There is a direct analogy with the Ginzburg–Landau theory of superconductivity, where
the defects are also classified topologically and it is known that only the “lowest degree”
defects are stable, but not the higher degree ones, see [35]. The Ginzburg–Landau system
exhibits a number of analogies with our case, however there are significant differences and
additional difficulties in our case, see for instance the discussion in [24,27]. We would like
to remark that this analogy can be quite misleading in certain circumstances, for example, in
the context of 3D Landau-de Gennes theory, the melting hedgehog which is in a (debatable)
sense the “lowest degree” defect, can be unstable in a certain temperature regime [18,24].

1.2 Main mathematical results

In [26], we constructed solutions (u, v) of (1.6) and (1.11) in (0, R) with R ∈ (0,∞] using
variational methods. These solutions give rise to k-radially symmetric solutions Q of the
Euler–Lagrange equations (1.2) with the boundary conditions (1.9) via (1.4). Furthermore,
these solutions satisfy

u > 0 and v < 0 in (0, R)

and they are local minimizers of the corresponding energy functional, in the sense that, for
any R′ < R and any (ξ, η) ∈ C∞

c (0, R′) satisfying

sup
(0,R′)

|η| < min

(
s+√

6
,

√
2

3
|s−|

)

there holds

ER′(u, v) ≤ ER′(u + ξ, v + η),

where

ER′(u, v) =
∫ R′

0

[
1

2

(
(u′)2 + (v′)2 + k2

r2 u
2
)

+ f (u, v)

]
rdr, (1.15)

f (u, v) = −a2

2
(u2 + v2) + c2

4

(
u2 + v2)2 − b2

3
√

6
v(v2 − 3u2). (1.16)

(Note that

h(p, q) = ∂ f

∂p
(p, q) and g(p, q) = ∂ f

∂q
(p, q),

and so (1.6) is the Euler–Lagrange equation for ER′ .)
When R < ∞, we can allow R′ = R in the above definition of local minimality. However,

on the infinite domain (0,∞), the energy E∞(u, v) = ∞, and therefore the local minimality
property of (u, v) should be understood as above with any R′ < R = ∞.
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119 Page 6 of 33 R. Ignat et al.

Our main result is the stability of the critical points Q on BR for R ∈ (0,∞], defined by
(1.4) corresponding to any stable solutions (u, v) as above, of the Landau-de Gennes energy
F in the case k = ±1. For any solution Q of (1.2) subjected to the boundary condition (1.9)
we define the second variation L [Q](P) at Q in direction P ∈ C∞

c (BR′ ,S0) (R′ < R) as
follows:

L [Q](P) = d2

dt2

∣∣∣
t=0

∫
BR′

{1

2
|∇(Q + t P)|2 + fbulk(Q + t P)

}
dx

=
∫
BR

{
|∇P|2 − a2|P|2 − 2b2tr(P2Q) + c2 (|Q|2|P|2 + 2|tr(QP)|2) } dx .

(1.17)

This definition extends to P ∈ H1
0 (BR,S0) for R ∈ (0,∞] (recall that H1

0 (R2,S0) =
H1(R2,S0)).

A related issue is the stability of the ODE solution (u, v) on (0, R) for R ∈ (0,∞]. The
second variation forER at a solution (u, v) of (1.6) and (1.11) in direction (ξ, η) ∈ C∞

c (0, R′),
(R′ < R), is defined similarly as

B(ξ, η) = d2

dt2

∣∣∣
t=0

ER′(u + tξ, v + tη)

=
∫ R

0

{
|ξ ′|2 + k2

r2 |ξ |2 + |η′|2 +
(

−a2 + 2b2

√
6

v + c2(3u2 + v2)

)
|ξ |2

+
(

−a2 − 2b2

√
6

v + c2(u2 + 3v2)

)
|η|2 + 4uξη

(
b2

√
6

+ c2v

)}
rdr. (1.18)

This definition extends to (ξ, η) ∈ X̂ R , where X̂ R is the completion of C∞
c (0, R) under the

norm

‖(ξ, η)‖2
X̂ R

=
∫ R

0

[
|ξ ′|2 + |η′|2 + (1 + r−2)|ξ |2 + |η|2

]
r dr.

In fact,

• if R ∈ (0,∞), X̂ R =
{
(ξ, η) : [0, R] → R

2
∣∣∣√rξ ′,

√
r η′, 1√

r
ξ,

√
rη ∈ L2(0, R),

ξ(R) = η(R) = 0
}
,

• if R = ∞, X̂∞ =
{
(ξ, η) : [0,∞) → R

2
∣∣∣√rξ ′,

√
r η′,

(
1√
r

+ √
r

)
ξ,

√
rη ∈ L2(0,∞)

}
.

We refer to Lemma 3.1 below for the behavior of (ξ, η) ∈ X̂ R .
We recall our previous result from [26] on the instability of k-radially symmetric solutions

Q in R
2 for |k| > 1:

Theorem 1.3 ([26]) Assume that1 a2 ≥ 0, b2, c2 > 0 and |k| > 1. Let (u, v) be any solution
of (1.6) on (0,∞) under the boundary condition (1.11) (with R = ∞) such that u > 0 and
v < 0on (0,∞). Then the solution Q of (1.2)onR2 givenby (1.4)and satisfying the boundary
condition (1.9) is unstable with respect to F , namely there exists P ∈ C∞

c (R2,S0) such
that L [Q](P) < 0.

1 In [26], a2 was assumed to be strictly positive. However, an inspection of the arguments therein allows an
easy extension to the case a2 = 0.
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We complete the study of k-radially symmetric critical points of F with the following
stability result for k = ±1 in any disk BR with R ∈ (0,∞].
Theorem 1.4 (Stability) Assume that a2 ≥ 0, b2, c2 > 0 and k = ±1. Let R ∈ (0,∞]
and (u, v) be any solution of (1.6) on (0, R) under the boundary condition (1.11) such that
u > 0 and v < 0. Assume further that (u, v) is stable with respect to ER, i.e.

B(ξ, η) ≥ 0 for all (ξ, η) ∈ X̂ R . (1.19)

Then the solution Q of (1.2) on BR given by (1.4) and satisfying the boundary condition
(1.9) is stable with respect to F , i.e. L [Q](P) ≥ 0 for all P ∈ H1

0 (BR,S0).
Furthermore,L [Q](P) = 0 for some P ∈ H1

0 (BR,S0) if and only if, for some (ξ0, η0) ∈
X̂ R satisfying B(ξ0, η0) = 0 and some constants α, β,

• either R = ∞ and

P(x) = ξ0(|x |)
√

2

[
n(x) ⊗ n(x) − 1

2
I2

]
+ η0(|x |)

√
3

2

[
e3 ⊗ e3 − 1

3
I3

]

+α
∂Q

∂x1
(x) + β

∂Q

∂x2
(x),

• or R < ∞ and

P(x) = ξ0(|x |)
√

2

[
n(x) ⊗ n(x) − 1

2
I2

]
+ η0(|x |)

√
3

2

[
e3 ⊗ e3 − 1

3
I3

]
,

where n(x) is given by (1.5).

Remark 1.5 Loosely speaking, the second part of Theorem 1.4 asserts that the kernel ofL [Q]
is generated by the kernel of the second variation B of ER at (u, v) and span{∂x1 Q, ∂x2 Q}.

Two-dimensional point defects in the Landau-de Gennes framework have been studied for
quite some time in the literature; see e.g. [5,9,11,15,17,21,23,26,31,32] (and also [16,28]
in micromagnetics). Our motivation came from the paper [15] which concerns the extreme
low-temperature regime (b2 = 0). It was shown therein that there exists a unique global
minimizer of the Landau-de Gennes energy which is k-radially symmetric and provides the
description of the ground state profile of a point defect of index k/2. We followed this up
in [26] with the case b2 > 0 and established the instability of entire k-radially symmetric
solutions when |k| > 1.

Different but related questions were considered on more general domains and for more
general boundary conditions in [5,9,21,23]. To put Theorem 1.4 in perspective, we draw
attention to [5,9,21]. In [5], the Landau-de Gennes energy was investigated for functions
taking values into a restricted three dimensional space of Q-tensors. It was shown that, in the
case of small elastic constant, the minimizers of Landau-de Gennes energy exhibit behavior
similar to those of Ginzburg–Landau energy [7], namely for boundary conditions of degree
k/2 there are exactly k vortices of degree ±1/2. In [9,21] the minimizers of the full Landau-de
Gennes energy were studied under non-orientable boundary conditions (which in our setting
amounts to k being odd). It was shown that in the low temperature regime and in the case of
small elastic constant the minimizer has only one vortex.

The proof of Theorem 1.4 uses the type of framework we set up to treat the analogous
problem of stability/instability of the melting hedgehog in three dimensions [24,25,27]. The
first step of the proof entails a careful choice of basis decomposition forS0 so that the problem
reduces, via Fourier decompositions, to an infinite set of partially coupled problems which
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involve functions of only one variable. In a loose sense, this can be viewed as some kind of
partial separation of variables. The reduced problem for each Fourier mode is then treated
using the so-called Hardy decomposition tricks together with certain qualitative properties
of the profile functions u and v. In particular, the following monotonicity result is of special
importance in our proof.

Theorem 1.6 (Monotonicity) Assume that a2 ≥ 0, b2, c2 > 0 and k �= 0. Let R ∈ (0,∞]
and (u, v) be any solution of (1.6) on (0, R) under the boundary condition (1.11) such that
u > 0 and v < 0.

• If b4 < 3a2c2, then u′ > 0 and v′ > 0 in (0, R).
• If b4 = 3a2c2, u′ > 0 in (0, R) while v ≡ − s+√

6
.

• If b4 > 3a2c2, then u′ > 0 while v′ < 0 in (0, R).

Regarding the assumption that (u, v) is stable for ER in Theorem 1.4, we note that the
solution (u, v) constructed in [26] (for any given a2 ≥ 0, b2, c2 > 0) is a local minimizer
and thus stable. In fact, for “small b”, we have the following uniqueness and strict stability
result.

Theorem 1.7 (Uniqueness) Assume that a2, b2, c2 > 0, R ∈ (0,∞] and k �= 0. If b4 ≤
3a2c2, under the assumption that u > 0 and v < 0, there exists a unique solution of (1.6)
on (0, R) under the boundary condition (1.11). Furthermore such (u, v) is strictly stable in
the sense that B(ξ, η) > 0 for all (ξ, η) ∈ X̂ R, (ξ, η) �≡ 0. In particular, (u, v) is a local
minimizer of ER.

The results above lead to the following open problem.

Open problem 1.8 Are solutions of (1.6) and (1.11) (with or without the assumption that
u > 0, v < 0) unique?

