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Abstract In this paper, we will study the (linear) geometric analysis on metric measure
spaces. We will establish a local Li–Yau’s estimate for weak solutions of the heat equation
and prove a sharp Yau’s gradient for harmonic functions on metric measure spaces, under
the Riemannian curvature-dimension condition RCD∗(K , N ).
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1 Introduction

In the field of geometric analysis, one of the fundamental results is the following Li–Yau’s
local gradient estimate for solutions of the heat equation on a complete Riemannian manifold.

Theorem 1.1 (Li–Yau [34]) Let (Mn, g) be an n-dimensional complete Riemannian man-
ifold, and let B2R be a geodesic ball of radius 2R centered at O ∈ Mn. Assume that
Ric(Mn) ≥ −k with k ≥ 0. If u(x, t) is a smooth positive solution of the heat equation
�u = ∂t u on B2R × (0,∞), then for any α > 1, we have the following gradient estimate in
BR:

sup
x∈BR

(|∇ f |2 − α · ∂t f )(x, t) ≤ Cα2

R2

(
α2

α2 − 1
+ √

k R

)
+ nα2k

2(α − 1)
+ nα2

2t
(1.1)

where f := ln u and C is a constant depending only on n.

By letting R → ∞ in (1.1), one gets a global gradient estimate, for any α > 1, that

|∇ f |2 − α · ∂t f ≤ nα2k

2(α − 1)
+ nα2

2t
. (1.2)

There is a rich literature on extensions and improvements of the Li–Yau inequality, both
the local version (1.1) and the global version (1.2), to diverse settings and evolution equations,
for example, in the setting of Riemannian manifolds with Ricci curvature bounded below
[9,15,32,33,47], in the setting of weighted Riemannian manifolds with Bakry–Emery Ricci
curvature bounded below [7,12,35,43] and some non-smooth setting [10,44], and so on.

Let (X, d, μ) be a complete, proper metric measure space with supp(μ) = X. The
curvature-dimension condition on (X, d, μ) has been introduced by Sturm [48] and Lott and
Villani [36]. Given K ∈ R and N ∈ [1,∞], the curvature-dimension condition C D(K , N )

is a synthetic notion for “generalized Ricci curvature ≥K and dimension ≤N” on (X, d, μ).
Bacher and Sturm [6] introduced the reduced curvature-dimension condition C D∗(K , N ),
which satisfies a local-to-global property. On the other hand, to rule out Finsler geometry,
Ambrosio et al. [1] introduced the Riemannian curvature-dimension condition RC D(K ,∞),
which assumes that the heat flow on L2(X) is linear. Remarkably, Erbar et al. [16] and Ambro-
sio et al. [5] introduced a dimensional version of Riemannian curvature-dimension condition
RC D∗(K , N ) and proved that it is equivalent to a Bakry–Emery’s Bochner inequality via
an abstract �2-calculus for semigroups. In the case of Riemannian geometry, the notion
RC D∗(K , N ) coincides with the original Ricci curvature ≥K and dimension ≤N, and for
the case of the weighted manifolds (Mn, g, eφ · volg), the notion RC D∗(K , N ) coincides
with the corresponding Bakry–Emery’s curvature-dimension condition [36,48]. In the setting
of Alexandrov geometry, it is implied by generalized (sectional) curvature bounded below
in the sense of Alexandrov [42,52].

Based on the �2-calculus for the heat flow (Ht f )t≥0 on L2(X), many important results
in geometric analysis have been obtained on a metric measure space (X, d, μ) satisfy-
ing RC D∗(K , N ) condition. For instance, Li–Yau–Hamilton estimates for the heat flow
(Ht f )t≥0 [17,28,30] and spectral gaps [31,37,44] for the infinitesimal generator of (Ht f )t≥0.

In this paper, we will study the locally weak solutions of the heat equation on a metric
measure space (X, d, μ). Let � ⊂ X be an open set. The RC D∗(K , N ) condition implies that
the Sobolev space W 1,2(�) is a Hilbert space. Given an interval I ⊂ R, a function u(x, t) ∈
W 1,2(� × I ) is called a locally weak solution for the heat equation on � × I if it satisfies

−
∫

I

∫
�

〈∇u,∇φ〉dμdt =
∫

I

∫
�

∂u

∂t
· φdμdt (1.3)
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for all Lipschitz functions φ with compact support in �× I , where the inner product 〈∇u,∇φ〉
is given by polarization in W 1,2(�).

Notice that the locally weak solutions u(x, t) do not form a semi-group in general. The
method of �2-calculus for the heat flow in the previous works [17,28,31] is no longer be
suitable for the problems on locally weak solutions of the heat equation.

To seek an appropriate method to deal with the locally weak solutions for the heat equation,
let us recall what is the proof of Theorem 1.1 in the smooth context. There are two main
ingredients: the Bochner formula and a maximum principle. The Bochner formula states that

1

2
�|∇ f |2 ≥ (� f )2

n
+ 〈∇ f ,∇� f 〉 + K |∇ f |2 (1.4)

for any C3-function f on Mn with Ricci curvature Ric(Mn) ≥ K for some K ∈ R. The
maximum principle states that if f (x) is of C2 on Mn and if it achieves its a local maximal
value at point x0 ∈ Mn , then we have

∇ f (x0) = 0 and � f (x0) ≤ 0. (1.5)

For simplification, we only consider the special case that u(x, t) is a smooth positive solution
for heat equation on a compact manifold Mn with Ric(Mn) ≥ 0. By using the Bochner
formula to ln u, one deduces a differential inequality

(
� − ∂

∂t

)
F ≥ −2〈∇ f ,∇F〉 + 2

nt
F2 − F

t
,

where f = ln u and F = t
(|∇ f |2 − ∂t f

)
. Then by using the maximum principle to F at

one of its maximum points (x0, t0), one gets the desired Li–Yau’s estimate

max F = F(x0, t0) ≤ n

2
.

In this paper, we want to extend these two main ingredients to non-smooth metric measure
spaces. Firstly, let us consider the Bochner formula in non-smooth context. Let (X, d, μ) be a
metric measure space with RC D∗(K , N ). Erbar et al. [16] and Ambrosio et al. [5] proved that
RC D∗(K , N ) condition is equivalent to a Bakry–Emery’s Bochner inequality for the heat
flow (Ht f )t≥0 on X . This provides a global version of Bochner formula for the infinitesimal
generator of the heat flow (Ht f )t≥0 (see Lemma 2.3). On the other hand, a good cut-off
function has been obtained in [5,24,40]. By combining these two facts and an argument in
[24], one can localize the global version of Bochner formula in [5,16] to a local one.

To state the local version of Bochner formula, it is more convenient to work with a notion
of the weak Laplacian, which is a slight modification from [18,20]. Let � ⊂ X be an open
set. Denote by H1(�) := W 1,2(�) and H1

0 (�) := W 1,2
0 (�). The weak Laplacian on � is an

operator L on H1(�) defined by: for each function f ∈ H1(�), L f is a functional acting
on H1

0 (�) ∩ L∞(�) given by

L f (φ) := −
∫

�

〈∇ f ,∇φ〉dμ ∀ φ ∈ H1
0 (�) ∩ L∞(�).

In the case when it holds

L f (φ) ≥
∫

�

h · φdμ ∀ 0 ≤ φ ∈ H1
0 (�) ∩ L∞(�)
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93 Page 4 of 30 H. Zhang, X. Zhu

for some function h ∈ L1
loc(�), then it is well-known [23] that the weak Laplacian L f can

be extended to a signed Radon measure on �. In this case, we denote by

L f ≥ h · μ

on � in the sense of distributions.
Now, the local version of Bochner formula is given as follows.

Theorem 1.2 ([5,24]) Let (X, d, μ) be a metric measure space with RC D∗(K , N ) for some
K ∈ R and N ≥ 1. Assume that f ∈ H1(BR) such that L f is a signed measure on BR with
the density g ∈ H1(BR) ∩ L∞(BR). Then we have |∇ f |2 ∈ H1(BR/2) ∩ L∞(BR/2) and
that L (|∇ f |2) is a signed Radon measure on BR/2 such that

1

2
L (|∇ f |2) ≥

[
g2

N
+ 〈∇ f ,∇g〉 + K |∇ f |2

]
· μ

on BR/2 in the sense of distributions.

Next, we consider to extend the maximum principle (1.5) from smooth Riemannian man-
ifolds to non-smooth metric measure spaces (X, d, μ). A simple observation is that the
maximum principle (1.5) on a smooth manifold Mn has the following equivalent form:

Suppose that f (x) is of C2 on Mn and that it achieves its a local maximal value at point
x0 ∈ Mn . Given any w ∈ C1(U ) for some neighborhood U of x0. Then we have

� f (x0) + 〈∇ f ,∇w〉(x0) ≤ 0.

In the following result, we will extend the observation to the non-smooth context. Technically,
it is our main effort in the paper.

Theorem 1.3 Let � be a bounded domain in a metric measure space (X, d, μ) with
RC D∗(K , N ) for some K ∈ R and N ≥ 1. Let f (x) ∈ H1(�) ∩ L∞

loc(�) such that
L f is a signed Radon measure with L sing f ≥ 0, where L sing f is the singular part with
respect to μ. Suppose that f achieves one of its strict maximum in � in the sense that: there
exists a neighborhood U ⊂⊂ � such that

sup
U

f > sup
�\U

f.

Then, given any w ∈ H1(�) ∩ L∞(�), there exists a sequence of points {x j } j∈N ⊂ U such
that they are the approximate continuity points of L ac f and 〈∇ f ,∇w〉, and that

f (x j ) ≥ sup
�

f − 1/j and L ac f (x j ) + 〈∇ f ,∇w〉(x j ) ≤ 1/j.

Here and in the sequel of this paper, supU f means ess supU f .

This result is close to the spirit of the Omori–Yau maximum principle [41,51]. It has
also some similarity with the approximate versions of the maximum principle developed, for
instance by Jensen [26], in the theory of second order viscosity solutions.

A similar parabolic version of the maximum principle, Theorem 4.4, will be given in Sect.
4.

