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Abstract We give some sharp lower bounds of the first eigenvalue for the Hodge Laplacian
acting on differential forms on the boundary of a Riemannian manifold. We also give some
sharp estimates for the first nonzero Steklov eigenvalue for differential forms.

Mathematics Subject Classification 53C20 · 53C24 · 53C40

1 Introduction

In this paper, we obtain some sharp lower bounds for the first nonzero Hodge Laplacian
eigenvalue and also Steklov eigenvalue for differential forms on a boundary � of a compact
Riemannian manifold (N , g) in terms of the extrinsic curvature of � and the intrinsic curva-
ture of N . The main tools we use are Hodge theory and a Reilly formula [15] for differential
forms on a manifold with boundary. Our main results, Theorems 2.3 and 2.4, are generaliza-
tions of the results of Choi-Wang [2], Escobar [4], Xia [24], Wang-Xia [22] and Raulot-Savo
[15]. For instance, in Theorem 2.3 we generalize the results of Xia [24] and Raulot-Savo [15]:

Theorem 1.1 Let (Nn, g) be a compact orientable Riemannian manifold with boundary �.
Suppose the Bochner curvature Wr or Wn−r on N is bounded from below by k ≥ 0. Assume
that the lowest q-curvature sq of � is nonnegative, where q = min{r, n − r}. Then for
1 ≤ r ≤ n − 1, we have
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2λ′
1,r = 2λ′′

1,r−1 ≥ k + sr sn−r +
√

(sr sn−r )2 + 2sr sn−r k,

where λ′
1,r (resp. λ′′

1,r ) is the first nonzero eigenvalue of the Hodge Laplacian on the exact
(resp. co-exact) r-forms on �. The equality can hold only when k = 0, with the r-curvatures
and the (n−r)-curvatures being positive constants. If, furthermore, (N , g) has non-negative
Ricci curvature, then the equality holds if and only if (N , g) is isometric to a Euclidean ball.

The curvatures Wr and sr will be explained in Sect. 2. When r = 1, s1 is the minimum
eigenvalue of the second fundamental form of � and sn−1 is the minimum of its mean
curvature, W 1 is just the Ricci curvature and λ1 = λ′′

1,0 is the first nonzero eigenvalue of the
Laplacian on functions on �.

We will also give a sharp lower bound of λ′
1,r in terms of the first nonzero Steklov

eigenvalues for differential forms, as well as some lower and upper bounds for the Steklov
eigenvalues in terms of λ′

1,r (Theorem 2.4). The Steklov eigenvalue is the eigenvalue of
an elliptic nonnegative self-adjoint pseudo-differential operator of order one, which will be
explained in Sect. 2. Recently, there are a number of authors studying the Steklov eigenvalues
problems (e.g. [5,7–9]). It is also interesting to see that when n = 2, an extension of the result
of Hang-Wang [11] gives an improvement of Choi-Wang’s result [2], which is a special case
of Theorem 2.3. Indeed, we can prove that λ1(�) ≥ k and the estimate is sharp (Theorem
3.1). It may have some independent interest.

There are a number of applications of our results. For example:

Theorem 1.2 (Corollary 3.1) If � is a closed surface of genus g in S
3 with second funda-

mental form bounded from below by s1 and mean curvature bounded from below by sn−1,
then (

2 + sn−1s1 +
√

(sn−1s1)2 + 4sn−1s1

)
Area(�) < 16π(g + 1).

This paper is organized as follows. In Sect. 2, we prove the various estimates for the Hodge
Laplacian eigenvalues and also Steklov eigenvalues for differential forms on a manifold with
boundary. In Sect. 3, we give some applications of the main results and take a closer look
when N is 2-dimensional.

2 Eigenvalue estimates

In this section, we will prove several lower bounds of the first nonzero eigenvalue of the
Hodge Laplacian on differential forms on the boundary � of a Riemannian manifold (N , g).
These results are the natural generalizations of some results in [4,11,13,15,22,24].

Let us first set up the notations. Throughout this paper, (N , g) denotes a compact n-
dimensional connected oriented Riemannian manifold (n ≥ 2) smooth boundary ∂N = �.
We denote the Levi-Civita connection on N and � by ∇ and ∇ respectively.

Fix x ∈ � and let k1(x), . . . , kn−1(x) be the principal curvatures of � at x w.r.t. the
outward unit normal ν. We define the r -curvatures (not to be confused with the r -th mean
curvature) to be all the possible sums ki1(x) + · · · + kir (x) where i1 < · · · < ir . We can
assume k1(x) ≤ · · · ≤ kn−1(x), then we define the lowest r -curvature to be

sr (x) = k1(x) + · · · + kr (x).

