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Abstract We give some sharp lower bounds of the first eigenvalue for the Hodge Laplacian
acting on differential forms on the boundary of a Riemannian manifold. We also give some
sharp estimates for the first nonzero Steklov eigenvalue for differential forms.

Mathematics Subject Classification 53C20 - 53C24 - 53C40

1 Introduction

In this paper, we obtain some sharp lower bounds for the first nonzero Hodge Laplacian
eigenvalue and also Steklov eigenvalue for differential forms on a boundary ¥ of a compact
Riemannian manifold (N, g) in terms of the extrinsic curvature of ¥ and the intrinsic curva-
ture of N. The main tools we use are Hodge theory and a Reilly formula [15] for differential
forms on a manifold with boundary. Our main results, Theorems 2.3 and 2.4, are generaliza-
tions of the results of Choi-Wang [2], Escobar [4], Xia [24], Wang-Xia [22] and Raulot-Savo
[15]. For instance, in Theorem 2.3 we generalize the results of Xia [24] and Raulot-Savo [15]:

Theorem 1.1 Let (N", g) be a compact orientable Riemannian manifold with boundary X.
Suppose the Bochner curvature W" or W"~" on N is bounded from below by k > 0. Assume
that the lowest q-curvature sq of X is nonnegative, where ¢ = min{r,n — r}. Then for
1 <r <n-—1, wehave
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Z)L/I,r = 2)\/1/,,«,1 >k+spsp—r + \/(srsnfr)2 + 28 8u—rk,

where 1| , (resp. 1] ) is the first nonzero eigenvalue of the Hodge Laplacian on the exact
(resp. co-exact) r-forms on . The equality can hold only when k = 0, with the r-curvatures
and the (n —r)-curvatures being positive constants. If, furthermore, (N, g) has non-negative
Ricci curvature, then the equality holds if and only if (N, g) is isometric to a Euclidean ball.

The curvatures W and s, will be explained in Sect. 2. When r = 1, s1 is the minimum
eigenvalue of the second fundamental form of ¥ and s,_; is the minimum of its mean
curvature, W! is just the Ricci curvature and A1 = )‘/1/.0 is the first nonzero eigenvalue of the
Laplacian on functions on X. '

We will also give a sharp lower bound of )L’Lr in terms of the first nonzero Steklov
eigenvalues for differential forms, as well as some lower and upper bounds for the Steklov
eigenvalues in terms of A} . (Theorem 2.4). The Steklov eigenvalue is the eigenvalue of
an elliptic nonnegative self:adjoint pseudo-differential operator of order one, which will be
explained in Sect. 2. Recently, there are a number of authors studying the Steklov eigenvalues
problems (e.g. [5,7-9]). Itis also interesting to see that when n = 2, an extension of the result
of Hang-Wang [11] gives an improvement of Choi-Wang’s result [2], which is a special case
of Theorem 2.3. Indeed, we can prove that 1;(X¥) > k and the estimate is sharp (Theorem
3.1). It may have some independent interest.

There are a number of applications of our results. For example:

Theorem 1.2 (Corollary 3.1) If = is a closed surface of genus g in S® with second funda-
mental form bounded from below by s| and mean curvature bounded from below by s,_1,
then

(2 + Su—151 + \/(Snfm)2 + 45117151) Area(¥) < 16m(g + 1).

This paper is organized as follows. In Sect. 2, we prove the various estimates for the Hodge
Laplacian eigenvalues and also Steklov eigenvalues for differential forms on a manifold with
boundary. In Sect. 3, we give some applications of the main results and take a closer look
when N is 2-dimensional.

2 Eigenvalue estimates

In this section, we will prove several lower bounds of the first nonzero eigenvalue of the
Hodge Laplacian on differential forms on the boundary ¥ of a Riemannian manifold (N, g).
These results are the natural generalizations of some results in [4,11,13,15,22,24].