After obtaining the above Bochner formula and the maximum principle (Theorems 1.2,
4.4), we will show the following Li–Yau type gradient estimates for locally weak solutions
of the heat equation, which is our main purpose in this paper.
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Theorem 1.4 Let K ≥ 0 and N ∈ [1,∞), and let (X, d, μ) be a metric measure space
satisfying RC D∗(−K , N ). Let T∗ ∈ (0,∞] and let B2R be a geodesic ball of radius 2R
centered at p ∈ X, and let u(x, t) ∈ W 1,2

(
B2R × (0, T∗)

)
be a positive locally weak solution

of the heat equation on B2R × (0, T∗). Then, given any T ∈ (0, T∗), we have the following
local gradient estimate

supBR×(β·T,T ]
(
|∇ f |2 − α · ∂

∂t f
)

(x, t) ≤ max

{
1, 1

2 + K T
2(α−1)

}
· Nα2

2T · 1
β2

+ CN ·α4

R2(α−1)
· 1

(1−β)β2 + CN · α2

β2 ·
(√

K
R + 1

R2

) (1.6)

for any α > 1 and any β ∈ (0, 1), where f = ln u, and CN is a constant depending only on
N. Here and in the sequel of this paper, supBR×[a,b] g means ess supBR×[a,b] g for a function
g(x, t).

The local boundedness and the Harnack inequality for locally weak solutions of the heat
equation have been established by Sturm [49,50] in the setting of abstract local Dirichlet
form and by Marola and Masson [39] in the setting of metric measure with a standard
volume doubling property and supporting a L2-Poincare inequality. Of course, they are
available on metric measure spaces (X, d, μ) satisfying RC D∗(K , N ) for some K ∈ R and
N ∈ [1,∞). In particular, any locally weak solutions for the heat equation must be locally
Hölder continuous.

As a consequence of Theorem 1.4, letting R → ∞ and β → 1, we get the following
global gradient estimates.

Corollary 1.5 Let (X, d, μ) and K , N , T∗ be as in the Theorem 1.4. Let u(x, t) is a positive
solution of the heat equation on X × (0, T∗). Then, for almost all T ∈ (0, T∗), the following
gradient estimate holds

sup
x∈X

(
|∇ f |2 − α · ∂

∂t
f

)
(x, T ) ≤ max

{
1,

1

2
+ K T

2(α − 1)

}
· Nα2

2T
≤
(

1 + K T

2(α − 1)

)
· Nα2

2T

for any α > 1, where f = ln u.

As another application of the maximum principle, Theorem 1.3, and the Bochner formula,
we will deduce a sharp Yau’s gradient estimate for harmonic functions on metric measure
spaces satisfying RC D∗(−K , N ) for K ≥ 0 and N > 1.

Let us recall the classical local Yau’s gradient estimate in geometric analysis (see [14,
38,51]). Let Mn be an n(≥ 2)-dimensional complete non-compact Riemannian manifold
with Ric(Mn) ≥ −k for some k ≥ 0. The local Yau’s gradient estimate asserts that for any
positive harmonic function u on B2R , then

sup
BR

|∇ ln u| ≤ √
(n − 1)k + C(n)

R
. (1.7)

In particular, if u is positive harmonic on Mn and Ric ≥ −(n − 1) on Mn then it follows
that |∇ log u| ≤ n − 1 on Mn . This result is sharp, in fact the equality case was characterized
in [38]. This means that for k = n − 1 in (1.7) the factor

√
n − 1 on the right hand side is

sharp.
Let (X, d, μ) be a metric measure space satisfying RC D∗(−K , N ) for some K ≥ 0 and

N ∈ (1,∞). It was proved in [27] the following form of Yau’s gradient estimate that, for
any positive harmonic function u on B2R ⊂ X , it holds

sup
BR

|∇ ln u| ≤ C(N , K , R). (1.8)
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93 Page 6 of 30 H. Zhang, X. Zhu

In the setting of Alexandrov spaces, by using a Bochner formula and an argument of Nash–
Moser iteration, it was proved in [25,53] the following form of Yau’s gradient estimate
holds: given an n-dimensional Alexandrov space M and a positive harmonic function u on
B2R ⊂ M , if the generalized Ricci curvature on B2R ⊂ M has a lower bound Ric ≥ −k,
k ≥ 0, in the sense of [52], then

sup
BR

|∇ ln u| ≤ C1(n)
√

k + C2(n)

R
.

Indeed, by applying Theorem 1.2, the same argument in [25,53] implies this estimate still
holds for harmonic function u on a metric measure space (X, d, μ) with RC D∗(−k, n).

However, it seems hopeless to improve the fact C1(n) to the sharp
√

n − 1 in (1.7) via a
Nash–Moser iteration argument.

The last result in this paper is to establish a sharp local Yau’s gradient estimate on metric
measure spaces with Riemannian curvature-dimension condition.

Theorem 1.6 Let K ≥ 0 and N ∈ (1,∞), and let (X, d, μ) be a metric measure space
satisfying RC D∗(−K , N ). Let B2R be a geodesic ball of radius 2R centered at p ∈ X, and
let u(x) be a positive harmonic function on B2R. Then the following local Yau’s gradient
estimate holds

sup
BR

|∇ ln u| ≤
√

1 + β

1 − β
· (N − 1)K + C(N )√

β(1 − β) · R
(1.9)

for any β ∈ (0, 1).

2 Preliminaries

Let (X, d) be a complete metric space and μ be a Radon measure on X with supp(μ) =
X. Denote by Br (x) the open ball centered at x and radius r . Throughout the paper, we
assume that X is proper (i.e., closed balls of finite radius are compact). Denote by L p(�) :=
L p(�,μ) for any open set � ⊂ X and any p ∈ [1,∞].
2.1 Reduced and Riemannian curvature-dimension conditions

Let P2(X, d) be the L2-Wasserstein space over (X, d), i.e., the set of all Borel probability
measures ν satisfying ∫

X
d2(x0, x)dν(x) < ∞

for some (hence for all) x0 ∈ X . Given two measures ν1, ν2 ∈ P2(X, d), the L2-Wasserstein
distance between them is given by

W 2(ν0, ν1) := inf
∫

X×X
d2(x, y)dq(x, y)

where the infimum is taken over all couplings q of ν1 and ν2, i.e., Borel probability measures
q on X × X with marginals ν0 and ν1. Such a coupling q realizes the L2-Wasserstein distance
is called an optimal coupling of ν0 and ν1. Let P2(X, d, μ) ⊂ P2(X, d) be the subspace
of all measures absolutely continuous w.r.t. μ. Denote by P∞(X, d, μ) ⊂ P2(X, d, μ) the
set of measures in P2(X, d, μ) with bounded support.
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Definition 2.1 Let K ∈ R and N ∈ [1,∞). A metric measure space (X, d, μ) is called to
satisfy the reduced curvature-dimension condition C D∗(K , N ) if any only if for each pair
ν0 = ρ0 · μ, ν1 = ρ1 · μ ∈ P∞(X, d, μ) there exist an optimal coupling q of them and a
geodesic (νt := ρt · μ)t∈[0,1] in P∞(X, d, μ) connecting them such that for all t ∈ [0, 1]
and all N ′ ≥ N :∫

X
ρ

−1/N ′
t dνt ≥

∫
X×X

[
σ

(1−t)
K/N ′ (d(x0, x1))ρ

−1/N ′
0 (x0) + σ

(t)
K/N ′(d(x0, x1))ρ

−1/N ′
1 (x1)

]

dq(x0, x1),

where the function

σ
(t)
k (θ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(
√

k·tθ)

sin(
√

k·θ)
, 0 < kθ2 < π2,

t, kθ2 = 0,
sinh(

√−k·tθ)

sinh(
√−k·θ)

, kθ2 < 0,

∞, kθ2 ≥ π2.

Given a function f ∈ C(X), the pointwise Lipschitz constant [13] of f at x is defined by

Lip f (x) := lim sup
y→x

| f (y) − f (x)|
d(x, y)

= lim sup
r→0

sup
d(x,y)≤r

| f (y) − f (x)|
r

,

where we put Lip f (x) = 0 if x is isolated. Clearly, Lip f is a μ-measurable function on X.

The Cheeger energy, denoted by Ch : L2(X) → [0,∞], is defined [4] by

Ch( f ) := inf

{
lim inf

j→∞
1

2

∫
X
(Lip f j )

2dμ

}
,

where the infimum is taken over all sequences of Lipschitz functions ( f j ) j∈N converging to
f in L2(X). In general, Ch is a convex and lower semi-continuous functional on L2(X).

Definition 2.2 A metric measure space (X, d, μ) is called infinitesimally Hilbertian if the
associated Cheeger energy is quadratic. Moreover, (X, d, μ) is said to satisfy Riemannian
curvature-dimension condition RC D∗(K , N ), for K ∈ R and N ∈ [1,∞), if it is infinitesi-
mally Hilbertian and satisfies the C D∗(K , N ) condition.

Let (X, d, μ) be a metric measure space satisfying RC D∗(K , N ). For each f ∈ D(Ch),
i.e., f ∈ L2(X) and Ch( f ) < ∞, it has

Ch( f ) = 1

2

∫
X

|∇ f |2dμ,

where |∇ f | is the so-called minimal relaxed gradient of f (see §4 in [4]). It was proved,
according to [4, Lemma 4.3] and Mazur’s lemma, that Lipschitz functions are dense in
D(Ch), i.e., for each f ∈ D(Ch), there exist a sequence of Lipschitz functions ( f j ) j∈N such
that f j → f in L2(X) and |∇( f j − f )| → 0 in L2(X). Since the Cheeger energy Ch is
a quadratic form, the minimal relaxed gradients bring an inner product as following: given
f, g ∈ D(Ch), it was proved [18] that the limit

〈∇ f ,∇g〉 := lim
ε→0

|∇( f + ε · g)|2 − |∇ f |2
2ε

exists in L1(X). The inner product is bi-linear and satisfies Cauchy–Schwarz inequality,
Chain rule and Leibniz rule (see Gigli [18]).
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2.2 Canonical Dirichlet form and a global version of Bochner formula

Given an infinitesimally Hilbertian metric measure space (X, d, μ), the energy E := 2Ch
gives a canonical Dirichlet form on L2(X) with the domain V := D(Ch). Let K ∈ R and
N ∈ [1,∞), and let (X, d, μ) be a metric measure space satisfying RC D∗(K , N ). It has
been shown [1,3] that the canonical Dirichlet form (E ,V) is strongly local and admits a
Carré du champ � with �( f ) = |∇ f |2 of f ∈ V. Namely, the energy measure of f ∈ V

is absolutely continuous w.r.t. μ with the density |∇ f |2. Moreover, the intrinsic distance dE
induced by (E ,V) coincides with the original distance d on X .

It is worth noticing that if a metric measure space (X, d, μ) satisfying RC D∗(K , N )

then its associated Dirichlet form (E ,V) satisfies the standard assumptions: the local volume
doubling property and supporting a local L2-Poincare inequality (see [45,48]).

Let
(
�E , D(�E )

)
and (Ht f )t≥0 denote the infinitesimal generator and the heat flow

induced from (E ,V). Let us recall the Bochner formula (also called the Bakry–Emery con-
dition) in [16] as following.