We also define

sr (�) = min
x∈�

sr (x).
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Note that the second fundamental form is bounded from below by s1 and sn−1(x) = H is the
mean curvature. It is easy to see that if l ≤ m, then sl

l ≤ sm
m and that sl ≥ 0 implies sm ≥ 0.

We denote by d and δ the exterior derivative and its (formal) adjoint w.r.t. the L2 inner
product on (N , g) respectively. The Hodge Laplacian � of a p-form on (N , g) is defined by

�α = −(d δ + δ d)α

for α ∈ 
r (N ). Our sign is chosen such that � is the second derivative for functions on
N = R. Recall the Bochner formula (see e.g. [14] p. 218 Theorem 50):

−�α = ∇∗∇α + Wr (α)

where Wr is a self-adjoint endomorphism on 
r (N ), which is determined by the Riemann
curvature tensor on (N , g). This term is called the Bochner curvature. When r = 1, W 1

is just the Ricci curvature Ric of N and by [10], Wr ≥ r(n − r)γ where γ is the lowest
eigenvalue of the curvature operator on (N , g). However, Wr ≥ 0 is usually much weaker
than the curvature operator being nonnegative.

We define the shape operator S = ∇ν on T� and define Sr : 
r (�) → 
r (�) by

Srα(X1, . . . , Xr ) =
r∑

j=1

α(X1, . . . , S(X j ), . . . , Xr ).

We also define S0 to be zero. For example, if α is a 1-form, then S1α(X) = α(S(X)). Observe
that Sn−1α = Hα and that the eigenvalues of Sr are exactly the r -curvatures of �, therefore

〈Srα, α〉 ≥ sr (�)|α|2.
We define λ′

k,r (respectively λ′′
k,r ) to be the kth nonzero eigenvalue for the exact (respec-

tively co-exact) r -forms on �. By Hodge decomposition theorem and Hodge duality (e.g.
[23]), we have

⎧
⎪⎨
⎪⎩

λ1,r (�) = min{λ′
1,r (�), λ′′

1,r (�)},
λ′′

1,r (�) = λ′
1,r+1(�),

λ′′
1,r (�) = λ′

1,n−1−r (�).

From this we see that to determine λ1,r , it suffices to determine λ′
1,r for 1 ≤ r ≤ � n

2 �.
The following formula is the generalization of Reilly’s formula to differential forms.

Theorem 2.1 ([15] Theorem 3) Let α ∈ 
r (N ), r ≥ 1, then
∫

N

(|dα|2 + |δα|2 − |∇α|2) =
∫

N
Wr (α, α) − 2

∫

�

〈ινα, δi∗α〉 +
∫

�

B(α, α)

where the boundary term is given by

B(α, α) = 〈Sr (i∗α), i∗α〉 + 〈Sn−r (i∗∗α), i∗∗α〉.
Here i : � → N is the inclusion and ∗ : 
r (N ) → 
n−r (N ) is the Hodge star operator on
N. We will also denote by d and δ the exterior derivative and its adjoint on � respectively.

The classical Reilly formula can be recovered by setting α = d f ∈ 
1(N ):
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38 Page 4 of 14 K.-K. Kwong

Theorem 2.2 [18] Let f be a smooth function on N and z = f |� . Then
∫

N

(
(� f )2 − |∇2

f |2
)

=
∫

N
Ric(∇ f,∇ f ) +

∫

�

(
2
∂ f

∂ν
�z + H

(
∂ f

∂ν

)2

+ A(∇z,∇z)

)
.

(2.1)
Here A is the second fundamental form and H = tr�(A) is the mean curvature of � in N.

We now state our first main result.

Theorem 2.3 Let (Nn, g) be a compact orientable Riemannian manifold with boundary �.
Suppose Wr or Wn−r on N is bounded from below by k ≥ 0. Assume that sq ≥ 0 where
q = min{r, n − r}. Then for 1 ≤ r ≤ n − 1, we have

2λ′
1,r = 2λ′′

1,r−1 ≥ k + sr sn−r +
√

(sr sn−r )2 + 2sr sn−r k. (2.2)

If the equality holds, then k = 0, the r-curvatures constantly equal sr > 0 and the (n −
r)-curvatures constantly equal sn−r > 0. If, furthermore, (N , g) has non-negative Ricci
curvature, then the equality holds if and only if (N , g) is isometric to a Euclidean ball. The
condition on Ricci curvature can be removed if r = 1 or n − 1.

Proof Note that by Hodge decomposition theorem and Hodge duality, λ′
1,r = λ′′

1,r−1 =
λ′

1,n−r and by (2.6) below, both Wr and Wn−r are bounded from below by k.
Let φ be a co-exact (r − 1) eigenform on � with eigenvalue λ = λ′′

1,r−1 = λ′
1,r , i.e.

