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Abstract This paper is devoted to providing a simple condition, in term of spectral theory,
that characterizes existence/nonexistence and uniqueness of positive bounded solution to

∇·[n(y)∇u(x, y)]+α(y)∂xu+β(y)·∇yu+ f (x, y, u) = 0 (x, y) ∈ R×R
N−1, (0.1)

where f is of monostable KPP type nonlinearity and periodic in y. Our contribution answers
a conjecture raised by Prof. H. Berestycki: which suitable assumption can impose at infinity
that characterizes existence/nonexistence and uniqueness of (0.1) instead of the followings
lim inf |z|→∞ ∂u f (z, 0) > 0 as in Berestycki et al. (Ann Mat Pura Appl 186(4):469–507,
2007) and lim sup|z|→∞ ∂u f (z, 0) < 0 as in Berestycki et al. (Bull Math Biol 71:399, 2008)
and Berestycki and Rossi (Discret Contin Dyn Syst Ser B 21:41–67, 2008) but allow ∂u f (z, 0)

to change sign all the way as |z| → ∞? Our result is simply based on maximum principle
and complements to those in Berestycki et al. (Ann Mat Pura Appl 186:469–507, 2007; Bull
Math Biol 71:399, 2008), Berestycki and Rossi (Discret Contin Dyn Syst Ser B 21:41–67,
2008) and Vo (J Differ Equ 259:4947–4988, 2015).
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1 Introduction and main results

In this article, we are concerned with an extension Liouville type result for positive bounded
solution of semilinear elliptic equation

∇ · [n(y)∇u(x, y)] + α(y)∂xu + β(y) · ∇yu + f (x, y, u) = 0 (x, y) ∈ R × R
N−1,

(1.1)

where f is of monostable KPP type-nonlinearity. More precisely, we aim at looking for a
simple criterion that characterizes existence/nonexistence and uniqueness of positive solution
to Eq. (1.1) under a quite general condition of f . This type of equation has a well-known
history. From the celebrated works of Kolmogorov–Petrovskii–Piskunov (KPP) [10] and later
of Aronson and Weinberger [1], reaction–diffusion equation with KPP nonlinearity becomes
a subject of intensive research in mathematical biology, ecology, genetics, medicine and
especially in population dynamics. During the time, this model has been proved to be a
good model to study the complexity of many natural phenomena, various aspects have been
investigated and numerous interesting results were already obtained. More recently, KPP
equations with a given forced speed was used to describe the dynamics of a population
facing a climate change by Berestycki et al. [2,3,7,8] under the additional condition

lim sup
|z|→∞

∂u f (z, 0) ≤ −m < 0, z = (x, y). (1.2)

In [2,3,7,8], assumption (1.2) means that the environment of species is completely unfa-
vorable outside a compact set and it may be favorable inside. This kind of model is newly
investigated in one dimensional space by Li et al. [12] under assumption that ∂u f (z, 0) is
positive near positive infinity and is negative near negative infinity. The Liouville type result
for entirely semilinear elliptic equation

ai j (z)∂i j u(z) + q(z) · ∇u(z) + f (z, u) = 0, z ∈ R
N

was also studied by Berestycki et al. [4] with the condition

lim inf|z|→∞ (4α(z)∂u f (z, 0) − |q(z)|2) > 0, (1.3)

where α(z) = inf ξ∈RN
|ξ |=1

ai j (z)ξi ξ j ≥ α∗ > 0. This condition yields in particular

lim inf |z|→∞ ∂u f (z, 0) ≥ m1 > 0. Currently, the nonlocal dispersal KPP equation has been
studied in periodic media by Liang and Shen [11] and in non periodic media by Berestycki,
Coville and the author. However, all of the mentioned works require a constant sign of the
initial per capita rate of growth near infinity. To the best of our knowledge, the Liouville prop-
erty for periodic shear flows with ∂u f (z, 0) changes sign up to infinity still remains open as a
challenging problem. Before giving the main hypothesis, let us mention the basic assumption