Let us first set up the notations. Throughout this paper, (N, g) denotes a compact n-
dimensional connected oriented Riemannian manifold (n > 2) smooth boundary dN = X.
We denote the Levi-Civita connection on N and X by V and V respectively.

Fix x € ¥ and let k{(x), ..., k,—1(x) be the principal curvatures of ¥ at x w.r.t. the
outward unit normal v. We define the r-curvatures (not to be confused with the »-th mean
curvature) to be all the possible sums k;, (x) + - -- + k;, (x) where i1 < --- < i,. We can
assume kj(x) < --- < k,_1(x), then we define the lowest r-curvature to be

sp(x) =k (x) + -+ k& (x).
We also define

sp(X) = iléigsr(x).
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Note that the second fundamental form is bounded from below by s1 and 5,1 (x) = H is the
mean curvature. It is easy to see that if / < m, then 97’ < Jmﬂ and that s; > 0 implies s, > 0.

We denote by d and § the exterior derivative and its (formal) adjoint w.r.t. the L? inner
product on (N, g) respectively. The Hodge Laplacian A of a p-form on (N, g) is defined by

Aa=—(ds+8d)

for @ € Q" (N). Our sign is chosen such that A is the second derivative for functions on
N = R. Recall the Bochner formula (see e.g. [14] p. 218 Theorem 50):

—Ao =V 'Va+ W ()

where W is a self-adjoint endomorphism on " (N), which is determined by the Riemann
curvature tensor on (N, g). This term is called the Bochner curvature. When r = 1, W!
is just the Ricci curvature Ric of N and by [10], W > r(n — r)y where y is the lowest
eigenvalue of the curvature operator on (N, g). However, W > 0 is usually much weaker
than the curvature operator being nonnegative.

We define the shape operator S = Vv on 7Y and define §" : Q"(X) — Q' (Z) by

,
Sa(Xi, .. X)) =D aXi, ..., S(X)), ..., X).
j=1

We also define S° to be zero. For example, if « is a 1-form, then Sla(X) = a(S(X)). Observe
that " ~'o = Ha and that the eigenvalues of S” are exactly the r-curvatures of X, therefore

(Sa, a) = 5, ()|l

We define A}” (respectively )“;cl,r) to be the kth nonzero eigenvalue for the exact (respec-
tively co-exact) r-forms on X. By Hodge decomposition theorem and Hodge duality (e.g.
[23]), we have

Jir () = minfi] (£), 1], (),
)‘II/J(Z) = )‘/1,r+1(2)’
M (D) =4 ().

1,n—1-r

From this we see that to determine X1 ,, it suffices to determine }L/Lr forl <r < I_%J.
The following formula is the generalization of Reilly’s formula to differential forms.

Theorem 2.1 ([15] Theorem 3) Let @ € Q" (N), r > 1, then

/ (Ida|* + Ba|* — |Va|?) = / W (o, o) — 2/ (Lyer, Si*ar) +/ B(a, o)
N N = b
where the boundary term is given by

B(a,a) = (S"(i*a),i*a) + (§" 7" (i**a), i **a).

Herei : X — N is the inclusion and * : Q"(N) — Q"7 (N) is the Hodge star operator on
N. We will also denote by d and § the exterior derivative and its adjoint on ¥ respectively.

The classical Reilly formula can be recovered by setting @ = d f € Q!(N):
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Theorem 2.2 [18] Let f be a smooth function on N and z = f|x. Then

2 =2\ [ eeese af ar\?
/N((Af) v f|)—/NR1c<Vf, Vf)+/2(23vAz+H(8v) + AV, vZ)).

(2.1)
Here A is the second fundamental form and H = trx (A) is the mean curvature of ¥ in N.

‘We now state our first main result.

