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Abstract We study the large time behavior of solutions of the PDE |vt |p−2vt = �pv. A spe-
cial property of this equation is that the Rayleigh quotient

∫
�

|Dv(x, t)|pdx/ ∫
�

|v(x, t)|pdx
is nonincreasing in time along solutions. As t tends to infinity, this ratio converges to the
optimal constant in Poincaré’s inequality. Moreover, appropriately scaled solutions converge
to a function for which equality holds in this inequality. An interesting limiting equation also
arises when p tends to infinity, which provides a new approach to approximating ground
states of the infinity Laplacian.

Mathematics Subject Classification 35K15 · 39B62 · 35P30 · 47J10 · 35K55

1 Introduction

In this paper, we study solutions v : � × (0,∞) → R of the PDE

|vt |p−2vt = �pv (1.1)

where � ⊂ R
d is a bounded domain, p ∈ (1,∞), and �p is the p-Laplacian

�pψ := div(|Dψ |p−2Dψ).
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The p-Laplacian arises in connection with various physical applications. Examples include
non-Newtonian fluids, nonlinear elasticity, glacial sliding and capillary surfaces as detailed
in [3,7,21,26].

Observe that when p = 2, the PDE (1.1) is the heat equation. As a result, we view (1.1) as
a nonlinear flow. What separates Eq. (1.1) from typical nonlinear parabolic equations, is the
nonlinearity in the time derivative |vt |p−2vt . This type of equation is known in the literature
as a doubly nonlinear evolution. Furthermore, we regard (1.1) as special within the class of
doubly nonlinear evolutions as it is homogeneous: if v is a solution of (1.1), any multiple of
v is also a solution.

Our motivation for studying Eq. (1.1) is its connection with the optimal Poincaré inequality

λp

∫

�

|ψ |pdx ≤
∫

�

|Dψ |pdx, ψ ∈ W 1,p
0 (�). (1.2)

Here

λp := inf

{∫
�

|Dψ |pdx
∫
�

|ψ |pdx : ψ ∈ W 1,p
0 (�)\{0}

}

is the least p-Rayleigh quotient, and (1.2) is “optimal” as λp is the largest constant for which

this inequality is valid. A function ψ ∈ W 1,p
0 (�)\{0} for which equality holds in (1.2) is

called a ground state of p-Laplacian or simply a p-ground state. These functions are easily
seen to exist and to satisfy the PDE

− �pψ = λp|ψ |p−2ψ (1.3)

in �. Moreover, λp is “simple” in the sense that any two p-ground states are multiples of
each other [23,25,28].

In what follows, we prove that a properly scaled solution of the initial value problem
⎧
⎨

⎩

|vt |p−2vt = �pv, � × (0,∞)

v = 0, ∂� × [0,∞)

v = g, � × {0}
(1.4)

converges to a p-ground state as t → ∞. First, we show that (1.4) has a weak solution in
the sense of a doubly nonlinear evolution, and then derive various global estimates on weak
solutions. In particular, we verify that the p-Rayleigh quotient is nonincreasing for each weak
solution of (1.4)

d

dt

{∫
�

|Dv(x, t)|pdx
∫
�

|v(x, t)|pdx
}

≤ 0.

This monotonicity formula and the homogeneity of equation (1.1) are crucial ingredients in
establishing the following result.

Theorem 1.1 Assume g ∈ W 1,p
0 (�) and define

μp := λ
1

p−1
p .

Then for any weak solution v of (1.4), the limit

ψ := lim
t→∞ eμptv(·, t)
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exists in W 1,p
0 (�) and is a p-ground state, provided ψ �≡ 0. In this case, v(·, t) �≡ 0 for

t ≥ 0 and

λp = lim
t→∞

∫
�

|Dv(x, t)|pdx
∫
�

|v(x, t)|pdx .

When p = 2, a direct proof of Theorem 1.1 can be made by writing the solution of the
heat equation in terms of the basis of eigenfunctions for the Dirichlet Laplacian. For p �= 2,
no such formulae are available and we must work directly with the equation. It is interesting
to compare Theorem 1.1 to other large time asymptotics results for fully nonlinear parabolic
equations [5,24] and for nonlinear degenerate flows [1,6,22,30]. Most of these works involve
comparison principles and initial conditions which do not change sign. Our main tool in this
paper is a compactness property of weak solutions of (1.1) and applies to general initial data.

We also verify that (1.4) has a unique viscosity solutionwhen p ≥ 2. We note it is unknown
whether weak solutions are unique or if each weak solution is a viscosity solution. Moreover,
the uniqueness of solutions of general doubly nonlinear evolutions is not well understood.
Nevertheless, we show there is always one weak solution of (1.4) that arises via the implicit
time scheme: v0 = g,

{
J p

(
vk−vk−1

τ

)
= �pv

k, x ∈ �

vk = 0, x ∈ ∂�
(1.5)

for k ∈ N and τ > 0. Here Jp is the increasing function

Jp(w) := |w|p−2w, w ∈ R.

Standard variational methods can be used to show this scheme has a unique weak solution
sequence {vkτ }k∈N ⊂ W 1,p

0 (�) for each τ > 0. We argue that each vkτ is also a continuous vis-
cosity solution and then use viscosity solutions methods to verify the following convergence
result.

Theorem 1.2 Assume that p ≥ 2 and that ∂� is smooth. Additionally suppose that g ∈
W 1,p

0 (�) ∩ C(�) and that there is a p-ground state ϕ such that

−ϕ(x) ≤ g(x) ≤ ϕ(x), x ∈ �.

Denote the solution sequence of the implicit scheme (1.5) as {vkτ }k∈N and set

vN (·, t) :=
{
g, t = 0
vkT/N , (k − 1)T/N < t ≤ kT/N , k = 1, . . . , N

(1.6)

for N ∈ N and T > 0. Then v(·, t) := limN→∞ vN (·, t) exists in L p(�) ∩ C(�) uniformly
in t ∈ [0, T ]. Moreover, v is the unique viscosity solution and a weak solution of the initial
value problem (1.4).

It was previously established that a subsequence of (vN )N∈N converges to a weak solution
[4,11]. The novelty of Theorem 1.2 is that the full limit exists and that the limit is additionally
a viscosity solution. Employing viscosity solutions will also allow us to pass to the limit as
the exponent p → ∞ in Eq. (1.1). This idea was inspired by the work of P. Juutinen,
P. Lindqvist and J. Manfredi, who first studied the so-called infinity eigenvalue problem and
infinity ground states [18]. We view the following result as providing a natural evolution
equation for the infinity eigenvalue problem and its ground states.
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Theorem 1.3 Assume g ∈ W 1,∞
0 (�) and let v p denote a viscosity solution of (1.4) for

p ≥ 2 with initial condition g. There is an increasing sequence pk → ∞ such that (v pk )k∈N
converges locally uniformly to a viscosity solution of the PDE

⎧
⎨

⎩

G∞(vt , Dv, D2v) = 0, � × (0,∞)

v = 0, ∂� × [0,∞)

v = g, � × {0}
(1.7)

as k → ∞. The operator above is defined as

G∞(φt , Dφ, D2φ) :=
⎧
⎨

⎩

min{−�∞φ, |Dφ| + φt }, φt < 0
−�∞φ, φt = 0
max{−�∞φ,−|Dφ| + φt }, φt > 0

,

where �∞φ := D2φDφ · Dφ is the infinity Laplacian.