Hypothesis 1

The function f (x, y, s) : R × R
N−1 × [0,+∞) 	→ R, is assumed to be continuous in x ,

measurable in y, and locally Lipschitz continuous in s. The map s 	→ f (z, s), z = (x, y), is
of class C1(0, s0) for some positive constant s0, uniformly in z and f (z, 0) = 0, ∀z ∈ R

N .
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The functions n(y), α(y) : RN−1 	→ R, β(y) : RN−1 	→ R
N−1 and f are assumed to be

periodic in y with the same period T = [0, L1)×[0, L2)× . . . [0, LN−1) and infT n(y) > 0.
It is conjectured by Prof. H. Berestycki (personal communication) that the Liouville

property, namely the existence/nonexistence and uniqueness of positive solution to (1.1),
holds under the following assumption:

Hypothesis 2

There exists a periodic function μ ∈ L∞(RN−1), μ �≡ 0 such that

μ(y) = lim sup
|x |→∞

∂u f (x, y, 0) and λμ = λp(−∇ · [n(y)∇] − β(y) · ∇y − μ(y),RN−1) > 0,

where λp(−∇ ·[n(y)∇]−β(y) ·∇y −μ(y),RN−1) denotes the periodic principal eigenvalue
of the following eigenvalue problem

⎧
⎨

⎩

−∇ · [n(y)∇φ(y)] − β(y) · ∇yφ(y) − μ(y)φ(y) = λpφ(y) y ∈ R
N−1

φ(y) > 0 y ∈ R
N−1

φ is T-periodic in R
N−1.

(1.4)

This paper gives the positive answer for his conjecture.
It is well-known that if n, β, μ are periodic and bounded, there exist a unique eigenvalue

λp and unique (up to a scalar multiplication) eigenfunction to problem (1.4) (see e.g. [9]).
Hypothesis 2 indeed has a realistic ecological interpretation. This means that the environment
of the species under investigation is globally unfavorable at infinity. There may have favorable
(∂u f (z, 0) > 0) and unfavorable (∂u f (z, 0) < 0) patches extending to infinity but only at
infinity the unfavorable regions dominate. This situation usually happens when studying the
large time behavior of the species under the effect of global warming and therefore it is useful
to describe the dynamics of the species facing a climatic metamorphosis [3,7,8,13,14]. If
μ(y) ≡ −m < 0, one readily has λp = m > 0, φ ≡ 1 and thus (1.2) is recovered. Indeed, it
may be more natural to assume that

μ±(y) = lim sup
|x |→∞

∂u f (x, y, 0) and λμ± = λp(−∇ · [n(y)∇] − β(y) · ∇y − μ±(y),RN−1) > 0,

however, for sake of presentation, we only consider the case μ+(y) = μ−(y). An illustra-
tion to demonstrate the novelty of this hypothesis is given in Sect. 2. Lastly, the two usual
assumptions for KPP-type nonlinearity are also assumed:

Hypothesis 3

∃S > 0 such that f (z, s) ≤ 0 for s ≥ S, ∀z ∈ R
N .

Hypothesis 4

s → f (z, s)/s is nonincreasing a.e in R
N and there exist D ⊂ R

N , |D| > 0

such that it is strictly decreasing in D.

These two conditions are classical in the context of population dynamics. The first condi-
tion means that there is a maximum carrying capacity effect : when the population density is
very large, the death rate is higher than the birth rate and the population decreases. The second
condition means the intrinsic growth rate decreases when the population density increases.
This is due to the intraspecific competition for resources. A simplest typical example for this
nonlinearity is
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f (z, s) = a(z)s − b(z)s2,

where b(z) ≥ 0 and a(z) satisfies Hypothesis 2. Let us now state the main result

Theorem 1.1 Assume that f satisfies Hypothesis 1–4. Equation (1.1) admits a positive
solution u ∈ (0, S] if and only if λ1 = λ1(−L f ,R

N ) < 0, where L f [φ] = ∇ · [n(y)∇φ] +
α(y)∂xφ + β(y) · ∇yφ + ∂u f (x, y, 0)φ and

λ1(−L f ,R
N ) = sup{λ ∈ R|∃φ ∈ W 2,N

loc (RN ), φ(x, y) > 0 in R
N

such that (L f + λ)[φ] ≤ 0 in R
N } (1.5)

Moreover, when it exists, it is unique and T-periodic in y.