Theorem 2.3 Let (N", g) be a compact orientable Riemannian manifold with boundary X.
Suppose W™ or W"™" on N is bounded from below by k > 0. Assume that s; > O where
g =min{r,n —r}. Thenfor 1 <r <n — 1, we have

20, =20, =k spsaoy + \/(srsm)2 + 28, Su—rk. (2.2)

If the equality holds, then k = 0, the r-curvatures constantly equal s, > 0 and the (n —
r)-curvatures constantly equal s,_, > 0. If, furthermore, (N, g) has non-negative Ricci
curvature, then the equality holds if and only if (N, g) is isometric to a Euclidean ball. The
condition on Ricci curvature can be removed if r =1 orn — 1.

Proof Note that by Hodge decomposition theorem and Hodge duality, )“/1, = A’l’ ol =
)L’l 4 and by (2.6) below, both W" and W"™" are bounded from below by .
Let ¢ be a co-exact (r — 1) eigenform on X with eigenvalue 2 = 1] ,_, = A}, ie.

Ap = —8d¢p = —i¢. Then w = d¢ is an exact r-eigenform with eigenvalué A. By Theorem

2 of [3] (p. 148), there exists an (r — 1)-form ¢ on N such that §d ¢ = 0 and i*¢ = ¢ on
Y. Letw = d ¢. Then

Using Reilly’s formula on @ = d ¢,

02/ —|Va|?
N
/ W@, d¢)+/ 2@, $w) + (8" ("), i*®) + (" ("% @), i*¥ o)

>k/ |d o> + / —20(t0@, ) + 8¢ i*B| + sp_r|i*F |

k / (.5 +k / . 0 d B) + / ~20{0@. @) + sr |l + s |i"F @
N Py z

—@h - / (b, @) +5, / 9P + 50 / %@l 23)
> M M

The condition s, > 0 implies s,_, > 0. From the above, as [y (¢, 1,@) = [y @2 > 0,
this shows that 21 > k, which proves (2.2) in the case where s,_, = 0. So in the following
we can assume s,—, > 0.

As i*5%@)* = |n@* and [ |do* = [5(h.8d¢) = A [5 |¢|*, the inequality (2.3)
becomes
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0= / — 20— K, @) + S ABP + Su_r |
>

2 _ e n2
:/ Sp_r bl + (Sr)\. _ M) |¢|2
b s

. 2
> / (srx - m) s (2.4)
z Sn—r

As ¢ is not identically zero, we conclude that

k 2
()L — 5) > §pSp_rh = 2CA

where 2¢ = s,-s,—,. This implies either

k k
A—Efc—\/cz—f-ck ork—izc—i-\/cz—i-ck.

In view of (2.3), we conclude that the second case holds. i.e.

A—k/2

Ly —

n—r

20 >k +spsu—r + \/(Srsn—r)z + 28,8y rk.

Suppose the equality holds, then from (2.3), Vw = 0. As @ is parallel, [@|? is constant,
and as i *® = w, this constant is nonzero, which we can assume to be 1. The curvature term
W is given by (see e.g. [14] p. 218 Theorem 50):

|
W@ = > 00/ R, ej)w 2.5)
i,j=1
where {ej}ﬁzl is a local orthonormal frame on N, {91'}’]’.=1 is its dual frame and R is the
curvature operator on (N, g). Here 0" - & = 6/ A & — ,,« is the Clifford multiplication on

a differential form «. Since 0 = V @, we have V- = 0 and so R(ei, e;)® = 0. Therefore
from (2.3)

1/ <& . . o o o
0=~ <'Zlel .67 - R(ei, e))m, w> = (W' @), o) = k|o|> = k.
i,j=

So we now have A = s,.5,,_, > 0. Therefore from (2.4),

_ A
Lyw = ¢ = sr¢.
Sn—r

From this and (2.3), (2.4), we see that S = s, and S"™" = s,,_,, i.e. the r-curvatures and
the (n — r)-curvatures are constants.
Now we suppose, furthermore, that Ric > 0. As |5|2 =1,

Arca(X) = / @ = / (0P + lwal) = / (dol2 + 1B
X M) >

=/ Mgl + ol
>

_ (Sr +Sn—r)/ |LU5|2
Sr z
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On the other hand, by Stokes theorem,