Remark 1.9 The case b4 = 3a2c2 was proved earlier in [26] using a different method. A
careful mixture of the proof of Theorem 1.7 in Sect. 3 below and various estimates in [26]
shows that Theorem 1.7 continues to hold for b4 ≤ 75

7 a2 c2. However, since this can be
shown to be non-sharp and there is a distinctive difference between the case b4 > 3a2c2 and
the case b4 ≤ 3a2c2 (e.g. change of the monotone behaviour of v), we have chosen to keep
the statement of the result as above. It remains an open question if uniqueness holds for all
a, b and c.

The rest of paper is structured as follows. In Sect. 2, we prove the monotonicity of u and v

assuming sign constraints u > 0 and v < 0. In Sect . 3, we prove fine properties of functions
(ξ, η) ∈ X̂ R (see Lemma 3.1) and the uniqueness result of Theorem 1.7. Section 4 is devoted
to the proof of the stability result in Theorem 1.4. Finally, in the appendix, we include a
calculus lemma which is needed in the body of the paper.

2 Monotonicity

In this section we prove monotonicity of solutions (u, v) of the system (1.6). Let us fix
some R ∈ (0,+∞] and consider the ODE system (1.6) on (0, R) subjected to the boundary
condition (1.11).

Assume further that2

u > 0 and v < 0 in (0, R).

2 The existence of such solution was proved in [26].
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We showed in [26, Propositions 3.4, 3.5, 3.7] that

0 < u <
s+√

2
and min

(
− s+√

6
,

2s−√
6

)
≤ v ≤ max

(
− s+√

6
,

2s−√
6

)
in (0, R), (2.1)

with equality holding only if b4 = 3a2c2, in which case v ≡ − s+√
6

= 2s−√
6

.
Furthermore (see Step 3 of the proof of Proposition 3.1 in [26])

√
3v + u < 0 in (0, R). (2.2)

The monotonicity of u and v depends on how big b4 is relative to a2c2. When b4 = 3a2c2,
one has v ≡ − s+√

6
and u is the unique solution of the ODE

u′′ + u′

r
− k2

r2 u = c2 u

(
u2 − s2+

2

)
, u(0) = 0, s(R) = s+√

2
.

For other values of b, the monotonicity of u and v will be proved using the theory of coop-
erative systems and the moving plane method (see e.g. [13]).

Proof of Theorem 1.6 When b4 = 3a2c2 the result is a consequence of [26, Proposition 3.5]
and [25, Lemma 3.7]. We assume for the rest of the proof that b4 �= 3a2c2.

Case 1: b4 < 3a2c2.
First assume that R < ∞. We note that (see [26])

∂qh(p, q) = ∂pg(p, q) < 0 for all 0 < p <
s+√

2
and min

(
− s+√

6
,

2s−√
6

)

< q < max

(
− s+√

6
,

2s−√
6

)
.

This plays an important role in our argument below.
For 0 < s < R, define

us(r) = u(2s − r) and vs(r) = v(2s − r) for max(0, 2s − R) < r < s.

Note that h(u(R), v(R)) = g(u(R), v(R)) = 0 and recall that 0 < u < u(R) and
v < v(R) in (0, R) [thanks to (2.1)]. In particular, the function û = u − u(R) satisfies

û′′ + 1

r
û′ − k2

r2 û = k2

r2 u(R) + h(u, v) − h(u(R), v(R)) ≥ h(u, v) − h(u(R), v) = ξ û

for some function ξ ∈ C[0, R]. As û(R) = 0 and û < 0 in (0, R), we deduce from
the Hopf lemma (see e.g. [20, Lemma 3.4]) that u′(R) > 0. Likewise, we can show that
v′(R) > 0. Consequently, there is some small ε > 0 such that us > u and vs > v in
max(0, 2s − R) < r < s for any R − ε < s < R.

We define

s= inf
{

0<s< R : us′ > u and vs′ > v in max(0, 2s′ − R) < r < s′ for all s′ ∈ (s, R)
}
,

then s ∈ [0, R).
We claim that s = 0. Assume by contradiction that s > 0, then,

(i) u′ ≥ 0 and v′ ≥ 0 in (s, R),
(ii) and us ≥ u > 0 and vs ≥ v in max(0, 2s − R) < r < s.
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It follows that

u′′
s + 1

r
u′
s − k2

r2 us ≤ h(us, vs) ≤ h(us, v), (2.3)

v′′
s + 1

r
v′
s ≤ g(us, vs) ≤ g(u, vs) in max(0, 2s − R) < r < s, (2.4)

and so

(us − u)′′ + 1

r
(us − u)′ − k2

r2 (us − u) ≤ h(us, v) − h(u, v) = (us − u)c1(r), (2.5)

(vs − v)′′ + 1

r
(vs − v)′ ≤ g(u, vs) − g(u, v) = (vs − v)c2(r), (2.6)

with c1, c2 being two continuous functions on [max(0, 2s − R), s].
Noting that, by (1.11) and (2.1),

us(max(0, 2s − R)) > u(max(0, 2s − R)),

us(s) = u(s),

we can appeal to the strong maximum principle and the Hopf lemma to conclude that

us > u in max(0, 2s − R) < r < s and u′
s(s) > u′(s). (2.7)

This implies that the second inequality in (2.4) is strict and so is the inequality in (2.6). We
again apply the strong maximum principle and the Hopf lemma to obtain

vs > v in max(0, 2s − R) < r < s and v′
s(s) > v′(s). (2.8)

Estimates (2.7) and (2.8) contradict the minimality of s. Therefore, s = 0 as claimed. This
proves that u′, v′ ≥ 0 on (0, R).

We turn to show that u′, v′ > 0 on (0, R). We have the following equations for (u′, v′):

u′′′ + u′′

r
− (k2 + 1)u′

r2 + 2k2u

r3 = u′∂uh(u, v) + v′ ∂vh(u, v),

v′′′ + v′′

r
− v′

r2 = v′∂vg(u, v) + u′ ∂ug(u, v). (2.9)

Noting now that ∂vh(u, v) = ∂ug(u, v) < 0, we arrive at

u′′′ + u′′

r
− (k2 + 1)u′

r2 ≤ u′∂uh(u, v),

v′′′ + v′′

r
− v′

r2 ≤ v′∂vg(u, v).

Since u′(R) > 0 and v′(R) > 0, the strong maximum principle implies that u′ > 0 and
v′ > 0, as desired.

Next, consider the case R = ∞. In order for the above argument to carry through, we
need to show that there is some R0 > 0 such that

u′ > 0 and v′ > 0 in (R0,∞).

To this end, recall the asymptotics (see [26])

u(r) = s+√
2

+ p1 r
−2 + O(r−4), (2.10)
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v(r) = − s+√
6

+ q1 r
−2 + O(r−4), (2.11)

where p1 = −
√

2k2

2
2b2+c2 s+

b2(−b2+4c2 s+)
, q1 = −

√
6k2

2
−b2+c2 s+

b2(−b2+4c2 s+)
, and the big ‘O’ notation is

meant for large r . In fact, the argument therein leads to an asymptotic expansion

u(r) = s+√
2

+ p1 r
−2 + p2 r

−4 + · · · + pN r−2N + O(r−2N−2),

v(r) = − s+√
6

+ q1 r
−2 + q2 r

−4 + · · · + qN r−2N + O(r−2N−2),

for any given N ≥ 2 and with explicitly computable coefficients pi , qi ’s. In particular, we
obtain that

1

r
(ru′)′ = u′′ + u′

r
= h(u, v) + k2

r2 u = 4p1 r
−4 + O(r−6), (2.12)

1

r
(rv′)′ = v′′ + v′

r
= g(u, v) = 4q1 r

−4 + O(r−6). (2.13)

For b4 < 3a2c2, we have p1 < 0 and q1 < 0. Hence, there is some R0 > 0 such that
(ru′)′ < 0 and (rv′)′ < 0 in (R0,∞). Integrating twice, it follows that for any R0 < s < r ,
we have

u(s) + su′(s) log
r

s
≥ u(r), v(s) + sv′(s) log

r

s
≥ v(r).

As u and v have a limit as r → ∞, this implies that u′ ≥ 0 and v′ ≥ 0 in (R0,∞). Since
(ru′)′ < 0 and (rv′)′ < 0 in (R0,∞) we conclude that u′ > 0 and v′ > 0 in (R0,∞). This
completes the proof when b4 < 3a2c2.

Case 2: b4 > 3a2c2. The proof is similar except the following changes:

• ∂vh(u, v) = ∂ug(u, v) > 0 for all (u, v) satisfying (2.1),
• v′(R) < 0 if R < ∞,
• q1 > 0 if R = ∞.

We omit the details. ��

3 Uniqueness

In this section, we prove Theorem 1.7.
Strategy. In order to prove the uniqueness of the solution of the ODE system (1.6), (1.11),

for which u > 0 and v < 0, we follow a strategy similar to that in [2]. We show that
any solution of the ODE system with the mentioned signs of the components is a local
minimizer if b4 ≤ 3a2c2 (see Proposition 3.8). Then the uniqueness will follow by the
mountain pass lemma. Indeed, assuming by contradiction that there exist two such solutions,
we use a mountain pass argument to find another solution on a trajectory connecting the
two given ones. This solution will have to be unstable thus leading to a contradiction and
proving the uniqueness. Many of the complications in our treatment are because of the loss
of compactness due to the infinite domain (i.e. when R = ∞).

Some notation. Recall

ER(u, v) =
∫ R

0

[
1

2

(
(u′)2 + (v′)2 + k2

r2 u
2
)

+ f (u, v)

]
rdr,
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where

f (u, v) = −a2

2
(u2 + v2) + c2

4
(u2 + v2)2 − b2

3
√

6
v(v2 − 3u2)

and

h(u, v) = ∂u f (u, v), g(u, v) = ∂v f (u, v).

For 0 < R < ∞, if we define

XR =
{
(u, v) : [0, R] → R

2
∣∣∣√ru′,

√
r v′, 1√

r
u,

√
rv ∈ L2(0, R), u(R) = s+√

2
, v(R) = − s+√

6

}
,

then ER ∈ C1(XR,R).
For R = ∞, we have a complication as u2

r and r f (u, v) are not integrable over (0,∞).
To fix this issue, it is useful to note that if (u1, v1) and (u2, v2) are two solutions of (1.6) and
(1.11), then, thanks to the asymptotic estimate (2.10),

( 1√
r

+ √
r
)

(u1 − u2) ∈ L2(0,∞).

To accommodate both situations, we let (u0, v0) be a fixed solution of (1.6) and (1.11),
satisfying u0 ≥ 0, v0 ≤ 0 (then by [26] u0 > 0, v0 < 0 on (0, R)). Consider instead of ER

the modified functional for R ∈ (0,∞]:

ÊR(û, v̂) =
∫ R

0

1

2

(
|(u0 + û)′|2 − |u′

0|2 + |(v0 + v̂)′|2 − |v′
0|2

)
r dr

+
∫ R

0

k2

2r
((u0 + û)2 − u2

0) dr

+
∫ R

0

[
f (u0 + û, v0 + v̂) − f (u0, v0)

]
rdr,

where (û, v̂) belongs to X̂ R defined by

• if R ∈ (0,∞), X̂ R =
{
(û, v̂) : [0, R] → R

2
∣∣∣√r û′,

√
r v̂′, 1√

r
û,

√
r v̂ ∈ L2(0, R),

û(R) = v̂(R) = 0
}
,

• if R=∞, X̂∞ =
{
(û, v̂) : [0,∞) → R

2
∣∣∣√r û′,

√
r v̂′,

(
1√
r

+ √
r

)
û,

√
r v̂ ∈ L2(0,∞)

}
.