The uniqueness of positive solution of Eq. (1.1) is an important issue in many aspects
of applied mathematics. It is usually a hard problem and requires a special structure of the
nonlinearity. The additional difficulty is due to the fact that we do not a priori require the
solutions to be periodic in y and also we do not impose any boundary conditions as x → ±∞.
The uniqueness is actually proved to hold in the class of nonnegative bounded solutions and
thus the unique solution must be T-periodic in y. Indeed, condition (1.2) used in [3,7] is to
derive the exponential decay of solution while condition (1.3) is to prove that positive solution
of (0.1) must have positive infimum. These properties are crucial in proving the comparison
principle, which leads to prove nonexistence and uniqueness. However, the investigation of
the uniqueness for more general type of nonlinearities is still an interesting problem. The
novelty of this work is that we propose, instead of (1.2) and (1.3), a spectral condition at
infinity, Hypothesis 2, which allows ∂u f (x, y, 0) to change sign all the way |x | → ∞ and
only require a spectral condition depending on μ(y) = lim sup|x |→∞ ∂u f (x, y, 0) at infinity.
This considerably extends the results of [3,7,8] and carries new mathematical interpretation
in the study of the effect of climate change (global warming). Hypothesis 2 plays the central
role in our technique to obtain this result. Actually, it helps us to derive the exponential
decay for solution (subsolution) of Eq. (1.1), which compensates the lack of compactness of
R
N and therefore it may be useful in other investigation of the problem with non-compact

domains. It is worth to mentioning that in [14], the author has considered the case, where
n(y) ≡ 1, β(y) ≡ 0, α(y) ≡ constant and f depends periodically also in t . Our current
result confirms that, in the environment being globally unfavorable at infinity in the sense of
Hypothesis 2, the species survive if the unfavorable zone is dominated by the favorable zone,
namely λ1 < 0, otherwise it must be extinct.

2 An illustration

Before proving the main result, let us provide an illustration of how the main theorem apply
and Hypothesis 2 is useful to describe the heterogeneity of habitat of a species. For the
sake of simplicity, we only provide the case β ≡ 0. We consider the family fσ,L(x, y, s) =
(ρL(x) + μσ (y))s − s2 in R × R, where σ ∈ (0, 1), L > 0, periodic in y with the period
T = [0, 1] and

ρL(x) =
{

2 on [−L , L]
θ + sin(x)

|x | outside [−L , L], μσ (y) =
{

1 on [0, σ )

−1 on [σ, 1].
These nonlinearities are discontinuous. However, ∂s fσ,L(x, y, 0) is well defined a.e and all
our results apply for zero order coefficient in L∞ (see [3,7,8] for further discussion of this
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extension). We see that, for θ ∈ (−1, 1), ∂s fσ,L(x, y, 0) is sign-changing as all the way
|x | → ∞ and if θ = 0, lim|x |→∞ ∂s fσ,L(x, y, 0) = μσ (y) . Now, for every σ ∈ (0, 1), let
(λσ , φσ ) be the (unique) eigenpair of the eigenvalue problem

{−φ′′
σ − μσ (y)φσ = λσ φσ in R

φσ > 0 is T -periodic.

Dividing the equation by φσ and integrating by part, we get

−
∫ 1

0

φ′2
σ

φ2
σ

dy −
∫ 1

0
μσ (y)dy = λσ .

Hence, λσ ≤ − ∫ 1
0 μσ (y)dy = −(2σ −1). It is also known that λσ is decreasing with respect

to σ and that σ 	→ λσ is continuous. Since λ0 = 1 we see that there exists a unique σ such
that λσ = 0 and λσ < 0 if and only if σ > σ .

For σ > σ , λσ < 0, it is well-known that there exists a unique positive solution (see e.g.
[5]) of

{−p′′
σ − μσ (y)pσ + p2

σ = 0 in R

pσ is T -periodic.