Vol(N) = /N g = /N @.5d%) + /E G, 0d ) /2 (. 0@)

1

—2
—/ lLyol”.
SrJe

From these we have

Area(X) "
— =5+ Sy
Vol(N) noren
Recall that we have ¥ < 3 forl < m, s0 s, 4+ sp—r < ;gSu—1 + 5=Fsn1 = 57801
Thus
Area(X) -_n

n—1-

Vol(N) — n—1

By [19] Tgeorem 1, as @ >0, we ponclude tha; (N, g) is isometric to a Euclidean ball.
Using Vx (%) = *(Vya) and 6/ - %o = %(0/ - o), we have, by (2.5),

(W (@), @) = (W' Fo), ¥®). 2.6)

As W! = Ric and k = 0, so the condition Ric > 0 is redundant for » = 1 or n — 1. Finally,
it is well-known that (see e.g. [10])

LEY =r—r). 2.7
From this it is easy to see that the equality holds on any Euclidean ball, with £ = 0. O

Remark 1 When k = 0 and r = 1, Theorem 2.3 is Theorem 1 in [24].

To state our next result, we need to define the Steklov eigenvalues as follows. Let o €
Q" (2),r =0,...,n — 1. Then there exists a unique r-form & € Q" (N) such that (see e.g.
[20] Theorem 3.4.6)

[Aa:O on (N, g),
*o=oa, ywa=0 onZX.
We define the Steklov operator 77 : Q" (X) — Q'(X) by

T o = 1,da.
By [16] Theorem 11, T" is an elliptic nonnegative self-adjoint pseudo-differential operator
of order one. Thus the eigenvalue problem

T"a = pa
has a discrete spectrum

0<pir(N)<p2r(N) <+

We will write py , for py -(N). Here we use the convention in [16] that p; , is the smallest
nonnegative eigenvalue of 7. Thus in the classical case where r = 0, i.e. for f € C (%),
f being the unique harmonic extension of f to N and
T
rp=10r="0
av
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the first nonnegative eigenvalue of T is zero, corresponding to the constant functions on X.
So in our convention, pj,0 = 0 and py o is the smallest positive eigenvalue, usually called
the first Steklov eigenvalue of N. We will simply denote p; o by pa.

We remark that the first eigenvalue of 7" satisfies the min-max principle ([16] Theorem
11):

Iy (1d o> + 15 1%)
Js 19
When r = 0, we also have the following min-max principle for the smallest nonzero Steklov

eigenvalue (see for example [12] p. 113):
, VoI - —
p2(N) = p2o(N) = inf INZ:O;éqbeCOO(N),/ oly =0¢. (2.9)
Iz ¢ls z
Remark 2 By the Hodge-deRham theorem for manifolds with boundary ([20] Theorem

2.6.1), any cohomology class of the deRham cohomology space (with real coefficients)
H}p (N, d) is uniquely represented by ¢ € Q"(N) such that

pl,,(N):inf[ :0#¢EQ’(N),LV¢:O]. (2.8)

dp=8¢=0 onN,
Lo =0 on X.
We will denote the space of all such ¢ by H" (N). So from (2.8), we see that p 1,r 1s positive
if and only if H"(N) = 0. Therefore we are interested in p; , only when H"(N) = 0.
By Hodge duality, the relative deRham cohomology space (cf. [20] p. 103) H (N, 8) is
isomorphic to the vector space
HR(N) ={¢p € Q(N):d¢p=86¢p=00onN,i*p =00n X},

called the space of Dirichlet harmonic fields.