This paper is organized as follows. In Sect. 2, we discuss the existence theory for weak
solutions. In particular, we present a novel compactness result for the doubly nonlinear
evolution (1.4). We justify Theorem 1.1 in Sect. 3 and then discuss viscosity solutions and
prove Theorem 1.2 in Sect. 4. Finally, we verify Theorem 1.3 in Sect. 5. We thank the Institut
Mittag-Leffler for hosting us during the initial phase of this work. We especially thank Peter
Lindqvist and Jerry Kazdan for their advice and encouragement.

2 Weak solutions

An important identity for smooth solutions of (1.4) is

d

dt

∫

�

1

p
|Dv(x, t)|pdx = −

∫

�

|vt (x, t)|pdx . (2.1)

This identity follows from direct computation. Of course, integrating (2.1) in time yields
∫ t

0

∫

�

|vt (x, s)|pdxds +
∫

�

1

p
|Dv(x, t)|pdx =

∫

�

1

p
|Dg(x)|pdx (2.2)

for t ≥ 0. This resulting equality leads us to seek solutions defined as follows.

Definition 2.1 Assume g ∈ W 1,p
0 (�). We say that a function v satisfying

v ∈ L∞([0,∞);W 1,p
0 (�)), vt ∈ L p(� × [0,∞)) (2.3)

is a weak solution of (1.4) if for Lebesgue almost every t > 0
∫

�

|vt (x, t)|p−2vt (x, t)φ(x)dx +
∫

�

|Dv(x, t)|p−2Dv(x, t) · Dφ(x)dx = 0 (2.4)

for each φ ∈ W 1,p
0 (�) and

v(x, 0) = g(x). (2.5)

Any v satisfying (2.3) takes values in L p(�) that are continuous in time, that is

v ∈ C([0, T ]; L p(�)) for any T > 0.

Therefore, we may consider the pointwise values v(·, t) ∈ L p(�) of a weak solution and
assign the initial condition (2.5). Let us now derive a few properties of solutions.
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Lemma 2.2 Assume v is a weak solution of (1.4). Then [0,∞) � t �→ ∫
�

|Dv(x, t)|pdx is
absolutely continuous and (2.1) holds for almost every t > 0.

Proof Define


(w) :=
{∫

�
1
p |Dw(x)|pdx, w ∈ W 1,p

0 (�)

+∞, otherwise

for each w ∈ L p(�). Observe that 
 is convex, proper, and lower-semicontinuous. Moreover,
by (2.4)

∂
(v(·, t)) = {−|vt (·, t)|p−2vt (·, t)}
for almost every t > 0. In view of the integrability of vt (2.3), it follows that t �→ 
(v(·, t)) is
absolutely continuous; for instance, see Corollary 1.4.5 and Remark 1.4.6 of [2] for a detailed
proof of this fact. The chain rule now applies, and (2.1) holds for almost every t > 0. �
Lemma 2.3 Assume v is a weak solution of (1.4). Then

∫

�

|Dv(x, t)|pdx ≤ 1

μp

∫

�

|vt (x, t)|pdx (2.6)

and
d

dt

{

e(μp p)t
∫

�

|Dv(x, t)|pdx
}

≤ 0 (2.7)

for almost every t ≥ 0.

Proof Using v(·, t) as a test function in (2.4) and applying Poincaré’s inequality (1.2)
∫

�

|Dv(x, t)|pdx =
∫

�

|Dv(x, t)|p−2Dv(x, t) · Dv(x, t)dx

= −
∫

�

|vt (x, t)|p−2vt (x, t) · v(x, t)dx

≤
(∫

�

|vt (x, t)|pdx
)1−1/p (∫

�

|v(x, t)|pdx
)1/p

≤ λ
−1/p
p

(∫

�

|vt (x, t)|pdx
)1−1/p (∫

�

|Dv(x, t)|pdx
)1/p

. (2.8)

This proves (2.6). Combining (2.1) and (2.6) gives

d

dt

∫

�

|Dv(x, t)|pdx ≤ −pμp

∫

�

|Dv(x, t)|pdx . (2.9)

Inequality (2.7) follows from (2.9) by direct computation. �
Note that if the initial condition g is a p-ground state, then

v(x, t) = e−μpt g(x) (2.10)

is a solution of (1.4). Theorem 1.1 asserts all solutions exhibit this “separation of variables”
behavior in the limit as t → ∞. Our first clue that this intuition is correct is that the p-
Rayleigh quotient is a nonincreasing function of time along the flow. We regard this as a
special feature of the PDE (1.1).
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Proposition 2.4 Assume that v is a weak solution of (1.4) such that v(·, t) �= 0 ∈ L p(�)

for each t ≥ 0. Then the p-Rayleigh quotient

[0,∞) � t �→
∫
�

|Dv(x, t)|pdx
∫
�

|v(x, t)|pdx
is nonincreasing.

Proof Employing (2.3), it is not difficult to verify

d

dt

∫

�

1

p
|v(x, t)|pdx =

∫

�

|v(x, t)|p−2v(x, t)vt (x, t)dx

for almost every time t > 0; for instance, it is possible to adapt the proof of Theorem 3 on
page 287 of [15]. Suppressing the (x, t) dependence, we compute using (2.1)

d

dt

∫
� |Dv|pdx
∫
� |v|pdx = −p

∫
� |vt |pdx∫
� |v|pdx − p

∫
� |Dv|pdx

(∫
� |v|pdx)2

∫

�
|v|p−2vvt dx

= p
(∫

� |v|pdx)2

{∫

�
|Dv|pdx

∫

�
|v|p−2v(−vt )dx −

∫

�
|v|pdx

∫

�
|vt |pdx

}

(2.11)

which is valid for almost every t > 0. By Hölder’s inequality
∫

�

|v|p−2v(−vt )dx ≤
(∫

�

|v|pdx
)1−1/p (∫

�

|vt |pdx
)1/p

,

and combining this with (2.8) gives
∫

�

|Dv|pdx
∫

�

|v|p−2v(−vt )dx ≤
∫

�

|v|pdx
∫

�

|vt |pdx .

From (2.11), we conclude

d

dt

∫
�

|Dv|pdx
∫
�

|v|pdx ≤ 0.

�
Corollary 2.5 Assume g is a p-ground state. The only weak solution of initial value problem
(1.4) is given by (2.10).

Proof Let v be a weak solution of (1.4) and assume initially that v(·, t) �= 0 ∈ L p(�) for
each t ≥ 0. By Proposition 2.4,

∫
�

|Dv(x, t)|pdx
∫
�

|v(x, t)|pdx ≤
∫
�

|Dg(x)|pdx
∫
�

|g(x)|pdx = λp.

Thus, v(·, t) is a p-ground state for each t ≥ 0. In view of Eq. (1.3)

|vt |p−2vt = �pv = −λp|v|p−2v.