In this case, the environment is globally favorable at infinity and we conjecture that there is
always persistence, namely as t → ∞, u(t, x, y) → U (x, y), ∀(x, y) ∈ �, where U (x, y)
is the unique positive stationary solution of

{
ut = �u + α(y)∂xu + fσ,L(x, y, u) in R

2

u is T -periodic iny.

If lim inf |x |→∞ ∂s fσ,L(x, y, 0) > (sup
T

α)2/4 uniformly in y, this conjecture is true and we
refer to [4] for its proof. However, this is not our current interest.

For σ < σ , the environment is globally unfavorable at infinity. The problem is more
subtle and our result applies in this case. Moreover, if θ ≤ −3, the environment is completely
unfavorable near infinity. For instance, we take θ = −3 and α(y) = conts. not too large, says
α(y) ≡ 1, we claim that there exists a unique threshold value L∗ such that the persistence
holds if and only if L > L∗.

To prove this, let us denoteQL [φ]=�φ+∂xφ+∂s fσ,L(x, y, 0)φ, where ∂s fσ,L(x, y, 0) =
ρL(x) + μσ (y) defined in R

2. Since R
2 is unbounded, we cannot define the eigenvalue of

QL in the classical sense in R
2. We make use of the definition (1.5). Let us call λL =

λ1(−QL ,R2) and λ′
L = λ1(−� − ∂s fσ,L(x, y, 0),R2). Using the Liouville transformation

ϕ(x, y) = e
1
2 xφ(x, y), one has

λL = λ′
L + 1

4
.

Since ρL is increasing with respect to L , λL is decreasing with respect to L . Moreover, the map
L 	→ λL is continuous on [0,∞]. Indeed, for any L ∈ [0,∞], let {Ln} ∈ [0,∞] be an arbi-
trary sequence converging to L , we see that ‖∂s fσ,Ln (x, y, 0)−∂s fσ,L(x, y, 0)‖L∞(R2) → 0
as n → ∞. Arguing as in the proof of Proposition 9.2 part (ii) [6], we get limn→∞ λLn = λL .

Moreover, since ∂s fσ,0(x, y, 0) = −3 + sin(x)
|x | + μσ (y) ≤ −1 and ∂s fσ,∞(x, y, 0) =

2 + μσ (y) ≥ 1, by taking 1 as a test-function, we have λ0 = λ′
0 + 1/4 ≥ 5/4 and

λ∞ = λ′∞ + 1/4 ≤ −3/4. The claim is proved. As we will see in the next section, for
σ < σ , namely the environment is globally unfavorable at infinity, the equation
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{
�q + α(y)∂xq + fσ,L(x, y, q) = 0 in R

2

q is T -periodic iny
(2.1)

admits a unique positive solution if and only if λL < 0. From this result, we can also prove
that u(t, x, y) converges as t → ∞ to the unique positive solution q(x, y) of (2.1) if λL < 0
and u(t, x, y) converges to zero if λL ≥ 0. Even if the persistence is known, i.e λL < 0, the
non-persistence and the uniqueness are still delicate questions.

3 Proof of the main result

Before proving the main result, let us recall the following result, which is proved in [6].

Definition 3.1 (Maximum principle) We say that the operator Lu = ai j (x)∂i j u+bi (x)∂i u+
c(x)u, i, j ∈ (1, 2 . . . , N ), satisfies the maximum principle in � if every function
u ∈ W 2,N

loc (�) such that

Lu ≥ 0 a.e in �, sup
�

u < ∞, ∀ξ ∈ ∂�, lim sup
x→ξ

u(x) ≤ 0,

satisfies u ≤ 0 in �.

Theorem 3.2 [6, Theorem 1.6 (i)] The operator L satisfies maximum principle in � if
λ′′

1(−L ,�) > 0 and the coefficients of L satisfy

sup
�

c < ∞, lim sup
x∈�

|x |→∞

ai j (x)

|x |2 < ∞, lim sup
x∈�

|x |→∞

b(x).x

|x |2 < ∞; (3.1)

where b(x) = (b1(x), . . . , bN (x)) and

λ
′′
1(−L ,�) = sup{λ ∈ R : ∃φ ∈ W 2,N

loc (�), inf
�

φ > 0, (L + λ)[φ] ≤ 0 a.e in �}.