Theorem 2.4 Let (N", g) be a compact orientable Riemannian manifold with boundary X.
Letr =1,...,n—1. Weassume pi ,—1 is nontrivial if r > 1 (corresponding to H! (N) =
0). Suppose W"(N) > k, the r-curvatures of ¥ are bounded from below by | and s,—, > 0.
Let A = }\’Lr(Z) = Nf,r—l(z) and let p to be p1y—1 ifr > 1 and py = pao ifr = 1. Then
(1) We have the following upper bound for p:

1

k k 2 2
Sn—rP = A= E + (()\' - E) - sn—rl)‘-) . (210)

(2) Assume |l < 0, then we have the following lower bounds for p and A:

1

k k 2 2
sn_,pzk—z—((k—z) —sn_,lk) . (2.11)

24k
A > M (2.12)
2p —1
(3) Assume k > 0 andl > 0. We have either
k
A= Sp—rp+ 5 (2.13)
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or )
o Sn—rP +kp

, 2.14
SR P (2.14)

provided that it is well-defined. (If A < s,—,p + % and s, > 0, we will show that
2p —1 > 0, see Remark 3.)
(4) Assume s, > 0, and Hx(N) = 0. Then

20 >k + srp1on—1—r + Sn—r - (2.15)

If r = 1, the condition H}e (N) = 0 can be replaced by s,—1 > 0 and k > 0.

(5) The inequalities (2.11) and (2.12) are actually strict (if | < 0). Any of the equality
cases in (2.10), (2.14) or (2.15) can hold only when k = 0, with the r-curvatures and
(n — r)-curvatures both being positive constants.
Suppose (N, g) has non-negative Ricci curvature. Then the equality in (2.10) or (2.14)
holds ifand only ifr > 5+ 1 orr = 1, and (N, g) is isometric to a Euclidean ball. The
condition on Ricci curvature can be removed if r = 1. The equality case in (2.15) can
hold if and only ifr = 1, n > 4 and (N, g) is a Euclidean ball.

Proof Let ¢ be a co-exact (r — 1)-eigenform on ¥ with eigenvalue 2 = 17, _| = )L’l’r, ie.

A¢p = —8dp = —\¢. Then w = d¢ is an exact r-eigenform on X and by [20] Lemma 3.4.7,
there exists an (» — 1)-form ¢ on N such that

—Ap=Wd8+8d)p=0 onN,
i*p=¢, i5¢=0 on X.
By Stokes theorem,

[ @5k = [ 59.5355)+ [ (56.0.35) = [ 56.-55a5) = o.
N N

z N

Sowe have d§¢ = 38d ¢ = 0. Letw = d ¢, then @ is a harmonic field, i.e. d& = dw = 0.
By applying Reilly’s formula (Theorem 2.1) on @ = d ¢, and following exactly the same
steps in the proof of Theorem 2.3,

Oz/ —Waﬁz—(zx—k)/<¢,L@>+u/ |¢>|2+s,,_,./ wal.  (2.16)
N > M) >

We now prove (1) and (2) together. Let us first assume [ > 0. As @ # 0, fz (¢, hw) =
Iy |@|? > 0, thus by (2.16), we have

20—k > 0. 2.17)

The inequality (2.10) (and also (2.11)) is trivial if 5, = 0, so we assume s,,_, > 0. Let
k=2a,U = (f5 [,@*)2 and Z = ([5 [$*)7 > 0. So by Cauchy Schwarz inequality,

sn U2 +10Z% <21 — a)/ (¢, 1,@) <2 —a)UZ. (2.18)
)}
By completing the square,
<A—a+ (0 —a)? = su_rlr1)2. (2.19)

Sn—r
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Let us for the time being assume r > 1. We claim that

J5 (@, wo)
Plr—1 = fz |¢|2 .

By the Friedrichs decomposition for harmonic fields , as w is exact, there is a unique co-exact
(r — 1)-form ¢ on N such that (see [20] Theorem 2.4.8 and its proof):

(2.20)

3&5:6 on N, tv$=0 on X.
Letd)’:i*(g, then as&}':o,

/<¢’,L@> =/<2$,a>—<$,36> =/ |3<’5|2=/ dGP + 15312
) N N N
Thus by (2.8),
fg(‘p/’ L)
< 9z 221
Plr—1 = [ATEE (2.21)

