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Abstract Using bifurcation method, we investigate the existence, nonexistence and multi-
plicity of positive solutions for the following Dirichlet problem involving mean curvature
operator in Minkowski space

⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λ f (|x |, v) in BR(0),

v = 0 on ∂BR(0).

We managed to determine the intervals of the parameter λ in which the above problem has
zero, one or two positive radial solutions corresponding to sublinear, linear, and superlinear
nonlinearities f at zero respectively. We also studied the asymptotic behaviors of positive
radial solutions as λ → +∞.

Mathematics Subject Classification 35J65 · 34C23 · 35B40

1 Introduction

Consider the following problem
⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λ f (|x |, v) in BR(0),

v = 0 on ∂BR(0),

(1.1)
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whereλ is a nonnegative parameter, R is a positive constant and BR(0) = {
x ∈ R

N : |x | < R
}

is the standard open ball in the Euclidean space R
N (N ≥ 1) which is centered at the origin

and has radius R. Here the nonlinear function f : [0, R] × [0, R] → [0,+∞) is continuous
and satisfies the following assumption

f (|x |, s) > 0 for any (|x |, s) ∈ (0, R] × (0, R].
The aim of this paper is to investigate the existence, nonexistence and multiplicity of pos-
itive radial solutions of problem (1.1) according to the different growth conditions of the
nonlinearity near zero by using bifurcation analysis and topological methods.

It is well known (see [3]) that the study of spacelike submanifolds of codimension one in
the flat Minkowski space L

N+1 with prescribed mean extrinsic curvature leads to the type of
problems (1.1). Here the flat Minkowski space

L
N+1 =

{
(x, t) : x ∈ R

N , t ∈ R

}

is endowed with the Lorentzian metric

N∑

i=1

(dxi )
2 − (dt)2,

where (x, t) = (x1, . . . , xN , t) are the canonical coordinates in R
N+1. This kind of prob-

lems is originated from classical relativity. In classical relativity, it is crucial to determine
the existence and regularity properties of maximal and constant mean curvature hypersur-
faces. These hypersurfaces are spacelike submanifolds of codimension one in the spacetime
manifold, with the property that the trace of the extrinsic curvature is zero and constant respec-
tively. The importance of such surfaces lies in that they provide Riemannian submanifolds
with properties which reflect those of the spacetime. There are a large amount of papers in the
literature on the existence and on qualitative properties of solutions for this type of problems:
see [1,12,26] for zero or constant curvature, and [4–7,10,20] for variable curvature.

Recently, using Leray-Schauder degree argument and critical point theory for convex,
lower semicontinuous perturbations of C1-functionals, Bereanu et al. [8] obtained some
important existence results for the positive radial solutions of problem (1.1) without parameter
λ. In another paper, the same authors [9] successfully established some further nonexistence,
existence and multiplicity results for the positive radial solutions of problem (1.1) with
λ f (|x |, s) = λμ(|x |)sq , where q > 1, μ : [0,+∞) → R is continuous, strictly positive on
(0,+∞).

Motivated by the interesting studies of Bereanu et al. [8,9] and some earlier works in the
literature (see in particular [3] and the references therein), here we continue the investigations
on the nonexistence, existence and multiplicity of positive radial solutions of problem (1.1).
Our main arguments are based on bifurcation analysis and topological methods. To the best
of our knowledge, there are no systematic investigations on problem (1.1) by bifurcation
analysis.

As in [8,9], we can easily show that the radially symmetric solutions of problem (1.1)
satisfy the following boundary value problem

{

−
(
r N−1 u′√

1−u′2

)′ = λr N−1 f (r, u), r ∈ (0, R),

u′(0) = u(R) = 0,
(1.2)

where r = |x | and u(r) = v(|x |).
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Fig. 1 The case of f0 ∈ (0, +∞)

By a solution to problem (1.2), we mean a function u = u(r) ∈ C1[0, R] with
∥
∥u′∥∥∞ < 1,

such that r N−1u′/
√

1 − u′2 is differentiable and (1.2) is satisfied. Here ‖·‖∞ denotes the usual
sup-norm.

Now, we are in a position to state the following hypothesis on the nonlinearity f :
(H f ) a ∈ C[0, R] is a nonnegative function with a(r) > 0 for r ∈ (0, R] and f0 ∈

[0,+∞] such that

lim
s→0+

f (r, s)

s
= f0a(r)

uniformly for r ∈ [0, R].
Let λ1 be the first eigenvalue for the following linear eigenvalue problem

{− (
r N−1u′)′ = λr N−1a(r)u, r ∈ (0, R),

u′(0) = 0 = u(R).
(1.3)

It is well-known that λ1 is simple, isolated and the associated eigenfunction has fixed sign in
[0, R) (see for example [13] or [27, p. 269]).

Let X := {
u ∈ C1[0, R] : u′(0) = u(R) = 0

}
with the norm ‖u‖ = ∥

∥u′∥∥∞ and P :=
{u ∈ X : u > 0 on [0, R)} be the positive cone in X and R

+ = [0,+∞).
Our first main result is the following theorem which deals with the case that f is asymp-

totically linear near 0, i.e., f0 ∈ (0,+∞).