Lemma 2.3 Let (X, d, μ) be a metric measure space satisfying RC D∗(K , N ) for K ∈ Rand
N ∈ [1,∞), and let (E ,V) be the associated canonical Dirichlet form. Then the following
properties hold.

(i) [16, Theorem 4.8] If f ∈ D(�E ) with �E f ∈ V and if φ ∈ D(�E ) ∩ L∞(X) with
φ ≥ 0 and �E φ ∈ L∞(X), then we have the Bochner formula:

1

2

∫
X

�E φ · |∇ f |2dμ ≥ 1

N

∫
X

φ(�E f )2dμ +
∫

X
φ〈∇(�E f ),∇ f 〉dμ

+K
∫

X
φ|∇ f |2dμ. (2.1)

(ii) [5, Theorem 5.5] If f ∈ D(�E ) with �E f ∈ L4(X)∩ L2(X) and if φ ∈ V with φ ≥ 0,
then we have |∇ f |2 ∈ V and the modified Bochner formula:

∫
X

(
−1

2
〈∇|∇ f |2,∇φ〉 + �E f · 〈∇ f ,∇φ〉 + φ · (�E f )2

)
dμ

≥
∫

X

(
K |∇ f |2 + 1

N
(�E f )2

)
· φdμ. (2.2)

We need the following result on the existence of good cut-off functions on RC D∗(K , N )-
spaces from [40, Lemma3.1]; see also [5,19,24].

Lemma 2.4 Let (X, d, μ) be a metric measure space satisfying RC D∗(K , N ) for K ∈ R

and N ∈ [1,∞). Then for every x0 ∈ X and R > 0 there exists a Lipschitz cut-off function
χ : X → [0, 1] satisfying:

(i) χ = 1 on B2R/3(x0) and supp(χ) ⊂ BR(x0);
(ii) χ ∈ D(�E ) and �E χ ∈ V ∩ L∞(X), moreover |�E χ | + |∇χ | ≤ C(N , K , R).

2.3 Sobolev spaces

Several different notions of Sobolev spaces on metric measure space (X, d, μ) have been
established in [13,21,22,46]. They are equivalent to each other on RC D∗(K , N ) metric
measure spaces (see, for example [2]).
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Let (X, d, μ) be a metric measure space satisfying RC D∗(K , N ) for some K ∈ R and
N ∈ [1,∞). Fix an open set � in X . We denote by Liploc(�) the set of locally Lipschitz
continuous functions on �, and by Lip(�) (resp. Lip0(�)) the set of Lipschitz continuous
functions on � (resp, with compact support in �).

Let � ⊂ X be an open set. For any 1 ≤ p ≤ +∞ and f ∈ Liploc(�), its W 1,p(�)-norm
is defined by

‖ f ‖W 1,p(�) := ‖ f ‖L p(�) + ‖Lip f ‖L p(�).

The Sobolev spaces W 1,p(�) is defined by the closure of the set{
f ∈ Liploc(�)| ‖ f ‖W 1,p(�) < +∞}

under the W 1,p(�)-norm. Remark that W 1,p(�) is reflexive for any 1 < p < ∞ (see [13,
Theorem 4.48]). Spaces W 1,p

0 (�) is defined by the closure of Lip0(�) under the W 1,p(�)-

norm. We say a function f ∈ W 1,p
loc (�) if f ∈ W 1,p(�′) for every open subset �′ ⊂⊂ �.

The following two facts are well-known for experts. For the convenience of readers, we
include a proof here.

Lemma 2.5 (i) For any 1 < p < ∞, we have W 1,p(X) = W 1,p
0 (X).

(ii) W 1,2(X) = D(Ch).

Proof Given a function f ∈ Lip(X) ∩ W 1,p(X), in order to prove (i), it suffices to find a
sequence ( f j ) j∈N of Lipschitz functions with compact supports in X such that f j → f in
W 1,p(X).

Consider a family of Lipschitz cut-off χ j with, for each j ∈ N, χ j (x) = 1 for x ∈ B j (x0)

and χ j (x) = 0 for x /∈ B j+1(x0), and 0 ≤ χ j (x) ≤ 1, |∇χ j |(x) ≤ 1 for all x ∈ X .
Now f · χ j ∈ Lip0(X) and f · χ j (x) → f (x) for μ-almost all x ∈ X . Notice that
| f ·χ j | ≤ | f | ∈ L p(X) for all j , the dominated convergence theorem implies that f ·χ j → f
in L p(X) as j → ∞. On the other hand, since

|∇( f · χ j )| ≤ |∇ f | · χ j + | f | · |∇χ j | ≤ |∇ f | + | f | ∈ L p(X)

for all j ∈ N, we obtain that the sequence ( f · χ j ) j∈N is bounded in W 1,p(X). By noticing
that W 1,p(X) is reflexive (see [13, Theorem 4.48]), we can see that f · χ j converges weakly
to f in W 1,p(X) as j → ∞. Hence, by Mazurs lemma, we conclude that there exists a
convex combination of f · χ j converges strongly to f in W 1,p(X) as j → ∞. The proof of
(i) is completed.

Let us prove (ii). It is obvious that W 1,2(X) ⊂ D(Ch), since Lip(X)∩W 1,2(X) ⊂ D(Ch)

and |∇ fn | ≤ Lip( fn). We need only to show D(Ch) ⊂ W 1,2(X). This follows immediately
from the fact that Lipschitz functions are dense in D(Ch). The proof of (ii) is completed. ��

3 The weak Laplacian and a local version of Bochner formula

Let (X, d, μ) be a metric measure space satisfying RC D∗(K , N ) for some K ∈ R and N ∈
[1,∞). Fix any open set � ⊂ X . We will denote by the Sobolev spaces H1

0 (�) := W 1,2
0 (�),

H1(�) := W 1,2(�) and H1
loc(�) := W 1,2

loc (�).

Definition 3.1 (Weak Laplacian). Let � ⊂ X be an open set, the Laplacian on � is an
operator L on H1(�) defined as the follows. For each function f ∈ H1(�), its Laplacian
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L f is a functional acting on H1
0 (�) ∩ L∞(�) given by

L f (φ) := −
∫

�

〈∇ f ,∇φ〉dμ ∀ φ ∈ H1
0 (�) ∩ L∞(�).

For any g ∈ H1(�)∩L∞(�), the distribution g·L f is a functional acting on H1
0 (�)∩L∞(�)

defined by
g · L f (φ) := L f (gφ) ∀ φ ∈ H1

0 (�) ∩ L∞(�). (3.1)

This Laplacian (on �) is linear due to that the inner product 〈∇ f ,∇g〉 is linear. The
strongly local property of the inner product

∫
X 〈∇ f ,∇g〉dμ implies that if f ∈ H1(X) and

f = constant on � then L f (φ) = 0 for any φ ∈ H1
0 (�) ∩ L∞(�).

If, given f ∈ H1(�), there exists a function u f ∈ L1
loc(�) such that

L f (φ) =
∫

�

u f · φdμ ∀ φ ∈ H1
0 (�) ∩ L∞(�), (3.2)

then we say that “L f is a function in L1
loc(�)” and write as “L f = u f in the sense of

distributions”. It is similar to say that “L f is a function in L p
loc(�) or W 1,p

loc (�) for any
p ∈ [1,∞]”, and so on.

The operator L satisfies the following Chain rule and Leibniz rule, which is essentially
due to Gigli [18].

Lemma 3.2 Let � be an open domain of a metric measure space (X, d, μ) satisfying
RC D∗(K , N ) for some K ∈ R and N ∈ [1,∞).

(i) (Chain rule) Let f ∈ H1(�) ∩ L∞(�) and η ∈ C2(R). Then we have

L [η( f )] = η′( f ) · L f + η′′( f ) · |∇ f |2. (3.3)

(ii) (Leibniz rule) Let f, g ∈ H1(�) ∩ L∞(�). Then we have

L ( f · g) = f · L g + g · L f + 2〈∇ f ,∇g〉. (3.4)

Proof The proof is given essentially in [18]. For the completeness, we sketch it. We prove
only the Chain rule (3.3). The proof of Leibniz rule (3.4) is similar.

Given any φ ∈ H1
0 (�) ∩ L∞(�), we have

L [η( f )](φ) = −
∫

�

〈∇[η( f )],∇φ〉dμ = −
∫

�

η′( f ) · 〈∇ f ,∇φ〉dμ,

where we have used that (see [18, §3.3]) the inner product 〈∇ f ,∇φ〉 satisfies the Chain rule,
i.e., 〈∇[η( f )],∇φ〉 = η′( f ) · 〈∇ f ,∇φ〉.

On the other hand, by (3.1), we obtain

[η′( f ) · L f + η′′( f ) · |∇ f |2](φ) = L f (η′( f ) · φ) + ∫
�

η′′( f ) · |∇ f |2 · φdμ

= − ∫
�
〈∇ f ,∇(η′( f ) · φ)〉dμ + ∫

�
η′′( f ) · |∇ f |2 · φdμ

= − ∫
�
〈∇ f ,∇φ〉 · η′( f )dμ,

where we have used that η′( f ) · φ ∈ H1
0 (�) ∩ L∞(�) and that (see [18, §3.3]) the inner

product 〈∇ f ,∇g〉 satisfies the Chain rule and Leibniz rule, i.e.,

〈∇ f ,∇(η′( f ) · φ
)〉 = 〈∇ f ,∇φ〉η′( f ) + 〈∇ f ,∇(η′( f )

)〉φ
= 〈∇ f ,∇φ〉η′( f ) + 〈∇ f ,∇ f 〉 · η′′( f )φ.

The combination of the above two equations implies the Chain rule (3.3). The proof is
completed. ��
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To compare the above Laplace operator L on X with the generator �E of the canonical
Dirichlet form (E ,V), it was shown [18] that the following compatibility result holds.

Lemma 3.3 (Proposition 4.24 in [18]) The following two statements are equivalent:

i) f ∈ H1(X) and L f is a function in L2(X),
ii) f ∈ D(�E ).

In each of these cases, we have L f = �E f.

The following regularity result for the Poisson equation has been proved under a Bakry–
Emery type heat semigroup curvature condition, which is implied by the Riemannian
curvature-dimension condition RC D∗(K , N ) (see [16, Theorem 7] and [5, Theorem 7.5]).

Lemma 3.4 ([27,29]) Let (X, d, μ) be a metric measure space satisfying RC D∗(K , N ) for
K ∈ R and N ∈ [1,∞). Let g ∈ L∞(BR), where BR is a geodesic ball with radius R
and centered at a fixed point x0. Assume f ∈ H1(BR) and L f = g on BR in the sense of
distributions. Then we have |∇ f | ∈ L∞

loc(BR), and

‖|∇ f |‖L∞(BR/2) ≤ C(N , K , R) ·
(

1

μ(BR)
‖ f ‖L1(BR) + ‖g‖L∞(BR)

)
.