On the other hand, we have

/ @ @) = / agP = / agP = / . 03). (2.22)
> N N x

As dp = d ¢, we also have d¢’ = d¢, so

A/ |¢|2=/ |d¢|2=/<d¢’,d¢>=/<¢’,6d¢>> =A/<¢’,¢>.
> > > > >

We conclude that ¢’ — ¢ L ¢ and thus 5 || > Jx |¢|>. Combining this with (2.22),
(2.21), we can get (2.20). By Cauchy Schwarz inequality,

— —2
fz((f”h}w) - fz ol (2.23)

PLot =700 = o nm)

which implies

, U
Pir—1= 72"
Putting this into (2.19), we obtain (2.10)
1
SnerP1r—1 <A —a+ ((h—a)* — s, 11)2. (2.24)
We now claim that this is also true for / < 0. Actually, in this case, by (2.16) and (2.23),
—2 2
Ly® A
20 —k = sp—r f2| 2 L + A fZ |¢|i > Sp—rPlr—1*+ .
fz(fp,va) fz(‘b;tvw) Plr—1
Rearranging, we have
Sn—rPrr_1 +kpryr—1 < 2p1y—1 — DA (2.25)
which implies (2.10) and (2.11) (regardless of whether s,_, = 0). Also, (2.12) follows

immediately from (2.25).
We have completed the proofs of (1) and (2) except for the case where r = 1. For r = 1,
the proofs proceed in the same way except we have to replace (2.23) by

fz (1*5, tva)> f): [ty w|
= p2o(N) < (2.26)
P2 =20 TSl = g o)
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This is true due to the min-max principle for p>» (Eq. (2.9)), together with the fact that
[ b.0d @) = [V +dAd) = [y [Vé?and [y ¢ = —1 [5 Ap = 0.

We now prove (3). If s, = 0, then (2.13) becomes A > % which is true in view of (2.17).
We can now assume s, > 0. Suppose A — % < Su—rp, then by (2.10), we have

1

k £\ 2 2
0§sn_rp—()\—2)§(()\—2) —sn_rlA) .

Squaring this inequality gives s,_, p* +kp < 2p — Da. From this we see that p > % and
(2.13) follows.
For (4), we can put [ = s, in (2.3) and using (2.23) or (2.26) to obtain

Jy "ol Jy P

[z (o, ¢) Iy @
Aswisco-closedand H'y (N) = H); o (N, 8) = 0,itis also co-exact. So by [16] Proposition

sk—12
14, f§ "@“"2‘ > pin_i_r, and (2.15) follows. If r = 1,k > 0 and s,_; > 0, then by [20]
JN

(Theorem 2.6.4, Corollary 2.6.2 and Theorem 2.6.1), H;e (N) = 0, thus this later condition

can be dropped.

We now prove (5). Suppose the equality sign in any of the inequalities (2.10), (2.11),
(2.12), (2.14) and (2.15) holds, then by (2.3), V& = 0. We can then argue as in the proof of
Theorem 2.3 that k = 0.

If any inequality sign of the inequalities (2.10), (2.11), (2.12) or (2.14) becomes an equality
sign, then one of the inequalities in (2.10) or (2.11) is an equality. Assume one of these
holds. The inequalities (2.23) (or (2.26)) and (2.3) then become equations. So we have the
r-curvatures are constantly equal to s, = [, t,w = p¢ and the (n — r)-curvatures are equal
to the constant s,,_,. In particular, S"~" = s,,_,.