�φ = −δdφ = −λφ. Then ω = dφ is an exact r -eigenform with eigenvalue λ. By Theorem
2 of [3] (p. 148), there exists an (r − 1)-form φ on N such that δ d φ = 0 and i∗φ = φ on
�. Let ω = d φ. Then

{
dω = δω = 0 on N

i∗ω = ω on �.

Using Reilly’s formula on ω = d φ,

0 ≥
∫

N
−|∇ω|2

=
∫

N
Wr (d φ, d φ) +

∫

�

−2〈ινω, δω〉 + 〈Sr (i∗ω), i∗ω〉 + 〈Sn−r (i∗∗ ω), i∗∗ω〉

≥ k
∫

N
|d φ|2 +

∫

�

−2λ〈ινω, φ〉 + sr |i∗ω|2 + sn−r |i∗∗ ω|2

= k
∫

N
〈φ, δ d φ〉 + k

∫

�

〈i∗φ, ινd φ〉 +
∫

�

−2λ〈ινω, φ〉 + sr |ω|2 + sn−r |i∗∗ ω|2

= −(2λ − k)
∫

�

〈φ, ινω〉 + sr

∫

�

|dφ|2 + sn−r

∫

�

|i∗∗ ω|2. (2.3)

The condition sq ≥ 0 implies sn−r ≥ 0. From the above, as
∫
�

〈φ, ινω〉 = ∫
N |ω|2 > 0,

this shows that 2λ ≥ k, which proves (2.2) in the case where sn−r = 0. So in the following
we can assume sn−r > 0.

As |i∗∗ ω|2 = |ινω|2 and
∫
�

|dφ|2 = ∫
�

〈φ, δdφ〉 = λ
∫
�

|φ|2, the inequality (2.3)
becomes
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0 ≥
∫

�

−(2λ − k)〈φ, ινω〉 + srλ|φ|2 + sn−r |ινω|2

=
∫

�

sn−r

∣∣∣∣ινω − λ − k/2

sn−r
φ

∣∣∣∣
2

+
(
srλ − (λ − k/2)2

sn−r

)
|φ|2

≥
∫

�

(
srλ − (λ − k/2)2

sn−r

)
|φ|2. (2.4)

As φ is not identically zero, we conclude that
(

λ − k

2

)2

≥ sr sn−rλ = 2cλ

where 2c = sr sn−r . This implies either

λ − k

2
≤ c −

√
c2 + ck or λ − k

2
≥ c +

√
c2 + ck.

In view of (2.3), we conclude that the second case holds. i.e.

2λ ≥ k + sr sn−r +
√

(sr sn−r )2 + 2sr sn−r k.

Suppose the equality holds, then from (2.3), ∇ω = 0. As ω is parallel, |ω|2 is constant,
and as i∗ω = ω, this constant is nonzero, which we can assume to be 1. The curvature term
Wr is given by (see e.g. [14] p. 218 Theorem 50):

Wr (ω) = 1

2

n∑

i, j=1

θ i · θ j · R(ei , e j )ω (2.5)

where {e j }nj=1 is a local orthonormal frame on N , {θ j }nj=1 is its dual frame and R is the

curvature operator on (N , g). Here θ i · α = θ i ∧ α − ιei α is the Clifford multiplication on

a differential form α. Since 0 = ∇ ω, we have ∇2
ω = 0 and so R(ei , e j )ω = 0. Therefore

from (2.3)

0 = 1

2

〈
n∑

i, j=1

θ i · θ j · R(ei , e j )ω, ω

〉
= 〈Wr (ω), ω〉 = k|ω|2 = k.

So we now have λ = sr sn−r > 0. Therefore from (2.4),

ινω = λ

sn−r
φ = srφ.

From this and (2.3), (2.4), we see that Sr ≡ sr and Sn−r ≡ sn−r , i.e. the r -curvatures and
the (n − r)-curvatures are constants.

Now we suppose, furthermore, that Ric ≥ 0. As |ω|2 = 1,

Area(�) =
∫

�

|ω|2 =
∫

�

(|ω|2 + |ινω|2) =
∫

�

(|dφ|2 + |ινω|2)

=
∫

�

λ1|φ|2 + |ινω|2

=
(
sr + sn−r

sr

) ∫

�

|ινω|2.
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On the other hand, by Stokes theorem,

Vol(N ) =
∫

N
|dφ|2 =

∫

N
〈φ, δ d φ〉 +

∫

�

〈i∗φ, ινd φ〉 =
∫

�

〈φ, ινω〉

= 1

sr

∫

�

|ινω|2.