Proof In the case of g = 0, i.e., f is harmonic on BR , the assertion is proved in [27,
Theorem 1.2] (see also [19, Theorem 3.9]). In the general case g ∈ L∞(�), this is proved
in [29, Theorem 3.1]. The assertion of the constant C(N , K , R) depending only on N , K , R
comes from the fact that both the doubling constant and L2-Poincare constant on a ball BR

of a RC D∗(K , N )-space depend on N , K and R. ��
Now we will give a local version of the Bochner formula, Theorem 1.2, by combining the

modified Bochner formula (2.2) and a similar argument in [24,28].

Theorem 3.5 ([5,24]) Let (X, d, μ) be a metric measure space satisfying RC D∗(K , N ) for
K ∈ R and N ∈ [1,∞). Let BR be a geodesic ball with radius R and centered at a point x0.

Assume that f ∈ H1(BR) satisfies L f = g on BR in the sense of distributions with the
function g ∈ H1(BR) ∩ L∞(BR). Then we have |∇ f |2 ∈ H1(BR/2) ∩ L∞(BR/2) and

1

2
L (|∇ f |2) ≥

[
g2

N
+ 〈∇ f ,∇g〉 + K |∇ f |2

]
· μ on BR/2 (3.5)

in the sense of distributions, i.e.,

−1

2

∫
BR/2

〈∇|∇ f |2,∇φ〉dμ ≥
∫

BR/2

φ ·
(

g2

N
+ 〈∇ f ,∇g〉 + K |∇ f |2

)
dμ

for any 0 ≤ φ ∈ H1
0 (BR/2) ∩ L∞(BR/2).

Proof From Lemma 3.4 and that g ∈ L∞(BR), we know |∇ f | ∈ L∞
loc(BR).

We take a cut-off χ satisfying (i) and (ii) in Lemma 2.4. Let

f̃ (x) :=
{

f · χ if x ∈ BR

0 if x ∈ X\BR .

Then we have f̃ ∈ Lip0(BR). It is easy to check supp(L f̃ ) ⊂ BR . In fact, given any
ψ ∈ H1

0 (X) with ψ = 0 on BR , the strongly local property implies that
∫

X 〈∇ f̃ ,∇ψ〉dμ = 0.
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Now we want to calculate L f̃ on BR . By the Leibniz rule (3.4), we have, on BR ,

L f̃ = L ( f · χ) = χ · L f + f · L χ + 2〈∇ f ,∇χ〉
= χ · g + f · �E χ + 2〈∇ f ,∇χ〉 ∈ L∞

loc(BR),

where we have used g ∈ L∞(BR) and |∇ f | ∈ L∞
loc(BR), and that χ, |∇χ |,�E χ ∈ L∞(X) in

Lemma 2.4. Combining with supp(L f̃ ) ⊂ BR , we have L f̃ ∈ L2(X)∩ L∞(X). Therefore,
by Lemma 3.3, we get f̃ ∈ D(�E ) and

L2(X) ∩ L∞(X) � �E f̃ = L f̃ =
{

χ · g + f · �E χ + 2〈∇ f ,∇χ〉 if x ∈ BR

0 if x ∈ X\BR .

(3.6)
According to Lemma 2.3(ii) and 0 ≤ φ ∈ H1

0 (BR/2) ⊂ V, we conclude that |∇ f̃ |2 ∈ V and
that ∫

X

(
−1

2
〈∇|∇ f̃ |2,∇φ〉 + �E f̃ · 〈∇ f̃ ,∇φ〉 + φ · (�E f̃ )2

)
dμ

≥ 1

N

∫
X

φ · (�E f̃ )2dμ + K
∫

X
φ|∇ f̃ |2dμ.

Since f̃ = f on BR/2, we have |∇ f | = |∇ f̃ | for μ-a.e. on BR/2. Notice that |∇ f̃ |2 ∈ V

implies that |∇ f̃ |2 ∈ H1(BR/2). Then |∇ f |2 ∈ H1(BR/2), and |∇|∇ f |2| = |∇|∇ f̃ |2| in
L2(BR/2). By (3.6) and that |∇χ | = �E χ = 0 on BR/2 (since χ = 1 on B2R/3), we have
�E f̃ = g on BR/2. Hence, we obtain

∫
BR/2

(
−1

2
〈∇|∇ f |2,∇φ〉 + g · 〈∇ f ,∇φ〉 + φ · g2

)
dμ

≥ 1

N

∫
BR/2

φ · g2dμ + K
∫

BR/2

φ|∇ f |2dμ. (3.7)

Noticing that g ·φ ∈ H1
0 (BR/2)∩L∞(BR/2) andL f = g on BR in the sense of distributions,

we have ∫
BR/2

g · gφdμ = L f (gφ) = −
∫

BR/2

〈∇ f ,∇(gφ)〉dμ

= −
∫

BR/2

〈∇ f ,∇g〉 · φdμ −
∫

BR/2

〈∇ f ,∇φ〉 · gdμ.

By combining this and (3.7), we get the desired inequality (3.5). The proof is finished. ��
By using the same argument of [8], one can get an improvement of the above Bochner

formula. One can also consult a detailed argument given in [31, Lemma 2.3].

Corollary 3.6 Let (X, d, μ) be a metric measure space satisfying RC D∗(K , N ) for K ∈ R

and N ∈ [1,∞). Let BR be a geodesic ball with radius R and centered at a fixed point x0.
Assume that f ∈ H1(BR) satisfies L f = g on BR in the sense of distributions with

the function g ∈ H1(BR) ∩ L∞(BR). Then we have |∇ f |2 ∈ H1(BR/2) ∩ L∞(BR/2) and
that the distribution L (|∇ f |2) is a signed Radon measure on BR/2. If its Radon–Nikodym
decomposition w.r.t. μ is denoted by

L (|∇ f |2) = L ac(|∇ f |2) · μ + L sing(|∇ f |2),
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then we have L sing(|∇ f |2) ≥ 0 and, for μ-a.e. x ∈ BR/2,

1

2
L ac(|∇ f |2) ≥ g2

N
+ 〈∇ f ,∇g〉 + K |∇ f |2.

Furthermore, if N > 1, for μ-a.e. x ∈ BR/2 ∩ {
y : |∇ f (y)| �= 0

}
,

1

2
L ac(|∇ f |2) ≥ g2

N
+ 〈∇ f ,∇g〉 + K |∇ f |2+ N

N − 1
·
(〈∇ f ,∇|∇ f |2〉

2|∇ f |2 − g

N

)2

. (3.8)

4 The maximum principle

Let K ∈ R and N ∈ [1,∞) and let (X, d, μ) be a metric measure space satisfying
RC D∗(K , N ). In this section, we will study the maximum principle on (X, d, μ). Let us
begin from the Kato’s inequality for weighted measures.

4.1 The Kato’s inequality

Let � be a bounded open set of (X, d, μ). Fix any w ∈ H1(�) ∩ L∞(�), we consider the
weighted measure

μw := ew · μ on �.

Since, the density e−‖w‖L∞(�) ≤ ew ≤ e‖w‖L∞(�) on �, we know that the associated the
Lebesgue space L p(�,μw) and the Sobolev spaces W 1,p(�,μw) are equivalent to the
original L p(�) and W 1,p(�), respectively, for all p ≥ 1. Both the measure doubling property
and the L2-Poincare inequality still hold with respect to this measure μw (the constants, of
course, depend on ‖w‖L∞(�)).

For this measure μw , we defined the associated Laplacian Lw on f ∈ H1(�) by

Lw f (φ) := −
∫

�

〈∇ f ,∇φ〉dμw

(
= −

∫
�

〈∇ f ,∇φ〉ewdμ

)

for any φ ∈ H1
0 (�) ∩ L∞(�). It is easy to check that

Lw f = ew · L f + ew · 〈∇w,∇ f 〉
in the sense of distributions, i.e., Lw f (φ) = L f (ew · φ) + ∫

�
〈∇w,∇ f 〉ew · φdμ.

When � be a domain of the Euclidean space R
N with dimension N ≥ 1, the classical

Kato’s inequality states that given any function f ∈ L1
loc(�) such that � f ∈ L1

loc(�), then
� f+ is a signed Radon measure and the following holds:

� f+ ≥ χ[ f ≥ 0] · � f

in the sense of distributions, where f+ := max{ f, 0}. Here, χ[ f ≥ 0](x) = 1 for x such that
f (x) ≥ 0 and χ[ f ≥ 0](x) = 0 for x such that f (x) < 0. In [11], the result was extended
to the case when � f is a signed Radon measure.

In the following, we will extend the Kato’s inequality to the metric measure spaces
(X, d, μw), under assumption f ∈ H1(�).
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Proposition 4.1 (Kato’s inequality) Let � be a bounded open set of (X, d, μ) and let w ∈
H1(�)∩ L∞(�). Assume that f ∈ H1(�) such that Lw f is a signed Radon measure. Then
Lw f+ is a signed Radon measure and the following holds:

Lw f+ ≥ χ[ f ≥ 0] · L ac
w f · μw on �, (4.1)

in the sense of distributions. In the sequel, we denote the Radon–Nikodym decomposition
Lw f = Lw f + L

sing
w f.

Proof It suffices to prove the following equivalent property:

Lw| f | ≥ sgn( f ) · Lw f, (4.2)

where sgn(t) = 1 for t > 0, sgn(t) = −1 for t < 0, and sgn(t) = 0 for t = 0.

Fix any ε > 0 and let

fε(x) := ( f 2 + ε2)1/2 ≥ ε.

We have f 2
ε = f 2 + ε2,

|∇ fε | = | f |
fε

|∇ f | ≤ |∇ f | (4.3)

and

2 fε · Lw fε + 2|∇ fε |2 = Lw f 2
ε = Lw f 2 = 2 f · Lw f + 2|∇ f |2.

Thus,

Lw fε ≥ f

fε
· Lw f. (4.4)

Notice that |∇ fε | ≤ |∇ f | and fε → | f | in L2(�) implies that fε is bounded in H1(�) and,
hence, there exists a subsequence fε j converging weakly to | f | in H1(�). Thus, the measures
Lw( fε j ) converges weakly to Lw| f |. On the other hand, notice that fε(x) → | f (x)| for
each x ∈ � and that | f/ fε | ≤ 1 on �. Letting ε := ε j → 0 in (4.4), we conclude that

Lw(| f |) ≥ f

| f | · Lw f.

This is (4.2), and the proof is completed. ��
4.2 Maximum principles

The above Kato’s inequality implies the maximum principle Theorem 1.3. Precisely, we have
the following.