It is clear that X̂ R is a Hilbert space with norm

‖(û, v̂)‖2
R =

∫ R

0

[
|û′|2 + |v̂′|2 +

(
1 + 1

r2

)
û2 + v̂2

]
r dr.

It is clear that, for R ∈ (0,∞),

ÊR(û, v̂) = ER(u0 + û, v0 + v̂) − ER(u0, v0).

We start with some basic remarks on the space X̂ R and the functional ÊR .

Lemma 3.1 There is some constant C > 0 such that for all (û, v̂) ∈ X̂∞ we have the
following
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(1) Behaviour of û and v̂ at ∞:

|û(r)|2 ≤ C

r

∫ ∞
1
2

[|û′|2 + |û|2] s ds and

|v̂(r)|2 ≤ C

r

∫ ∞
1
2

[|v̂′|2 + |v̂|2] s ds, for r ∈
(

1

2
,∞

)
. (3.1)

In particular, û(r), v̂(r) → 0 as r → ∞.
(2) Behaviour of û in (0,∞):

|û(r)|2 ≤ C
∫ r

0

[
|û′|2 + 1

s2 |û|2
]
s ds for r ∈ (0,∞).

In particular, û(r) → 0 as r → 0.
(3) Behaviour of v̂ at the origin:

|v̂(r)|2 ≤ C | ln r |
∫ ∞

0
[|v̂′|2 + |v̂|2] s ds for r ∈

(
0,

1

2

)
.

Proof (1) See the proof of Strauss’ inequality [37, p. 155].
(2) For 0 < r < r1, we estimate

|û2(r1) − û2(r)| ≤ 2
∫ r1

r
|û(s)||û′(s)| ds ≤ 2

(∫ r1

r

û2(s)

s
ds

) 1
2
(∫ r1

r
|û′(s)|2 s ds

) 1
2

.

This implies that the limit l := limr→0 û2(r) exists. Since
∫∞

0
û2(s)
s ds < ∞ we thus

have l = 0, i.e. û(r) → 0 as r → 0. Returning to the above estimate, by the Young
inequality we have 2|û(s)||û′(s)| ≤ [|û′|2 + 1

s2 |û|2] s and we obtain the desired estimate.
(3) For R > 0, consider the minimization problem

α(R) = inf
{‖v‖H1((R,∞);r dr) : v ∈ H1((R,∞); r dr), v(R) = 1

}
.

It is standard that the infimum is achieved and the minimizer v∗ is the unique solution of
v′′∗ + 1

r v′∗ − v∗ = 0 in (0, R), v∗(R) = 1, v∗(∞) = 0. In terms of special functions, we

have v∗ = K (r)
K (R)

, where K is zeroth modified Bessel function of the second kind [1]. It
is then readily seen that

α(R)2 =
∫ ∞

R
[|v′∗|2 + |v∗|2] r dr = r v′∗ v∗

∣∣∣∞
R

= R|K ′(R)|
K (R)

.

As a consequence, we have for all v ∈ H1((0,∞); r dr) that

‖v‖H1((0,∞);r dr) ≥ ‖v‖H1((R,∞);r dr) ≥ α(R) |v(R)| for all R ∈ (0,∞).

Now, since K (r) = − ln r + O(1) and K ′(r) = − 1
r + O(1) as r → 0 [1], we have

α(r) = 1√| ln r | + O(1) as r → 0, and so, for r ≤ 1
2 ,

|v(r)| ≤ C
√| ln r | ‖v‖H1((0,∞);r dr).

��
Lemma 3.2 Assume that R ∈ (0,∞].
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(1) ÊR : X̂ R → R is C1 on X̂ R with the differential given by

DÊR(û, v̂)(ξ, η) =
∫ R

0

{
û′ ξ ′ + v̂′ η′ + k2

r2 û ξ

+ [Df (u0 + û, v0 + v̂) − Df (u0, v0)](ξ, η)
}
r dr

where (û, v̂), (ξ, η) ∈ X̂ R. Furthermore (û, v̂) ∈ X̂ R is a critical point for ÊR if and only
if (u, v) = (u0 + û, v0 + v̂) is a solution of (1.6) and (1.11).

(2) ÊR is twice Gâteaux differentiable, meaning here that for every (û, v̂), (ξ, η) ∈ X̂ R, the
following holds:

D2ÊR(û, v̂)(ξ, η) · (ξ, η) := d2

dt2

∣∣∣
t=0

ÊR(û + tξ, v̂ + tη)

=
∫ R

0

{
|ξ ′|2 + |η′|2 + k2

r2 ξ2 + D2 f (u0 + û, v0 + v̂)(ξ, η) · (ξ, η)
}
r dr.

Proof The lemma is standard for R < ∞. Let us prove it for the more delicate case R = ∞.

Step 1: We prove that Ê∞(û, v̂) < ∞ for (û, v̂) ∈ X̂∞. To this end, it suffices to prove the
following three estimates (for some constant C):∫ ∞

0
[|u′

0|2 + |v′
0|2] r dr ≤ C, (3.2)

∫ ∞

0

u0 |û|
r

dr ≤ C
{ ∫ ∞

0
[|û′|2 + |û|2] r dr

}1/2 ≤ C‖(û, v̂)‖X̂∞ , (3.3)
∫ ∞

0

∣∣ f (u0 + û, v0 + v̂) − f (u0, v0)
∣∣ r dr ≤ C

(
1 + ‖(û, v̂)‖4

X̂∞

)
. (3.4)

Proof of (3.2): By [26, Proposition 2.3], u0, v0 ∈ C2([0,∞)). In addition, by (2.12) and
(2.13), r u′

0(r) and r v′
0(r) have limits as r → ∞. But as u0(r) and v0(r) remain finite as

r → ∞, these limits must be zero, i.e.

lim
r→∞ r u′

0(r) = lim
r→∞ r v′

0(r) = 0.

Multiplying (2.12) and (2.13) by r and integrating on (r,∞), we obtain

u′
0(r) = −2p1 r

−3 + O(r−5), (3.5)

v′
0(r) = −2q1 r

−3 + O(r−5). (3.6)

Therefore,
√
ru′

0 and
√
r v′

0 belong to L2(0,∞) and (3.2) follows.
Proof of (3.3): By the Sobolev embedding theorem in one dimension, we have that û and

v̂ are continuous on (0,∞). Also, by Step 4 in the proof of [26, Proposition 2.3], u0(r)
r |k| is

bounded as r → 0, and so

|u0(r)| ≤ Cr |k|

(1 + r)|k|
for all r ∈ (0,∞). (3.7)

Estimate (3.3) is readily seen from Lemma 3.1:

∫ ∞

0

u0 |û|
r

dr ≤ C
∫ 1

2

0
|û| dr + C

∫ ∞
1
2

|û|
r

dr
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≤ C
{ ∫ ∞

0
[|û′|2 + |û|2] r dr

}1/2
(∫ 1

2

0

√| ln r | dr +
∫ ∞

1
2

1

r3/2 dr

)
.

Proof of (3.4): First, note that ( s+√
2
,− s+√

6
) is a (global) minimum of f . Thus there is some

δ > 0 and C > 0 such that for all |x | ≤ δ and |y| ≤ δ, there holds

0 ≤ f

(
s+√

2
+ x,− s+√

6
+ y

)
− f

(
s+√

2
,− s+√

6

)
≤ C(x2 + y2). (3.8)

Therefore, in view of (3.1), (2.10) and (2.11), there is some sufficiently large R1 > 0 such
that

| f (u0 + û, v0 + v̂) − f (u0, v0)| ≤ C

(
1

r4 + û2 + v̂2
)

in (R1,∞), (3.9)

which implies∫ ∞

R1

| f (u0 + û, v0 + v̂) − f (u0, v0)| r dr ≤ C
(

1 + ‖(û, v̂)‖2
X̂∞

)
.

On the other hand, since f is a quartic polynomial and u0 and v0 are bounded, we have

| f (u0 + û, v0 + v̂) − f (u0, v0)| ≤ C(1 + û4 + v̂4) in (0,∞)

for some constant C which depends only on a, b and c. Thus, by the Sobolev embedding
theorem (in two dimensions H1(BR1) ⊂ L4(BR1)),∫ R1

0
| f (u0 + û, v0 + v̂) − f (u0, v0)| r dr ≤ C

(
1 + ‖(û, v̂)‖4

X̂∞

)
,

which concludes the proof of (3.4).

Step 2: We prove that Ê∞ is Fréchet differentiable.
Define A : X̂∞ → R by

A(ξ, η) =
∫ ∞

0

{
û′ ξ ′ + v̂′ η′ + k2

r2 û ξ + [
Df (u0 + û, v0 + v̂) − Df (u0, v0)

]
(ξ, η)

}
r dr.

Arguing as in the proof of (3.4), we have

|Df (u0 + û, v0 + v̂) − Df (u0, v0)| ≤ C

(
1

r2 + |û| + |v̂|
)

in (R1,∞), (3.10)

(for possibly a larger constant R1) and

|Df (u0 + û, v0 + v̂) − Df (u0, v0)| ≤ C(1 + |û|3 + |v̂|3) in (0,∞). (3.11)

As in Step 1, these estimates imply that A is a well-defined continuous linear functional on
X̂∞, i.e., |A(ξ, η)| ≤ C‖(ξ, η)‖X̂∞ .

An easy computation shows that

Ê∞(û + ξ, v̂ + η) − Ê∞(û, v̂) − A(ξ, η)

=
∫ ∞

0

[
u′

0ξ
′ + k2

r2 u0ξ + h(u0, v0)ξ

]
r dr +

∫ ∞

0

[
v′

0η
′ + g(u0, v0)η

]
r dr

+
∫ ∞

0
P(û, v̂, ξ, η) r dr + O

(
‖(ξ, η)‖2

X̂∞

)
, (3.12)
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where

P(û, v̂, ξ, η) = f (u0 + û + ξ, v0 + v̂ + η) − f (u0 + û, v0 + v̂)

−Df (u0 + û, v0 + v̂)(ξ, η).