From these we have

Area(�)

Vol(N )
= sr + sn−r .

Recall that we have sl
l ≤ sm

m for l ≤ m, so sr + sn−r ≤ r
n−1 sn−1 + n−r

n−1 sn−1 = n
n−1 sn−1.

Thus

Area(�)

Vol(N )
≤ n

n − 1
sn−1.

By [19] Theorem 1, as Ric ≥ 0, we conclude that (N , g) is isometric to a Euclidean ball.
Using ∇X (∗α) = ∗(∇Xα) and θ j · ∗α = ∗(θ j · α), we have, by (2.5),

〈Wr (ω), ω〉 = 〈Wn−r (∗ ω), ∗ ω〉. (2.6)

As W 1 = Ric and k = 0, so the condition Ric ≥ 0 is redundant for r = 1 or n − 1. Finally,
it is well-known that (see e.g. [10])

λ′
1,r (S

n−1) = r(n − r). (2.7)

From this it is easy to see that the equality holds on any Euclidean ball, with k = 0. ��
Remark 1 When k = 0 and r = 1, Theorem 2.3 is Theorem 1 in [24].

To state our next result, we need to define the Steklov eigenvalues as follows. Let α ∈

r (�), r = 0, . . . , n − 1. Then there exists a unique r -form α ∈ 
r (N ) such that (see e.g.
[20] Theorem 3.4.6)

{
�α = 0 on (N , g),

i∗α = α, ινα = 0 on �.

We define the Steklov operator T r : 
r (�) → 
r (�) by

T rα = ινdα.

By [16] Theorem 11, T r is an elliptic nonnegative self-adjoint pseudo-differential operator
of order one. Thus the eigenvalue problem

T rα = pα

has a discrete spectrum

0 ≤ p1,r (N ) ≤ p2,r (N ) ≤ · · · .

We will write pk,r for pk,r (N ). Here we use the convention in [16] that p1,r is the smallest
nonnegative eigenvalue of T r . Thus in the classical case where r = 0, i.e. for f ∈ C∞(�),
f being the unique harmonic extension of f to N and

T f = T 0 f = ∂ f

∂ν
,
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Some sharp Hodge Laplacian and Steklov Page 7 of 14 38

the first nonnegative eigenvalue of T is zero, corresponding to the constant functions on �.
So in our convention, p1,0 = 0 and p2,0 is the smallest positive eigenvalue, usually called
the first Steklov eigenvalue of N . We will simply denote p2,0 by p2.

We remark that the first eigenvalue of T r satisfies the min-max principle ([16] Theorem
11):

p1,r (N ) = inf

{∫
N

(|d φ|2 + |δ φ|2)∫
�

|φ|2 : 0 �= φ ∈ 
r (N ), ινφ = 0

}
. (2.8)

When r = 0, we also have the following min-max principle for the smallest nonzero Steklov
eigenvalue (see for example [12] p. 113):

p2(N ) = p2,0(N ) = inf

{∫
N |∇ φ|2∫
�

φ|2�
: 0 �= φ ∈ C∞(N ),

∫

�

φ|� = 0

}
. (2.9)

Remark 2 By the Hodge-deRham theorem for manifolds with boundary ([20] Theorem
2.6.1), any cohomology class of the deRham cohomology space (with real coefficients)
Hr
dR(N , d) is uniquely represented by φ ∈ 
r (N ) such that

{
d φ = δ φ = 0 on N ,

ινφ = 0 on �.

We will denote the space of all such φ by Hr (N ). So from (2.8), we see that p1,r is positive
if and only if Hr (N ) = 0. Therefore we are interested in p1,r only when Hr (N ) = 0.

By Hodge duality, the relative deRham cohomology space (cf. [20] p. 103) Hr
dR(N , δ) is

isomorphic to the vector space

Hr
R(N ) = {φ ∈ 
r (N ) : d φ = δ φ = 0 on N , i∗φ = 0 on �},

called the space of Dirichlet harmonic fields.