Theorem 4.2 Let � be a bounded domain. Let f (x) ∈ H1(�)∩ L∞
loc(�) such that L f is a

signed Radon measure with L sing f ≥ 0. Suppose that f achieves one of its strict maximum
in � in the sense that: there exists a neighborhood U ⊂⊂ � such that

sup
U

f > sup
�\U

f. (4.5)

Here and in the sequel of the paper, the notion supU f means always ess supU f. Then, given
any w ∈ H1(�) ∩ L∞(�), for any ε > 0, we have

μ

{
x : f (x) ≥ sup

�

f − ε and L ac f (x) + 〈∇ f ,∇w〉(x) ≤ ε

}
> 0. (4.6)
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In particular, there exists a sequence of points {x j } j∈N ⊂ U such that they are the approximate
continuity points of L ac f and 〈∇ f ,∇w〉, and that

f (x j ) ≥ sup
�

f − 1/j and L ac f (x j ) + 〈∇ f ,∇w〉(x j ) ≤ 1/j.

Proof Suppose the first assertion (4.6) fails for some sufficiently small ε0 > 0. Then we
have

(
f − (sup� f − ε0)

)
+ ∈ H1

0 (�) (by the maximal property (4.5)) and

μ

{
x : f (x) ≥ sup

�

f − ε0 and L ac f + 〈∇ f ,∇w〉 ≤ ε0

}
= 0.

Then for almost x ∈ {y : f (y) ≥ sup� f − ε0} we have

L ac
w f (x) · μw = ew(x) · (L ac f + 〈∇ f ,∇w〉)(x) · μ > e−‖w‖L∞ ε0 · μ > 0.

The assumption L sing f ≥ 0 implies that L sing
w f ≥ 0. By applying the Proposition 4.1 to

the function f − (sup� −ε0), we have

Lw( f − (sup
�

f − ε0))+ ≥ χ[ f ≥ sup
�

f − ε0] · L ac
w f · μw ≥ 0

on �, in the sense of distributions. Recall that the metric measure space (X, d, μw) satisfies a
doubling property and supports a L2-Poincare inequality. Now the weak maximum principle
[13, Theorem 7.17] implies that ( f −(sup� f −ε0))+ = 0 on �. Thus, sup� f ≤ sup� f −ε0

on �. This is a contradiction, and proves the first assertion (4.6).
The second assertion follows from the first one by taking ε = 1/j. ��
Next, let us consider the parabolic version of the maximum principle. We need the fol-

lowing parabolic weak maximum principle.

Lemma 4.3 Let � be a bounded open subset and let T > 0. Let w ∈ H1(�T ) ∩ L∞(�T )

with ∂tw(x, t) ≤ C for some constant C > 0, for almost all (x, t) ∈ �T . Suppose that
f (x, t) ∈ H1(�T )∩L∞(�T ) with limt→0 ‖ f (·, t)‖L2(�) = 0 and, for almost all t ∈ (0, T ),
that the functions f (·, t) ∈ H1

0 (�). Assume that, for almost every t ∈ (0, T ), the function
f (·, t) satisfies

Lw(·,t) f (·, t) − ∂

∂t
f (·, t) · μw(·,t) ≥ 0 on � (4.7)

Then we have

sup
�×(0,T )

f (x, t) ≤ 0.

Proof The proof is standard via a Gaffney–Davies’ method (see also [49, Lemma 1.7]). We
include a proof here for the completeness. Since f+ meets all of conditions in this lemma,
by replacing f by f+, we can assume that f ≥ 0.

Put

ξ(t) :=
∫

�

f 2(·, t)dμw(·,t).

Since μw(·,t) = ew · μ ≤ e‖w‖L∞ · μ and f ∈ H1(�T ), we have, for almost all t ∈ (0, T ),

ξ ′(t) = ∫
�

∂t ( f 2)dμw(·,t) + ∫
�

f 2 · ∂tw · dμw(·,t)
≤ −2

∫
�

|∇ f |2dμw(·,t) + C · ξ(t) ≤ C · ξ(t),

123



93 Page 16 of 30 H. Zhang, X. Zhu

where we have used ∂tw ≤ C and that the functions f (·, t) ∈ H1
0 (�) ∩ L∞(�) for almost

all t ∈ (0, T ). By using limt→0 ξ(t) = 0 (since ξ(t) ≤ e‖w‖L∞ · ‖ f (·, t)‖L2(�) and the
assumption limt→0 ‖ f (·, t)‖L2(�) = 0), one can obtain that ξ(t) ≤ 0. This implies f = 0
almost all in �T . The proof is finished. ��

By using the same argument as in Theorem 4.2, the combination of the Kato’s inequality
and Lemma 4.3 implies the following parabolic maximum principle.

Theorem 4.4 Let � be a bounded domain and let T > 0. Let f (x, t) ∈ H1(�T )∩ L∞(�T )

and suppose that f achieves one of its strict maximum in � × (0, T ] in the sense that: there
exists a neighborhood U ⊂⊂ � and an interval (δ, T ] ⊂ (0, T ] for some δ > 0 such that

sup
U×(δ,T ]

f > sup
�T \(U×(δ,T ])

f.

Here supU×(δ,T ] f means ess supU×(δ,T ] f . Assume that, for almost every t ∈ (0, T ),
L f (·, t) is a signed Radon measure with L sing f (·, t) ≥ 0. Let w ∈ H1(�T ) ∩ L∞(�T )

with ∂tw(x, t) ≤ C for some constant C > 0, for almost all (x, t) ∈ �T . Then, for any
ε > 0, we have

(μ × L1)

{
(x, t) : f (x, t) ≥ sup

�T

f − ε and L ac f (x, t) + 〈∇ f ,∇w〉(x, t) − ∂

∂t
f (x, t)

≤ ε

}
> 0,

where L1 is the 1-dimensional Lebesgue’s measure on (δ, T ].
In particular, there exists a sequence of points {(x j , t j )} j∈N ⊂ U × (δ, T ] such that every

x j is an approximate continuity point of L ac f (·, t j ) and 〈∇ f ,∇w〉(·, t j ), and that

f (x j , t j ) ≥ sup
�T

f − 1/j and L ac f (x j , t j ) + 〈∇ f ,∇w〉(x j , t j ) − ∂

∂t
f (x j , t j ) ≤ 1/j.

Proof We will argue by contradiction, which is similar to the proof of Theorem 4.2. Suppose
the assertion fails for some small ε0 > 0. Then, for almost all (x, t) ∈ {(y, s) : f (y, s) ≥
sup�T

f − ε0}, we have

L ac f (x, t) + 〈∇ f ,∇w〉(x, t) − ∂

∂t
f (x, t) ≥ ε0.

Thus, at such (x, t),[
L ac

w f (x, t) − ∂

∂t
f (x, t)

]
· μw

≥
[
L ac f (x, t) + 〈∇ f ,∇w〉(x, t) − ∂

∂t
f (x, t)

]
· ew · μ ≥ ε0 · ew · μ ≥ 0.

The strictly maximal property of f gives that fε0 := (
f − (sup�T

f − ε0)
)
+ ∈ H1(�T )

with limt→0 ‖ fε0(·, t)‖L2(�) = 0 and, for almost all t ∈ (0, T ), that the functions fε0(·, t) ∈
H1

0 (�). Notice that L sing
w(·,t) f (·, t) ≥ 0 by L sing f (·, t) ≥ 0. By using the Kato’s inequality,

we have that, for almost every t ∈ (0, T ),

Lw( f − (sup�T
f − ε0))+ ≥ χ[ f ≥ (sup�T

f − ε0)] · L ac
w f

≥ χ[ f ≥ (sup�T
f − ε0)] · ∂ f

∂t · μw = ∂
∂t ( f − (sup�T

f − ε0))+ · μw.
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Then Lemma 4.3 implies that ( f − (sup�T
f − ε0))+ = 0 for almost all (x, t) ∈ �T . This

is a contradiction. ��

5 Local Li–Yau’s gradient estimates

Let K ∈ R and N ∈ [1,∞) and let (X, d, μ) be a metric measure space satisfying
RC D∗(K , N ). In this section, we will prove the local Li–Yau’s gradient estimates—Theorem
1.3.

Let � ⊂ X be a domain. Given T > 0, let us still denote

�T := � × (0, T ]
the space-time domain, with lateral boundary � and parabolic boundary ∂P�T :

� := ∂� × (0, T ) and ∂P�T := � ∪ (� × {0}).
We adapt the following precise definition of locally weak solution for the heat equation.

Definition 5.1 Let T ∈ (0,∞] and let � be a domain. A function u(x, t) is called a locally
weak solution of the heat equation on �T if u(x, t) ∈ H1(�T ) (= W 1,2(�T )) and if for any
subinterval [t1, t2] ⊂ (0, T ) and any geodesic ball BR ⊂⊂ �, it holds

∫ t2

t1

∫
BR

(∂t u · φ + 〈∇u,∇φ〉) dμdt = 0 (5.1)

for all test functions φ(x, t) ∈ Lip0(BR × (t1, t2)
)
. Here and in the sequel, we denote always

∂t u := ∂u
∂t .

Remark 1 The test functions φ in this definition can be chosen such that it has to vanish only
on the lateral boundary ∂ BR × (0, T ). That is, φ ∈ Lip(BR,T ) with φ(·, t) ∈ Lip0(BR) for
all t ∈ (0, T ).

The local boundedness and the Harnack inequality for locally weak solutions of the heat
equation have been established by Sturm [49,50] and Marola and Masson [39]. In particular,
any locally weak solutions for the heat equation in Definition 5.1 must be locally Hölder
continuous.

Let u(x, t) be a locally weak solution of the heat equation on �× (0, T ). Fubini Theorem
implies, for a.e. t ∈ [0, T ], that the function u(·, t) ∈ H1(�) and ∂t u ∈ L2(�). Hence, for
a.e. t ∈ (0, T ), the function u(·, t) satisfies, in the distributional sense,

L u = ∂t u on �. (5.2)

Conversely, if a function u(x, t) ∈ H1
(
�T

)
and (5.2) holds for a.e. t ∈ [0, T ], then it was

shown [54, Lemma 6.12] that u(x, t) is a locally weak solution of the heat equation on �T .