To treat the first two terms on the right hand side of (3.12), recall that u0, v0 ∈ C2([0,∞))

[26, Proposition 2.3] and v′
0(0) = 0. In particular, |v′

0(r)| ≤ Cr for some constant C .
Thus, using Lebesgue’s dominated convergence theorem, (1.6), (3.5), (3.6), (3.7), (1.11) and
Lemma 3.1 (in particular the behavior of ξ(r) and η(r) as r → 0), we compute
∫ ∞

0

[
u′

0ξ
′ + k2

r2 u0ξ + h(u0, v0)ξ

]
r dr = lim

r→∞ u′
0(r) ξ(r) − lim

r→0
u′

0(r) ξ(r) = 0, (3.13)

∫ ∞

0

[
v′

0η
′ + g(u0, v0)η

]
r dr = lim

r→∞ v′
0(r) η(r) − lim

r→0
v′

0(r) η(r) = 0. (3.14)

To treat the remaining integral on the right hand side of (3.12), we note that f is a quartic
polynomial, and so

|P(û, v̂, ξ, η)| ≤ C(ξ2 + η2)(1 + ξ2 + η2 + û2 + v̂2).

Also, in view of Lemma 3.1 and the Sobolev embedding theorem, we have∫ ∞

0
[|û|4 + |v̂|4] r dr ≤ C ‖(û, v̂)‖4

X̂∞
,

∫ ∞

0
[|ξ |4 + |η|4] r dr ≤ C ‖(ξ, η)‖4

X̂∞
.

It follows that∫ ∞

0
|P(û, v̂, ξ, η)| r dr = O

(
‖(ξ, η)‖2

X̂∞

(
1 + ‖(ξ, η)‖2

X̂∞

))
. (3.15)

Putting together (3.12), (3.13), (3.14) and (3.15), we conclude that Ê∞ is Fréchet differ-
entiable and DÊ∞(û, v̂) = A. Furthermore, since∫ R

0

{
u′

0 ξ ′ + v′
0 η′ + k2

r2 u0 ξ + Df (u0, v0)(ξ, η)
}
r dr = 0

for every (ξ, η) ∈ X̂ R , we deduce that (û, v̂) ∈ X̂ R is a critical point for ÊR if and only if
(u, v) = (u0 + û, v0 + v̂) is a solution of (1.6), (1.11).

Step 3: We prove that Ê∞ is twice Gâteaux differentiable.
Define B : X̂∞ → R by

B(ξ, η) =
∫ ∞

0

{
|ξ ′|2 + |η′|2 + k2

r2 ξ2 + D2 f (u0 + û, v0 + v̂)(ξ, η) · (ξ, η)
}
r dr.

The well-definedness of B can be established similarly as in Step 2 using the estimates

|D2 f (u0 + û, v0 + v̂)| ≤ C in some interval (R1,∞),

|D2 f (u0 + û, v0 + v̂)| ≤ C(1 + |û|2 + |v̂|2) in (0,∞).

Since
∫ 1

2

0
|v̂|2|η|2 rdr ≤ C

∫ 1
2

0
r | ln r |2 dr

∫ ∞

0
[|η′|2 + |η|2] r dr,
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by Lemma 3.1, we deduce that B satisfies |B(ξ, η)| ≤ C‖(ξ, η)‖2
X̂∞

. The assertion that

B(ξ, η) = d2

dt2

∣∣∣
t=0

Ê∞(û + tξ, v̂ + tη) = d

dt

∣∣∣
t=0

DÊ∞(û + tξ, v̂ + tη)(ξ, η)

follows from the estimate (for 0 < t < 1)

|Df (u0 + û + tξ, v0 + v̂ + tη) − Df (u0 + û, v0 + v̂) − t D2 f (u0 + û, v0 + v̂)(ξ, η)|
≤ Ct2(|ξ |2 + |η|2)(1 + |û| + |v̂| + |ξ | + |η|).

We omit the details.

Step 4: We prove the continuity of the differential DÊ∞ in (û, v̂) ∈ X̂∞.
Indeed, since the continuity is a local property, we may assume that (û, v̂), (ũ, ṽ) are in a

finite ball of radius ρ in X̂∞. Then

|Df (u0 + û, v0 + v̂) − Df (u0 + ũ, v0 + ṽ)|
≤ C(|û − ũ| + |v̂ − ṽ|)(1 + |û|2 + |v̂|2 + |ũ|2 + |ṽ|2)

with C > 0 independent of û, v̂, ũ, ṽ. By Lemma 3.1, we know that ‖û‖∞, ‖ũ‖∞ ≤ Cρ and

|v̂(r)|, |ṽ(r)| ≤ Cρ

(
| ln r |1/21(

0, 1
2

)(r) + 1

r
1( 1

2 ,∞
)(r)

)
, r ∈ (0,∞)

and therefore,∫ ∞

0
|Df (u0 + û, v0 + v̂) − Df (u0 + ũ, v0 + ṽ)|2 rdr

≤ Cρ‖(û − ũ, v̂ − ṽ)‖2
X̂∞

(
1 +

∫ 1
2

0
| ln r |4 rdr +

∫ ∞
1
2

1

r3 dr

)
.

We conclude that for every (ξ, η) ∈ X̂∞∣∣∣∣[DÊ∞(û, v̂) − DÊ∞(ũ, ṽ)](ξ, η)

∣∣∣∣ ≤ Cρ‖(û − ũ, v̂ − ṽ)‖X̂∞‖(ξ, η)‖X̂∞ ,

therefore DÊ∞ is locally Lipschitz in X̂∞. ��
Next, we consider coercivity and Palais–Smale properties of ÊR .

Lemma 3.3 The following statements hold:

• if R ∈ (0,∞), then ÊR is coercive on X̂ R ;
• if R = ∞, then Ê∞ is coercive on the closed convex set

M∞ = {(û, v̂) ∈ X̂∞ : u0 + û ≥ 0, v0 + v̂ ≤ 0}, (3.16)

i.e. there exists some C > 0 such that

Ê∞(û, v̂) ≥ 1

C
‖(û, v̂)‖2

X̂∞
− C for all (û, v̂) ∈ M∞.

Proof Let (û, v̂) ∈ X̂ R . In the argument below, C denotes various positive constants which
are always independent of (û, v̂).
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Let u∗ = s+√
2

and v∗ = − s+√
6

. Since (u∗, v∗) is a minimum of f , we have f (u∗, v∗) ≤
f (x, y) for all (x, y) ∈ R

2. Also, by (3.8), (2.10) and (2.11) in the case R = ∞,
∫ R

0

∣∣ f (u0, v0) − f (u∗, v∗)
∣∣ r dr ≤ C, (3.17)

(if R < ∞ the above inequality is obvious since u0 and v0 are bounded) which implies that
∫ R

0

(
f (u0 + û, v0 + v̂)− f (u0, v0)

)
r dr ≥

∫ R

0

(
f (u0 + û, v0 + v̂) − f (u∗, v∗)

)
r dr − C

≥ −C.

Case 1: R < ∞. From the above estimate, estimates on the finite domain analogous to (3.2),
(3.3), and the Poincaré inequality in the disk BR for û, v̂ ∈ H1

0 (BR):
∫ R

0
|û|2 rdr ≤ C

∫ R

0
|û′|2 rdr,

∫ R

0
|v̂|2 rdr ≤ C

∫ R

0
|v̂′|2 rdr,

we deduce that

ÊR(û, v̂) ≥ C1‖(û, v̂)‖2
X̂ R

− C3,

which entails the coercivity of ÊR on X̂ R .

Case 2: R = ∞. Due to the failure of the Poincaré inequality in H1(R2), the above method
does not work for R = ∞. We conjecture that Ê∞ is not coercive on X̂∞ and therefore, we
prove coercivity only in M∞. Fix (û, v̂) ∈ M∞. We would like to improve the estimate on
the integral of | f (u0 + û, v0 + v̂) − f (u∗, v∗)|. Let Q = {(x, y) ∈ R

2, x ≥ 0, y ≤ 0}.
By Lemma 5.1 in the appendix, f (u∗, v∗) < f (x, y) for all (x, y) ∈ Q\(u∗, v∗) and
D2 f (u∗, v∗) is positive definite. Also, f (x,y)

x2+y2 → ∞ as x2 + y2 → ∞. Thus, there is some
positive constant α > 0 such that

f (x, y) − f (u∗, v∗) ≥ α((x − u∗)2 + (y − v∗)2) for all (x, y) ∈ Q.

This implies that∫ ∞
0

(
f (u0 + û, v0 + v̂) − f (u∗, v∗)

)
r dr ≥ α

∫ ∞
0

[|û + u0 − u∗|2 + |v̂ + v0 − v∗|2] r dr.
(3.18)

Also, in view of (2.10) and (2.11),∫ ∞

0

[|u0 − u∗|2 + |v0 − v∗|2
]
r dr ≤ C. (3.19)

From (3.17), (3.18) and (3.19), we obtain∫ ∞

0

(
f (u0 + û, v0 + v̂) − f (u0, v0)

)
r dr ≥ 1

C

∫ ∞

0
[û2 + v̂2] r dr − C. (3.20)

The desired coercivity of Ê∞ is now readily seen from (3.20), (3.2) and (3.3). ��
We recall that a continuously Fréchet differentiable functional I defined on a Banach

space X (i.e. I ∈ C1(X,R)) is said to satisfy the Palais–Smale condition if every sequence
{un}∞n=1 ⊂ X satisfying {I (un)}∞n=1 is bounded and D I (un) → 0 in X ′ (dual of X ) is
precompact in X , see e.g. [38].
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It is not difficult to prove that ÊR satisfies the Palais–Smale condition on X̂ R for finite
R. It is not clear if this is the case for R = ∞; note the restricted coercivity we obtain
in Lemma 3.3. We however content ourselves with a milder notion which suffices for our
purpose and will be described in the sequel.

Definition 3.4 ([38, Section II.12]) Let X be a Banach space, I ∈ C1(X,R), and M be a
closed convex subset of X .

(i) We say that x ∈ M is a critical point of I relative to M if

�(x) := sup
y∈M,‖y−x‖X≤1

D I (x)(x − y) = 0.

(ii) We say that I satisfies the Palais–Smale condition on M if every sequence {xn}∞n=1 ⊂ M
satisfying {I (xn)}∞n=1 is bounded and �(xn) → 0 is precompact in X .

Lemma 3.5 Let M∞ be as in (3.16) and define

�(û, v̂) = sup
(ξ,η)∈M∞,‖(ξ−û,η−v̂)‖X̂∞≤1

D Ê∞(û, v̂)(û − ξ, v̂ − η). (3.21)

If (ûm, v̂m) ∈ M∞ converges weakly in X̂∞ to (û, v̂) and if �(ûm, v̂m) → 0 as m → ∞,
then (u0 + û, v0 + v̂) satisfies (1.6). In particular, (û, v̂) ∈ M∞ is a critical point of Ê∞
relative to M∞ if and only if (u0 + û, v0 + v̂) satisfies (1.6) and (1.11).

Proof It is enough to show the first assertion. In view of the Sobolev embedding theorem in
one dimension, we can assume without loss of generality that (ûm, v̂m) converges uniformly
on compact subsets of (0,∞) to (û, v̂).