In particular,
vt = −μpv (2.12)

and therefore, v is given by (2.10).
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Otherwise, select the first time T > 0 for which v(·, T ) = 0 ∈ L p(�). By our argument
above, v(·, t) is a p-ground state for each t ∈ [0, T ). Moreover, (2.12) holds for almost every
t ∈ (0, T ). However, this implies v(·, T ) = e−μpT g �= 0 ∈ L p(�). Therefore, there is no
such time T and v is given by (2.10). �

Using an implicit time scheme such as (1.5) to solve doubly nonlinear evolutions in
reflexive Banach spaces has been carried out with great success; see [2,4,11,12,16,27,31].
In our view, the main insight that makes this approach work is a certain compactness feature
of weak solutions that we now explore. Roughly, we verify that any “bounded” sequence of
solutions has a subsequence converging to another weak solution. We will also make use of
this compactness result in our study of the large time behavior of solutions.

Theorem 2.6 Assume {gk}k∈N ∈ W 1,p
0 (�) is uniformly bounded in W 1,p

0 (�), and that for
each k ∈ N, vk is a weak solution of (1.4) with vk(·, 0) = gk. Then there is a subsequence
{vk j } j∈N and v satisfying (2.3) such that

vk j → v in

{
C([0, T ]; L p(�))

L p([0, T ];W 1,p
0 (�))

(2.13)

and
v
k j
t → vt in L p(� × [0, T ]) (2.14)

as j → ∞, for all T > 0. Moreover, v is a weak solution of (1.4) where g is a weak limit of
{gk j }k∈N in W 1,p

0 (�).

Proof By equation (2.1), we have for each k ∈ N and almost every time t ≥ 0

d

dt

∫

�

|Dvk(x, t)|p
p

dx = −
∫

�

|vkt (x, t)|pdx . (2.15)

Thus,
∫ ∞

0

∫

�

|vkt (x, t)|pdxdt + sup
t≥0

∫

�

|Dvk(x, t)|pdx ≤ 2
∫

�

|Dgk(x)|pdx . (2.16)

By assumption, the right hand side above is bounded uniformly in k ∈ N. By the compactness
of W 1,p

0 (�) in L p(�), the Arzelà–Ascoli theorem as detailed by Simon [29] implies that
there is a subsequence {vk j } j∈N converging uniformly on compact subintervals of [0,∞) to
some v in L p(�).

The bound (2.16) also ensures

Dvk j (·, t) ⇀ Dv(·, t)
in L p(�;Rn) for each t ≥ 0. Moreover, as {vkt }k∈N is bounded in L p(� × [0,∞)), we may
also assume

{
v
k j
t ⇀ vt in L p(� × [0,∞))

Jp(v
k j
t ) ⇀ ξ in Lq(� × [0,∞))

.

Here 1/p + 1/q = 1. We claim that in fact

ξ = Jp(vt ) = |vt |p−2vt . (2.17)
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The convexity of the map R
n � z �→ 1

p |z|p implies
∫

�

1

p
|Dw(x)|pdx ≥

∫

�

1

p
|Dvk j (x, t)|pdx −

∫

�

Jp(v
k j
t (x, t))(w(x) − vk j (x, t))dx

for any w ∈ W 1,p
0 (�). Integrating over the interval t ∈ [t0, t1] and sending j → ∞ gives

∫ t1

t0

∫

�

1

p
|Dw(x)|pdxdt≥

∫ t1

t0

(∫

�

1

p
|Dv(x, t)|pdx −

∫

�

ξ(x, t)(w(x) − v(x, t))dx

)

dt.

Therefore,
∫

�

1

p
|Dw(x)|pdx ≥

∫

�

1

p
|Dv(x, t)|pdx −

∫

�

ξ(x, t)(w(x) − v(x, t))dx

for almost every time t ≥ 0. In particular, for each φ ∈ W 1,p
0 (�)

∫

�

ξ(x, t)φ(x)dx +
∫

�

|Dv(x, t)|p−2Dv(x, t) · Dφ(x)dx = 0 (2.18)

for almost every time t ≥ 0. As a result, once we verify (2.17), v is then a weak solution of
(1.4).

For each interval [t0, t1]

lim
j→∞

∫ t1

t0

∫

�

|Dvk j (x, t)|pdxdt = lim
j→∞

∫ t1

t0

∫

�

|Dvk j (x, t)|p−2Dvk j (x, t) · Dvk j (x, t)dxdt

= − lim
j→∞

∫ t1

t0

∫

�

Jp(v
k j
t (x, t))vk j (x, t)dxdt

= −
∫ t1

t0

∫

�

ξ(x, t)v(x, t)dxdt

=
∫ t1

t0

∫

�

|Dv(x, t)|pdxdt.

The last equality is due to (2.18). As a result, Dvk j → Dv in L p
loc([0,∞), L p(�)). This

proves assertion (2.13). And without loss of generality, we assume that
∫

�

|Dvk j (x, t)|pdx →
∫

�

|Dv(x, t)|pdx (2.19)

for almost every t ≥ 0, as j → ∞ (since this occurs for some subsequence of k j ).
Now we will verify (2.17). As in our proof of Lemma 2.2, (2.18) implies

d

dt

∫

�

1

p
|Dv(x, t)|pdx = −

∫

�

ξ(x, t)vt (x, t)dx, a.e. t ≥ 0.

Thus for each t1 > t0
∫ t1

t0

∫

�

ξ(x, s)vt (x, s)dxds +
∫

�

|Dv(x, t1)|p
p

dx =
∫

�

|Dv(x, t0)|p
p

dx . (2.20)

From (2.15), we may also write
∫ t1

t0

∫

�

1

p
|vk jt (x, s)|p + 1

q
|Jp(v

k j
t (x, s))|qdxds +

∫

�

|Dvk j (x, t1)|p
p

dx =
∫

�

|Dvk j (x, t0)|p
p

dx .

(2.21)

123



A doubly nonlinear evolution for the optimal. . . Page 9 of 22 100

Assuming t0 and t1 are times for which the limit (2.19) holds, we let j → ∞ to get
∫ t1

t0

∫

�

1

p
|vt (x, s)|p + 1

q
|ξ(x, s)|qdxds +

∫

�

|Dv(x, t1)|p
p

dx ≤
∫

�

|Dv(x, t0)|p
p

dx

by weak convergence. Comparing with (2.20) gives
∫ t1

t0

∫

�

(
1

p
|vt (x, s)|p + 1

q
|ξ(x, s)|q − ξ(x, s)vt (x, s)

)

dxds ≤ 0.

Equation (2.17) now follows from the strict convexity of R � z �→ 1
p |z|p . Substituting

ξ = Jp(vt ) into (2.20) and passing to the limit as j → ∞ in (2.21) also gives

lim
j→∞

∫ t1

t0

∫

�

|vk jt (x, s)|pdxds =
∫ t1

t0

∫

�

|vt (x, s)|pdxds.

Thus, we are also able to conclude (2.14). �
Let us briefly discuss how compactness pertains to the existence of weak solutions. To this

end, assume {vk}k∈N is the solution sequence of (1.5) for a given τ > 0. Upon multiplying
the PDE in (1.5) by vk − vk−1 and integrating by parts, we obtain

∫

�

( |vk − vk−1|p
τ p−1 + 1

p
|Dvk |p

)

dx ≤
∫

�

1

p
|Dvk−1|pdx, k ∈ N.