In the case that u(x, t) is a (globally) weak solution of heat equation on X × (0,∞)

with initial value in L2(X), the theory of analytic semigroups asserts that the function t �→
‖u‖W 1,2(X) is analytic. However, for a locally weak solution of the heat equation on �T , we
have not sufficient regularity for the time derivative ∂t u: in general, ∂t u is only in L2. This is
not enough to use Bochner formula in Theorem 3.5 to (5.2). For overcoming this difficulty,
we recall the so-called Steklov average.
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Definition 5.2 Given a geodesic ball BR and a function u(x, t) ∈ L1(BR,T ), where BR,T :=
BR × (0, T ), the Steklov average of u is defined, for every ε ∈ (0, T ) and any h ∈ (0, ε), by

uh(x, t) := 1

h

∫ h

0
u(x, t + τ)dτ, t ∈ (0, T − ε]. (5.3)

From the general theory of L p spaces, we know that if u ∈ L p(BR,T ), then the Steklov
average uh converges to u in L p(BR,T −ε) as h → 0, for every ε ∈ (0, T ).

Lemma 5.3 If u ∈ H1(BR,T ) ∩ L∞(BR,T ), then we have, for every ε ∈ (0, T ), that

uh ∈ H1(BR,T −ε) ∩ L∞(BR,T −ε) and ∂t uh ∈ H1(BR,T −ε) ∩ L∞(BR,T −ε)

for every h ∈ (0, ε), and that ‖uh‖H1(BR,T −ε)
is bounded uniformly with respect to h ∈ (0, ε).

Proof Since u ∈ H1(BR,T ), according to [22], there exists a function g(x, t) ∈ L2(BR,T )

such that

|u(x, t) − u(y, s)| ≤ dP
(
(x, t), (y, s)

) · (g(x, t) + g(y, s)) ,

for almost all (x, t), (y, s) ∈ BR,T with respect to the product measure dμ × dt , where dP

is the product metric on BR,T defined by

d2
P

(
(x, t), (y, s)

) := d2(x, y) + |t − s|2.
Such a function g is called a Hajłasz-gradient of u on BR,T (see [21, §8]). By the definition
of the Steklov average uh , we have

|uh(x, t) − uh(y, s)| ≤ 1

h

∫ h

0
(g(x, t + τ) + g(y, s + τ)) · dP

(
(x, t + τ), (y, s + τ)

)
dτ

= 1

h

∫ h

0
(g(x, t + τ) + g(y, s + τ)) dτ · dP

(
(x, t), (y, s)

)
= (gh(x, t) + gh(y, s)) · dP

(
(x, t), (y, s)

)
for almost all (x, t), (y, s) ∈ BR,T . The fact g(x, t) ∈ L2(BR,T ) implies that gh(x, t) ∈
L2(BR,T −ε) for each h ∈ (0, ε) and that the functions gh converges to g in L2(BR,T −ε) as
h → 0. Then the previous inequality implies that gh is a Hajłasz-gradient of uh on BR,T −ε

for all h ∈ (0, ε) (see [21]). According to [21, Theorem 8.6], 2gh is a 2-weak upper gradient
of uh . Thus we conclude that uh ∈ W 1,2(BR,T −ε) and

lim sup
h→0

∫
BR,T −ε

(|∇uh |2 + |∂t uh |2)dμdt ≤ lim sup
h→0

∫
BR,T −ε

(2gh)2dμdt ≤ 4
∫

BR,T −ε

g2dμdt.

Therefore, we get that ‖uh‖H1(BR,T −ε)
is bounded uniformly with respect to h ∈ (0, ε) (by

combining with uh → u in L2(BR,T −ε) as h → 0).
Lastly, the assertion uh ∈ L∞(BR,T −ε) follows directly from the definition of uh and

u ∈ L∞(BR,T ). The assertion of ∂t u follows from that

∂t uh = u(x, t + h) − u(x, t)

h
.

The proof is completed. ��
For a locally weak solution u for the heat equation, we have the following property of uh .
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Lemma 5.4 Let u ∈ H1(BR,T )∩L∞(BR,T ) be a locally weak solution for the heat equation,
and fix any two constants ε, h such that ε ∈ (0, T ) and h ∈ (0, ε). Then for almost all
t ∈ (0, T − ε)

L uh = ∂t uh

on BR, in the sense of distributions.

Proof The proof is standard. In fact, one can show the assertion for locally Lipschitz function
u, and then use an approximating argument to prove the lemma. ��

With the aid of the above two lemmas, we will consider firstly the case when a locally
weak solution u ∈ H1(BR,T ) ∩ L∞(BR,T ) with ∂t u ∈ H1(BR,T ) ∩ L∞(BR,T ).

Lemma 5.5 Given K ∈ R and N ∈ [1,∞), let (X, d, μ) be a metric measure space
satisfying RC D∗(K , N ). Let u(x, t) ∈ H1(B2R,T )∩ L∞(B2R,T ) be a locally weak solution
of the heat equation on B2R,T . Assume that ∂t u ∈ H1(B2R,T ) ∩ L∞(B2R,T ). Then we have
|∇u|2 ∈ H1(BR,T ) ∩ L∞(BR,T ).

Proof Notice that, for almost all t ∈ (0, T ), we have u(·, t), ∂t u(·, t) ∈ H1(B2R)∩L∞(B2R)

and that L u = ∂t u on B2R . By Lemma 3.4, we get

‖|∇u(·, t)|‖L∞(B3R/2) ≤ C(N , K , R) · (|u(·, t)|L∞(B2R) + |∂t u(·, t)|L∞(B2R)).

This implies |∇u|2 ∈ L∞(B3R/2,T ) and

‖|∇u(·, ·)|‖L∞(B3R/2,T ) ≤ C(N , K , R) · (|u|L∞(B2R,T ) + |∂t u|L∞(B2R,T )) := C∗.

On the other hand, for almost all t ∈ (0, T ), by applying the Bochner formula (3.5) to
L u = ∂t u on B2R , we conclude that |∇u(·, t)|2 ∈ H1(B3R/2) ∩ L∞(B3R/2) and

L (|∇u|2) ≥
[
2 (∂t u)2

N + 2〈∇u,∇∂t u〉 + 2K |∇u|2
]

· μ

≥ −2|∇u| · |∇∂t u| · μ + 2K |∇u|2 · μ ≥ −2
[
C∗ · |∇∂t u| + 2|K |C2∗

] · μ,

on B3R/2 in the sense of distributions. By using the Caccioppoli inequality, we conclude that,
for almost all t ∈ (0, T ),

‖|∇|∇u|2(·, t)|‖L2(BR ) ≤ CN ,K ,R · (2C∗ · ‖|∇∂t u|‖L2(B3R/2) + 2|K | · C2∗ + ‖|∇u|2‖L2(B3R/2)

)
.

The integration on (0, T ) implies that

‖|∇|∇u|2‖L2(BR,T ) ≤ C∗∗ · (‖|∇∂t u|‖L2(B3R/2,T ) + ‖|∇u|2‖L2(B3R/2,T ) + 1
)
,

for the constants C∗∗ depending on N , K , R, T and C∗. Thus, |∇|∇u|2| ∈ L2(BR,T ).
Lastly, noting that, for almost all (x, t) ∈ BR,T ,

|∂t |∇u|2|2 = |∂t 〈∇u,∇u〉|2 = |2〈∇∂t u,∇u〉|2 ≤ 4|∇∂t u|2 · |∇u|2.
Then, by using |∇u|2 ∈ L∞(B3R/2,T ) and ∂t u ∈ H1(BR,T ), we get |∂t |∇u|2| ∈
L2(B3R/2,T ). By combining with |∇|∇u|2| ∈ L2(BR,T ), we conclude |∇u|2 ∈ H1(BR,T ).
Now we finish the proof. ��
Lemma 5.6 Given K ≥ 0 and N ∈ [1,∞), let (X, d, μ) be a metric measure space satis-
fying RC D∗(−K , N ). Let u(x, t) ∈ H1(B2R,T ) ∩ L∞(B2R,T ) be the locally weak solution
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of the heat equation on B2R,T . Assume that u ≥ δ > 0 and ∂t u ∈ H1(B2R,T )∩ L∞(B2R,T ).
We put

F(x, t) = t · [|∇ f |2 − α · ∂t f ]+,

where f = log u and α > 1. Then, we have

F

t
∈ H1(BR,T ) ∩ L∞(BR,T ),

and that, for almost every t ∈ (0, T ), the function F(·, t) satisfies

L F −∂t F ·μ ≥ −2〈∇ f ,∇F〉 ·μ− F

t
·μ+2t

[
1

N

(|∇ f |2 − ∂t f )2 − K |∇ f |2
]

·μ (5.4)

on BR, in the sense of distributions.

Proof From Lemma 5.5, we have |∇u|2 ∈ H1(B3R/2,T ) ∩ L∞(B3R/2,T ). By combining
with that ∂t u ∈ L∞(B2R,T ) ∩ H1(B2R,T ) and that u ≥ δ > 0, we get that

|∇ f |2 − α∂t f = |∇u|2
u2 − α

∂t u

u
∈ H1(B3R/2,T ) ∩ L∞(B3R/2,T ).

This implies F/t = [|∇ f |2 − α∂t f ]+ ∈ H1(B3R/2,T ) ∩ L∞(B3R/2,T ) and proves the first
assertion.

By ∂t u ∈ H1(B2R,T ), we see that ∂t t u ∈ L2(B2R,T ) and that, for almost all t ∈ (0, T ),

L (∂t u) = ∂t t u

in the sense of distributions. Since u, ∂t u ∈ H1(B2R,T ) ∩ L∞(B2R,T ) and u ≥ δ > 0, by
using the chain rule in Lemma 3.2(i) to both u and ∂t u, we have, for almost all t ∈ (0, T ),
that the functions f (·, t), ∂t f (·, t) ∈ H1(B2R) and

L f = ∂t f − |∇ f |2, L (∂t f ) = ∂t t f − 2〈∇ f ,∇∂t f 〉 (5.5)

on B2R in the sense of distributions.
Consider F1(x, t) := t · ∂t f . We have, for almost all t ∈ (0, T ), the function F1(·, t) ∈

H1(B2R) with

L F1 = tL ∂t f = t · (∂t t f − 2〈∇ f ,∇∂t f 〉).
Noting that

∂t F1 = ∂t f + t∂t t f and 〈∇ f ,∇F1〉 = t〈∇ f ,∇∂t f 〉,
we conclude that

L F1 − ∂t F1 = −2〈∇ f ,∇F1〉 − F1

t
(5.6)

on B2R in the sense of distributions.
Consider F2 := t |∇ f |2. Recall that, for almost all t ∈ (0, T ), the function f (·, t) ∈

H1(B2R) and

∂t f − |∇ f |2 = ∂t u

u
− |∇u|2

u2 ∈ L∞(B3R/2) ∩ H1(B3R/2).