Let �m = �(ûm, v̂m). By definition, we have

DÊ∞(ûm, v̂m)(ûm − ũ, v̂m − ṽ) ≤ �m for all (ũ, ṽ) ∈ M∞, ‖(ũ − ûm, ṽ − v̂m)‖X̂∞ ≤ 1.

(3.22)

In particular, we have

DÊ∞(ûm, v̂m)(ξ, η) ≤ �m‖(ξ, η)‖X̂∞ for all (ξ, η) ∈ X̂∞ : ξ ≤ 0, η ≥ 0 in (0,∞).

Since (ûm, v̂m) converges weakly to (û, v̂) and �m → 0, we deduce that

DÊ∞(û, v̂)(ξ, η) ≤ 0 for all (ξ, η) ∈ X̂∞ : ξ ≤ 0, η ≥ 0 in (0,∞).

This implies that u := u0 + û and v := v0 + v̂ satisfy in the weak sense the differential
inequalities

u′′ + 1

r
u′ − k2

r2 u ≤ h(u, v), (3.23)

v′′ + 1

r
v′ ≥ g(u, v) in (0,∞). (3.24)

We claim that if u > 0 in any interval (r1, r2) ⊂ (0,∞) then the first equation of (1.6)
[i.e. equality in (3.23)] holds in (r1, r2). Indeed, if ξ ∈ C∞

c (r1, r2), then in view of the local
uniform convergence of ûm to û, there is some ε0 > 0 such that (ûm + t ξ, v̂m) belongs to
M∞ for all |t | < ε0 and for all sufficiently large m. It thus follows from (3.22) that, there is
some t ∈ (0, ε0) such that

DÊ∞(ûm, v̂m)(±tξ, 0) ≤ �m‖(tξ, 0)‖X̂∞ .
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As above, this implies that

DÊ∞(û, v̂)(±tξ, 0) ≤ 0,

which implies that DÊ∞(û, v̂)(ξ, 0) = 0. Since ξ is arbitrary, the claim follows.
Similarly, if v < 0 in any interval (r1, r2) ⊂ (0,∞), then the second equation of (1.6)

holds in that interval.
Since u is continuous, we can write {r : u(r) > 0} = ∪ j∈�(α j , β j ) of at most countably

many mutually disjoint open intervals. As argued above, the first equation of (1.6) holds on
each interval (α j , β j ). (Initially, it holds in the weak sense, but since u and v are Hölder
continuous (in view of the Sobolev embedding theorem in one dimension), it holds in the
classical sense.) Furthermore, u(α j ) = 0 if α j > 0, and u(β j ) = 0 if β j < ∞. Since
h(u, v) = u c1 for some continuous function c1, the Hopf lemma implies that

u′(α j ) > 0 if α j > 0 and u′(β j ) < 0 if β j < ∞. (3.25)

Recall that u′ = 0 a.e. in the set {u = 0}. Now, for any ξ ∈ C∞
c (0,∞) and ξ ≥ 0, we have

in view of (3.23) that

0 ≤
∫ ∞

0

[
u′ ξ ′ + 1

r2 uξ + h(u, v)ξ

]
rdr

=
∑
j∈�

∫ β j

α j

[
u′ ξ ′ + 1

r2 uξ + h(u, v)ξ

]
rdr

=
∑
j∈�

[
β j u

′(β j ) ξ(β j ) − α j u
′(α j ) ξ(α j )

]
,

where in the first equality, we have used h(u, v) = 0 wherever u = 0. By (3.25), if there is
some j such that α j or β j is non-zero and finite, the last sum is negative if ξ is chosen to be
positive thereof. We thus conclude that the α j and β j ’s are either zero or infinite, i.e. u > 0
in (0,∞). We hence deduce that the first equation of (1.6) holds in (0,∞).

The negativity of v and the validity of the second equation of (1.6) can be demonstrated
similarly, keeping in mind that

g(u, v) ≥ v

(
−a2 − 1√

6
b2 v + c2(u2 + v2)

)
=: v c2,

and in particular, g(u, v) ≥ 0 wherever v = 0. We omit the details. ��
In the following lemma we prove that ÊR satisfies the Palais–Smale condition.

Lemma 3.6 For R ∈ (0,∞), ÊR satisfies the Palais–Smale condition on X̂ R. For R = ∞,
Ê∞ satisfies the Palais–Smale condition on the closed convex set M∞ defined in (3.16).

Proof The result is standard for R < ∞. Consider the case R = ∞. Let (ûm, v̂m) ∈ M∞ be
a Palais–Smale sequence for Ê∞, i.e. Ê∞(ûm, v̂m) is bounded and �(ûm, v̂m) → 0, where �

is defined in (3.21). We need to show that (ûm, v̂m) has a convergent subsequence in X̂∞.
By Lemma 3.3, the sequence (ûm, v̂m) is bounded in X̂∞ and so we can assume without

loss of generality that (ûm, v̂m) converges weakly in X̂∞ to some (û, v̂). By the Sobolev
embedding theorem (in one and two dimensions), we can also assume that (ûm, v̂m) converges
to (û, v̂), uniformly on compact subsets of (0,∞) and strongly in L p((0, R); r dr) for any
R < ∞ and 1 ≤ p < ∞.
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By Lemma 3.5, u1 := u0 + û and v1 := v0 + v̂ is a solution to (1.6), (1.11). By working
with (u1, v1) instead of (u0, v0) and with the sequence (ûm − û, v̂m − v̂) instead of (ûm, v̂m),
we can assume for simplicity that û = v̂ = 0.

Let

Vm := Df (u0 + ûm, v0 + v̂m) − Df (u0, v0).

As in the proof of Lemma 3.3, let u∗ = s+√
2

and v∗ = − s+√
6

and note that D2 f (u∗, v∗) is
(strictly) positive definite, which implies that there are α, δ > 0 such that

[Df (x, y) − Df (x ′, y′)](x − x ′, y − y′)
≥ α[(x − x ′)2 + (y − y′)2] ∀ (x, y), (x ′, y′) ∈ Bδ(u∗, v∗).

Thus in view of (2.10), (2.11) and Strauss’ inequality (3.1) applied to the bounded sequence
(ûm, v̂m) in X̂∞, there is some large R2 > 0 (independent of m) such that

Vm(ûm, v̂m) ≥ α[|ûm |2 + |v̂m |2] in (R2,∞). (3.26)

On the other hand, note that (t ûm, t v̂m) ∈ M∞ for all t ∈ [0, 1]. As (ûm, v̂m) is bounded
in X̂∞, we can select some t0 ∈ (0, 1) independent of m such that

‖(ûm − t0ûm, v̂m − t0v̂m)‖X̂∞ ≤ 1.

Then it follows from (3.21) that

�(ûm, v̂m) ≥ DÊ∞(ûm, v̂m)(ûm − t0ûm, v̂m − t0v̂m),

which together with (3.26) implies that

1

1 − t0
�(ûm, v̂m) ≥ DÊ∞(ûm, v̂m)(ûm, v̂m)

=
∫ ∞

0

{
|û′

m |2 + |v̂′
m |2 + k2

r2 |ûm |2 + Vm(ûm, v̂m)
}
r dr

≥
∫ ∞

0

{
|û′

m |2 + |v̂′
m |2 + k2

r2 |ûm |2 + α|ûm |2 + α|v̂m |2
}
r dr

+
∫ R2

0

{
− α|ûm |2 − α|v̂m |2 + Vm(ûm, v̂m)

}
r dr.

On the other hand, by the strong convergence of (ûm, v̂m) to (0, 0) in L p((0, R2); r dr)
and the estimate (3.11), we see that

lim
m→∞

∫ R2

0

{
− α|ûm |2 − α|v̂m |2 + Vm(ûm, v̂m)

}
r dr = 0.

Recalling that �m → 0, we obtain that (ûm, v̂m) converges in X̂∞ to 0 = (û, v̂). ��
The following result is a consequence of the above lemmas and a variant of the mountain

pass theorem [38, Theorem II.12.8].

Lemma 3.7 (a) Let R ∈ (0,∞). If all critical points in X̂ R of ÊR are strictly stable, then
ÊR has a unique critical point.

(b) Let R ∈ (0,∞]. If all critical points (û, v̂) of ÊR satisfying u0 + û ≥ 0 and v0 + v̂ ≤ 0 are
strictly stable, then ÊR has a unique critical point satisfying u0 + û ≥ 0 and v0 + v̂ ≤ 0.
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In view of the above result, to prove uniqueness in Theorem 1.7, it suffices to establish
(strict) stability at relevant critical points (u, v). It is readily seen that, for R ∈ (0,∞],

D2ÊR(u − u0, v − v0)(ξ, η) · (ξ, η) = B(ξ, η),

where B is given by (1.18).

Proposition 3.8 Let a2, b2, c2 > 0 be such that b4 ≤ 3a2c2. Assume that R ∈ (0,∞]. Let
k ∈ Z\{0} and (u, v) be a solution of (1.6) and (1.11) with u > 0 and v < 0. Then (u, v) is
strictly stable for ÊR in the sense that B(ξ, η) > 0 for every nonzero (ξ, η) ∈ X̂ R.

Proof We will only prove the case R = ∞. (The case R < ∞ is simpler since the asymp-
totical behavior at infinity can be dropped.)

Recall from [25, Proposition 2.2], (2.10), (2.11), (3.5), (3.6) and (3.7) that

u(r) = O(r |k|), u′(r) = O(r |k|−1), v′(r) = O(r) as r → 0, (3.27)

u′(r) = O(r−3), v′(r) = O(r−3) as r → ∞. (3.28)

Recalling h = ∂ f
∂u and g = ∂ f

∂v
, we obtain the estimate

h(u, v) = O(r |k|), g(u, v) = O(1) as r → 0, (3.29)

h(u, v) = O(r−2), g(u, v) = O(r−2) as r → ∞. (3.30)

Fix (ξ, η) ∈ X̂∞. Since u > 0 and v < 0, we can write ξ = uξ̃ and η = vη̃ where
ξ̃ , η̃ ∈ H1

loc(0,∞). By Lemma 3.1 and (3.27), we have

ξ̃ (r) = o(r−|k|), η̃(r) = O(| ln r |1/2) as r → 0, (3.31)

ξ̃ (r) = O(r−1/2), η̃(r) = O(r−1/2) as r → ∞. (3.32)

We compute, using (1.6),
∫ m

1/m

[
|ξ ′|2 + k2

r2 ξ2
]
r dr =

∫ m

1/m

[
u2 |ξ̃ ′|2 + u′ (u ξ̃2)′ + k2

r2 u2 ξ̃2
]
r dr

= r u′ u ξ̃2
∣∣∣m
1/m

+
∫ m

1/m

[
u2 |ξ̃ ′|2 − h(u, v) u ξ̃2

]
r dr

= o(1) +
∫ m

1/m

[
u2 |ξ̃ ′|2 − h(u, v) u ξ̃2

]
r dr as m → ∞,

where we have used (3.27), (3.28), (3.31) and (3.32) in the last identity. Therefore, by
monotone and dominated convergence theorems, and (3.27), (3.28), (3.29) and (3.30), since
(ξ, η) ∈ X̂∞,

∫ ∞

0

[
|ξ ′|2 + k2

r2 ξ2
]
r dr = lim

m→∞

∫ m

1/m

[
|ξ ′|2 + k2

r2 ξ2
]
r dr

=
∫ ∞

0

[
u2 |ξ̃ ′|2 − h(u, v) u ξ̃2

]
r dr.