Moreover, summing over k = 1, . . . , j ∈ N gives

j∑

k=1

∫

�

|vk − vk−1|p
τ p−1 dx +

∫

�

1

p
|Dv j |pdx ≤

∫

�

1

p
|Dg|pdx, (2.22)

which is a discrete analog of the energy identity (2.2).
Let us further assume τ = T/N and set τk = kτ for k = 0, 1, . . . , N ∈ N. It will be

useful for us to define the “linear interpolating” approximation as

uN (·, t) := vk−1 +
(
t − τk−1

τ

)

(vk − vk−1), τk−1 ≤ t ≤ τk, k = 1, . . . , N

for t ∈ [0, T ] and N ∈ N. It follows from (2.22) that
∫ T

0

∫

�

|∂t uN (x, t)|pdxdt + sup
0≤t≤T

∫

�

|DuN (x, t)|pdx ≤ 2
∫

�

|Dg(x)|pdx

for all N ∈ N.
Using the ideas given in the proof of Theorem 2.6, we obtain a subsequence (uN j ) j∈N

and weak solution u of ⎧
⎨

⎩

|ut |p−2ut = �pu, � × (0, T )

u = 0, ∂� × [0, T )

u = g, � × {0}
(2.23)

for which

uN j → u in

{
C([0, T ]; L p(�))

L p([0, T ];W 1,p
0 (�))

and

∂t uN j → ut in L p(� × [0, T ]).
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For k ∈ N, let uk be the weak solution of (2.23) just described for T = k. Moreover, set
vk(·, t) = uk(·, t) for t ∈ [0, k] and vk(·, t) := uk(·, k) for t ∈ [k,∞). It is immediate that
vk satisfies (2.3). The proof of Theorem 2.6 is also readily adapted to give that (vk)k∈N has
a subsequence converging as in (2.13) and (2.14) to a global weak solution v of (1.4). We
omit the details.

Remark 2.7 We also remark that the subsequence (vN j ) j∈N of the “step function” approxi-
mation sequence (vN )N∈N defined in (1.6) converges in C([0, T ]; L p(�)) to the same weak
solution u as the sequence (uN j ) j∈N. Indeed, by (2.22)

∫

�

|uN j (x, t) − vN j (x, t)|pdx ≤ max
1≤k≤N j

∫

�

|vk(x) − vk−1(x)|pdx

≤
(

T

N j

)p−1 ∫

�

|Dg(x)|pdx .

3 Large time limit

This section is dedicated to the proof of Theorem 1.1, which details the large time behavior
of solutions of the initial value problem (1.4). Our main tools are the compactness of weak
solutions of (1.4) established in Theorem 2.6 and the following lemma, which involves the
sign of weak solutions that are close to p-ground states.

Lemma 3.1 For each positive p-ground state ψ , C > 0 and sequence (sk)k∈N of positive
numbers with sk ↑ ∞, there is a δ = δ(ψ,C, (sk)k∈N) > 0 with the following property. If v
is a weak solution of (1.4) that satisfies

(i) limk→∞ eμpskv(x, sk) = ψ in W 1,p
0 (�)

(ii)
∫
�

|v(x, 0)|pdx ≤ C

(iii)
∫
� |Dv(x,0)|pdx∫
� |v(x,0)|pdx ≤ λp + δ

(iv)
∫
�

|v+(x, 0)|pdx ≥ 1
2

∫
�

|ψ |pdx,
then

∫

�

|eμptv+(x, t)|pdx ≥ 1

2

∫

�

|ψ |pdx . (3.1)

for t ∈ [0, 1].
Proof We argue towards a contradiction. If the result fails, then there exists a triplet
(ψ,C, (sk)k∈N) such that for every δ > 0, there is a weak solution v that satisfies (i) − (iv)

while (3.1) fails. Therefore, associated to δ j := 1/j ( j ∈ N), there is a weak solution v j that
satisfies (i),
∫

�
|v j (x, 0)|pdx ≤ C,

∫

�
|v+

j (x, 0)|pdx ≥ 1

2

∫

�
|ψ |pdx,

∫
� |Dv j (x, 0)|pdx
∫
� |v j (x, 0)|pdx ≤ λp + 1

j

while
∫

�

|eμpt j v+
j (x, t j )|pdx <

1

2

∫

�

|ψ |pdx (3.2)

for some t j ∈ [0, 1].
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Consequently, the sequence of initial conditions (v j (·, 0)) j∈N is bounded in W 1,p
0 (�) and

has a subsequence (not relabeled) that converges to a positive p-ground state ϕ in W 1,p
0 (�).

By Theorem 2.6, it also follows that (a subsequence of) the sequence of weak solutions
(v j ) j∈N converges to a weak solution w in C([0, 2], L p(�)) ∩ L p([0, 2];W 1,p

0 (�)) with
w(·, 0) = ϕ. By Corollary 2.5, w(·, t) = e−μptϕ.

In addition, we have by (i) and the inequality ‖eμpskv j (·, sk)‖W 1,p
0 (�)

≤ ‖v j (·, 0)‖
W 1,p

0 (�)

that
∫

�

|Dv j (x, 0)|pdx ≥ lim
k→∞

∫

�

|D (
eμpskv j (·, sk)

) |pdx =
∫

�

|Dψ |pdx = λp

∫

�

|ψ |pdx
(3.3)

for all j ∈ N. Dividing (3.3) by λp and letting j → ∞ gives
∫

�

|ϕ|pdx = 1

λp

∫

�

|Dϕ|pdx = 1

λp
lim
j→∞

∫

�

|Dv j (x, 0)|pdx ≥
∫

�

|ψ |pdx .

However, letting j → ∞ in (3.2) gives
∫

�

|ϕ|pdx ≤ 1

2

∫

�

|ψ |pdx .

This is a contradiction as ϕ,ψ �≡ 0. �
Remark 3.2 A similar conclusion holds for v− provided ψ is a negative ground state and
(iv) is replaced with

∫
�

|v−(x, 0)|pdx ≥ 1
2

∫
�

|ψ |pdx .

Proof of Theorem 1.1 We argue in several steps. We first show that for each sequence (sk)k∈N
of positive numbers with sk ↑ ∞, a subsequence of (eμpskv(·, sk))k∈N has to converge to
some p-ground state. This in turn will allow us to prove the convergence of the p-Rayleigh
quotient of v(·, t) to the optimal value λp . Then we will use the convergence of the p-Rayleigh
quotient of v(·, t) and the sign of this p-ground state to derive a crucial lower bound on L p(�)

norm of the same sign of eμpskv(·, sk). Finally, we use this estimate to show that in fact the
full sequence converges to this p-ground state.