Lemma 3.3 Let u ∈ W 2,N
loc (RN )∩L∞(RN ) be a positive subsolution of (1.1) andHypothesis

2 and 4 hold. There exist λ,C, R > 0 and a periodic φ ∈ W 2,N−1
loc (RN−1) ∩ L∞(RN−1)

with inf
RN−1 φ > 0 such that

u(x, y) ≤ Ce−λ|x |φ(y), as |x | ≥ R, y ∈ R
N−1.

In particular, u decays exponentially as |x | → ∞, uniformly in y.

Proof From Hypothesis 2, for any δ > 0, there exists R(δ) > 0 such that

∂u f (x, y, 0) ≤ μ(y) + δ |x | ≥ R, y ∈ R
N−1.

From Hypothesis 2, there exist a periodic eigenfunction φ ∈ L∞(RN−1) and C > 0 such
that

⎧
⎨

⎩

−∇ · [n(y)∇φ(y)] − β(y) · ∇yφ(y) − μ(y)φ(y) = λpφ(y) y ∈ R
N−1

φ(y) ≥ C y ∈ R
N−1

φ is T-periodic in R
N−1.

From (1.1) and Hypothesis 4, one has

Lδ[u] = ∇ · [n(y)∇u] + α(y)∂xu + β(y) · ∇yu + (μ(y) + δ)u ≥ 0 |x | ≥ R, y ∈ R
N−1.
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For any p > 0, we consider the function

ψp(x, y) = e(R+p)(τ−γ )eγ |x |φ(y) + eR(τ+γ )e−γ |x |φ(y)

where τ, γ > 0 will be chosen later. Let C1 = e(R+p)(τ−γ ) and C2 = eR(τ+γ ), one gets by
direct computations

Lδ[ψp] = C1

(

γ 2n(y) + γ
α(y)x

|x | + ∇ · [n(y)∇φ] + β(y) · ∇yφ

φ
+ μ(y) + δ

)

eγ |x |φ(y)

+C2

(

γ 2n(y) − γ
α(y)x

|x | + ∇ · [n(y)∇φ] + β(y) · ∇yφ

φ
+ μ(y) + δ

)

e−γ |x |φ(y)

≤
(
nγ 2 + αγ − λμ + δ

)
ψp, |x | ≥ R, y ∈ R

N−1

where we use n = sup
T
n(y), α = sup

RN−1 |α(y)| and |x | ≥ R > 1 in the last inequality.
Take δ < λμ and γ in such the way

γ ∈
⎛

⎝0,
−α +

√

α2 + 4n(λμ − δ)

2n

⎞

⎠ , (3.2)

one sees that Lδ[ψp] ≤ 0, i.e ψp is a super solution of Lδ in {|x | ≥ R, y ∈ R
N−1}.

Fix γ satisfying (3.2) and τ = γ /2, we show that ψp ≥ u in Bx
R+p\Bx

R × R
N−1 for all

p > 0, where we denote Bx
ρ the ball centered zero and radius ρ in space of x . In fact, since

inf
RN−1 φ(y) ≥ C > 0 and u is bounded, one can choose and fix R large enough such that

{
ψp(x, y) ≥ CeRτ ≥ u(x, y) |x | = R, y ∈ R

N−1

ψp(x, y) ≥ Ce(R+p)τ ≥ u(x, y) |x | = R + p, y ∈ R
N−1.

Set wp = u − ψp and z p = wp/φ, with γ chosen as in (3.2), one has Lδ[wp] ≥ 0, wp ≤ 0
on ∂(Bx

R+p\Bx
R) × R

N−1. Direct computations yield

0 ≤ Lδ[z pφ] = n(y)φ�z p + 2n(y)∇y z p · ∇yφ + φ∇yn(y) · ∇y z + α(y)φ∂x z p + φβ(y) · ∇y z p

+z p∇ · [n(y)∇φ] + z pβ(y) · ∇φ + z p(μ(y) + δ)φ

= n(y)φ�z p + 2n(y)∇y z p · ∇yφ + φ∇yn(y) · ∇y z + α(y)φ∂x z p + φβ(y) · ∇y z p

+(−λμ + δ)φz p.