We now show that A = s;,_,s,. To do this we make use of the following formulas:

20—k > sp_rp + s =Sy—rp+ 8- (2.27)

Si*a = i*da + ., Voa — ST (&) + Hya  fora € QT(N),

%S () + S" 1" (%) = H % « fora € Q' (%),
ko = (—)-1=1ry fora € Q' (%), (2.28)
n
S =—> 1,Ve,a@ fora € Q' (N).
j=1

Here * : Q' () — Q" 177(2) is the Hodge star operator on ¥ and {e.,'};’.=1 is a local
orthonormal frame on N. The last two formulas are standard and are included here just for
convenience (e.g. [20]). For the first two formulas, see [15] Sects. 2 and 6. Using (2.28), we
compute

8di*¢ = 8i*d ¢ = di*w
=i*o+,Vyo — S (o) + Huo

n
=i (D@ | -5 wa) + ((—1)"“‘” % ST (%0, @) + s’—l(tva))
=1
= (=)D % §"7 (x0, @)
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=(=D" Vs, wx,@

= Sp—rlyo.
This implies
—Ap + Sp—r pp = —(dS + 8d)i*P + sy—rty@ = —8di*p + sy_rty@ = 0.
Ass,_rp=Ar+£ (Az — sn,,srk)%, we conclude that —A + A &+ (Az — sn,,srk)% =0, or
A= Sp—rSp = Sp—rp > 0.

This shows that s, = [/ > 0 which contradicts the assumption of (2), thus the inequalities
(2.11) and (2.12) must be strict.

We can now proceed in exactly the same way as the proof of Theorem 2.3 to show that
N must be a Euclidean ball if Ric > 0, which we can w.l.o. g. assume to be the standard unit
ball B”. But then by [17] Corollary 4,

| T if r>3+1,
p‘*"l(E)_l";z(r—l) if 2<r<2+1. (2.29)
AS 5, (S 1) = m and by (2.7), we conclude that if r > 1, the equality in (2.10) or (2.14)
holds if and only if r > % + 1. For r = 1, it is well-known that p; o(B") = 1, from this we
can also conclude that the equality in (2.10) or (2.14) holds if and only if N is a Euclidean
ball.

Suppose the equality in (2.15) holds, then by (2.23) or (2.26), t,&® = p¢ and by the
same reason as above, the r-curvatures are constantly equal to s,, the (n — r)-curvatures are
constantly s,_,, and A = s,_, p. In particular, s, # 0 in view of (2.15), so from (2.27), we
have

S Jslial _ afglel”  a

T Vel T s ¢) T p
In view of (2.15), we deduce that p = s,. We can then proceed as before to conclude that if
Ric > 0, then (N, g) is a Euclidean ball. But then by (2.7) and (2.29), the equality cannot be
attained on a Euclidean ball if > 1. If » = 1, then from (2.29) we see that the equality is
attained if and only if n > 4, on a Euclidean ball. O

Remark 3 (1) Escobar ([6] Theorem 8) showed that if & > 0, then pr o > %‘, so (2.14)
is well-defined. Also, (2.15) is a generalization [4, Theorem 9] and [16, Theorem 8,
Theorem 9].

(2) Theorem 2.4 (1) is an extension of [22] Theorem 1.1, in which they provided an upper
bound for p,, which corresponds to our result when k = 0 and r = 1.

(3) We suspect that (2.14) holds whenever k > 0 and in this case we have 2p > s, > [, but

we are unable to show it for the time being.

3 Some applications and special cases
In [25], Yang and Yau proved that for a compact Riemann surface ¥ of genus g, for any

metric on X, Aj(X)Area(X) < 8 (1 + g). Combining this result with Theorems 2.3 and
2.4, we have several corollaries. Let us only state the following:
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Corollary 3.1 If N = S then under the assumptions of Theorem 2.3, we have
(2 + 85,151 + \/(SH,ISI)Z + 4S",1S1) Area(X) < 16w (g + 1).

Remark 4 Although the estimate of Theorem 2.3 is not sharp when k # 0, r = 1, by
examining the case where X is a geodesic circle of radius p in a hemisphere (1| = 1} oX) =

1/ sinZ(p)), it is found that the error is within 1/2. Indeed, in this case, k = 1, 51 = 5,,—1 =

cot p, we have A — %(k + 512 + 1/si1 + 2sfk) = %csc2 p— %\/csc4 p—1=< % The error
tends to zero as p — 0.