Theorem 1.1 Let (H f ) hold with f0 ∈ (0,+∞). The pair (λ1/ f0, 0) is a bifurcation point of
problem (1.2). Moreover, there is an unbounded componentC of the set of solution of problem
(1.2) in R × X bifurcating from (λ1/ f0, 0) such that C ⊆ ((

R
+ × P

) ∪ {(λ1/ f0, 0)}) and
limλ→+∞ ‖uλ‖ = 1 for (λ, uλ) ∈ C \ {(λ1/ f0, 0)}. In addition, (λ1/ f0, 0) is the unique
bifurcation point on R

+ × {0} of positive solutions of problem (1.2).

It follows from Theorem 1.1 that problem (1.1) possesses at least one positive radial
solution for any λ ∈ (λ1/ f0,+∞) (see Fig. 1).

Moreover, the positive radial solution is strictly decreasing thanks to Lemma 1 of [8].
From now on, similarly to that of [24], we add the points (+∞, 1) and (+∞, 0) to our space
R × X so (+∞, 1) is an element of C thanks to the asymptotic behavior of positive radial
solutions as λ → +∞.
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Fig. 2 The case of f0 = +∞

When f0 = +∞, f is superlinear with respect to s near 0. Concerning this case, we have
the following second main result.

Theorem 1.2 Assume that (H f ) holds with f0 = +∞. There is an unbounded component
C of the set of solution of problem (1.2) in R × X emanating from (0, 0) such that C ⊆((
R

+ × P
) ∪ {(0, 0)}) and joins to (+∞, 1).

By Theorem 1.2, we can see that problem (1.1) has at least one positive radial solution
for any λ ∈ (0,+∞) (see Fig. 2).

In the case of λ = 1 and f being defined on [0, R]×[0, α) with 0 < α ≤ +∞, f0 = +∞
and a(r) ≡ 1, the authors of [8] proved that problem (1.1) has at least one positive radial
solution if either R < α or α = 1 = R and the following condition

lim
s→1−

√
1 − s2 f (r, s) = 0 (1.4)

holds uniformly for r ∈ [0, 1]. If α = +∞, Theorem 1.2 in particular implies that (1.1)
has at least one positive radial solution for any R < +∞ = α. For α ∈ (0,+∞), our
result shows problem (1.1) still has at least one positive radial solution for any R < +∞.
Of course our result contains the cases of R = α �= 1 and α < R, which are not considered
in [8]. Moreover, we do not need the above sublinear condition at 1 of f . In fact, if f also
satisfies our conditions at s = 1, we always have lims→1−

√
1 − s2 f (r, s) = 0 uniformly

for r ∈ [0, 1] because lims→1−
√

1 − s2 = 0 and lims→1− f (r, s) = f (r, 1) ≥ 0 for any
r ∈ [0, 1]. In general, the conditions of type (1.4) are mainly used to get the a priori bounds
of solutions with respect to the bounded parameter for the semilinear elliptic equations (see
e.g. [15,19,22]). However, here we could obtain ‖u‖ < 1 immediately from problem (1.1),
which is different from the classical elliptic equations. Therefore, it is natural to drop this
assumption in our current study. From this point of view, Theorem 1.2 extends or complements
the corresponding results of [8] even in the case of λ = 1.

We would also like to point out that the nonlinearity f in the current paper is assumed to
be continuous on [0, R] × [0, R] while in [8] it is continuous in [0, R] × [0, α). In the latter
case, f can have a singularity at α. It is not difficult to verify that ‖u‖∞ < R for any solution
u to (1.1). Notice that when R < α, the singularity of f at α does not come into play, for
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Fig. 3 The case of f0 = +∞

the second variable cannot reach α at all (see Example 3.2). Indeed, our results cannot cover
the corresponding results of [8, Corollary 1] when R = α = 1 and f has a singularity at
1. However, here we are able to obtain the asymptotic behavior of positive radial solutions
as λ → +∞, which is guaranteed by the continuity of f on [0, R] × [0, R]. Unfortunately,
at the time of this writing, we do not know whether this assumption is necessary for the
asymptotic behavior of positive radial solutions.

Our third main result deals with the case that the nonlinearity f has sublinear growth rate
near 0 (see Fig. 3).

Theorem 1.3 Assume that (H f ) holds with f0 = 0. There is an unbounded component C
of the set of solution of problem (1.2) in R × X which joins (+∞, 1) to (+∞, 0) such that
C ⊆ (

R
+ × P

)
.

Our last main result in this paper is on the nonexistence of positive radial solutions.

Theorem 1.4 Assume that there exists a constant � > 0 such that

f (r, s)

s
≤ �a(r)

for any s > 0 and r ∈ [0, R]. Then there exists �∗ > 0 such that problem (1.2) has no
positive solution for any λ ∈ (0, �∗).