Let

L′
δ[z p] = Lδ[z pφ]

φ
= n(y)�z p + 2n(y)∇y z p · ∇yφ

φ
+ ∇yn(y) · ∇y z + α(y)∂x z p

+β(y) · ∇y z p + (−λμ + δ)z p.

One has L′
δ[z p] ≥ 0 and z p ≤ 0 on ∂(Bx

R+p\Bx
R) × R

N−1. We shall apply the maximum
principle for general unbounded domain (Theorem 3.2) to imply that z p ≤ 0 in (Bx

R+p\Bx
R)×

R
N−1, ∀p > 0. Let Op = (Bx

R+p\Bx
R) × R

N−1. Indeed, infT n(y) > 0, L′
δ is uniformly

elliptic and the coefficients of L′
δ obviously satisfy condition (3.1). To use Theorem 3.2, we

consider

λ′′
1(−L′

δ,Op) = sup

{

λ ∈ R : ∃φ ∈ W 2,N
loc (Op), inf

Op
φ > 0, (L′

δ + λ)[φ] ≤ 0 a.e in Op

}

.
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Since −λμ + δ < 0, we take λ = (λμ − δ)/2 > 0 and φ = 1 as a test function for λ. One
has (L′

δ + λ) = 1(λμ − δ)/2 < 0 and therefore

λ′′
1(−L′

δ,R
N ) ≥ (λμ − δ)/2 > 0.

It follows immediately

u(x, y) ≤ ψp(x, y) = e−(R+p)γ /2eγ |x |φ(y) + e3Rγ /2e−γ |x |φ(y) (x, y) ∈ Op.

Letting p → ∞, we finally get

u(x, y) ≤ e3Rγ /2e−γ |x |φ(y) R\Bx
R × R

N−1.

��
Now, we are able to prove the main result.

Proof of Theorem 1.1 We first consider the case λ1 = λ1(−L f , RN ) < 0. Thanks to [4,
Proposition 4.2], we have the limit limR→∞ λR = λ1 < 0, where λR is the unique eigenvalue
of the problem
⎧
⎨

⎩

−∇ · [n(y)ϕR] − α(y)∂xϕR − β(y) · ∇yϕR − ∂u f (z, 0)ϕR = λRϕR z ∈ BR

ϕR(z) > 0 z ∈ BR

ϕR(z) = 0 z ∈ ∂BR

(3.3)

and BR denotes the ball centered zero radius R inR
N . Moreover there exists an eigenfunction

ϕ∞ ∈ W 2,N
loc (RN ) associated with λ1.

Fix R > 0 large enough such that λR < 0, we define φ(x) as follow :

φ(x) =
{

ϕR(x) x ∈ BR

0 otherwise.

Since f (x, s) is of class C1[0, s0] with respect to s, there exists ε0 > 0 small enough such
that for all 0 < ε ≤ ε0, (x, y) ∈ BR , we have

∇ · [n(y)∇εφ] + α(y)∂x (εφ) + β(y) · ∇yεφ + f (x, y, εφ)

= εφ

[

−λR + f (x, y, εφ)

εφ
− ∂u f (x, y, 0)

]

> 0.

Hence, εφ is a subsolution of Eq. (1.1). Since φ is compactly supported, we can choose ε

small such that ε sup φ ≤ S, where S is a super solution of Eq. (1.1) given by Hypothesis 3.
Therefore, by the classical iteration method, there exists a nonnegative solution U satisfying
εφ ≤ U ≤ S. Furthermore, thanks to the strong maximum principle, U is strictly positive .

Now let us prove the nonexistence and the uniqueness. They are actually the direct con-
sequences of the following comparison principle.