(1) The following limit

S := lim
τ→∞

∫

�

|D (
eμpτ v(x, τ )

) |pdx (3.4)

exists by the monotonicity formula (2.7). If S = 0, we conclude. So let us assume S > 0,
and suppose (sk)k∈N is a sequence of positive numbers increasing to +∞. For each k ∈ N,
define

vk(x, t) := eμpskv(x, t + sk)

for x ∈ � and t ≥ 0.
Observe, thatvk is a weak solution withvk(·, 0) = eμpskv(·, sk). By (3.4), (vk(·, 0))k∈N ⊂
W 1,p

0 (�) is a bounded sequence. By Theorem 2.8, there is a subsequence (vk j ) j∈N and

weak solutionw for whichvk j converges tow inC([0, T ]; L p(�))∩L p([0, T ],W 1,p
0 (�))

for all T > 0; moreover, vk j (·, t) converges to w(·, t) weakly in W 1,p
0 (�) for all t ≥ 0

and strongly for Lebesgue almost every t ≥ 0. By (3.4), we have

S = lim
k→∞

∫

�

|D
(
eμp(t+sk j )v(x, t + sk j )

)
|pdx
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= epμpt lim
j→∞

∫

�

|Dvk j (x, t)|pdx

= epμpt
∫

�

|Dw(x, t)|pdx

for almost every t ≥ 0. However, as t �→ ∫
�

|Dw(x, t)|pdx is absolutely continu-
ous (by Lemma 2.2), this equality holds for every t ≥ 0. Moreover, it must be that
lim j→∞

∫
�

|Dvk j (x, t)|pdx = ∫
�

|Dw(x, t)|pdx also holds for each t ≥ 0.
(2) In addition, we have

0 = d

dt
epμpt

∫

�

|Dw(x, t)|pdx

= pepμpt
{

μp

∫

�

|Dw(x, t)|pdx −
∫

�

|wt (x, t)|pdx
}

(3.5)

for almost every t ≥ 0. This computation follows from Lemma 2.2. By the proof
of Lemma 2.3, μp

∫
�

|Dw(x, t)|pdx ≤ ∫
�

|wt (x, t)|pdx for almost every t ≥ 0
and equality holds only if w(·, t) is a p-ground state for almost every t ≥ 0. Since
t �→ w(·, t) ∈ L p(�) is continuous and S = ∫

�
|D (

eμptw(x, t)
) |pdx , there is a single

p-ground state ψ for which

w(·, t) = e−μptψ.

In summary,
lim
j→∞ eμp(t+sk j )v(·, t + sk j ) = ψ (3.6)

in W 1,p
0 (�) for each t ≥ 0 and in L p(�) uniformly for each interval 0 ≤ t ≤ T .

Moreover,

lim
t→∞

∫
�

|Dv(x, t)|pdx
∫
�

|v(x, t)|pdx = lim
j→∞

∫
�

|D(eμpsk j v(x, sk j ))|pdx∫
�

|eμpsk j v(x, sk j )|pdx
=

∫
�

|Dψ |pdx
∫
�

|ψ |pdx = λp.

(3) As S = ∫
�

|Dψ |pdx > 0, the p-ground state ψ is determined by its sign. Let us first
assume ψ is positive and choose δ = δ(ψ,C, (sk j ) j∈N) as in Lemma 3.1 where

C := 1

λp

∫

�

|Dv(x, 0)|pdx .

Note by Poincaré’s inequality (1.2) and Lemma 2.3
∫

�

|eμptv(x, t)|pdx ≤ 1

λp

∫

�

|D (
eμptv(x, t)

) |pdx ≤ C (3.7)

for all t ≥ 0.
Now fix j0 ∈ N so large that

∫

�

|(vk j )+(x, 0)|pdx ≥ 1

2

∫

�

|ψ |pdx and

∫
�

|Dvk j (x, 0)|pdx
∫
�

|vk j (x, 0)|pdx ≤ λp + δ

for j ≥ j0. Let us additionally fix an � ≥ j0. By (3.7)
∫

�

|vk� (x, 0)|pdx =
∫

�

|eμpsk� v(x, sk�
)|pdx ≤ C,
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and by (3.6),

lim
j→∞ eμpsk j vk� (·, sk j ) = lim

j→∞ eμp(sk j +sk� )
v(·, sk j + sk�

) = ψ

in W 1,p
0 (�). Lemma 3.1 then implies

∫

�

|eμpt (vk� )+(x, t)|pdx ≥ 1

2

∫

�

|ψ |pdx (3.8)

or equivalently,
∫

�

∣
∣
∣eμp

(
t+sk�

)
v+(x, t + sk�

)

∣
∣
∣
p
dx ≥ 1

2

∫

�

|ψ |pdx . (3.9)

for 0 ≤ t ≤ 1.
Now set

u(x, t) := eμpvk� (x, t + 1) = eμp
(
1+sk�

)
v(x, t + 1 + sk�

)

for x ∈ � and t ≥ 0. Let us verify the hypotheses of Lemma 3.1.

(i) In view of (3.6),

lim
j→∞ eμpsk j u(·, sk j ) = lim

j→∞ e
μp

(
1+sk�+sk j

)

v(·, 1 + sk�
+ sk j ) = ψ

in W 1,p
0 (�).

(ii) By (3.7),
∫

�

|u(x, 0)|pdx =
∫

�

∣
∣
∣eμp

(
1+sk�

)
v(x, 1 + sk�

)

∣
∣
∣
p
dx ≤ C.

(iii) By Proposition 2.4,
∫
�

|Du(·, 0)|pdx
∫
�

|u(·, 0)|pdx =
∫
�

∣
∣Dv(x, 1 + sk�

)
∣
∣p dx

∫
�

∣
∣v(x, 1 + sk�

)
∣
∣p dx

≤
∫
�

∣
∣Dv(x, sk�

)
∣
∣p dx

∫
�

∣
∣v(x, sk�

)
∣
∣p dx

=
∫
�

∣
∣Dvk� (x, 0)

∣
∣p dx

∫
�

∣
∣vk� (x, 0)

∣
∣p dx

≤ λp + δ.

(iv) Evaluating (3.8) at t = 1 gives
∫

�

|u+(x, 0)|pdx =
∫

�

|eμp (vk� )+(x, 1)|pdx ≥ 1

2

∫

�

|ψ |pdx .
Then Lemma 3.1 implies

∫

�

|eμpt u+(x, t)|pdx =
∫

�

|eμp(t+1)
(
vk�

)+
(x, t + 1)|pdx ≥ 1

2

∫

�

|ψ |pdx .
for 0 ≤ t ≤ 1. Combining with (3.9) we have that in fact (3.9) holds for 0 ≤ t ≤ 2, and
by induction, it holds for all t ≥ 0. Therefore,

∫

�

∣
∣
∣
∣e

μp

(
t+sk j

)

v+(x, t + sk j )

∣
∣
∣
∣

p

dx ≥ 1

2

∫

�

|ψ |pdx, t ∈ [0,∞) (3.10)
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for j ≥ j0. Finally, if ψ < 0, inequality (3.10) holds with v− replacing v+.
(4) Now let (t�)�∈N be another sequence of positive numbers increasing to infinity. From

our arguments above, t� has a subequence (that we won’t relabel) such that eμpt�v(·, t�)
converges to a p-ground state ϕ in W 1,p

0 (�) as � → ∞. Moreover, ϕ also satisfies
S = ∫

�
|Dϕ|pdx . By the simplicity of λp , ϕ = ψ or ϕ = −ψ . Let us assume ϕ = −ψ

and without any loss of generality,ϕ < 0. As t� is increasing, we can choose a subsequence
(t� j ) j∈N for which

t� j > sk j , j ∈ N.

Substituting t = t� j − sk j > 0 in (3.10) gives,
∫

�

∣
∣
∣e

μpt� j v+(x, t� j )

∣
∣
∣
p
dx ≥ 1

2

∫

�

|ψ+|pdx, j ∈ N.