Theorem 2.4 Let (Nn, g) be a compact orientable Riemannian manifold with boundary �.
Let r = 1, . . . , n−1. We assume p1,r−1 is nontrivial if r > 1 (corresponding toHr−1(N ) =
0). Suppose Wr (N ) ≥ k, the r-curvatures of � are bounded from below by l and sn−r ≥ 0.
Let λ = λ′

1,r (�) = λ′′
1,r−1(�) and let p to be p1,r−1 if r > 1 and p2 = p2,0 if r = 1. Then

(1) We have the following upper bound for p:

sn−r p ≤ λ − k

2
+

((
λ − k

2

)2

− sn−r lλ

) 1
2

. (2.10)

(2) Assume l ≤ 0, then we have the following lower bounds for p and λ:

sn−r p ≥ λ − k

2
−

((
λ − k

2

)2

− sn−r lλ

) 1
2

. (2.11)

λ ≥ sn−r p2 + kp

2p − l
. (2.12)

(3) Assume k ≥ 0 and l ≥ 0. We have either

λ ≥ sn−r p + k

2
(2.13)
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or

λ ≥ sn−r p2 + kp

2p − l
, (2.14)

provided that it is well-defined. (If λ ≤ sn−r p + k
2 and sn−r > 0, we will show that

2p − l > 0, see Remark 3.)
(4) Assume sr ≥ 0, and Hr

R(N ) = 0 . Then

2λ ≥ k + sr p1,n−1−r + sn−r p. (2.15)

If r = 1, the condition H1
R(N ) = 0 can be replaced by sn−1 > 0 and k ≥ 0.

(5) The inequalities (2.11) and (2.12) are actually strict (if l ≤ 0). Any of the equality
cases in (2.10), (2.14) or (2.15) can hold only when k = 0, with the r-curvatures and
(n − r)-curvatures both being positive constants.
Suppose (N , g) has non-negative Ricci curvature. Then the equality in (2.10) or (2.14)
holds if and only if r ≥ n

2 + 1 or r = 1, and (N , g) is isometric to a Euclidean ball. The
condition on Ricci curvature can be removed if r = 1. The equality case in (2.15) can
hold if and only if r = 1, n ≥ 4 and (N , g) is a Euclidean ball.

Proof Let φ be a co-exact (r − 1)-eigenform on � with eigenvalue λ = λ′′
1,r−1 = λ′

1,r , i.e.
�φ = −δdφ = −λφ. Then ω = dφ is an exact r -eigenform on � and by [20] Lemma 3.4.7,
there exists an (r − 1)-form φ on N such that

{
−� φ = (d δ + δ d)φ = 0 on N ,

i∗φ = φ, i∗δ φ = 0 on �.

By Stokes theorem,
∫

N
|d δ φ|2 =

∫

N
〈δ φ, δ d δ φ〉 +

∫

�

〈i∗δ φ, ινd δφ〉 =
∫

N
〈δ φ,−δ δ d φ〉 = 0.

So we have d δ φ = δ d φ = 0. Let ω = d φ, then ω is a harmonic field, i.e. dω = δω = 0.
By applying Reilly’s formula (Theorem 2.1) on ω = d φ, and following exactly the same

steps in the proof of Theorem 2.3,

0 ≥
∫

N
−|∇ω|2 ≥ −(2λ − k)

∫

�

〈φ, ινω〉 + lλ
∫

�

|φ|2 + sn−r

∫

�

|ινω|2. (2.16)

We now prove (1) and (2) together. Let us first assume l ≥ 0. As ω �= 0,
∫
�

〈φ, ινω〉 =∫
N |ω|2 > 0, thus by (2.16), we have

2λ − k ≥ 0. (2.17)

The inequality (2.10) (and also (2.11)) is trivial if sn−r = 0, so we assume sn−r > 0. Let

k = 2a, U = (
∫
�

|ινω|2) 1
2 and Z = (

∫
�

|φ|2) 1
2 > 0. So by Cauchy Schwarz inequality,

sn−rU
2 + lλZ2 ≤ 2(λ − a)

∫

�

〈φ, ινω〉 ≤ 2(λ − a)UZ . (2.18)

By completing the square,

sn−r
U

Z
≤ λ − a + ((λ − a)2 − sn−r lλ1)

1
2 . (2.19)
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Let us for the time being assume r > 1. We claim that

p1,r−1 ≤
∫
�

〈φ, ινω〉∫
�

|φ|2 . (2.20)

By the Friedrichs decomposition for harmonic fields , as ω is exact, there is a unique co-exact
(r − 1)-form φ̃ on N such that (see [20] Theorem 2.4.8 and its proof):

dφ̃ = ω on N , ιν φ̃ = 0 on �.

Let φ′ = i∗φ̃, then as δφ̃ = 0,
∫

�

〈φ′, ινω〉 =
∫

N
〈d φ̃, ω〉 − 〈φ, δω〉 =

∫

N
|d φ̃|2 =

∫

N
|d φ̃|2 + |δ φ̃|2.

Thus by (2.8),

p1,r−1 ≤
∫
�

〈φ′, ινω〉∫
�

|φ′|2 . (2.21)

On the other hand, we have
∫

�

〈φ′, ινω〉 =
∫

N
|d φ̃|2 =

∫

N
|d φ|2 =

∫

�

〈φ, ινω〉. (2.22)

As dφ̃ = d φ, we also have dφ′ = dφ, so

λ

∫

�

|φ|2 =
∫

�

|dφ|2 =
∫

�

〈dφ′, dφ〉 =
∫

�

〈φ′, δdφ〉 = λ

∫

�

〈φ′, φ〉.