Let U, V ∈ W 2,N
loc (RN ) respectively be nonnegative bounded super and subsolutions of

(1.1). Suppose that for all r > 0, inf�r U > 0 and there exists C(r) > 0 such that

∀y ∈ R
N−1, ‖U‖W 2,N (Br (0,y)) + ‖V ‖W 2,N (Br (0,y)) ≤ C(r), (3.4)

where �r = (−r, r) × R
N−1. There holds

V (z) ≤ U (z) ∀z ∈ R
N . (3.5)

Assume for the moment that the comparison principle holds true. Assume by contra-
diction that (1.1) possesses a positive solution U when λ1 ≥ 0. Let ϕ∞ be a generalized
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principal eigenfunction associated with λ1. Without loss of generality, we may assume that
0 < ϕ∞(0) < U (0). We derive from Hypothesis 4 that

−∇ · [n(y)∇ϕ∞] − α(y)∂xϕ∞ − β(y) · ∇yϕ∞ = (∂u f (x, y, 0) + λ1)ϕ∞
≥ f (x, y, ϕ∞) in R

N .

Thanks to Lemma 3.3, U decays exponentially as |x | → ∞ uniformly in y, the above
comparison principle implies that U (z) ≤ ϕ∞(z) for all z ∈ R

N . Contradiction!
For the uniqueness, one needs to verify that if u �≡ 0 is a nonnegative solution of Eq. (1.1),

one has inf�r u > 0. Indeed, the existence result implies that λ1 < 0. Fix r > 0, ϕR as in
(3.3) and ε0 as above, we may assume, without loss of generality, that B

x
r × T ⊂ BR . Let

q ∈ ZL1 × ZL2 × · · · × ZLN−1, we define

ε(q) = inf
(x,y)∈BR

u(x, y + q)

ϕR(x, y)
.

Thus, ε(q)ϕR(x, y) ≤ u(x, y+q) for (x, y) ∈ BR and since ϕR = 0 on ∂BR , there exists
(xq , yq) such that ε(q)ϕR(xq , yq) = u(xq , yq +q). If there exists q such that ε(q) ≤ ε0, then
u(x, y + q) and ε(q)ϕR(x, y) are respectively solution and subsolution of Eq. (1.1), they
must coincide in BR due to the strong maximum principle. This is impossible since ϕR = 0
on ∂BR . Consequently,

∀q ∈ ZL1 × ZL2 × · · · × ZLN−1, (x, y)∈ BR, u(x, y+q)≥ε(q)ϕR(x, y) > ε0ϕR(x, y).

This is done since ϕR has a positive infimum on B
x
r × T ⊂ BR . Hence, one can derive the

uniqueness by applying directly the comparison principle.
It remains to show (3.5). Since n, β, μ are periodic, there exists a periodic eigenfunction

φ ∈ L∞(RN−1) associated with λμ and C > 0 such that
⎧
⎨

⎩

−∇ · [n(y)∇φ(y)] − β(y) · ∇yφ(y) − μ(y)φ(y) = λμφ(y) y ∈ R
N−1

φ(y) ≥ C y ∈ R
N−1

φ is T-periodic in R
N−1.

Lemma 3.3 implies that there exists γ, R > 0 such that

V (x, y) ≤ e3Rγ /2e−γ |x |φ(y) |x | ≥ R, y ∈ R
N−1.

Thus, for any fixed ε > 0, there exists R(ε) > 0 such that

V (x, y) ≤ e3Rγ /2e−γ |x |φ(y) ≤ εφ(y) |x | ≥ R(ε), y ∈ R
N−1. (3.6)

Due to (3.4), U, V ∈ C(RN ) ∩ L∞(�r ) for all r > 0. From this and (3.6), we see that the
set

Kε := {k > 0 : kU ≥ V − εφ in R
N },

is nonempty. Let us call k(ε) := inf Kε. Obviously, the function k(ε) : R+ → R is nonin-
creasing. Assume by a contradiction

k∗ = lim
ε→0+ k(ε) > 1.

Take 0 < ε < sup
RN (V/φ), we have k(ε) > 0, W ε = k(ε)U−V +εφ ≥ 0. By the definition

of k(ε), there exists a sequence (xε
n, y

ε
n) in R

N such that
(

k(ε) − 1

n

)

U (xε
n, y

ε
n) < V (xε

n, y
ε
n) − εφ(yε

n). (3.7)
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Fix ε > 0, letting n → ∞, one gets limn→∞ W ε(xε
n, y

ε
n) = 0. For fixed ε, we deduce, from

(3.6) and (3.7), that (xε
n) is bounded. Now, we use the periodicity of f in y to show that (yε

n)

is also bounded. Let (zεn) be the sequence in ZL1 × ZL2 × · · · × ZLN−1 such that yε
n − zεn

belongs to the periodic cell [0, L1) × [0, L2) × . . . [0, LN−1). For all n > 0, we define the
functions

Un(x, y) = U (x, y + zεn) Vn(x, y) = V (x, y + zεn).