Likewise, ∫ ∞

0
|η′|2 r dr =

∫ ∞

0

[
v2 |η̃′|2 − g(u, v) v η̃2

]
r dr.
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We hence obtain

B(ξ, η) =
∫ ∞

0

{
u2|ξ̃ ′|2 + v2|η̃′|2

+
(

− b2

v
√

6
(v2 + u2) + 2c2v2

)
η2 + 2c2u2ξ2 + 4uξη

(
b2

√
6

+ c2v

)}
rdr.

Note that B(ξ, η) > 0 for (ξ, η) �≡ 0, provided that

2
(

b2√
6

+ c2v
)2

c2 ≤
(

− b2

v
√

6
(v2 + u2) + 2c2v2

)

⇐⇒ 2b2
(

b2

√
6c2

+ v

)
+ 2b2v ≤ −b2

v
(v2 + u2)

which holds true in (0,∞) because the above LHS is negative while the RHS is positive due
to the inequalities v < 0 and b2 + √

6c2v ≤ 0 for b4 ≤ 3a2c2 (see (2.1)). ��

We conclude the section with the proof of Theorem 1.7.

Proof of Theorem 1.7 The result is a consequence of Lemma 3.7(b) and Proposition 3.8.

4 Stability for k = ±1

In this section we provide the proof of Theorem 1.4 regarding the sign of the second variation
L [Q](P) at k-radially symmetric solutions Q in direction P ∈ H1

0 (BR,S0). Note that for
R = ∞, H1

0 (R2,S0) ≡ H1(R2,S0). Recall from (1.17) that, for P ∈ H1
0 (BR,S0),

L [Q](P) =
∫
BR

{
|∇P|2 − a2|P|2 − 2b2tr(P2Q) + c2 (|Q|2|P|2 + 2|tr(QP)|2) } dx .

4.1 Basis decomposition

In order to prove Theorem 1.4 we use, as in [26], the following basis decomposition. We
define {ei }3

i=1 to be the standard basis in R
3 and denote, for ϕ ∈ [0, 2π) and k �= 0,

n = n(ϕ) = (
cos

( k
2ϕ

)
, sin

( k
2ϕ

)
, 0

)
, m = m(ϕ) = (− sin

( k
2ϕ

)
, cos

( k
2ϕ

)
, 0

)
.

We endow the space S0 of Q-tensors with the Frobenius scalar product

Q · Q̃ = tr(QQ̃)

and for any ϕ ∈ [0, 2π), we define the following orthonormal basis in S0:

E0 =
√

3

2

(
e3 ⊗ e3 − 1

3
I3

)
,

E1 = E1(ϕ) = √
2

(
n ⊗ n − 1

2
I2

)
, E2 = E2(ϕ) = 1√

2
(n ⊗ m + m ⊗ n) ,

E3 = 1√
2
(e1 ⊗ e3 + e3 ⊗ e1), E4 = 1√

2
(e2 ⊗ e3 + e3 ⊗ e2) .
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Obviously, only E1 and E2 depend on ϕ and we have

∂E1

∂ϕ
= kE2 and

∂E2

∂ϕ
= −kE1. (4.1)

The above basis {E0, . . . , E4} is constructed so that at a point Q∗ = s+
(
n ⊗ n − 1

3 I3
)

with n ∈ S
1 × {0}, tensor E2 is along the direction of the tangent line to S lim∗ (see (1.14)),

while tensors E0, E1, E3 and E4 are along the normal directions to the tangent line.
It is clear that any P ∈ H1

loc(R
2,S0) can be represented as

P(x) =
4∑

i=0

wi (x)Ei , x = r(cos ϕ, sin ϕ) ∈ R
2,

with wi = P · Ei for i = 0, . . . , 4. We note although n and m may not be smooth as a
function of x , Ei are smooth away from the origin. Then the second variation becomes

L [Q](P) =
∫
BR

{ 4∑
i=0

|∇wi |2 + k2

r2 (w2
1 + w2

2) + 2k

r2

(
w1

∂w2

∂ϕ
− w2

∂w1

∂ϕ

)

+ (−a2 + c2(u2 + v2)
) 4∑
i=0

|wi |2 + 2c2 (vw0 + uw1)
2

−2b2

√
6

(
v(w2

0 − w2
1 − w2

2) − 2uw0w1
)

−2b2

√
6

(√
3

2
u(w2

3 − w2
4) cos(kϕ)+√

3uw3w4 sin(kϕ)+ 1

2
v(w2

3 + w2
4)

)}
dx .

(4.2)

We note that components {w0, w1, w2} and {w3, w4} in (4.2) are not mixed and therefore we
can separately study the sign of L [Q](P) in the spaces

V1 = {P ∈ H1
0 (BR,S0) : P · E3 = P · E4 = 0},

V2 = {P ∈ H1
0 (BR,S0) : P = w3(x)E3 + w4(x)E4; w3, w4 ∈ H1

0 (BR)}.
It is clear that H1

0 (BR,S0) = V1 ⊕ V2. Furthermore, if P belongs to H1
0 (BR,S0), then so

do its (direct sum) projections onto V1 and V2.

4.2 Stability in the space V1

We start with the result about stability of L [Q] in V1.

Proposition 4.1 Let a2 ≥ 0, b2, c2 > 0 be fixed constants, R ∈ (0,∞], and k = ±1.
Let (u, v) be a solution of (1.6) on (0, R) under the boundary condition (1.11) such that
u > 0 and v < 0 and assume that (u, v) is stable with respect to ER (i.e. (1.19) holds).
Let Q be k-radially symmetric solution Q of (1.2) (on BR) and (1.9) given by (1.4). Then
L [Q](P) ≥ 0 for any P ∈ V1.

We will use the following lemma whose simple proof we omit.

Lemma 4.2 Let |k| = 1 and P = w0 E0 + w1 E1 + w2 E2 ∈ V1. If we write

wl(r, ϕ) =
∞∑

m=−∞
(wl,m(r) + i ŵl,m(r))eimϕ with l = 0, 1, 2, (4.3)
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Then
√
r(|w′

l,m | + |wl,m |),√r(|ŵ′
l,m | + |ŵl,m |) ∈ L2(0, R) for all (l,m),

1√
r
|wl,m |, 1√

r
|ŵl,m | ∈ L2(0, R) for all (l,m) /∈ {(0, 0), (1,±1), (2,±1)},

1√
r
|kw1,m − mŵ2,m |, 1√

r
|kw2,m + mŵ1,m | ∈ L2(0, R) for |m| = 1.

Furthermore, for each m ∈ Z,

2∑
l=0

(wl,m(r) + i ŵl,m(r))eimϕ El ∈ V1.

Proof of Proposition 4.1 Let us first show that L [Q](P) ≥ 0 for all P ∈ V1. By a standard
density argument, we can assume without loss of generality that P ∈ V1 ∩ C∞

c (BR\{0}).
(Here we have used the fact that a point has zero Newtonian capacity in two dimensions.)

We write x = reiϕ = (r cos ϕ, r sin ϕ) and P = w0E0 + w1E1 + w2E2 as in Sect. 4.1.
By (4.2),

L [Q](P) =
∫ R

0

∫ 2π

0

{ 2∑
l=0

|∂rwl |2 + 1

r2

(|∂ϕw0|2 + |∂ϕw1 − kw2|2 + |∂ϕw2 + kw1|2
)

+ (−a2 + c2(u2 + v2)
) 2∑
l=0

|wl |2 + 2c2 (vw0 + uw1)
2

−2b2

√
6

(
v(w2

0 − w2
1 − w2

2) − 2uw0w1
) }

rdr dϕ.

Now, we Fourier decompose wl ’s as in (4.3). By Lemma 4.2,

Pm :=
2∑

l=0

(wl,m(r) + i ŵl,m(r))eimϕ El ∈ V1. (4.4)

Furthermore, a direct computation shows that

L [Q](P) =
∞∑

m=−∞
L [Q](Pm), (4.5)

and

L [Q](Pm) = 2π

∫ R

0

{ 2∑
l=0

[|w′
l,m |2 + |ŵ′

l,m |2] + m2

r2

[|w0,m |2 + |ŵ0,m |2]

+ 1

r2

[
|mw1,m − kŵ2,m |2 + |kw1,m − mŵ2,m |2

+ |mŵ1,m + kw2,m |2 + |kŵ1,m + mw2,m |2
]

+
(

−a2 − 2√
6
b2v + c2 (u2 + 3v2)) (|w0,m |2 + |ŵ0,m |2)

+
(

−a2 + 2√
6
b2v + c2 (3u2 + v2)) (|w1,m |2 + |ŵ1,m |2)
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+ 4u(w0,mw1,m + ŵ0,mŵ1,m)

[
b2

√
6

+ c2v

]

+
(

−a2 + 2√
6
b2v + c2 (u2 + v2)) (|w2,m |2 + |ŵ2,m |2)

}
r dr.

Now, observe that if we define

Pm(w0, w1, w2) =
∫ R

0

{
|w′

0|2 + |w′
1|2 + |w′

2|2 + m2

r2 |w0|2

+ 1

r2

(∣∣|m|w1 − |k|w2
∣∣2 + ∣∣|k|w1 − |m|w2

∣∣2)

+
(

−a2 − 2√
6
b2v + c2 (u2 + 3v2)) |w0|2

+
(

−a2 + 2√
6
b2v + c2 (3u2 + v2)) |w1|2 + 4uw0w1

[
b2

√
6

+ c2v

]

+
(

−a2 + 2√
6
b2v + c2 (u2 + v2)) |w2|2

}
r dr,

then

1

2π
L [Q](Pm) = Pm(sign(m)w0,m, sign(m)w1,m, sign(k)ŵ2,m)

+Pm(sign(m)ŵ0,m, sign(m)ŵ1,m,−sign(k)w2,m),

where we use the convention that sign(0) = 1.
From the foregoing analysis, in order to show that L is non-negative on V1, it is enough

to show that Pm(w0, w1, w2) ≥ 0 for any smooth functions w0, w1, w2 ∈ C∞
c (0, R). In

addition, it is clear from the definition of Pm that it suffices to consider k = 1 and m ≥ 0.
We consider the cases m ≥ 1 and m = 0 separately.