We conclude that φ′ − φ ⊥ φ and thus
∫
�

|φ′|2 ≥ ∫
�

|φ|2. Combining this with (2.22),
(2.21), we can get (2.20). By Cauchy Schwarz inequality,

p1,r−1 ≤
∫
�

〈φ, ινω〉∫
�

|φ|2 ≤
∫
�

|ινω|2∫
�

〈φ, ινω〉 , (2.23)

which implies

p2
1,r−1 ≤ U 2

Z2 .

Putting this into (2.19), we obtain (2.10)

sn−r p1,r−1 ≤ λ − a + ((λ − a)2 − sn−r lλ)
1
2 . (2.24)

We now claim that this is also true for l ≤ 0. Actually, in this case, by (2.16) and (2.23),

2λ − k ≥ sn−r

∫
�

|ινω|2∫
�

〈φ, ινω〉 + lλ

∫
�

|φ|2∫
�

〈φ, ινω〉 ≥ sn−r p1,r−1 + lλ

p1,r−1
.

Rearranging, we have
sn−r p

2
1,r−1 + kp1,r−1 ≤ (2p1,r−1 − l)λ (2.25)

which implies (2.10) and (2.11) (regardless of whether sn−r = 0). Also, (2.12) follows
immediately from (2.25).

We have completed the proofs of (1) and (2) except for the case where r = 1. For r = 1,
the proofs proceed in the same way except we have to replace (2.23) by

p2 = p2,0(N ) ≤
∫
�

〈i∗φ, ινω〉∫
�

|φ|2 ≤
∫
�

|ινω|2∫
�

〈i∗φ, ινω〉 . (2.26)
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This is true due to the min-max principle for p2 (Eq. (2.9)), together with the fact that∫
�

〈i∗φ, ινd φ〉 = ∫
N (|∇ φ|2 + φ �φ) = ∫

N |∇ φ|2 and
∫
�

φ = − 1
λ

∫
�

�φ = 0.
We now prove (3). If sn−r = 0, then (2.13) becomes λ ≥ k

2 which is true in view of (2.17).
We can now assume sn−r > 0. Suppose λ − k

2 ≤ sn−r p, then by (2.10), we have

0 ≤ sn−r p −
(

λ − k

2

)
≤

((
λ − k

2

)2

− sn−r lλ

) 1
2

.

Squaring this inequality gives sn−r p2 + kp ≤ (2p − l)λ. From this we see that p > l
2 and

(2.13) follows.
For (4), we can put l = sr in (2.3) and using (2.23) or (2.26) to obtain

2λ − k ≥ sn−r p + sr

∫
�

|i∗ω|2∫
�

〈ινω, φ〉 = sn−r p + sr

∫
�

|i∗ω|2∫
N |ω|2 . (2.27)

As ω is co-closed andHr
R(N ) ∼= Hr

dR(N , δ) = 0, it is also co-exact. So by [16] Proposition

14,
∫
� |i∗ω|2∫
N |ω|2 ≥ p1,n−1−r , and (2.15) follows. If r = 1, k ≥ 0 and sn−1 > 0, then by [20]

(Theorem 2.6.4, Corollary 2.6.2 and Theorem 2.6.1), H1
R(N ) = 0, thus this later condition

can be dropped.
We now prove (5). Suppose the equality sign in any of the inequalities (2.10), (2.11),

(2.12), (2.14) and (2.15) holds, then by (2.3), ∇ω = 0. We can then argue as in the proof of
Theorem 2.3 that k = 0.

If any inequality sign of the inequalities (2.10), (2.11), (2.12) or (2.14) becomes an equality
sign, then one of the inequalities in (2.10) or (2.11) is an equality. Assume one of these
holds. The inequalities (2.23) (or (2.26)) and (2.3) then become equations. So we have the
r -curvatures are constantly equal to sr = l, ινω = pφ and the (n − r)-curvatures are equal
to the constant sn−r . In particular, Sn−r ≡ sn−r .

We now show that λ = sn−r sr . To do this we make use of the following formulas:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δi∗α = i∗δα + ιν∇να − Sr−1(ινα) + H ινα for α ∈ 
r (N ),

∗Sr (α) + Sn−1−r (∗α) = H ∗ α for α ∈ 
r (�),

∗ ∗ α = (−1)(n−1−r)rα for α ∈ 
r (�),

δα = −
n∑

j=1

ιe j ∇e j α for α ∈ 
r (N ).