Since f is periodic in y, the functions Un, Vn satisfy the same differential inequalities as
U, V . Thanks to (3.4), Un and Vn converge, as n → ∞, up to subsequences, respectively
to U∞ and V∞ locally uniformly in R

N and they also satisfy the same inequalities as U, V .
For fixed ε, (xε

n, y
ε
n) is bounded, it converges up to subsequence as n → ∞ to (x(ε), y(ε))

solving
W ε∞(x(ε), y(ε)) = 0, (3.8)

where W ε∞ = k(ε)U∞ − V∞ + εφ ≥ 0.
The case that there exists x0 such that |x0| = lim infε→0+ |x(ε)| < ∞ is ruled out. Indeed,

thanks to the periodicity of f in y, arguing as above, we may assume that y(ε) converges
up to a subsequence to y0 ∈ [0, L1) × [0, L2) × . . . [0, LN−1). From (3.8), k∗ < ∞, the
function W∞ = k∗U∞ − V∞ is nonnegative and vanishes at (x0, y0). Since f is Lipschitz
continuous with respect to second variable and k∗ > 1, we have

−∇ · [n(y)∇W∞] − α(y)∂xW∞ − β(y) · ∇yW∞ ≥ k∗ f (z,U∞) − f (z, V∞)

≥ f (z, k∗U∞) − f (z, V∞) ≥ ξ(z)W∞,

where z = (x, y) and some function ξ(z) ∈ L∞
loc(R

N ). The strong maximum principle implies
that W∞ ≡ 0 in R

N . However, due to Hypothesis 4, this inequality holds strictly in D ⊂ R
N ,

with |D| > 0. This is a contradiction. Now, we consider the case limε→0+ |x(ε)| = ∞.
Recall that W ε∞ = k(ε)U∞ − V∞ + εφ is nonnegative and vanishes at (x(ε), y(ε)). Thus
there exists r > 0 such that k(ε)U∞ < V∞ in Br (x(ε), y(ε)). For ε small enough, k(ε) > 1,
we derive from (3.5) for Br (x(ε), y(ε))

∇ · [n(y)∇W ε∞] + α(y)∂xW
ε∞ + β(y) · ∇yW

ε∞ ≤ f (x, V∞) − k(ε) f (x,U∞) − (μ(y) + λμ)εφ

≤ f (x, V∞) − f (x, k(ε)U∞) − (μ(y) + λμ)εφ

≤ − f (x, k(ε)U∞)

k(ε)U∞
(k(ε)U∞ − V∞ + εφ) − λμ

2
εφ

−
(

λμ

2
+ μ(y) − f (x, y, k(ε)U∞)

k(ε)U∞

)

εφ. (3.9)

Take 0 < ε � 1, then |x(ε)| � 1, we have

f (x, y, k(ε)U∞)

k(ε)U∞
< μ(y) + λμ

2
, ∀(x, y) ∈ Br (x(ε), y(ε)),

choosing r smaller if necessary. Since λμ > 0, we get from (3.9)

−∇ · [n(y)∇W ε∞] − α(y)∂xW
ε∞ − β(y) · ∇yW

ε∞ − �(x)W ε∞

>
λμ

2
εφ > 0 in Br (x(ε), y(ε)),

where �(x) = f (x,k(ε)U∞)
k(ε)U∞ is bounded. This is a contradiction since the strong maximum

principle implies W ε∞ ≡ 0 in R
N . As a consequence

k∗ = lim
ε→0+ k(ε) ≤ 1.
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Letting ε → 0+, therefore

V ≤ lim
ε→0+(k(ε)U + εϕ) ≤ U in R

N .

This ends the proof. ��
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