123



Local Li–Yau’s estimates… Page 21 of 30 93

Recalling that (X, d, μ) satisfies RC D∗(−K , N ), we can apply the Bochner formula (3.5)
to L f = ∂t f − |∇ f |2 to conclude that |∇ f |2 ∈ H1(BR) and

L (|∇ f |2) ≥ 2

[
1

N
(∂t f − |∇ f |2)2 + 〈∇ f ,∇(∂t f − |∇ f |2)〉 − K |∇ f |2

]
· μ

on BR , in the sense of distributions. Therefore, for almost all t ∈ (0, T ), we get the function
F2(·, t) satisfies

L F2 − ∂t F2 · μ ≥ 2t ·
[

1

N
(∂t f − |∇ f |2)2 − K |∇ f |2

]
· μ − 2〈∇ f ,∇F2〉 · μ − F2

t
· μ

(5.7)

on BR , in the sense of distributions. By combining (5.6) and (5.7), we conclude, for almost
all t ∈ (0, T ), that we have, for F̃ := F2 − α · F1,

L F̃ − ∂t F̃ · μ ≥ −2〈∇ f ,∇ F̃〉 · μ − F̃

t
· μ + 2t

[
1

N
(|∇ f |2 − ∂t f )2 − K |∇ f |2

]
· μ.

Now, by using the Kato’s inequality to F = F̃+, we have the desired estimate (5.4). The
proof of this lemma is finished. ��

We are ready to prove the following local Li–Yau’s estimate under some additional assump-
tions.

Lemma 5.7 Given K ≥ 0 and N ∈ [1,∞), let (X, d, μ) be a metric measure space
satisfying RC D∗(−K , N ). Let T ∈ (0,∞) and let u(x, t) ∈ H1(B2R,T ) ∩ L∞(B2R,T )

be a locally weak solution of the heat equation on B2R,T . Assume that u ≥ δ > 0 and
∂t u ∈ H1(B2R,T ) ∩ L∞(B2R,T ).

Then, for any α > 1 and any β, γ ∈ (0, 1), the following local gradient estimate holds

sup
BR×(γ ·T,T ]

(|∇ f |2 − α · ∂

∂t
f )(x, t) ≤ max

{
1,

1

2
+ K T

2(α − 1)

}
· Nα2

2T
· 1

(1 − β)γ

+ CN · α4

R2(α − 1)
· 1

(1 − β)βγ
+
(√

K

R
+ 1

R2

)
· CN · α2

(1 − β)γ
, (5.8)

where f = ln u, and CN is a constant depending only on N.

Proof From the previous Lemma 5.6, we have F := t · [|∇ f |2 −α · ∂t f ]+ ∈ L∞(B3R/2,T ).

Put

M1 := sup
BR,T

F and M2 := sup
B3R/2,T

F.

We can assume M1 > 0. If not, we are done.
Now let us choose φ(x) = φ(r(x)) to be a function of the distance r to the fixed point x0

with the following property that

M1

2M2
≤ φ ≤ 1 on B3R/2, φ = 1 on BR, φ = M1

2M2
on B3R/2\B5R/4,

and

−C

R
φ

1
2 ≤ φ′(r) ≤ 0 and |φ′′(r)| ≤ C

R2 ∀ r ∈ (0, 3R/2)
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for some universal constant C (which is independent of N , K , R). Then we have

|∇φ|2
φ

= |φ′|2|∇r |2
φ

≤ C2

R2 := C1

R2 on B3R/2, (5.9)

and, by the Laplacian comparison theorem [18, Corollary 5.15] for RC D∗(−K , N ) with
N > 1 and K > 0, that

L φ = φ′L r + φ′′|∇r |2 ≥ −C
R

(√
(N − 1)K coth

(
r
√

K
N−1

))
− C

R2

≥ −C
R

(√
(N − 1)K + N−1

R

)− C
R2 ≥ −C2

(√
K

R + 1
R2

) (5.10)

on B3R/2, in the sense of distributions, where we have used that

coth

(
r

√
K

N − 1

)
≤ coth

(
R

√
K

N − 1

)
≤ 1 + 1

R
√

K/(N − 1)
.

We claim that the estimate (5.10) still holds for RC D∗(−K , N ) with N ≥ 1 and K ≥ 0.
Indeed, in the case when K = 0 and N > 1, the Laplacian comparison theorem states
L r ≤ (N − 1)/r . Then (5.10) still holds. In the case when N = 1, since that (X, d, μ)

satisfies RC D∗(−K , N ) implies that it satisfies RC D∗(−K , N+1), we can use the Laplacian
comparison theorem for RC D∗(−K , N + 1) to conclude that (5.10) still holds in this case.
Therefore, the claim is proved.

Here and in the sequel of this proof, we denote C1, C2, C3, . . . the various constants which
depend only on N . (5.10) implies that the distribution L φ is a signed Radon measure (since
L φ + C2(

√
K/R + 1/R2) is a positive distribution). Then its absolutely continuous part

(L φ)ac ≥ −C2(
√

K/R + 1/R2) a.e. x ∈ B3R/2 and its singular part (L φ)sing ≥ 0.

Put G(x, t) := φF . According to Lemma 5.6 and the Lebiniz rule 3.2(ii), we have
G ∈ H1(B3R/2,T ) and, for almost every t ∈ (0, T ), that the function G(·, t) satisfies that

L G = FL φ + φL F + 2〈∇φ,∇F〉

in the sense of distributions. Fix arbitrarily a such t ∈ (0, T ). Then L G is a signed Radon
measure on B3R/2 with

(L G)sing = F(L φ)sing + φ(L F)sing ≥ 0 (5.11)

and (L G)ac = F(L φ)ac +φ(L F)ac + 2〈∇φ,∇F〉 a.e. x ∈ B3R/2. We have, for almost all
x ∈ B3R/2,

(L G)ac − ∂t G + 2〈∇ f ,∇G〉 = φ ((L F)ac − ∂t F + 2〈∇ f ,∇F〉)
+F(L φ)ac + 2〈∇φ,∇F〉 + 2〈∇ f ,∇φ〉F.

(5.12)
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By (5.4) and G = φF , we have, for almost all x ∈ B3R/2, that, for any fixed ε > 0,

RHS of (5.12)
(5.4)≥ φ

[
− F

t
+ 2t

(
1

N

(
|∇ f |2 − ∂t f

)2 − K |∇ f |2
)]

+G
(L φ)ac

φ
+ 2〈∇φ∇(G/φ)〉 + 2〈∇ f ∇φ〉 G

φ

≥ − G

t
+ 2tφ

[
1

N

(
|∇ f |2 − ∂t f

)2 − K |∇ f |2
]

+ G

φ

[
−C2

(√
K

R
+ 1

R2

)
− 2C1

R2

]
+ 2〈∇φ∇G〉/φ − 2|∇ f | |∇φ|

φ
· G

≥ − G

t
+ 2tφ

[
1

N

(
|∇ f |2 − ∂t f

)2 − K |∇ f |2
]

−C3
G

φ

(√
K

R
+ 1

R2

)
+ 2〈∇φ∇G〉/φ − ε

G2

φ

C1

R2 − |∇ f |2 1

ε
, (5.13)

where we have used (5.9), (5.10) and that, for any ε > 0, the following

2|∇ f | · G
|∇φ|

φ
≤ εG2 |∇φ|2

φ2 + |∇ f |2 1

ε
≤ ε

G2

φ
· C1

R2 + |∇ f |2 1

ε
.

If we put

v = |∇ f |2
F

then we get |∇ f |2 = F · v and

F = t (|∇ f |2 − α · ∂t f ) = t (F · v − α · ∂t f ).

So

∂t f = F(vt − 1)

αt
.

Therefore we obtain

−G

t
+ 2tφ

[
1

N

(|∇ f |2 − ∂t f )2 − K |∇ f |2
]

− ε−1|∇ f |2

= −G

t
+ φ

2F2

Nα2t
((α − 1)vt + 1)2 − 2t KφvF − ε−1vF

≥ − G

tφ
+ 2G2

Nα2tφ
((α − 1)vt + 1)2 − 2t KvG

φ
− ε−1v

G

φ
, (5.14)

where we have used that 0 < φ ≤ 1 and KvG ≥ 0. Denoting by

z := (α − 1)vt and Aε := 2K t + ε−1

α − 1
,

we have

RHS of (5.14) = 1

φ
·
(

2G2

Nα2t

(
z + 1

)2 − G

t

(
1 + Aεz

))
.
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Finally z ≥ 0 implies that

1 + Aεz

(1 + z)2 ≤ max

{
1,

1

2
+ Aε

4

}
≤ max

{
1,

1

2
+ K t

2(α − 1)

}
+ ε−1

4(α − 1)
.

Denote by

B0 := max

{
1,

1

2
+ K T

2(α − 1)

}
,

we have 1+Aε z
(1+z)2 ≤ B0 + ε−1

4(α−1)
, (since K ≥ 0 and t ≤ T ) so

RHS of (5.14) ≥ 1

φ
· G

t
·
(

2G

Nα2 − B0 − ε−1

4(α − 1)

)
· (z + 1)2.

By combining this with (5.12), (5.13) and (5.14), we obtain that

(L G)ac − ∂t G + 2〈∇ f ,∇G〉 − 2〈∇φ,∇G〉/φ

≥ 1

φ
· G

t
·
(

2G

Nα2 − B0 − ε−1

4(α − 1)

)
· (z + 1)2 − C3

G

φ

(√
K

R
+ 1

R2

)

−ε
G2

φ

C1

R2 . (5.15)

From the definition of φ and F/t ∈ L∞(B3R/2,T ) (by Lemma 5.6), we see that G
achieves one of its strict maximum in B3R/2,T in the sense of Theorem 4.4. By (5.11),
we know that L singG ≥ 0. Notice also ∂t f ∈ L∞(B2R,T ) since u ≥ δ > 0 and
∂t u ∈ H1(B2R,T ) ∩ L∞(B2R,T ) Hence, by using Theorem 4.4 with w := 2 f − 2 ln φ ∈
H1(B3R/2,T ) ∩ L∞(B3R/2,T ), and combining with (5.15), we conclude that there exit a
sequence {x j , t j } j∈N such that, for each j ∈ N,

G j := G(x j , t j ) ≥ sup
B3R/2,T

G − 1/j (5.16)

and that

G j

t j
·
(

2G j

Nα2 − B0 − ε−1

4(α − 1)

)
· (z(x j , t j ) + 1)2 − C3G j ·

(√
K

R
+ 1

R2

)
− εG2

j · C1

R2

≤ φ(x j , t j ) · 1

j
≤ 1

j
. (5.17)

We consider firstly the case when

Ḡ := sup
B3R/2,T

G >
Nα2

2

(
B0 + ε−1

4(α − 1)

)
.

In this case, the Eq. (5.16) tells us G j ≥ Nα2

2

(
B0 + ε−1

4(α−1)

)
for all sufficiently large j .