From Theorems 1.1–1.4, we can easily derive the following corollary, which give the
ranges of parameter guaranteeing problem (1.1) has zero, one or two positive radial solutions.

Corollary 1.1 Assume that (H f ) holds.

(a) If f0 ∈ (0,+∞), then there exists μ1 > 0 such that problem (1.1) has no positive
radial solution for all λ ∈ (0, μ1); has at least one positive radial solution for all
λ ∈ (μ1,+∞).

(b) If f0 = +∞, then problem (1.1) has at least one positive radial solution for all λ ∈
(0,+∞).
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(c) If f0 = 0, then there exist μ2 > 0 and μ3 > 0 such that problem (1.1) has no positive
radial solution for all λ ∈ (0, μ2); has at least one positive radial solution for all
λ ∈ [μ2, μ3]; has at least two positive radial solutions for all λ ∈ (μ3,+∞).

The rest of this paper is organized as follows. In Sect. 2, we prove Theorem 1.1. Section
3 is devoted to proving Theorem 1.2. In the last section, Sect. 4, we present the proofs
of Theorems 1.3 and 1.4. In each section, we also give some examples and compare our
conclusions with some previous known results in literature.

2 Proof of Theorem 1.1

We first transform problem (1.2) into the form of classical Sturm-Liouville problems. If u is
a solution of problem (1.2), then for any r ∈ (0, R) one has that

λr N−1 f (r, u)

= −
(
r N−1u′)′ 1√

1 − u′2 − r N−1u′2u′′ 1
(
1 − u′2)√

1 − u′2

= −(N − 1)r N−2u′ 1√
1 − u′2 − r N−1u′′ 1√

1 − u′2 − r N−1u′2u′′ 1
(
1 − u′2)√

1 − u′2

= −(N − 1)r N−2u′ 1√
1 − u′2 − r N−1u′′ 1√

1 − u′2
1

1 − u′2 .

It follows that

−u′′ = λ f (r, u)
(
1 − u′2) 3

2 + N − 1

r
u′ (1 − u′2) .

From this we obtain that

−
(
r N−1u′)′ = λr N−1 f (r, u)

(
1 − u′2) 3

2 − (N − 1)r N−2u′3.

Now, problem (1.2) is equivalent to
{

− (
r N−1u′)′ = λr N−1 f (r, u)

(
1 − u′2) 3

2 − (N − 1)r N−2u′3, r ∈ (0, R),

u′(0) = u(R) = 0.
(2.1)

Let ξ : [0, R] × [0, R] → R be such that

f (r, s) = f0a(r)s + ξ(r, s)

with

lim
s→0+

ξ(r, s)

s
= 0

uniformly for r ∈ [0, R]. Let us consider
{

− (
r N−1u′)′ =λ f0r N−1a(r)u

(
1 − u′2) 3

2 +λr N−1ξ(r, u)
(
1 − u′2) 3

2 −(N−1)r N−2u′3,
u′(0) = u(R) = 0

(2.2)

as a bifurcation problem from the trivial solution axis.

123



Bifurcation and positive solutions for problem… Page 7 of 17 72

Proof of Theorem 1.1 Let G(r, s) be the Green’s function associated with the operator
L u := − (

r N−1u′)′ with the same boundary condition as in problem (2.2) (see [23]). Then
problem (2.2) can be equivalently written as

u = λLu + H(λ, u) := K (λ, u), (2.3)

where

Lu = f0

∫ R

0
G(r, s)sN−1a(s)u(s) ds

and

H(λ, u) =
∫ R

0
G(r, s)sN−2

[

λ f0a(s)su

(
(

1 − u′2) 3
2 − 1

)

+ λξ(s, u)s
(

1 − u′2) 3
2 − (N − 1)u′3

]

ds.

Then it is well known that L : X → X is linear completely continuous and H : R× X → X
is completely continuous (see [23]).

First, we show that H = o(‖u‖) near u = 0 uniformly on bounded λ intervals. Let

ξ̃ (r, w) = max
0≤s≤w

|ξ(r, s)| for any r ∈ [0, R].

Then ξ̃ is nondecreasing with respect to w and

lim
w→0+

ξ̃ (r, w)

w
= 0. (2.4)

Noting that

u(r) =
∫ r

R
u′(t) dt,

one has that

|u(r)| =
∣
∣
∣
∣

∫ r

R
u′(t) dt

∣
∣
∣
∣ ≤

∫ R

r

∣
∣u′(t)

∣
∣ dt ≤ ‖u‖R

for any r ∈ [0, R]. So we have that ‖u‖∞ ≤ ‖u‖R. Further it follows from (2.4) that
∣
∣
∣
∣
ξ(r, u)

‖u‖
∣
∣
∣
∣ ≤ ξ̃ (r, u)

‖u‖ ≤ ξ̃ (r, ‖u‖∞)

‖u‖ ≤ R
ξ̃ (r, ‖u‖R)