I. Case m ≥ 1: Consider first the case b4 �= 3a2c2. In this case, since u′ > 0, v′ �= 0 (see
Theorem 1.6) and u > 0, we can write w0 = v′η, w1 = u′ξ , w2 = uζ for η, ξ, ζ ∈ C∞

c (0, R)

and use Hardy decomposition trick to obtain

Pm(w0, w1, w2) =
∫ R

0

{
|v′|2|η′|2 + (m2 − 1)

(v′)2η2

r2 − 2uv′u′(ξ − η)2
[
b2

√
6

+ c2v

]

+ |u′|2|ξ ′|2 + 1

r2

(|mu′ξ − uζ |2 + |u′ξ − muζ |2)

− 2

r2 |u′|2ξ2 + 2

r3 uu
′ξ2 + |u|2|ζ ′|2 − 1

r2 |u|2ζ 2
}
r dr

= Jm + Im,

where

Jm =
∫ R

0

{
|v′|2|η′|2 + |u′|2|ξ ′|2 + (m2 − 1)

|v′|2η2

r2 − 2uv′u′
[
b2

√
6

+ c2v

]
(ξ − η)2

}
r dr,

Im =
∫ R

0

{
m2 − 1

r2 |u′|2ξ2 + m2

r2 |u|2ζ 2 + |u|2|ζ ′|2 + 2

r3 uu
′ξ2 − 4m

r2 uu′ξζ

}
r dr.
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Since v′( b2√
6

+ c2v
)

< 0 in (0, R), it is clear that Jm ≥ 0. As for Im , we compute

Im =
∫ R

0

{
m2 − 1

r2

(|u′|2ξ2 + |u|2ζ 2) − 4(m − 1)

r2 uu′ξζ

+ 1

r2 |u|2ζ 2 + |u|2|ζ ′|2 + 2

r3 uu
′ξ2 − 4

r2 uu
′ξζ

}
r dr

=
∫ R

0

{
(m − 1)2

r2

(|u′|2ξ2 + |u|2ζ 2) + 2(m − 1)

r2 (u′ξ − uζ )2

+2uu′

r3 (ξ − ζr)2 + |u|2
r2

(
ζ + ζ ′r

)2
}
r dr ≥ 0.

(Here we have used the identity
∫ R

0

(
u2ζ ζ ′+uu′ζ 2

)
dr = 1

2

∫ R
0 (u2ζ 2)′ dr = 0.) We conclude

that Pm(w0, w1, w2) ≥ 0 for m ≥ 1 and b4 �= 3a2c2.
Let us now turn to the case b4 = 3a2c2. By [26, Proposition 3.5], v ≡ − s+√

6
and u is the

unique solution of

u′′ + 1

r
u′ − k2

r2 u = c2u

(
u2 − s2+

2

)
, u(0) = 0, u(R) = s+√

2
.

Furthermore u > 0 and u′ > 0.
The argument above for b4 �= 3a2c2 does not apply directly since v′ ≡ 0 and we cannot

write w0 = v′ η unless w0 ≡ 0. Nevertheless, with the above explicit value of v, the
expression for Pm , for m ≥ 0, simplifies to

Pm(w0, w1, w2) =
∫ R

0

{
|w′

0|2 + |w′
1|2 + |w′

2|2 + m2

r2 |w0|2 + 1

r2

(∣∣mw1 − w2
∣∣2 + ∣∣w1 − mw2

∣∣2)

+1

2
c2(2u2 + s2+)|w0|2 + 1

2
c2(6u2 − s2+)|w1|2 + 1

2
c2(u2 − s2+)|w2|2

}
r dr.

It is readily seen that the contribution of w0 is non-negative and uncoupled with w1 and w2.
Thus, in proving the positivity of Pm , we can assume without loss of generality that w0 ≡ 0.
The foregoing analysis now applies yielding Pm(w0, w1, w2) ≥ 0 for all m ≥ 1.

II. Case m = 0: Note that

P0(w0, w1, w2) = B(w1, w0) + F̃(w2)

where B stands for the second variation of ER(u, v) (see (1.18)) while

F̃(w2) =
∫ R

0

{
|w′

2|2 + w2
2

r2 +
(

−a2 + 2√
6
b2v + c2 (u2 + v2)) |w2|2

}
r dr

=
∫ R

0
(ζ ′)2u2 rdr ≥ 0

by the computation in the previous case with the Hardy decomposition w2 = uζ . One
concludes that P0(w0, w1, w2) ≥ 0 thanks to (1.19). ��

Let us now turn to the study of the kernel of L [Q] in V1.

Proposition 4.3 Under the hypotheses of Proposition 4.1, L [Q](P) = 0 for some P ∈ V1

if and only if the dichotomy in the second part of Theorem 1.4 holds.
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Proof We will consider only the case k = 1 and omit the very similar proof for k = −1.
Assume that P ∈ V1 and L [Q](P) = 0. Define Pm as in (4.4) so that P = ∑

Pm . By
(4.5) and Proposition 4.1, we have that L [Q](Pm) = 0 for all Pm .

Define

Y =
{
w : (0, R) → R

∣∣∣√r(|w′| + |w|) ∈ L2(0, R), and w(R) = 0 if R < ∞
}
. (4.6)

For the functionals Pm defined in the proof of Proposition 4.1, we make the following four
claims.

(i) For all m ≥ 2 and wl ∈ Y ∩ L2((0, R); 1
r dr), there holds

Pm(w0, w1, w2) ≥
∫ R

0

1

r

2∑
l=0

|wl |2 dr.

(ii) For b4 �= 3a2c2 and for all w0 ∈ Y ∩ L2((0, R); 1
r dr) and w1, w2 ∈ Y such that

|w1 − w2| ∈ L2((0, R); 1
r dr), there holds

P1(w0, w1, w2)

≥
∫ R

0

{ |u|2
r2 |(rζ )′|2 − 2uu′v′

[
b2

√
6

+ c2v

]
(ξ − η)2 + 2uu′

r3 (ξ − ζr)2
}
r dr,

where η = w0
v′ , ξ = w1

u′ and ζ = w2
u .

(iii) For b4 = 3a2c2 and for all w0 ∈ Y ∩ L2((0, R); 1
r dr) and w1, w2 ∈ Y such that

|w1 − w2| ∈ L2((0, R); 1
r dr), there holds

P1(w0, w1, w2) ≥
∫ R

0

{
1

r2 |w0|2 + |u|2
r2 |(rζ )′|2 + 2uu′

r3 (ξ − ζr)2
}
r dr,

where ξ = w1
u′ and ζ = w2

u .
(iv) For all w0, w2 ∈ Y ∩ L2((0, R); 1

r dr) and w1 ∈ Y , there holds

P0(w0, w1, w2) = B(w1, w0) +
∫ R

0

(w′
2u − w2 u′)2

u2 r dr.

When w0, w1, w2 ∈ C∞
c (0, R), the above claims were established in the proof of Proposi-

tion 4.1. They continue to hold in this generality, thanks to Fatou’s lemma, since the left hand
sides are quadratic linear forms while the integrands on the right hand sides are non-negative.

Now, we see that Pm(w0, w1, w2) = 0 if and only if one of the following three cases
occurs:

• m ≥ 2 and w0 = w1 = w2 = 0,
• or m = 0 and w2 = 0 and B(w1, w0) = 0,
• or m = 1 and (w0, w1, w2) = (tv′, tu′, t

r u) for some constant t .

The conclusion is then readily seen from the above and the fact that

∂Q

∂x1
= v′(r) cos ϕE0 + u′(r) cos ϕE1 − k

u(r)

r
sin ϕE2,

∂Q

∂x2
= v′(r) sin ϕE0 + u′(r) sin ϕE1 + k

u(r)

r
cos ϕE2.

We omit the details. ��
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4.3 Stability in the space V2

Proposition 4.4 Let a2 ≥ 0, b2, c2 > 0 be fixed constants, R ∈ (0,∞], and k = ±1. Let
(u, v) be a solution of (1.6) on (0, R) under the boundary condition (1.11) such that u > 0
and v < 0 and let Q be k-radially symmetric solution Q of (1.2) (on BR) and (1.9) given
by (1.4). Then L [Q](P) > 0 for all nonzero P ∈ V2.

Proof We will consider only the case k = 1 and omit the very similar proof for k = −1.
Let P = w3E3 + w4E4. Then

L [Q](P) =
∫ R

0

∫ 2π

0

{ 4∑
i=3

[
|∂rwi |2+ 1

r2 |∂ϕwi |2+
(

−a2 − b2

√
6
v + c2(u2 + v2)

)
|wi |2

]

−b2u√
2

(
(w2

3 − w2
4) cos(kϕ) + 2uw3w4 sin(kϕ)

) }
rdrdϕ.

We will represent

w = w3 + iw4

to obtain

L [Q](P)=
∫ R

0

∫ 2π

0

{
|∇w|2 +

(
−a2 − b2

√
6
v + c2(u2 + v2)

)
|w|2 − b2u√

2
Re(w2e−iϕ)

}
rdrdϕ.

Now we can use Fourier decomposition

w =
∑
n∈Z

ξn(r)e
inϕ.

We note that ξn ∈ Y ∩ L2((0, R); 1
r dr) for n �= 0 and ξ0 ∈ Y , where Y is defined by (4.6).

It is clear that
∫ 2π

0
w2e−iϕ dϕ =

∫ 2π

0

∑
n,m∈Z

ξn(r)ξm(r)ei(n+m−1)ϕ dϕ = 4π

∞∑
n=1

ξn(r)ξ1−n(r).

Therefore

L [Q](P)

2π
=

∞∑
n=1

∫ R

0

[
|ξ ′
n |2 + |ξ ′

1−n |2 + n2

r2 |ξn |2 + (1 − n)2

r2 |ξ1−n |2

+
(

−a2 − b2

√
6
v+c2(u2 + v2)

)
(|ξn |2+|ξ1−n |2) − √

2b2uRe(ξnξ1−n)

]
r dr

= J1 + J2,

where J1 and J2 correspond to n = 1 and n ≥ 2.
Estimating J2. We use Hardy decomposition trick ξn = uηn for n ≥ 2 and n ≤ −1 to

obtain

J2 =
∞∑
n=2

∫ R

0

[
|ξ ′
n |2 + |ξ ′

1−n |2 + n2

r2 |ξn |2 + (1 − n)2

r2 |ξ1−n |2

+
(

−a2 − b2

√
6
v + c2(u2 + v2)

)
(|ξn |2 + |ξ1−n |2) − √

2b2uRe(ξnξ1−n)

]
r dr
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=
∞∑
n=2

∫ R

0

[
|η′

n |2 + |η′
1−n |2 + n2 − 1

r2 |ηn |2 + (1 − n)2 − 1

r2 |η1−n |2

−3b2

√
6

v(|ηn |2 + |η1−n |2) − √
2b2uRe(ηnη1−n)

]
u2r dr

≥
∞∑
n=2

∫ R

0

b2

√
2
(−√

3v − u)(|ηn |2 + |η1−n |2)u2r dr

≥
∞∑
n=2

∫ R

0

b2

√
2
(−√

3v − u)(|ξn |2 + |ξ1−n |2)r dr.