However, after letting j → ∞ we find
∫

�

∣
∣ϕ+∣

∣p dx ≥ 1

2

∫

�

|ψ+|pdx

which cannot occur since ϕ < 0 and ψ > 0 in �.
Consequently, for every sequence (sk)k∈N of positive numbers increasing to ∞, there is a
subsequence of (eμpskv(·, sk))k∈N converging in W 1,p

0 (�) to a p-ground state ψ with the
same sign that satisfies S = ∫

�
|Dw|pdx . We appeal to the simplicity of λp once again

to conclude there is only one such ground state ψ . Therefore, limt→∞ eμptv(·, t) = ψ

in W 1,p
0 (�), as asserted. �

Remark 3.3 By Morrey’s inequality, the family {eμptv(·, t)}t≥0 is precompact inC0,1−n/p(�)

for p > n. In this case, limt→∞ eμptv(x, t) = ψ(x) uniformly in x ∈ �. It would be of
great interest to establish uniform convergence for all p > 1. It seems to us that the lacking
piece of information is a modulus of continuity estimate on solutions of (1.1). Indeed, we
have not succeeded in deriving any useful a priori estimates on solutions of (1.1). We hope
to do so in forthcoming work.

4 Viscosity solutions

We now turn our attention to proving Theorem 1.2. Therefore, we assume throughout this
section that p ≥ 2, g ∈ W 1,p

0 (�) ∩ C(�), and that there is a p-ground state ϕ for which

− ϕ(x) ≤ g(x) ≤ ϕ(x), x ∈ �. (4.1)

These assumptions will help us verify that (1.4) has a unique viscosity solution that is also a
weak solution; the reader can find important background material on the theory of viscosity
solutions from sources such as [8,13,17]. We remark that we do not consider the “singular”
case p ∈ (1, 2) in order to avoid technicalities and to focus on the new ideas needed to build
viscosity solutions of (1.4).

While establishing the uniqueness of viscosity solutions of the initial value problem (1.4)
is far from trivial, a standard proof for the comparison of viscosity solutions (p = 2) of the
heat equation is readily adapted to (1.4). For instance, it is possible to modify the proofs of
Theorem 8.2 of [13], Theorem 8.1 of section V.8 in [17], or Theorem 4.7 of [19] to prove the
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following proposition. The main feature to be exploited is that the term |vt |p−2vt is strictly
increasing in the time derivative vt .

Proposition 4.1 Assume v ∈ USC(� × [0, T )) and w ∈ LSC(� × [0, T )). Suppose the
inequality

|vt |p−2vt − �pv ≤ 0 ≤ |wt |p−2wt − �pw, � × (0, T )

holds in the sense of viscosity solutions and v(x, t) ≤ w(x, t) for (x, t) ∈ ∂� × [0, T ) and
for (x, t) ∈ � × {0}. Then

v ≤ w

in � × (0, T ).

Consequently, we will concentrate on confirming the existence of a viscosity solution
and showing that this solution is indeed a weak solution. Fortunately, we propose a method
that resolves both issues simultaneously. Let us first begin by observing that solutions of the
implicit time scheme (1.5) generate viscosity solutions.

Lemma 4.2 For each τ > 0, the implicit scheme (1.5) generates a solution sequence {vk}
of viscosity solutions. Moreover,

sup
�

|vk | ≤ sup
�

|g|

and vk ∈ C1,α
loc (�) for some α ∈ (0, 1] and each k ∈ N.

Proof Consider the implicit scheme (1.5) for k = 1

Jp

(
v1 − g

τ

)

= �pv
1, x ∈ �. (4.2)

AsJp is increasing, this PDE admits a comparison principle for weak sub- and supersolutions.
Since the constant function sup� |g| is a supersolution, that is nonnegative on ∂�, v1 ≤
sup� |g|. Likewise, v1 ≥ − sup� |g|, and thus |v1| ≤ sup� |g|. As the left hand side of the
PDE (4.2) is now identified as an L∞(�) function, Theorem 2 in [14] implies there is some
α ∈ (0, 1] such that v1 ∈ C1,α

loc (�). The assertion for each vk follows routinely by induction.
Let us now verify that v1, and similarly each vk , is a viscosity solution. We will closely

follow the argument used to prove Theorem 2.5 in [19]. Assume that v1 −φ has a strict local
minimum at x0 where φ ∈ C∞(�). We are to show

Jp

(
v1(x0) − g(x0)

τ

)

≥ �pφ(x0). (4.3)

If (4.3) doesn’t hold, there is a δ > 0 where
{
Jp

(
v1(x)−g(x)

τ

)
< �pφ(x),

(v1 − φ)(x) > (v1 − φ)(x0)

for x ∈ Bδ(x0). Set

c := inf
∂Bδ(x0)

(v1 − φ) > (v1 − φ)(x0),
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and observe

−�p(φ + c) < −Jp

(
v1 − g

τ

)

= −�pv
1, x ∈ Bδ(x0)

while φ + c ≤ v1 for x ∈ ∂Bδ(x0). By comparison, φ + c ≤ v1 in Bδ(x0). In particular,

c ≤ (v1 − φ)(x0)

which is a contradiction. Hence, (4.3) holds and the argument for the subsolution property
of v1 can be made similarly. �
Corollary 4.3 Let τ > 0. Assume {ψk}∞k=0 ⊂ C∞(�) and (x0, k0) ∈ � × N is such that

vk(x) − ψk(x) ≤ vk0(x0) − ψk0(x0) (4.4)

for x in a neighborhood of x0 and k ∈ {k0 − 1, k0}. Then

Jp

(
ψk0(x0) − ψk0−1(x0)

τ

)

≤ �pψ
k0(x0).

Proof Evaluating the left hand side (4.4) at k = k0 gives

Jp

(
vk0(x0) − vk0−1(x0)

τ

)

≤ �pψ
k0(x0)

as vk0 is a viscosity solution of (1.5). Evaluating the left hand side of (4.4) at x = x0 and
k = k0 − 1 gives ψk0(x0) − ψk0−1(x0) ≤ vk0(x0) − vk0−1(x0). The claim follows from the
above inequality and the monotonicity of Jp .

Our candidate for a viscosity solution of (1.4) is limN→∞ vN where vN is defined in (1.6).
We have already established that a subsequence of (vN )N∈N converges to a weak solution in
C([0, T ]; L p(�)). Therefore, we are left to verify that this sequence converges uniformly to
a viscosity solution. Towards this goal, we will employ the half-relaxed limits of vN

v(x, t) := lim sup
N→∞

(y,s)→(x,t)

vN (y, s)

v(x, t) := lim inf
N→∞

(v,s)→(x,t)

vN (y, s)

for x ∈ � and t ∈ [0, T ]. By Lemma 4.2, the sequence {vN }N∈N is bounded, independently of
N ∈ N. As a result, the above functions are well defined and finite at each (x, t) ∈ �×[0, T ].
Moreover, v,−v are upper semicontinuous and v = v if and only if vN converges locally
uniformly (see Remark 6.4 of [13]). It is immediate that v ≤ v. In order to conclude v ≤ v,
we will show that v(x, t) = v(x, t) when t = 0 and when x ∈ ∂� and that v and v are
respective viscosity sub- and supersolutions of the PDE (1.1). We would then be in a position
to apply Proposition 4.1.