‖u‖R → 0 as ‖u‖ → 0 (2.5)

uniformly in r ∈ [0, R]. Then we have that

ξ(r, u)
(
1 − u′2) 3

2

‖u‖ → 0 as ‖u‖ → 0

uniformly in r ∈ [0, R]. Obviously, we have that

u′3

‖u‖ → 0,

a(r)u

(
(
1 − u′2) 3

2 − 1

)

‖u‖ → 0 as ‖u‖ → 0

uniformly in r ∈ [0, R].
Now, applying Theorem 1.3 of [23] to problem (2.3), we obtain that there exists a contin-

uumC of solution set of problem (2.3) bifurcating from (λ1/ f0, 0) which is either unbounded
or contains a pair

(
λ/ f0, 0

)
for some λ, eigenvalue of problem (1.3) with λ �= λ1/ f0. Since

(0,0) is the unique solution of problem (2.3) for λ = 0 (see [9]), so C ∩ ({0} × X) = ∅. It
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follows from Lemma 1 of [8] that u is positive on [0, R) and is strictly decreasing for any
(λ, u) ∈ C \ {(λ1/ f0, 0)}. So we have that

C ⊆ ((
R

+ × P
) ∪ {(λ1/ f0, 0)})

and C is unbounded in R × X . It is easy to verify that (λ1/ f0, 0) is the unique bifurcation
point on R × {0} of positive solutions of problem (1.2).

Finally, we show the asymptotic behavior of uλ as λ → +∞ for (λ, uλ) ∈ C \{(λ1/ f0, 0)}.
To do this, we take any (λn, un) ∈ C \ {(λ1/ f0, 0)} with λn → +∞ as n → +∞. In order to
do this, we take any (λn, un) ∈ C \ {(λ1/ f0, 0)} with λn → +∞ as n → +∞. The fact that
(λn, 0) is not a bifurcation point implies that there exists a constant δ > 0 such that ‖un‖ ≥ δ

for any n ∈ N.
Define

Fn(r) = max
t∈[0,r ]

(−u′
n(t)

)

for any r ∈ [0, R] and n ∈ N. Then it follows from Lemma 1 of [8] that Fn(r) is increasing
on [0, R]. Clearly, one has Fn(R) = ‖un‖ ≥ δ. The fact u′

n(0) = 0 implies that Fn(0) = 0.
Moreover, for any r0 ∈ [0, R) and h → 0+ with r0 + h ∈ [0, R), we have that

0 ≤ Fn (r0 + h) − Fn (r0) = max
t∈[0,r0+h]

(−u′
n(t)

) − max
t∈[0,r0]

(−u′
n(t)

)
.

Let rM ∈ [0, r0 + h] such that −u′
n (rM ) = maxt∈[0,r0+h]

(−u′
n(t)

)
. If rM ∈ [0, r0], we can

see that Fn (r0 + h) − Fn (r0) = 0. If rM ∈ (r0, r0 + h], we have that

max
t∈[0,r0+h]

(−u′
n(t)

) − max
t∈[0,r0]

(−u′
n(t)

) ≤ −u′
n (rM ) + u′

n (r0) → 0 as h → 0+.

So Fn(r) is right continuous on [0, R). Similarly, we can show that Fn(r) is left continuous
on (0, R]. Thus we have that Fn(r) is continuous on [0, R].

Therefore, for any ε ∈ (0, δ/2), there exists ρn ∈ (0, R) such that

Fn (ρn) = ε.

Let ρ∗ = lim infn→+∞ ρn and F(r) = lim supn→+∞ Fn(r). Then up to a subsequence, we
have that

F (ρ∗) = lim
n→+∞ Fn (ρn) = ε,

which implies that ρ∗ > 0. Indeed, if ρ∗ = 0, up to a subsequence, we have that

ε = F(0) = lim
n→+∞ Fn (0) = 0,

which is impossible. Similarly, we can show that ρ∗ < R. Noting that, up to a subsequence,
limn→+∞ Fn (ρ∗) = F (ρ∗), we have that

0 < Fn (ρ∗) < 2ε

for sufficiently large n. Then for any r ∈ [0, ρ∗], it follows from the definition of Fn that

− u′
n(r) < 2ε (2.6)

for n large enough. Now we have the following claim:
Claim For any given ρ ∈ (0, ρ∗], there exists a positive constant τ0 such that un(ρ) ≥ τ0.
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To show the claim, we proceed by contradiction. Assume that un(ρ) → 0 as n → +∞.
By virtue of Lemma 1 of [8] one has that un(r) → 0 as n → +∞ for any r ∈ [ρ, R]. It
follows that

un(r) = −
∫ R

r
u′
n(t) dt → 0 as n → +∞

for any r ∈ [ρ, R]. It follows from Lemma 1 of [8] that −u′
n(r) is nonnegative for any

r ∈ [0, R]. From the Fatou Lemma, we obtain that
∫ R

r
lim inf
n→+∞

(−u′
n(t)

)
dt ≤ lim inf

n→+∞

∫ R

r

(−u′
n(t)

)
dt = 0

for any r ∈ [ρ, R]. It follows that
∫ R

r
lim inf
n→+∞

(−u′
n(t)

)
dt = 0

for any r ∈ [ρ, R]. In particular, one has that
∫ R

ρ

lim inf
n→+∞

(−u′
n(t)

)
dt = 0.