On the other hand, by [6] Example 5, the first nonzero Steklov eigenvalue of the geodesic
ball of radius p in S? is computed to be cot p + tan g. By direct computations, it is found

sipatkpy  tan?(p/2)
2pa—s; — 2—cosp

that the error in Theorem 2.4 (2) is A} —
than that of Theorem 2.3.

which is (very) slightly better

The following result is another immediate consequence of Theorem 2.3, which can be
regarded as the analogue of Theorem 2 of Hang-Wang [11] (see also [24] Corollary 1).

Corollary 3.2 Let (N", g) be a compact orientable Riemannian manifold with bound-
ary X. Suppose the Ricci curvature of N is nonnegative, sy (X)sp—(X) > r(n —r) =
k’l’,r_l(S"_l) > M (%) for somer =1,....,n— 1, and W" is nonnegative, then (N, g)
is isometric to the unit ball in R".

Theorem 2.3 gives a quick proof of the following result, which is the K > 0 analogue of
Theorem 3.1:

Corollary 3.3 Suppose (N2, g) be a compact surface with (not necessarily connected)
boundary y with the Gaussian curvature K > 0. If the geodesic curvature kg of y sat-
isfies kg > 1 > O, then its length L(y) < 2Tﬂ The equality holds if and only if (N, g) is

isometric to the Euclidean disk of radius 1/ 1.

Proof By Gauss-Bonnet theorem, 2w x (N) = fN K + fy kg > 0, thus y has only one

component. By Theorem 2.3, A1 (y) > 2. The equality holds if and only if N is a Euclidean
disk of radius 1/1. As A1 (y) = (%)2, the result follows. ]

In [2], Choi and Wang proved that if (N", g) is a compact orientable manifold whose
Ricci curvature is bounded from below by £ > 0 and ¥ is an embedded orientable minimal
hypersurface in N, then A{(¥) > % Since their proof are essentially the same as that of
Theorem 2.3, their result can be improved slightly to 1{(X) > % This is related to Yau’s
conjecture [26]. It is easy to see that the coordinate functions are eigenfunctions of a minimal
hypersurface of S" (whose Ricci curvature is n — 1) with eigenvalue n — 1. Yau conjectured
that the first eigenvalue is actually n — 1. Escobar also have a similar conjecture in [4]. We
also notice that Barros and Bessa [1] proved an improvement on the Choi-Wang estimate.

In the two-dimensional case, an embedded minimal submanifold is reduced to a simple
closed geodesic, the result of Choi-Wang can be improvedto A; > k, by aresult of Toponogov
[21] on the length of a closed geodesic. More generally, we have the following result which
is an extension of the result in [11], which may have some independent interest:

Theorem 3.1 Ler (N2, g) be a closed surface with Gaussian curvature K > 1. Let y be a
simple closed curve in N which separates N into N1, Ny. Suppose its geodesic curvature

L. . 2 L
w.r.t. the outward normal of Ny satisfies kq > 1 > 0. Then its length L(y) < \/%’ which is
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equivalent to A1 (y) > 1+ 12 (as i (y) = (%)2), and also Area(N,) < Area(B,), where

B, is the disk of radius r = cot™'(=1) in the standard sphere S*. If L(y) = % then N

is isometric to By _,. If, moreover, Area(N,) = Area(B,), then (N, g) is S2. The condition
for the area can be dropped if | = 0.

2 . . .
Proof By [11] Theorem 3, we have L(y) < T The equality holds if and only if (Ny, g)

is isometric to the disk B, C S, " = cot™! (/). Therefore if L(y) = 2m, (Ny, g) is isometric
to the standard hemisphere. But then k, = 0, thus we can apply the same argument to N, to
deduce that (N, g) is S2.In general, if L(y) = \/%, then by Gauss-Bonnet theorem, as N
is a topological sphere,

Area(B,) + Area(B,) = 4n :/ K +/ K :/ K + Area(B,’)
Ny N Ny
> Area(N») + Area(B,).

So if Area(N;) = Area(B,),then K = 1 on N and so (N, g) is S ]
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