(2.28)

Here ∗ : 
r (�) → 
n−1−r (�) is the Hodge star operator on � and {e j }nj=1 is a local
orthonormal frame on N . The last two formulas are standard and are included here just for
convenience (e.g. [20]). For the first two formulas, see [15] Sects. 2 and 6. Using (2.28), we
compute

δdi∗φ = δi∗d φ = δi∗ω
= i∗δω + ιν∇νω − Sr−1(ινω) + H ινω

= i∗
⎛
⎝

n∑

j=1

ιe j ∇e j ω

⎞
⎠ − Sr−1(ινω) +

(
(−1)n(r−1) ∗ Sn−r (∗ινω) + Sr−1(ινω)

)

= (−1)n(r−1) ∗ Sn−r (∗ινω)
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= (−1)n(r−1)sn−r ∗ ∗ινω

= sn−r ινω.

This implies

−λφ + sn−r pφ = −(dδ + δd)i∗φ + sn−r ινω = −δdi∗φ + sn−r ινω = 0.

As sn−r p = λ ± (λ2 − sn−r srλ)
1
2 , we conclude that −λ + λ ± (λ2 − sn−r srλ)

1
2 = 0, or

λ = sn−r sr = sn−r p > 0.

This shows that sr = l > 0 which contradicts the assumption of (2), thus the inequalities
(2.11) and (2.12) must be strict.

We can now proceed in exactly the same way as the proof of Theorem 2.3 to show that
N must be a Euclidean ball if Ric ≥ 0, which we can w.l.o.g. assume to be the standard unit
ball Bn . But then by [17] Corollary 4,

p1,r−1(B
n) =

{
r if r ≥ n

2 + 1,
n+2
n (r − 1) if 2 ≤ r ≤ n

2 + 1.
(2.29)

As sm(Sn−1) = m and by (2.7), we conclude that if r > 1, the equality in (2.10) or (2.14)
holds if and only if r ≥ n

2 + 1. For r = 1, it is well-known that p2,0(B
n) = 1, from this we

can also conclude that the equality in (2.10) or (2.14) holds if and only if N is a Euclidean
ball.

Suppose the equality in (2.15) holds, then by (2.23) or (2.26), ινω = pφ and by the
same reason as above, the r -curvatures are constantly equal to sr , the (n − r)-curvatures are
constantly sn−r , and λ = sn−r p. In particular, sr �= 0 in view of (2.15), so from (2.27), we
have

p1,n−1−r =
∫
�

|i∗ω|2∫
N |ω|2 = λ

∫
�

|φ|2∫
�

〈ινω, φ〉 = λ

p
.

In view of (2.15), we deduce that p = sr . We can then proceed as before to conclude that if
Ric ≥ 0, then (N , g) is a Euclidean ball. But then by (2.7) and (2.29), the equality cannot be
attained on a Euclidean ball if r > 1. If r = 1, then from (2.29) we see that the equality is
attained if and only if n ≥ 4, on a Euclidean ball. ��

Remark 3 (1) Escobar ([6] Theorem 8) showed that if k ≥ 0, then p2,0 > s1
2 , so (2.14)

is well-defined. Also, (2.15) is a generalization [4, Theorem 9] and [16, Theorem 8,
Theorem 9].

(2) Theorem 2.4 (1) is an extension of [22] Theorem 1.1, in which they provided an upper
bound for p2, which corresponds to our result when k = 0 and r = 1.

(3) We suspect that (2.14) holds whenever k ≥ 0 and in this case we have 2p > sr ≥ l, but
we are unable to show it for the time being.

3 Some applications and special cases

In [25], Yang and Yau proved that for a compact Riemann surface � of genus g, for any
metric on �, λ1(�)Area(�) ≤ 8π(1 + g). Combining this result with Theorems 2.3 and
2.4, we have several corollaries. Let us only state the following:
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Corollary 3.1 If N = S
3, then under the assumptions of Theorem 2.3, we have(

2 + sn−1s1 + √
(sn−1s1)2 + 4sn−1s1

)
Area(�) < 16π(g + 1).

Remark 4 Although the estimate of Theorem 2.3 is not sharp when k �= 0, r = 1, by
examining the case where � is a geodesic circle of radius ρ in a hemisphere (λ1 = λ′′

1,0(�) =
1/ sin2(ρ)), it is found that the error is within 1/2. Indeed, in this case, k = 1, s1 = sn−1 =
cot ρ, we have λ1 − 1

2 (k + s2
1 +

√
s4

1 + 2s2
1k) = 1

2 csc2 ρ − 1
2

√
csc4 ρ − 1 ≤ 1

2 . The error
tends to zero as ρ → 0.
On the other hand, by [6] Example 5, the first nonzero Steklov eigenvalue of the geodesic
ball of radius ρ in S

2 is computed to be cot ρ + tan ρ
2 . By direct computations, it is found

that the error in Theorem 2.4 (2) is λ1 − s1 p2
2+kp2

2p2−s1
= tan2(ρ/2)

2−cos ρ
which is (very) slightly better

than that of Theorem 2.3.