So we have that
lim inf
n→+∞

(−u′
n(r)

) = 0

for any r ∈ [ρ, R]. Thus we get a subsequence of u′
n (which we still denote by u′

n for
convenience) such that

u′
n(r) → 0 as n → +∞ (2.7)

for any r ∈ [ρ, R]. Now combing (2.6) with (2.7), we have that

δ ≤ ‖un‖ ≤ 2ε < δ

for n large enough. This contradiction verifies our claim.
Now integrating the first equation of problem (1.2) with respect to t from 0 to r , one has

that

r N−1 u′
n√

1 − u′2
n

= −λn

∫ r

0
t N−1 f (t, un) dt.

It follows that

1
√

1 − ‖un‖2
≥ 1

√
1 − u′2

n

>

∣
∣
∣
∣
∣

u′
n√

1 − u′2
n

∣
∣
∣
∣
∣
= λn

r N−1

∫ r

0
t N−1 f (t, un) dt.

It follows immediately that ‖un‖ < 1, implying that ‖un‖∞ < R. So for any r ∈ [ρ/4, ρ],
one has that un(r) ∈ [τ0, R). Let f1 := min[ρ/4,ρ]×[τ0,R] f (t, s). It is easy to observe that
f1 > 0. Now for any r ∈ [ρ/2, ρ], we have that

1
√

1 − ‖un‖2
>

λn

r N−1

∫ r

ρ
4

t N−1 f (t, un) dt

≥ λn f1
r N−1

∫ r

ρ
4

t N−1 dt = λn f1
NrN−1

(

r N −
(ρ

4

)N
)

≥ λn f1
NρN−1

((ρ

2

)N −
(ρ

4

)N
)

≥ λn f1ρ

N2N

(

1 − 1

2N

)

,
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which implies
lim

n→+∞ ‖un‖ = 1.

The proof is completed. ��
Example 2.1 For q > 1, the problem

⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λa(|x |)v + vq in BR(0),

v = 0 on ∂BR(0)

(2.8)

has at least one positive radial solution for any λ ∈ (λ1,+∞) thanks to Theorem 1.1.
Moreover, it follows from Theorem 1.4 that problem (2.8) has no positive radial solution for
λ small enough. This appears in contrast to the classical case (see also [8]). When N ≥ 4,
Brezis and Nirenberg [11] showed that the problem

{

−�v = λv + v
N+2
N−2 in BR(0),

v = 0 on ∂BR(0)

has a positive solution provided that λ > 0 is sufficiently small. So problems with mean
curvature operators in Minkowski space is deviating in a big manner away from the Laplacian.

3 Proof of Theorem 1.2

To prove Theorem 1.2, we need the following topological lemma, which is established in
[14].

Lemma 3.1 Let X be a normed vector space and let {Cn} be a sequence of unbounded
connected subsets in X . Assume that:

(i) There exists z∗ ∈ lim infn→+∞ Cn with ‖z∗‖ < +∞;
(ii) For every R > 0,

(∪+∞
n=1Cn

) ∩ BR is a relatively compact set in X .

Then the set D := lim supn→+∞ Cn is unbounded, closed and connected.

Proof of Theorem 1.2. Define

f n(r, s) =
⎧
⎨

⎩

na(r)s, s ∈ [
0, 1

n

]
,

(
f
(
r, 2

n

) − a(r)
)
ns + 2a(r) − f

(
r, 2

n

)
, s ∈ ( 1

n , 2
n

)
,

f (r, s), s ∈ [ 2
n ,+∞)

.

It is easy to see that limn→+∞ f n(r, s) = f (r, s) and f n0 = n. Consider the following
problem

{

−
(
r N−1 u′√

1−u′2

)′ = λr N−1 f n(r, u), r ∈ (0, R),

u′(0) = u(R) = 0.
(3.1)

It follows from Theorem 1.1 that there exists a sequence of unbounded continuaCn of solution
set of problem (3.1) emanating from (λ1/n, 0) and joining (+∞, 1).

Taking z∗ = (0, 0), we easily observe that z∗ ∈ lim infn→+∞ Cn . The compactness of K
implies that

(∪+∞
n=1Cn

)∩ BR is pre-compact. Lemma 3.1 implies that C = lim supn→+∞ Cn

is unbounded closed connected such that z∗ ∈ C and (+∞, 1) ∈ C .
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For any (λ, u) ∈ C , the definition of superior limit (see [28]) shows that there exists a
sequence (λn, un) ∈ Cn such that (λn, un) → (λ, u) as n → +∞. Clearly, (λn, un) satisfies
problem (3.1). Noting the compactness of K , letting n → +∞, we get that

u = K (λ, u) .

It follows that u is a solution of problem (1.1). Thus, u is a solution of problem (1.1) for any
(λ, u) ∈ C . It is clear that u is nonnegative for any (λ, u) ∈ C because un ≥ 0.

