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Abstract We study the uniqueness and nondegeneracy of positive solutions of div (ρ∇u)+
ρ(−gu + hu p) = 0 in a ball, the entire space, an annulus, or an exterior domain under the
Dirichlet boundary condition.
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1 Introduction

We study the uniqueness and nondegeneracy of positive radial solutions of the problem

div (ρ(|x |)∇u(x)) + ρ(|x |)(−g(|x |)u(x) + h(|x |)u(x)p) = 0 in BR (1.1)

under the boundary condition{
u(x) = 0 for |x | = R in the case of 0 < R < ∞,

u(x) → 0 as |x | → ∞ in the case of R = ∞.
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Here, n ≥ 2, p > 1, BR = {x ∈ R
n : |x | < R} with R ∈ (0,∞], and ρ, g, h : (0, R) → R

are appropriate functions. If ρ(r) ≡ 1, then (1.1) is

�u(x) − g(|x |)u(x) + h(|x |)u(x)p = 0 in BR .

These problems include many important equations, like the scalar field equation, and they
were studied by many researchers; see [8,9,11,14,22–26,32,33,36–38,42,44,45,47–49,53–
56] and the references therein. Recently, in [47], we introduced a new generalized Pohožaev
function and we studied the uniqueness of positive solutions of problem (1.1). We showed
the result is applicable to various examples. However, for some examples, in the case when
n = 2, we could not show the uniqueness of positive solutions. For instance, we consider the
problem

�u − (λ + |x |2)u + u p = 0 in R
n and u(x) → 0 as |x | → ∞, (1.2)

where n ∈ Nwith n ≥ 2, λ > −n, 1 < p < ∞ in the case n = 2 and 1 < p ≤ (n+2)/(n−2)

in the case n ≥ 3. In [47], if n > 2, we could show the uniqueness of positive solutions of
(1.2), but we could not show its uniqueness in the case n = 2.

In this paper, first, we show that if our generalized Pohožaev function is nontrivial and
nonnegative for each positive radial solution of (1.1), then the problem has at most one positive
radial solution. We can see that (B5) (i) (with other assumptions) in Theorem 1, given in [47],
is one of sufficient conditions. We give another sufficient condition (B5) (ii) in Theorem 1.
The new condition seems to be useful in the case of n = 2. Next, we study the existence of a
unique positive radial solution of (1.1). We note that Theorem 1 says nothing on the existence
of a solution. Adding some assumptions to those of Theorem 1 and applying the variational
method, we show the existence of a unique positive radial solution of problem (1.1). One
of the difficulties is to show that the solution obtained by the variational method does not
diverge at the origin. Using a subsolution estimate, we show that the obtained solution is
continuous at the origin. Next, we study the nondegeneracy of the unique positive solution in
a radial function space. Our assumptions for the nondegeneracy result are essentially same as
those for the unique existence result, and our uniqueness theorem plays an important role to
show the nondegeneracy in a radial function space. Moreover, we study the nondegeneracy
of the positive radial solution of (1.1) in a full space (including nonradial functions). Further,
we study the uniqueness of positive radial solutions of

div (ρ(|x |)∇u(x)) + ρ(|x |)(−g(|x |)u(x) + h(|x |)u(x)p) = 0 in AR′,R (1.3)

under the boundary condition

u(x) = 0 for |x | = R′ and

{
u(x) = 0 for |x | = R if R′ < R < ∞,

u(x) → 0 as |x | → ∞ if R = ∞,

where 0 < R′ < R ≤ ∞, p > 1, n ≥ 1 and AR′,R = {x ∈ R
n : R′ < |x | < R}. We also

study the nondegeneracy of the unique positive solution of (1.3) in a radial function space.
We note that our uniqueness and nondegeneracy results cover the results in [8,14,22], in
which the cases ρ(r) ≡ 1 and h(r) ≡ 1 were studied.

This paper is organized as follows. In the next section, we recall the generalized Pohožaev
identity introduced in [47]. In Sect. 3, we show our uniqueness and nondegeneracy results for
(1.1), and in Sect. 4, we give the proofs of them. In Sect. 5, we study the nondegeneracy in
the case when our Pohožaev function is identically zero. In Sect. 6, we show our uniqueness
and nondegeneracy results for (1.3). In the final section, we show some examples to which
our results are applicable and we give some new uniqueness results.
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2 Generalized Pohožaev identity

We recall the generalized Pohožaev identity introduced in [47]. Setting f (r) = rn−1ρ(r),
we can consider

urr (r) + fr (r)

f (r)
ur − g(r)u(r) + h(r)u(r)p = 0

for radial solutions of (1.1). We note that g(r) was used in [47] instead of −g(r).