The following result is another immediate consequence of Theorem 2.3, which can be
regarded as the analogue of Theorem 2 of Hang-Wang [11] (see also [24] Corollary 1).

Corollary 3.2 Let (Nn, g) be a compact orientable Riemannian manifold with bound-
ary �. Suppose the Ricci curvature of N is nonnegative, sr (�)sn−r (�) ≥ r(n − r) =
λ′′

1,r−1(S
n−1) ≥ λ′′

1,r−1(�) for some r = 1, . . . , n − 1, and Wr is nonnegative, then (N , g)
is isometric to the unit ball in R

n.

Theorem 2.3 gives a quick proof of the following result, which is the K ≥ 0 analogue of
Theorem 3.1:

Corollary 3.3 Suppose (N 2, g) be a compact surface with (not necessarily connected)
boundary γ with the Gaussian curvature K ≥ 0. If the geodesic curvature kg of γ sat-
isfies kg ≥ l > 0, then its length L(γ ) ≤ 2π

l . The equality holds if and only if (N , g) is
isometric to the Euclidean disk of radius 1/ l.

Proof By Gauss-Bonnet theorem, 2πχ(N ) = ∫
N K + ∫

γ
kg > 0, thus γ has only one

component. By Theorem 2.3, λ1(γ ) ≥ l2. The equality holds if and only if N is a Euclidean
disk of radius 1/ l. As λ1(γ ) = ( 2π

L(γ )
)2, the result follows. ��

In [2], Choi and Wang proved that if (Nn, g) is a compact orientable manifold whose
Ricci curvature is bounded from below by k > 0 and � is an embedded orientable minimal
hypersurface in N , then λ1(�) ≥ k

2 . Since their proof are essentially the same as that of
Theorem 2.3, their result can be improved slightly to λ1(�) > k

2 . This is related to Yau’s
conjecture [26]. It is easy to see that the coordinate functions are eigenfunctions of a minimal
hypersurface of Sn (whose Ricci curvature is n − 1) with eigenvalue n − 1. Yau conjectured
that the first eigenvalue is actually n − 1. Escobar also have a similar conjecture in [4]. We
also notice that Barros and Bessa [1] proved an improvement on the Choi-Wang estimate.

In the two-dimensional case, an embedded minimal submanifold is reduced to a simple
closed geodesic, the result of Choi-Wang can be improved to λ1 ≥ k, by a result of Toponogov
[21] on the length of a closed geodesic. More generally, we have the following result which
is an extension of the result in [11], which may have some independent interest:

Theorem 3.1 Let (N 2, g) be a closed surface with Gaussian curvature K ≥ 1. Let γ be a
simple closed curve in N which separates N into N1, N2. Suppose its geodesic curvature
w.r.t. the outward normal of N1 satisfies kg ≥ l ≥ 0. Then its length L(γ ) ≤ 2π√

1+l2
, which is

123



Some sharp Hodge Laplacian and Steklov Page 13 of 14 38

equivalent to λ1(γ ) ≥ 1 + l2 (as λ1(γ ) = ( 2π
L(γ )

)2), and also Area(N2) ≤ Area(Br ), where

Br is the disk of radius r = cot−1(−l) in the standard sphere S2. If L(γ ) = 2π√
1+l2

then N1

is isometric to Bπ−r . If, moreover, Area(N2) = Area(Br ), then (N , g) is S2. The condition
for the area can be dropped if l = 0.

Proof By [11] Theorem 3, we have L(γ ) ≤ 2π√
1+l2

. The equality holds if and only if (N1, g)

is isometric to the disk Br ′ ⊂ S
2, r ′ = cot−1(l). Therefore if L(γ ) = 2π , (N1, g) is isometric

to the standard hemisphere. But then kg = 0, thus we can apply the same argument to N2 to
deduce that (N , g) is S2. In general, if L(γ ) = 2π√

1+l2
, then by Gauss-Bonnet theorem, as N

is a topological sphere,

Area(Br ) + Area(Br ′) = 4π =
∫

N2

K +
∫

N1

K =
∫

N2

K + Area(Br ′)

≥ Area(N2) + Area(Br ′).

So if Area(N2) = Area(Br ), then K = 1 on N and so (N , g) is S2. ��
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