Next we show that u is a positive solution of problem (1.2) for any (λ, u) ∈ C . Noting
Lemma 1 of [8], it is sufficient to show that C ∩ ((0,+∞) × {0}) = ∅. Suppose on the
contrary that C ∩ ((0,+∞)×{0}) �= ∅. Let (μ, 0) denote the first intersection of C \{(0, 0)}
and (0,+∞) × {0}. Then there exist (λn, un) ∈ (C \ {(0, 0)}) with un �≡ 0 such that
λn → μ ∈ (0,+∞) and un → 0 as n → +∞. It follows from Lemma 1 of [8] that un > 0
on [0, R) for any n ∈ N.

Letting vn = un/ ‖un‖, we have that
{

− (
r N−1v′

n

)′ = λnr N−1 f (r,un)
un

vn
(
1 − u′2

n

) 3
2 − (N − 1)r N−2 u′3

n‖un‖ , r ∈ (0, R),

v′
n(0) = vn(R) = 0.

(3.2)

Let ϕ1 be a positive eigenfunction corresponding to λ1. We multiply the first equation of
problem (3.2) by ϕ1, and obtain after integrations by parts

λ1

∫ R

0
vnr

N−1a(r)ϕ1 dr =
∫ R

0

(

λnr
N−1 f (r, un)

un
vn

(
1−u′2

n

) 3
2 −(N−1)r N−2 u′3

n

‖un‖
)

ϕ1 dr.

On the other hand, the fact f0 = +∞ implies that f (r, s) ≥ Ma(r)s for any positive constant
M , any s > 0 small enough and r ∈ [0, R]. So we have that

λ1

∫ R

0
vnr

N−1aϕ1 dr ≥ λnM
∫ R

0

(

r N−1a(r)vn
(
1 − u′2

n

) 3
2

)

ϕ1 dr.

It follows from ‖vn‖ = 1 immediately that {vn} is uniformly bounded and equicontinuous
on C[0, R]. From the Arzelà-Ascoli theorem, we get that vn → v in C[0, R] (up to a
subsequence). So one has that vn → v uniformly in [0, R]. Letting n → +∞, one has that

λ1

∫ R

0
vr N−1a(r)ϕ1 dr ≥ μM

∫ R

0
r N−1a(r)vϕ1 dr.

It implies that

M ≤ λ1

μ
,

which contradicts the arbitrariness of M . ��
Example 3.1 Let q ∈ [0, 1). For any λ ∈ (0,+∞), the Dirichlet problem

⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λa(|x |)vq in BR(0),

v = 0 on ∂BR(0)

has at least one positive radial solution.

Example 3.2 For any α > R and γ > 0, both problems
⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λ
a(|x |)vq√

α2−v2 in BR(0),

v = 0 on ∂BR(0)
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and
⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λ
a(|x |)vq
(α−v)γ

in BR(0),

v = 0 on ∂BR(0)

have at least one positive classical radial solution for any λ > 0. In addition, for any α ≤ R,
the Dirichlet problem

⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λa(|x |)vq(α + v)γ in BR(0),

v = 0 on ∂BR(0)

has at least one positive classical radial solution for any λ > 0.

Example 3.3 Let 0 ≤ q < 1 ≤ p. The problem
⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λvq + v p in BR(0),

v = 0 on ∂BR(0)

has at least one positive classical radial solution for any λ > 0. While for the problem
{−�v = λvq + v p in �,

v = 0 on ∂�

with 0 < q < 1 < p, Ambrosetti et al. showed in [2] that it has a positive solution if and only
if 0 < λ ≤ � for some � > 0. Here � is a bounded domain in R

N with smooth boundary
∂�. This example shows that problems with mean curvature operators have a big different
to the semilinear elliptic problems (see also [8]).

Example 3.4 Consider the following problem
⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λa(|x |)p(v) in BR(0),

v = 0 on ∂BR(0),

where p : [0, R] → R is a continuous function such that p(0) = 0 and p(s)s > 0 for any
s ∈ (0, R]. If lims→0+ p(s)/s := p0 = +∞, the above problem has at least one positive
radial solution for any λ ∈ (0,+∞).

Rather than under the assumption p0 = +∞, Bereanu et al. proved in [8] that the above
problem with λ = 1 has at least one positive radial solution under the following assumption

RN < N
∫ R

0
r N−1a(r)P(R − r) dr. (3.3)

In fact, condition (3.3) is equivalent to p0 = +∞ in some special cases. To see this, let
N > 2, a(r) ≡ 1 and R ≤ R0 which is to be determined later.