Proposition 1 Let −∞ < R′ < R ≤ ∞, g ∈ C1((R′, R)) and f, h ∈ C3((R′, R)) such
that f, h are positive in (R′, R). If p > 1 and u ∈ C2((R′, R)) is a positive solution of

urr (r) + fr (r)

f (r)
ur (r) − g(r)u(r) + h(r)u(r)p = 0 in (R′, R),

then

d

dr
J (r; u) = G(r)u(r)2 in (R′, R),

where

J (r; u) = 1

2
a(r)ur (r)

2 + b(r)ur (r)u(r) + 1

2
c(r)u(r)2

− 1

2
a(r)g(r)u(r)2 + 1

p + 1
a(r)h(r)u(r)p+1,

a(r) = f (r)
2(p+1)
p+3 h(r)−

2
p+3 ,

b(r) = −1

2
ar (r) + fr (r)

f (r)
a(r),

c(r) = −br (r) + fr (r)

f (r)
b(r),

G(r) = b(r)g(r) + 1

2
cr (r) − 1

2

(
a(r)g(r)

)
r (r).

Remark 1 The following are detailed expressions of b(r), c(r) and G(r):

b(r) = (p + 3)−1 f (r)
p−1
p+3 h(r)−

p+5
p+3 (2h(r) fr (r) + f (r)hr (r)) ,

c(r) = (p + 3)−2 f (r)−
4

p+3 h(r)−
2(p+4)
p+3

(
h(r)2[8 fr (r)

2 − 2(p + 3) f (r) frr (r)]
+ (p + 5) f (r)2hr (r)

2 − f (r)h(r)[(p − 5) fr (r)hr (r) + (p + 3) f (r)hrr (r)]
)
,

G(r) = 1

2
(p + 3)−3 f (r)−

p+7
p+3 h(r)−

2
p+3 −3

×
[
−

[
32 fr (r)

3+ 2(p − 9)(p + 3) f (r) fr (r) frr (r)+2(p+3)2 f (r)2 frrr (r)
]
h(r)3

−
[
2(p − 1)(p + 3)2 f (r)2 fr (r)h(r)3 − 4(p + 3)2 f (r)3h(r)2hr (r)

]
g(r)

− (p + 3)3 f (r)3gr (r)h(r)3

−
[
(p(p − 6) + 21) f (r) fr (r)

2 + ((p(p − 6) − 27)) f (r)2 frr (r)
]
h(r)2hr (r)
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+ 3(p − 1)(p + 5) f (r)2 fr (r)h(r)hr (r)
2 − 2(p + 4)(p + 5) f (r)3hr (r)

3

− 3(p − 1)(p + 3) f (r)2 fr (r)h(r)2hrr (r)

+ 3(p + 3)(p + 5) f (r)3h(r)hr (r)hrr (r) − (p + 3)2 f (r)3h(r)2hrrr (r)

]
.

For the reader’s convenience, we show the expressions a(r), b(r), c(r) and G(r) for specified
f (r), g(r), h(r) in Appendix 1.

3 Ball or entire space case

In this section, we study the problem
{
urr (r) + fr (r)

f (r) ur − g(r)u(r) + h(r)u(r)p = 0, R′ < r < R,

u(R′) ∈ (0,∞), u(R) = 0,
(3.1)

where −∞ < R′ < R ≤ ∞, p > 1 and f , g, h are some functions. In the case of R = ∞,
u(R) = 0 means that u(r) → 0 as r → ∞. We note that ur (R′) = 0 is not included in (3.1).
However, we impose conditions that each positive solution in the following sense satisfies it;
see Lemma 1. We say u is a positive solution of (3.1) if

{
u ∈ C([R′,∞)) ∩ C2((R′,∞)) in the case of R = ∞,

u ∈ C([R′, R]) ∩ C2((R′, R)) in the case of R < ∞,

u(r) > 0 for each r ∈ [R′, R), and u satisfies (3.1). For the sake of completeness, we note
that if u is a positive radial solution of (1.1) then u is a positive solution of (3.1) with R′ = 0
and f (r) = rn−1ρ(r). We impose the following conditions on f, g and h.

(B1) (i) −∞ < R′ < R ≤ ∞, g ∈ C1((R′, R)), f, h ∈ C3((R′, R)), and f , h are positive
in (R′, R).

(ii) lim
r→R′ f (r) < ∞.