Using the fact that −√
3v − u > 0 in (0, R) (cf. (2.2)), we obtain that J2 > 0 for nonzero

modes {ξn}n �=0,1. (Strictly speaking the above estimates are first shown for ξn ∈ C∞
c (0, R)

and then extend to ξn ∈ Y ∩ L2((0, R); 1
r dr) by density.)

Estimating J1. For ξ0, ξ1 ∈ C∞
c (0, R), we have by Hardy decomposition trick for ξ0 = vη0

and ξ1 = uη1:

J1 =
∫ R

0

[
|ξ ′

1|2 + |ξ ′
0|2 + 1

r2 |ξ1|2

+
(

−a2 − b2

√
6
v + c2(u2 + v2)

)
(|ξ1|2 + |ξ0|2) − √

2b2uRe(ξ1ξ0)

]
r dr.

=
∫ R

0

[
|η′

1|2u2 + |η′
0|2v2 − 3b2

√
6

v|ξ1|2 − b2

√
6v

u2|ξ0|2 − √
2b2uRe(ξ1ξ0)

]
r dr

=
∫ R

0

[
|η′

1|2u2 + |η′
0|2v2 − b2

v
√

6

∣∣∣√3vξ1 + uξ0

∣∣∣2
]
r dr.

As in the proof of Proposition 4.3, this leads to3

J1 ≥
∫ R

0

[
|η′

1|2u2 + |η′
0|2v2 − b2

v
√

6

∣∣∣√3vξ1 + uξ0

∣∣∣2
]
r dr

for ξ0 ∈ Y and ξ1 ∈ Y ∩ L2((0, R); 1
r dr). Therefore, J1 > 0 for nonzero modes {ξn}n=0,1.

We conclude that L [Q](P) > 0. ��
4.4 Proof of Theorem 1.4

The theorem is a consequence of Propositions 4.1, 4.3 and 4.4. �
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Appendix

Lemma 5.1 Assume that a2 ≥ 0, b2, c2 > 0. Let

f (x, y) = −a2

2
(x2 + y2) + c2

4
(x2 + y2)2 − b2

3
√

6
y(y2 − 3x2).

Then

min
R2

f = −a2

3
s2+ − 2b2

27
s3+ + c2

6
s4+

which is attained at (and only at)
(
0, 2√

6
s+

)
and

( ± 1√
2
s+,− 1√

6
s+

)
. Furthermore, the

Hessian of f at all these critical points is positive definite.

Proof We write x = r sin ϕ and y = r cos ϕ for some r ≥ 0 and ϕ ∈ [0, 2π). Then

f (x, y) = −a2

2
r2 + c2

4
r4 − b2

3
√

6
r3 cos 3ϕ ≥ −a2

2
r2 + c2

4
r4 − b2

3
√

6
r3 =: f̃ (r).

It is easy to check that f̃ has three critical points, r = 0 and r = 2√
6
s± where the first one

is a local maximum point and the other two are local minimum points. The global minimum
of f̃ is then verified to be achieved at r = 2√

6
s+. We have thus shown that

f (x, y) ≥ f̃

(
2√
6
s+

)
= −a2

3
s2+ − 2b2

27
s3+ + c2

6
s4+,

and equality is attained if and only if r = 2√
6
s+ and ϕ ∈ {0, 2π

3 , 4π
3 }. The first assertion

follows.
Now a computation using −a2 − b2

3 s+ + 2
3c

2 s2+ = 0 leads to

D2 f

(
0,

2√
6
s+

)
=

[
b2 s+ 0

0 1
3 (3a2 + b2 s+)

]
,

D2 f

(
± 1√

2
s+,− 1√

6
s+

)
=

⎡
⎣ c2s2+ ± 1√

3
(−c2 s2+ + b2 s+)

± 1√
3
(−c2 s2+ + b2 s+) 1

3 (c2 s2+ + 2b2 s+)

⎤
⎦ ,

from which the last assertion follows. ��

References

1. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions: with formulas, graphs, and math-
ematical tables. No. 55. Courier Corporation (1964)

2. Alama, S., Bronsard, L., Giorgi, T.: Uniqueness of symmetric vortex solutions in the Ginzburg–Landau
model of superconductivity. J. Funct. Anal. 167(2), 399–424 (1999)

3. Alama, S., Bronsard, L., Lamy, X.: Minimizers of the landau-de gennes energy around a spherical colloid
particle. arXiv preprint arXiv:1504.00421 (2015)

4. Ball, J.M., Zarnescu, A.: Orientability and energy minimization for liquid crystal models. Arch. Ration.
Mech. Anal. 202(2), 493–535 (2011)

5. Bauman, P., Philips, D.: Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech.
Anal. 205, 795–826 (2012)

6. Bethuel, F., Brezis, H., Coleman, B.D., Hélein, F.: Bifurcation analysis of minimizing harmonic maps
describing the equilibrium of nematic phases between cylinders. Arch. Ration. Mech. Anal. 118(2), 149–
168 (1992)

123

http://arxiv.org/abs/1504.00421


119 Page 32 of 33 R. Ignat et al.

7. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau vortices. In: Progress in Nonlinear Differential
Equations and their Applications, vol. 13. Birkhäuser Boston Inc., Boston, MA (1994)

8. Brezis, H., Coron, J.-M., Lieb, E.H.: Harmonic maps with defects. Commun. Math. Phys. 107(4), 649–705
(1986)

9. Canevari, G.: Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals.
ESAIM Control Optim. Calc. Var. 21(1), 101–137 (2015)

10. Chandrasekhar, S., Ranganath, G.: The structure and energetics of defects in liquid crystals. Adv. Phys.
35, 507–596 (1986)

11. Cladis, P., Kleman, M.: Non-singular disclinations of strength s = +1 in nematics. J. Phys. 33, 591–598
(1972)

12. Contreras, A., Lamy, X.: Biaxial escape in nematics at low temperature. arXiv preprint arXiv:1405.2055
(2014)

13. de Figueiredo, D.G., Sirakov, B.: On the Ambrosetti–Prodi problem for non-variational elliptic systems.
J. Differ. Equ. 240(2), 357–374 (2007)

14. de Gennes, P., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, Oxford (1995)
15. Di Fratta, G., Robbins, J., Slastikov, V., Zarnescu, A.: Half-integer point defects in the q-tensor theory of

nematic liquid crystals. J. Nonlinear Sci. 26, 121–140 (2015)
16. Döring, L., Ignat, R., Otto, F.: A reduced model for domain walls in soft ferromagnetic films at the cross-

over from symmetric to asymmetric wall types. J. Eur. Math. Soc. (JEMS) 16(7), 1377–1422 (2014)
17. Fatkullin, I., Slastikov, V.: Vortices in two-dimensional nematics. Commun. Math. Sci. 7(4), 917–938

(2009)
18. Gartland, E.C., Mkaddem, S.: Instability of radial hedgehog configurations in nematic liquid crystals

under Landau-de Gennes free-energy models. Phys. Rev. E 59, 563–567 (1999)
19. Geng, Z., Wang, W., Zhang, P., Zhang, Z.: Stability of half-degree point defect profiles for 2-d nematic

liquid crystal. arXiv preprint arXiv:1601.02845 (2016)
20. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order, 2nd edn. Springer, Berlin

(2001)
21. Golovaty, D., Montero, A.: On minimizers of a Landau-de Gennes energy functional on planar domains.

Arch. Ration. Mech. Anal. 213, 447–490 (2014)
22. Golovaty, D., Montero, J. A., Sternberg, P.: Dimension reduction for the Landau-de Gennes model in

planar nematic thin films. arXiv preprint arXiv:1501.07339 (2015)
23. Hu, Y., Qu, Y., Zhang, P.: On the disclination lines of nematic liquid crystals. arXiv:1408.6191 (2014)
24. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Stability of the vortex defect in the Landau-de Gennes

theory for nematic liquid crystals. C. R. Math. Acad. Sci. Paris 351(13–14), 533–537 (2013)
25. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Uniqueness results for an ODE related to a generalized

Ginzburg–Landau model for liquid crystals. SIAM J. Math. Anal. 46(5), 3390–3425 (2014)
26. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Instability of point defects in a two-dimensional nematic

liquid crystal model. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(4), 1131–1152 (2016)
27. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Stability of the melting hedgehog in the Landau-de

Gennes theory of nematic liquid crystals. Arch. Ration. Mech. Anal. 215(2), 633–673 (2015)
28. Ignat, R., Otto, F.: A compactness result for Landau state in thin-film micromagnetics. Ann. Inst. H.

Poincaré Anal. Non Linéaire 28(2), 247–282 (2011)
29. Kleman, M.: Points, lines and walls in liquid crystals, magnetic systems and various ordered media. Wiley,

New York (1983)
30. Kleman, M., Lavrentovich, O.: Topological point defects in nematic liquid crystals. Philos. Mag. 86,

4117–4137 (2006)
31. Kralj, S., Virga, E.G.: Universal fine structure of nematic hedgehogs. J. Phys. A Gen. 34(4), 829–838

(2001)
32. Kralj, S., Virga, E.G., Zumer, S.: Biaxial torus around nematic point defects. Phys. Rev. E 60(2), 1858–

1866 (1999)
33. Lamy, X.: Some properties of the nematic radial hedgehog in the Landau-de Gennes theory. J. Math.

Anal. Appl. 397(2), 586–594 (2013)
34. Majumdar, A., Zarnescu, A.: Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit

and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)
35. Mironescu, P.: On the stability of radial solutions of the Ginzburg–Landau equation. J. Funct. Anal.

130(2), 334–344 (1995)
36. Mottram, N. J., Newton, C. J.: Introduction to q-tensor theory. arXiv preprint arXiv:1409.3542 (2014)
37. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162

(1977)

123

http://arxiv.org/abs/1405.2055
http://arxiv.org/abs/1601.02845
http://arxiv.org/abs/1501.07339
http://arxiv.org/abs/1408.6191
http://arxiv.org/abs/1409.3542


Stability of point defects of degree ± 1
2 … Page 33 of 33 119

38. Struwe, M.: Variational methods, fourth edn., vol. 34 of Ergebnisse der Mathematik und ihrer Grenzge-
biete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.
3rd Series. A Series of Modern Surveys in Mathematics]. Applications to nonlinear partial differential
equations and Hamiltonian systems. Springer-Verlag, Berlin (2008)

123


	Stability of point defects of degree pm12 in a two-dimensional nematic liquid crystal model
	Abstract
	1 Introduction
	1.1 Physical background
	1.2 Main mathematical results

	2 Monotonicity
	3 Uniqueness
	4 Stability for k=pm1
	4.1 Basis decomposition
	4.2 Stability in the space V1
	4.3 Stability in the space V2
	4.4 Proof of Theorem 1.4

	Acknowledgments
	Appendix
	References