We first claim that condition (3.3) implies p0 = +∞. Otherwise, there would exist an
M ∈ (0,+∞) such that p(s)/s ≤ M for any s > 0. So we could conclude that

RN < N
∫ R

0
r N−1P(R − r) dr = N

∫ R

0
r N−1

∫ R−r

0
p(s) ds dr

≤ NM
∫ R

0
r N−1

∫ R−r

0
s ds dr = NM

2

∫ R

0
r N−1(R − r)2 d

≤ NMR4

32

∫ R

0
r N−3 dr = NMRN+2

32(N − 2)
,
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which yields that

R >

√
32(N − 2)

MN
:= R0. (3.4)

However, (3.4) contradicts the assumption R ≤ R0.
On the other hand, p0 = +∞ implies that there exists ρ > 0 such that p(s)/s ≤ M for

any s ∈ (0, ρ] and M > 0. In particular, taking a(r) ≡ 1 and

M = 2RN

ρ2
(
RN − (R − ρ)N

) ,

one can easily show that

N
∫ R

0
r N−1P(R − r) dr > N

∫ R

R−ρ

r N−1
∫ R−r

0
p(s) ds dr

≥ MN
∫ R

R−ρ

r N−1
∫ R−r

0
s ds dr = MN

2

∫ R

R−ρ

r N−1(R − r)2 dr

≥ MNρ2

2

∫ R

R−ρ

r N−1 dr = Mρ2

2

(
RN − (R − ρ)N

)
= RN ,

which is just condition (3.3).

Example 3.5 Given m ≥ 0 and q ∈ (0, 1), the Hénon type problem
⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λ|x |mvq in BR(0),

v = 0 on ∂BR(0)

(3.5)

has at least one positive radial solution for any λ ∈ (0,+∞). If q ≥ 1, it follows from
Theorem 1.4 that problem (3.5) has no positive radial solution for any λ ∈ (

0, λ̃
)

for some
λ̃ > 0. While, in the Laplacian case, Hénon proved that the problem

{−�v = λ|x |mvq in B1(0),

v = 0 on ∂B1(0)
(3.6)

has a positive radial solution if

q ∈
(

1,
N + 2m + 2

N − 2

)

(N ≥ 3,m > 0).

Problem (3.6) was introduced by Hénon [16] as a model to study spherically symmetric
clusters of stars. Problems of this type have been extensively studied (see for instance [17,
18,21,25] and the references therein). In [8], the author showed that if the inequality

1 <
N Rm+q+1�(q + 2)�(N + M)

(q + 1)�(N + M + q + 2)

holds, then problem (3.5) has at least one classical positive radial solution. In fact, this
inequality implies q < 1 in some special case. To see this clearly, letting m = 0, R = 1 and
supposing on the contrary that q = 1, we observe that the above inequality is equivalent to
simpler one (N + 2)(N + 1) < 1, which is impossible. So, to guarantee that problem (3.5)
has at least one positive radial solution for any λ ∈ (0,+∞), the condition of q < 1 may be
optimal.
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4 Proof of Theorems 1.3, 1.4

In order to deal with the case that f has sublinear growth near 0, we need the following
Whyburn type limit lemmata.

Lemma 4.1 (see [14]) Let X be a normed vector space and let {Cn} be a sequence of
unbounded connected subsets in X. Assume that:

(i) There exists z∗ ∈ lim infn→+∞ Cn with ‖z∗‖ = +∞;
(ii) There exists a homeomorphism T : X → X such that ‖T (z∗)‖ < +∞ and {T (Cn)}

be a sequence of unbounded connected subsets in X;
(iii) For every R > 0,

(∪+∞
n=1T (Cn)

) ∩ BR is a relatively compact set of X.

Then the set D := lim supn→+∞ Cn is unbounded, closed and connected.

Lemma 4.2 (see [14]) Let (X, ρ) be a metric space. If {Ci }i∈N is a sequence of sets whose
limit superior is L and there exists a homeomorphism T : X → X such that for every R > 0,(∪+∞

i=1 T (Ci )
)∩BR is a relatively compact set, then for each ε > 0 there exists an m such that

for every n > m, Cn ⊂ Vε(L), where Vε(L) denotes the set of all points p with ρ(p, x) < ε

for any x ∈ L.

Proof of Theorem 1.3. For any n ∈ N, define

f n(r, s) =

⎧
⎪⎨

⎪⎩

1
n a(r)s, s ∈ [

0, 1
n

]
,(

f
(
r, 2

n

) − a(r)
n2

)
ns + 2 a(r)

n2 − f
(
r, 2

n

)
, s ∈ ( 1

n , 2
n

)
,

f (r, s), s ∈ [ 2
n ,+∞)

.

To proceed, we consider the following problem
{

−
(
r N−1 u′√

1−u′2

)′ = λr N−1 f n(r, u), r ∈ (0, R),

u′(0) = u(R) = 0.
(4.1)

It is easy to see that limn→+∞ fn(r, s) = f (x, s) and

lim
s→0+

f n(r, s)

s
= 1

n
uniformly in r ∈ [0, R].

Then Theorem 1.1 implies that there exists a sequence of unbounded continua Cn of solution
set of problem (4.1) emanating from (λ1n, 0).

Taking z∗ = (+∞, 0), we observe that z∗ ∈ lim infn→+∞ Cn with ‖z∗‖R×X = +∞.
Define a mapping T : R × X → R × X such that

T (λ, u) =
⎧
⎨

⎩

( 1
λ
, u
)

if λ ∈ (−∞, 0) ∪ (0,+∞),

(0, u) if λ = ∞,

(∞, u) if λ = 0.