(iii) lim
r→R′

1

f (r)

∫ r

R′
f (τ )(|g(τ )| + h(τ )) dτ = 0.

(iv) There exists R̄ ∈ (R′, R) such that

(a) f g, f h ∈ L1((R′, R̄)),

(b) τ �→ f (τ )(|g(τ )| + h(τ ))

∫ R̄

τ

dσ

f (σ )
∈ L1((R′, R̄)),

(c) 1/ f /∈ L1((R′, R̄)).

(v) In the case of R < ∞, g ∈ C((R′, R]), f, h ∈ C2((R′, R]), f (R) > 0 and
h(R) > 0 are also satisfied.

Remark 2 Let g ∈ C1((0,∞)) ∩ C([0,∞)), ρ, h ∈ C3((0,∞)) ∩ C2([0,∞)), ρ, h are
positive on [0,∞) and n ∈ R with n ≥ 2. Set f (r) = rn−1ρ(r). Then it is easy to see that
(B1) is satisfied with R′ = 0 < R ≤ ∞.

Now, we state our uniqueness theorem. In the following, a(r), b(r), c(r), G(r) and J (r; u)

are the ones given in Proposition 1. We note that the case (B5) (i) is essentially same as [47,
Theorem 1] and that a similar condition to (B5) (ii) was studied by Byeon–Oshita [8].
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Theorem 1 Let p > 1. Assume (B1) and the following.

(B2) lim
r→R′ a(r) < ∞, lim

r→R′ |b(r)| < ∞, lim
r→R′ a(r)g(r) = 0 and lim

r→R′ a(r)h(r) = 0.

(B3) lim
r→R′

c(r) ∈ [0,∞].
(B4) In the case of R = ∞, G− �≡ 0 is satisfied, where G−(r) = min{G(r), 0} for

r ∈ (R′, R).
(B5) One of the following conditions is satisfied.

(i) There exists κ ∈ [R′, R] such that

G(r) ≥ 0 on (R′, κ) and G(r) ≤ 0 on (κ, R).

(ii) {R′ < r < R : G(r) = 0, D(r) > 0} = ∅, where

D(r) = b(r)2 − a(r)
(
c(r) − a(r)g(r)

)
.

Then in the case of R < ∞, problem (3.1) has at most one positive solution, and in the case
of R = ∞, problem (3.1) has at most one positive solution u which satisfies J (r; u) → 0 as
r → ∞.

Remark 3 If p > 1 and the assumptions in Remark 2 are satisfied, then (B2) and (B3) hold.
See Proposition 2 in the next section.

Remark 4 The following is a detailed expression of D(r):

D(r) = (p + 3)−2 f (r)
−2(p+1)

p+3 h(r)−
2(p+5)
p+3

×
[
(p + 3)2 f (r)2h(r)2g(r) + (−4 fr (r)

2 + 2(p + 3) f (r) frr (r)
)
h(r)2

− (p + 4) f (r)2hr (r)
2 + (p − 1) f (r) fr (r)h(r)hr (r) + (p + 3) f (r)2h(r)hrr (r)

]
.

For the reader’s convenience, we show the expressions D(r) for specified f (r), g(r), h(r)
in Appendix 1.

Next, we study the existence of a unique positive solution of (3.1) by the variational
method. We introduce function spaces (X , ‖ ·‖X ) and (L, ‖ ·‖L) such that X is continuously
imbedded into L, and we define a functional I on X by

I (u) =
∫ R

R′

(
1

2
(|ur (r)|2 + g(r)|u(r)|2) − 1

p + 1
h(r)|u(r)|p+1

)
f (r) dr

= 1

2
‖u‖2

X − 1

p + 1
‖u‖p+1

L (3.2)

whose positive critical point corresponds to a positive solution of (3.1). Now, we give them
in detail. We set

D =
{
ϕ ∈ C∞([R′, R)) : supp ϕ ⊂ [R′, R),

d2k−1ϕ

dr2k−1 (R′) = 0 for each k ∈ N

}
.
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We define

‖ϕ‖X =
(∫ R

R′

(
ϕr (r)

2 + g(r)ϕ(r)2) f (r) dr
) 1

2

for each ϕ ∈ D,

‖ϕ‖L =
(∫ R

R′
h(r)|ϕ(r)|p+1 f (r) dr

) 1
p+1

for each ϕ ∈ D,

and we impose the following conditions.

(B6) inf
ϕ∈D\{0}

‖ϕ‖X
‖ϕ‖L > 0, inf

ϕ∈D\{0}
‖ϕ‖2

X∫ R
R′

(
ϕr (r)2 + |g(r)|ϕ(r)2

)
f (r) dr

> 0.