Thus, from (5.17), we have

G j

t j
·
(

2G j

Nα2 − B0 − ε−1

4(α − 1)

)
− C3G j ·

(√
K

R
+ 1

R2

)
− εG2

j · C1

R2 ≤ 1

j
.
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Letting j → ∞, we have

Ḡ

T
·
(

2Ḡ

Nα2 − B0 − ε−1

4(α − 1)

)
≤ C3Ḡ ·

(√
K

R
+ 1

R2

)
+ εḠ2 · C1

R2 ,

where we have used t j ≤ T for all j ∈ N. Thus, we have

Ḡ ≤
B0 + ε−1

4(α−1)
+ C3T ·

(√
K

R + 1
R2

)
2

Nα2 − εT · C1
R2

. (5.18)

In the case when Ḡ ≤ Nα2

2

(
B0 + ε−1

4(α−1)

)
, it is clear that (5.18) still holds.

Fix any β ∈ (0, 1). By choosing ε = 2β R2/(C1 · Nα2T ). Then we conclude, by (5.18),
that

Ḡ ≤
B0 + C1·Nα2·T

8(α−1)·β R2 + C3T ·
(√

K
R + 1

R2

)
2

Nα2 (1 − β)

= B0 · Nα2

2
· 1

1 − β
+
(

C1 · N 2α4 · T

16(α − 1) · β R2 + C3T ·
(√

K

R
+ 1

R2

)
· Nα2

2

)
· 1

1 − β

≤ B0 · Nα2

2
· 1

1 − β
+ C4 · α4 · T

(α − 1)R2 · 1

(1 − β) · β
+ C5T ·

(√
K

R
+ 1

R2

)
· α2

1 − β
.

(5.19)

Therefore, we have

sup
BR×(γ ·T,T ]

F ≤ sup
BR,T

F ≤ sup
B3R/2,T

G

≤ B0 · Nα2

2
· 1

1 − β
+ C4 · α4 · T

(α − 1)R2 · 1

(1 − β) · β
+ C5T ·

(√
K

R
+ 1

R2

)
· α2

1 − β
.

By recalling F = t (|∇ f |2 − α · ∂t f )+ and B0 = max
{
1, 1

2 + K T
2(α−1)

}
, we conclude that the

local gradient estimate (5.8) holds, since t > γ · T . This completes the proof. ��
Now, let us remove the additional assumption ∂t u ∈ H1(B2R,T ) ∩ L∞(B2R,T ) and prove

Theorem 1.4.

Proof of Theorem 1.4. Proof of Theorem Let α > 1 and β ∈ (0, 1). Without loss of gen-
erality, we can assume that T∗ < ∞. Given any δ > 0, from [50, Theorem 2.2], we have
u + δ ∈ L∞

loc(B2R,T∗). Without loss the generality, we can assume that u + δ ∈ L∞(B2R,T∗),
since the desired result is a local estimate.

Given any ε > 0, according to Lemmas 5.3 and 5.4, we can use Lemma 5.7 to the Steklov
averages (u + δ)h . Then, by an approximating argument (and taking γ = 1 − β), we have

sup
BR×((1−β)T,T ]

(
|∇u|2

(u + δ)2 − α · ∂t u

u + δ

)
(x, t) ≤ max

{
1,

1

2
+ K T

2(α − 1)

}
· Nα2

2T
· 1

(1 − β)2

+ CN · α4

R2(α − 1)
· 1

(1 − β)2β
+
(√

K

R
+ 1

R2

)
· CN · α2

(1 − β)2 .

Letting δ(∈ Q) tend to 0+ and replacing 1−β by β, we have the desired (1.6). By combining
with the arbitrariness of ε, we complete the proof of Theorem 1.4. ��
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6 A sharp local Yau’s gradient estimate

Let K ≥ 0, N ∈ (1,∞) and let (X, d, μ) be a metric measure space satisfying
RC D∗(−K , N ). Suppose that � is a domain in X . In this section, we will prove a sharp local
Yau’s gradient estimate—Theorem 1.6.

Proof of Theorem 1.4. Fix β ∈ (0, 1). Let u be a positive harmonic function on B2R :=
B2R(p) and let f = log u. Without loss of generality, we can assume that u ≥ δ for some
δ > 0. By the chain rule 3.2(ii), a direct computation shows that

L f = −|∇ f |2 on B2R .

Since |∇ f | ∈ L∞
loc(B2R), by setting g := |∇ f |2 and using Corollary 3.6, (noticing that

N > 1) we know that g ∈ H1(B3R/2) ∩ L∞(B3R/2) and L singg ≥ 0 and, for μ-a.e.
x ∈ {

y : g(y) �= 0
} ∩ B3R/2,

1

2
L acg ≥ g2

N
− 〈∇g, ∇ f 〉 − K g + N

N − 1
·
( 〈∇ f , ∇g〉

2g
+ g

N

)2

= g2

N
− 〈∇g, ∇ f 〉 − K g + N

N − 1
·
[( 〈∇ f , ∇g〉

2g

)2
+ 2〈∇ f , ∇g〉

2g
· g

N
+
( g

N

)2
]

≥ g2

N − 1
− N − 2

N − 1
· 〈∇g, ∇ f 〉 − K g. (6.1)

Since g ∈ L∞(B3R/2), we define

M1 := sup
BR

g and M2 := sup
B3R/2

g.

We assume that M1 > 0 (otherwise, we are done). Now let us choose φ(x) = φ(r(x)) as
above. That is, φ(x) is a function of the distance r to the fixed point x0 with the following
property that

M1

2M2
≤ φ ≤ 1 on B3R/2, φ = 1 on BR, φ = M1

2M2
on B3R/2\B5R/4,

and

−C

R
φ

1
2 ≤ φ′(r) ≤ 0 and |φ′′(r)| ≤ C

R2 ∀ r ∈ (0, 3R/2)

for some universal constant C (which is independent of N , K , R). Then we have, from (5.9)
to (5.10), that

|∇φ|2
φ

≤ C1

R2 and L φ ≥ −C2

(√
K

R
+ 1

R2

)
(6.2)

on B3R/2. Then the distribution L φ is a signed Radon measure and its absolutely continuous
part (L φ)ac ≥ −C2(

√
K/R + 1/R2) a.e. x ∈ B3R/2, and its singular part (L φ)sing ≥ 0.

Here and in the sequel of this proof, we denote C1, C2, C3, . . . the various constants which
depend only on N .

Put G(x) := φ · g. According to the Lebiniz rule 3.2(ii), we have G ∈ H1(B3R/2) and

L G = gL φ + φL g + 2〈∇φ,∇g〉
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in the sense of distributions. Then, by L singg ≥ 0 and L singφ ≥ 0, we get L singG ≥ 0.
The combination of (6.1) and (6.2) implies that

L acG ≥ φL acg + 2〈∇φ,∇(G/φ)〉 + G
(L φ)ac

φ

≥ 2φ

(
g2

N − 1
− N − 2

N − 1
· 〈∇g,∇ f 〉 − K g

)

+2〈∇φ,∇G〉/φ + G

φ

[
−C2

(√
K

R
+ 1

R2

)
− 2C1

R2

]

≥ 2

φ
· G2

N − 1
− 2(N − 2)

N − 1
· (〈∇G,∇ f 〉 − G〈∇φ,∇ f 〉/φ) − 2K G

+2〈∇φ,∇G〉/φ − C3 · G

φ

(√
K

R
+ 1

R2

)

≥ 2

φ
· G2

N − 1
− 2(N − 2)

N − 1
· 〈∇G,∇ f 〉 − 2(N − 2)

N − 1
·
(

ε
G2

φ
· C1

R2 + G

φ

1

ε

)
− 2K

G

φ

+2〈∇φ,∇G〉/φ − C3 · G

φ

(√
K

R
+ 1

R2

)
(6.3)

for any ε > 0, where we have used g = |∇ f |2 = G/φ, 2K G ≤ 2K G/φ and that, for any
ε > 0, the following

−G〈∇φ,∇ f 〉/φ ≤ 2|∇ f | · G
|∇φ|

φ
≤ εG2 |∇φ|2

φ2 + |∇ f |2 1

ε
≤ ε

G2

φ
· C1

R2 + |∇ f |2 1

ε
.

From the definition of φ, we know that G achieves one of its strict maximum in B3R/2 in
the sense of Theorem 4.2. Notice that L singG ≥ 0. Hence, according to Theorem 4.2 for
w := 2 N−2

N−1 f − 2 ln φ ∈ H1(B3R/2) ∩ L∞(B3R/2) (since u ≥ δ > 0), and by combining
with (6.3), we conclude that there exit a sequence {x j } j∈N such that, for each j ∈ N,

G j := G(x j ) ≥ sup
B3R/2

G − 1/j (6.4)

and that (noticing that φ ∈ (0, 1])

2
G2

j

N − 1
− 2(N − 2)

N − 1
·
(

εG2
j · C1

R2 + G j
1

ε

)
− 2K G j − C3 · G j

(√
K

R
+ 1

R2

)

≤ φ(x j ) · 1

j
≤ 1

j
(6.5)

for any ε > 0. Letting j → ∞ and denoting Ḡ := supB3R/2
G = lim j G j , we obtain

(
1

N − 1
− (N − 2)ε · C1

(N − 1)R2

)
· Ḡ ≤ K + N − 2

(N − 1)ε
+ C3

2

(√
K

R
+ 1

R2

)
(6.6)

for any ε > 0.
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In the case when N > 2, by choosing ε = β·R2

(N−2)·C1
, we obtain from (6.6) that

1 − β

N − 1
· Ḡ ≤ K + C1 · (N − 2)2

β R2 + C3

2

(√
K

R
+ 1

R2

)

≤ K + C1 · (N − 2)2

β R2 + βK + C2
3

16β R2 + C3

2R2 ,

where we have used

C3

2

√
K

R
= 2

√
K · C3

4R
≤ βK + 1

β

C2
3

(4R)2 .

Then, we get

Ḡ ≤ 1 + β

1 − β
(N − 1)K + N − 1

1 − β
· 1

β R2

(
C1 · (N − 2)2 + C2

3

16
+ C3β

2

)

≤ 1 + β

1 − β
(N − 1)K + C4

β(1 − β) · R2 , (6.7)

where we have used β < 1.
In the case when N ∈ (1, 2], from (6.6), we have

1

N − 1
· Ḡ ≤ K + C3

2

(√
K

R
+ 1

R2

)
≤ K + βK + C2

3

16β R2 + C3

2R2 .

Thus, the estimate (6.7) still holds in this case.
Therefore, the Eq. (6.7) shows that, for any β ∈ (0, 1),

sup
BR

g ≤ 1 + β

1 − β
(N − 1)K + C4

β(1 − β) · R2 .

Now the proof is finished. ��
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