It is easy to verify that T is a homeomorphism and ‖T (z∗)‖R×X = 0. The compactness
of K then implies that

(∪+∞
n=1T (Cn)

) ∩ BR is pre-compact. Lemma 4.1 implies that C =
lim supn→+∞ Cn is unbounded closed connected with z∗ ∈ C .

Next we show that the projection of C on R is nonempty. From the argument of Theorem
1.1, we have known that Cn has unbounded projection on R for any fixed n ∈ N. By Lemma
4.2, for each fixed ε > 0 there exists an m such that for every n > m, Cn ⊂ Vε (C ). This
implies that

(λ1n,+∞) ⊆ Proj (Cn) ⊆ Proj (Vε (C )) ,

123



Bifurcation and positive solutions for problem… Page 15 of 17 72

where Proj (C ) denotes the projection of C on R. It follows that the projection of C is
nonempty on R.

By an argument similar to that of Theorem 1.2, we can show that u is a nonnegative
solution of problem (1.1) for any (λ, u) ∈ C .

Finally, we show that C ⊆ (
R

+ × P
)
. In view of Lemma 1 of [8], it is enough to show that

C∩([0,+∞)×{0}) = ∅. Suppose on the contrary that there exists a sequence {(λn, un)} ⊆ C
such that lim

n→+∞λn = μ and lim
n→+∞ ‖un‖ = 0 as n → +∞. From (2.1) we can easily get that

un =
∫ R

0
G(r, s)sN−2

[

λn f (s, un(s))
(
1 − u′2

n

) 3
2 − (N − 1)u′3

n

]

ds.

Letting vn = un/ ‖un‖, we have that

vn =
∫ R

0
G(r, s)sN−2

[

λn
f (s, un(s))

‖un‖
(
1 − u′2

n

) 3
2 − (N − 1)

u′
n

‖un‖u
′2
n

]

ds.

Similar to (2.5), we can show that

lim
n→+∞

f (r, un)

‖un‖ = 0

uniformly in r ∈ [0, R]. By the compactness of K , we obtain that for some convenient
subsequence vn → v0 as n → +∞. Letting n → +∞, we obtain that v0 ≡ 0. This
contradicts the fact of ‖v0‖ = 1. ��
Proof of Theorem 1.4 Let λ > 0 and u be a positive solution of problem (1.2). Integrating
the first equation of problem (1.2) with respect to t over [0, r ], it follows that

−r N−1 u′(r)√
1 − u′2 = λ

∫ r

0
t N−1 f (t, u(t)) dt.

Since u is strictly decreasing on [0, R], we deduce that

−r N−1u′(r) ≤ −r N−1 u′(r)√
1 − u′2 = λ

∫ r

0
t N−1 f (t, u) dt

≤ λρ

∫ r

0
t N−1a(t)u(t) dt ≤ λρu(0)

∫ r

0
a(t)t N−1 dt ≤ λρa0u(0)r N

N
,

where a0 := maxr∈[0,R] a(r). Then integrating over [0, R], we obtain that

u(0) ≤ λρa0u(0)R2

2N
.

It follows that

λ ≥ 2N

ρa0R2 .

This completes the proof. ��
Example 4.1 Consider the following problem

⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λa(|x |)vq in BR(0),

v = 0 on ∂BR(0).

(4.2)
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If N ≥ 1 is an integer, R > 0 and q > 1, then there exist λ∗ > 0 and λ∗ > 0 such that
problem (4.2) has at least two positive radial solutions for all λ ∈ (λ∗,+∞), one positive
radial solution for all λ ∈ [

λ∗, λ∗], zero positive radial solution for all λ ∈ (0, λ∗).
In fact, if N ≥ 2, the authors of [9] have shown that λ∗ = λ∗ = � for problem (4.2).

For the general case when f0 = 0 and N ≥ 1, we do not know whether this relation still
holds. However, our results give a component of positive radial solutions and contains more
nonlinearities.

Example 4.2 Consider the following problem
⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λa(|x |) (ev − v) in BR(0),

v = 0 on ∂BR(0).

(4.3)

Theorem 1.3 shows that there exist λ∗ > 0 and λ∗ > 0 such that problem (4.3) has at
least two positive radial solutions for all λ ∈ (λ∗,+∞), one positive radial solution for all
λ ∈ [

λ∗, λ∗], zero positive radial solution for all λ ∈ (0, λ∗). Clearly, this example cannot
be contained by problem (4.2).

Example 4.3 For any p ≥ 1, there exists ξ∗ > 0 such that
⎧
⎨

⎩

−div

(
∇v√

1−|∇v|2

)

= λv p in BR(0),

v = 0 on ∂BR(0)

(4.4)

has at least one positive solution for any λ ∈ (ξ∗,+∞).Moreover, there exists η∗ > 0 such
that problem (4.4) has no positive solution for any λ ∈ (0, η∗). These are in contrast to the
classical case (see [8]).
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