We denote by X and L the completion of D with respect to ‖ · ‖X and ‖ · ‖L, respectively.
We can see that both inequalities in (B6) hold even if the infimums are taken on X\{0}. So,
under these assumptions, the embedding from X into L is continuous, and the norm defined
by

(∫ R

R′

(
ϕr (r)

2 + |g(r)|ϕ(r)2) f (r) dr
) 1

2

for each ϕ ∈ X

is equivalent to ‖ · ‖X on X .

Remark 5 Under these assumptions, we can see that each equivalence class in X is the
standard almost everywhere equivalence class. We can also see that for each u ∈ X , there is
v ∈ L p+1

loc (R′, R) such that
∫ R

R′
uϕr dr = −

∫ R

R′
vϕ dr for each ϕ ∈ C∞

0 (R′, R),

and we denote this v by ur . Consequently, we have X ⊂ H1
loc(R

′, R).

Remark 6 Even if we assume (B6) with C∞
0 ((R′, R)) instead of D, we can show that the

completion of C∞
0 ((R′, R)) with respect to the norm ‖ · ‖X is exactly X by assumption (B1)

(iv) (c). See Lemma 9 in Appendix 2.

Remark 7 Since we consider the problems not only like the scalar field equation but also like
Matukuma’s equation, see Sect. 7, we do not assume the condition such as

inf
ϕ∈D\{0}

∫ R
R′(ϕr (r)2 + g(r)ϕ(r)2) f (r) dr∫ R

R′ h(r)u(r)2 f (r) dr
> 0.

Now, we show our existence result. In many applications, the following assumption (B9)
holds.

Theorem 2 Let p > 1. Assume (B1)–(B6) and the following.

(B7) One of the following conditions is satisfied.

(i) The embedding X ↪→ L is compact.
(ii) There exists ĝ ∈ C((R′, R)) such that

Sg ≡ inf
u∈X\{0}

‖u‖2
X

‖u‖2
L

< Sĝ ≡ inf
u∈X\{0}

∫ R
R′(ur (r)2 + ĝ(r)u(r)2) f (r) dr

‖u‖2
L

,

123



Uniqueness and nondegeneracy of positive radial solutions. . . Page 7 of 42 32

and for each {um} ⊂ X converging weakly to some u ∈ X , there holds
∫ R

R′
(ĝ(r) − g(r))|um(r) − u(r)|2 f (r) dr → 0.

(B8) There exist p̄ ∈ [p,∞), q ∈ (1, p̄) and R̄ ∈ (R′, R) such that

inf
u∈X\{0}

(∫ R̄
R′

(
ur (r)2 + g(r)u(r)2

)
f (r) dr

) 1
2

(∫ R̄
R′ |u| p̄+1h f dr

) 1
p̄+1

> 0, (3.3)

∫ R̄

R′
(|g−|/h)

q+1
q−1 h f dr < ∞. (3.4)

(B9) In the case of R = ∞, each positive solution u ∈ X ∩ C2((R′,∞)) ∩ C([R′,∞)) of
(3.1) satisfies J (r; u) → 0 as r → ∞.

Then problem (3.1) has a unique positive solution ū in X .

Remark 8 Under assumption (B6), (3.3) holds with p̄ = p. In applications, if p is a so called
subcritical exponent, letting p̄ > p be the critical one, we usually have (3.3).

Remark 9 We need assumption (3.4) to show that the solution given by the variational method
does not diverge at r = R′. We note that each of the following conditions is a sufficient
condition for (3.4).

(i) g− ≡ 0.
(ii) f, g, h are continuous at R′ and h(R′) > 0.

Next, we show a nondegeneracy result for the unique positive solution ū of (3.1) in the
space X .

Theorem 3 Let p > 1. Assume (B1)–(B8) and the following.
(B9′) In the case of R = ∞, for each u ∈ X ∩ C2((R′,∞)) ∩ C([R′,∞)) which is

positive on [R′,∞) and satisfies

urr (r) + fr (r)

f (r)
ur (r) − g(r)u(r) + h(r)u(r)p = 0 for each r ∈ (Ru,∞)

with some Ru ∈ (R′,∞), there holds

lim
r→∞ J (r; u) = 0.

(B10) G �≡ 0 in (R′, R).
Then the unique positive solution ū of problem (3.1) is a nondegenerate critical point of the
C2-functional I defined by (3.2) for each u ∈ X .