Lemma 4.4 Let ϕ be the p-ground state in (4.1). Then for N ∈ N

− ϕ(x) ≤ vN (x, t) ≤ ϕ(x), (x, t) ∈ � × [0, T ]. (4.5)

In particular, for x0 ∈ ∂�, v(x0, t) = v(x0, t) = 0.
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Proof Observe that

−�pϕ + Jp

(
ϕ − g

τ

)

= λp|ϕ|p−2ϕ + Jp

(
ϕ − g

τ

)

≥ 0

in � as ϕ ≥ 0 and ϕ ≥ g. Therefore, ϕ is a supersolution of (4.2). Since ϕ = v1 = 0
on ∂�, weak comparison implies v1 ≤ ϕ. Likewise, v1 ≥ −ϕ. Iterating these bounds for
each k yields −ϕ ≤ vk ≤ ϕ. Consequently, (4.5) holds. Since ∂� is smooth, we have that
ϕ ∈ C(�) [28]. Thus, for x0 ∈ ∂� and t ∈ [0, T ], we can pass to the limit in (4.5) to
conclude v(x0, t) ≤ 0 ≤ v(x0, t).

Lemma 4.5 For each x0 ∈ � and ε > 0, there is a constant C = C(x0, ε) such that

|vN (x, t) − g(x0)| ≤ ε + C

(

t + T

N
+ |x − x0|

p
p−1

)

(4.6)

for (x, t) ∈ � × [0, T ] and N ∈ N. In particular, v(x0, 0) = v(x0, 0) = g(x0).

Proof We first prove there is a constant C = C(x0, ε) for which

u(x) := g(x0) + ε + C
(
τ + cp|x − x0|

p
p−1

)
, x ∈ �

lies above v1. Here cp is selected so that �p

(
cp|x − x0|

p
p−1

)
= 1. Note that since g is

continuous on �, we can find a δ > 0 and C > 0 so that

|g(x) − g(x0)| < ε

when |x − x0| < δ and

sup
�

|g| ≤ Ccp|x − x0|
p

p−1

when |x − x0| ≥ δ. Indeed, we may choose

C = 2 sup� |g|
cpδ

p
p−1

.

By design, g(x0) + ε + Ccp|x − x0|
p

p−1 − g(x) ≥ 0 for all x ∈ �. Therefore,

−�pu + Jp

(
u − g

τ

)

= −C p−1 + Jp

(
g(x0) + ε + Ccp|x − x0|

p
p−1 − g + Cτ

τ

)

≥ −C p−1 + C p−1

= 0.

Choosing C even larger if necessary, we may also assume that u ≥ 0 on ∂�. In this case,
weak comparison gives

v1(x) ≤ u(x) = g(x0) + ε + C
(
τ + cp|x − x0|

p
p−1

)

x ∈ �. Similarly, we have

v1(x) ≥ g(x0) − ε − C
(
τ + cp|x − x0|

p
p−1

)
.
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After iterating this procedure k times, we find

g(x0) − ε − C
(
kτ + cp|x − x0|

p
p−1

)
≤ vk(x) ≤ g(x0) + ε + C

(
kτ + cp|x − x0|

p
p−1

)
.

By the definition of vN (in which τ = T/N ), we obtain for t ∈ ((k − 1)T/N , kT/N ]

vN (x, t) = vk(x) ≤ g(x0) + ε + C

(

t + T

N
+ cp|x − x0|

p
p−1

)

.

The analogous lower bound holds as well, which implies (4.6). As a result

g(x0) − ε − C
(
t + cp|x − x0|

p
p−1

)

≤ v(x, t) ≤ v(x, t) ≤ g(x0) + ε + C
(
t + cp|x − x0|

p
p−1

)
,

and therefore

g(x0) − ε ≤ v(x0, 0) ≤ v(x0, 0) ≤ g(x0) + ε.

These inequalities conclude the proof, as ε > 0 is arbitrary. �
The following lemma will allow us to exploit the discrete viscosity solutions property

of solutions sequences of (1.5) as described in Corollary 4.3. We note this statement is an
analog of Lemma A.3 in [9] and is inspired by other works of G. Barles and B. Perthame
such as [10].

Lemma 4.6 Assume φ ∈ C∞(� × (0, T )) ∩ C(� × [0, T ]). For N ∈ N define

φN (x, t) :=
{

φ(x, 0), (x, t) ∈ � × {0},
φ(x, τk), (x, t) ∈ � × (τk−1, τk] , k = 1, . . . , N .

Suppose v −φ (v −φ) has a strict local maximum (minimum) at (x0, t0) ∈ �× (0, T ). Then
there are sequences (x j , t j ) → (x0, t0) and N j → ∞, as j → ∞, such that vN j − φN j has
local maximum (minimum) at (x j , t j ) for each j ∈ N.

Proof First note that φN converges to φ uniformly on � × [0, T ]. Thus,

(v − φ)(x, t) := lim sup
N→∞

(y,s)→(x,t)

(vN − φN )(y, s).

Consequently, without of loss of generality, we may prove the claim for φ ≡ 0. Another
important observation for us is that for any nonempty, compact subset D ⊂ � and any
nonempty, subinterval I ⊂ [0, T ], vN will achieve a maximum value on D× I . This follows
from the continuity of vk as

sup
D×I

vN = max

{

max
D

vk(x) : k = 1, . . . , N such that I ∩ (τk−1, τk] �= ∅
}

. (4.7)

Now assume that there is r > 0 such that

v(x, t) < v(x0, t0), (x, t) ∈ Qr , (4.8)

where Qr := Br (x0)×(t0−r, t0+r) ⊂ �×(0, T ). By definition, we may select a maximizing
sequence v(x0, t0) = lim j→∞ vN j (y j , s j ) where (y j , s j ) → (x0, t0) and N j → ∞. Without
loss of generality, we may assume (y j , s j ) ∈ Qr for all j ∈ N. By the equality (4.7), we may
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assume there is an (x j , t j ) ∈ Qr maximizing vN j over Qr . By compactness, we may also

assume that up to a subsequence (x j , t j ) → (x1, t1) ∈ Qr as j → ∞. Hence,

v(x0, t0) = lim sup
j→∞

vN j (y j , s j )

≤ lim sup
j→∞

vN j (x j , t j )

≤ v(x1, t1).

By (4.8), (x1, t1) = (x0, t0) and the claim follows. �

Proof of Theorem 1.2 It suffices to show that v is a viscosity subsolution and v is a superso-
lution of (1.1). Recall that Lemmas 4.4 and 4.5 assert that v and v agree on ∂� and at t = 0,
which would allow us to apply Proposition 4.1 to conclude v ≤ v. In this case, v = v and
vN → v uniformly in � × [0, T ]. Assume that φ ∈ C∞(� × (0, T )) and v − φ has a strict
local maximum at (x0, t0) ∈ �× (0, T ). By Lemma 4.6, there are points (x j , t j ) converging
to (x0, t0) and N j ∈ N tending to +∞, as j → ∞, such that vN j −φN j has a local maximum
at (x j , t j ). Observe that for each j ∈ N, t j ∈ (τk j−1, τk j ] for some k j ∈ {0, 1, . . . , N j }.
Hence, by the definition of vN j and φN j ,

� × {0, 1, . . . , N j } � (x, k) �→ vk(x) − φ(x, τk)

has a local maximum at (x, k) = (x j , k j ). By Lemma 4.3,

Jp

(
φ(x j , τk j ) − φ(x j , τk j−1)

T/N j

)

≤ �pφ(x j , τk j ).

As τk j−1 = τk j − T/N j and |t j − τk j | ≤ T/N j for j ∈ N, we can appeal to the smoothness
of φ and send j → ∞ to arrive at

Jp(φt (x0, t0)) ≤ �pφ(x0, t0).

Consequently, v is a viscosity subsolution of (1.1). By the homogeneity of Eq. (1.1), the
same argument applied to −v yields that v is a supersolution. �

We conclude this section by arguing that when g ∈ C2(�), viscosity solutions of (1.4)
satisfy x �→ v(x, t) ∈ C1,α

loc (�) for almost every t > 0 and |vt | ≤ C .

Proposition 4.7 Assume v is a viscosity solution of (1.4) and that there is a constant C ≥ 0
such that

|C |p−2C ≥ �pg(x), x ∈ �. (4.9)

Then for each t ≥ s and x ∈ �

v(x, t) ≤ v(x, s) + C(t − s).

In particular vt ≤ C. Likewise, if v is a viscosity solution of (1.4) and there is C ≤ 0 such
that

|C |p−2C ≤ �pg(x), x ∈ �.

Then vt ≥ C.
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Proof By assumption (4.9), (x, t) �→ g(x) +Ct is a supersolution of (1.1) that is at least as
large as v on ∂� and when t = 0. By Proposition 4.1, v(x, t) ≤ g(x)+Ct . Now assume τ > 0
is fixed and set w1(x, t) := v(x, t + τ) and w2(x, t) := v(x, t) + Cτ . Observe that w1 and
w2 are viscosity solutions of (1.1) and w1(x, t) ≤ w2(x, t) when either (x, t) ∈ ∂�×[0, T )

or when x ∈ � and t = 0. By Proposition 4.1, w1 ≤ w2 and so v(x, t + τ) ≤ v(x, t) + Cτ .
We may argue similarly for the other assertion. �
Corollary 4.8 Assume v is a viscosity solution of (1.4) and there is C ≥ 0 such that

|C |p−2C ≥ |�pg(x)|, x ∈ �. (4.10)

Then |vt | ≤ C.

Corollary 4.9 Assume v is a viscosity solution of (1.4) and g satisfies (4.10) for someC ≥ 0.
Then for almost every t ≥ 0, x �→ v(x, t) ∈ C1,α

loc (�).

Proof As �pv = |vt |p−2vt ∈ L∞(�), for almost every t > 0, the claim follows from
Theorem 2 in [14]. �

5 Large p limit

We are now prepared to deduce the large p limit of Eq. (1.1) and prove Theorem 1.3. We
interpret this assertion as a parabolic analog of a theorem of Juutinen, Lindqvist and Manfredi
[18]. We also encourage the reader to compare this Theorem 1.3 with the results of [20].

Proof By (2.2) and the assumption that g ∈ W 1,∞
0 (�), (v p

t )p>r and (Dv p)p>r are bounded
in Lr

loc(� × (0,∞)) for each r ≥ 1. Morrey’s inequality then implies (v p)p>n+1 ⊂
C1−(n+1)/p

loc (� × (0,∞)) has a subsequence (v pk )k∈N that converges locally uniformly to a
continuous function v on � × (0,∞). Now suppose φ ∈ C∞(� × (0,∞)) and v − φ has a
strict local maximum at some (x0, t0) ∈ � × (0,∞). We aim to show
G∞(φt (x0, t0), Dφ(x0, t0), D2φ(x0, t0)) ≤ 0; that is,

0 ≥
⎧
⎨

⎩

min{−�∞φ(x0, t0), |Dφ(x0, t0)| + φt (x0, t0)}, φt (x0, t0) < 0
−�∞φ, φt (x0, t0) = 0
max{−�∞φ(x0, t0),−|Dφ(x0, t0)| + φt (x0, t0)}, φt (x0, t0) > 0

. (5.1)

By the uniform convergence of v pk to v, there is a sequence of points (xk, tk) → (x0, t0)
such that v pk − φ has a local maximum at (xk, tk). As v pk is a viscosity solution of (1.1),

|φt (xk, tk)|pk−2φt (xk, tk) ≤ �pkφ(xk, tk), k ∈ N. (5.2)

If φt (x0, t0) > 0, then φt (xk, tk) > 0 for all k large enough. Moreover, (5.2) implies
−�pkφ(xk, tk) < 0 and |Dφ(xk, tk)| �= 0 for all k large. Rearranging (5.2) gives

1

pk − 2

( |φt (xk, tk)|
|Dφ(xk, tk)|

)pk−4

φt (xk, tk)
3 ≤ |Dφ(xk, tk)|2�φ(xk, tk)

pk − 2
+�∞φ(xk, tk). (5.3)

It follows that −�∞φ(x0, t0) ≤ 0 in the limit as k → ∞. And as the right hand side of
(5.3) is bounded, it must be that φt (xk, tk) ≤ |Dφ(xk, tk)| for all k large enough. Hence,
−|Dφ(x0, t0)| + φt (x0, t0) ≤ 0; in particular, (5.1) holds. Now assume φt (x0, t0) = 0. If
in addition |Dφ(x0, t0)| = 0, then clearly −�∞φ(x0, t0) ≤ 0. If |Dφ(x0, t0)| �= 0, then
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|Dφ(xk, tk)| �= 0 for all k large and (5.3) implies −�∞φ(x0, t0) ≤ 0 in the limit as k → ∞.
In either case, (5.1) holds.

Finally, suppose φt (x0, t0) < 0. If additionally, |Dφ(x0, t0)|+φt (x0, t0) ≤ 0, then clearly
(5.1) follows. Otherwise, |Dφ(x0, t0)| + φt (x0, t0) > 0 and in particular, |Dφ(xk, tk)| +
φt (xk, tk) > 0 for all k large. Passing to the limit in (5.3) gives −�∞φ(x0, t0) ≤ 0. In either
case, again we have (5.1).

It is now routine to verify that (5.1) holds if v − φ only has a local maximum at (x0, t0).
Moreover, our proof that v is a subsolution immediately extends to a proof that v is a super-
solution since G∞ is an odd function:

G∞(−a,−ξ,−X) = −G∞(a, ξ, X).

for each a ∈ R, p ∈ R
n and symmetric n × n matrix X . �

In [18], it was shown that λ∞ := lim p→∞ λ
1/p
p exists. We conjecture that for any viscosity

solution v of (1.7), the limit ψ(x) := limt→∞ eλ∞tv(x, t) exists uniformly in x ∈ � and is
an infinity ground state. That is, ψ is a viscosity solution of the PDE

{
G∞(−λ∞ψ, Dψ, D2ψ) = 0, x ∈ �

ψ = 0, x ∈ ∂�
.

In particular, if ψ > 0
{

min{−�∞ψ, |Dψ | − λ∞ψ} = 0, x ∈ �

ψ = 0, x ∈ ∂�
.

If our intuition is correct, then it is appropriate to interpret the flow (1.7) as a natural parabolic
equation associated with the infinity Laplacian.
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