Remark 10 In the case of R = ∞, (B10) is already assumed in (B4).

Remark 11 Even if G ≡ 0 with R < ∞, we have a nondegeneracy result. Since it is a little
bit complicated, we postpone it to Sect. 5.
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Next, we study the nondegeneracy of the unique positive solution of (3.1) in a general
function space. Let n ∈ N with n ≥ 2. We set R′ = 0 and ρ(r) = f (r)/rn−1. We define

‖ϕ‖Xρ =
(∫

BR

(|∇ϕ(x)|2 + g(|x |)|ϕ(x)|2)ρ(|x |) dx
) 1

2

for each ϕ ∈ C∞
0 (BR),

‖ϕ‖Lρ =
(∫

BR

h(|x |)|ϕ(x)|p+1ρ(|x |) dx
) 1

p+1

for each ϕ ∈ C∞
0 (BR),

where BR = {x ∈ R
n : |x | < R}, and we impose the following conditions.

(B6′) inf
ϕ∈C∞

0 (BR)\{0}
‖ϕ‖Xρ

‖ϕ‖Lρ

> 0, inf
ϕ∈C∞

0 (BR)\{0}
‖ϕ‖2

Xρ∫
BR

(|∇ϕ|2 + |g| |ϕ|2)ρ dx
> 0.

As before, we denote by Xρ and Lρ the completion of C∞
0 (BR) with respect to ‖ · ‖Xρ and

‖ · ‖Lρ , respectively. We can see that both inequalities in (B6’) hold even if the infimums are
taken on Xρ\{0}.

Now, we show our nondegeneracy result in Xρ . In many applications, (B12) and (B13)
below hold by the elliptic regularity.

Theorem 4 Let p > 1 and n ∈ N with n ≥ 2. Assume (B1)–(B5) with R′ = 0, (B6’) with
ρ(r) = f (r)/rn−1, (B8), (B9′) and (B10). Let ū be the unique radially symmetric, positive
solution of (3.1). Assume also the following.

(B11) fr ≥ 0 in (0, R),

(log ρ(r))rr ≥ 0, gr (r) ≥ 0 and hr (r) ≤ 0 in (0, R), (3.5)

and in the case R = ∞, at least one inequality in (3.5) is not identically equal.
(B12) (i) lim

r→0
max{| fr (r)ūr (r)|, f (r)|g(r)|, f (r)h(r)} < ∞.

(ii) In the case of R = ∞,

lim
r→∞ max

{| fr (r)ūr (r)|, f (r)|g(r)|ū(r), f (r)h(r)ū(r)p, f (r)|ūr (r)|
}

< ∞.

(B13) For each weak solution w ∈ Xρ of

�w + ∇ρ∇w

ρ
− gw + phū p−1w = 0 in BR,

i.e., ∫
BR

(∇w∇v + gwv − phū p−1wv
)
ρ dx = 0 for each v ∈ Xρ,

there hold w is in C1(BR), and in the case of R = ∞,

lim|x |→∞ w(x) = 0 and lim|x |→∞
∂w

∂xi
(x) = 0 for each i = 1, . . . , n.

Then ū is a nondegenerate critical point of the C2-functional I defined by

I(u) =
∫
BR

(
1

2
(|∇u(x)|2 + g(|x |)|u(x)|2) − 1

p + 1
h(|x |)|u(x)|p+1

)
ρ(|x |) dx

for u ∈ Xρ .
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Remark 12 For each radially symmetric u ∈ Xρ , there holds I(u) = |Sn−1|I (u), where
|Sn−1| is the surface measure of Sn−1 and I is the functional defined by (3.2).

4 Proof of Theorems 1–4

First, we give the following.

Proposition 2 Let g ∈ C1((0,∞))∩C([0,∞)), ρ, h ∈ C2([0,∞))∩C3((0,∞)), ρ, h are
positive on [0,∞), n ∈ R with n ≥ 2, and p > 1. Set f (r) = rn−1ρ(r). Then (B1)–(B3)
are satisfied with R′ = 0 < R ≤ ∞.

Proof It is easy to see that (B1) is satisfied. Under the assumptions, we have

a(r) = (
ρ(r)rn−1) 2(p+1)

p+3 h(r)−
2

p+3 ,

b(r) = ρ(r)
2(p+1)
p+3 −1r

2(n−1)(p+1)
p+3 −1

(p + 3)h(r)
p+5
p+3

(
2h(r)[(n − 1)ρ(r) + rρr (r)] + rρ(r)hr (r)

)
,

c(r) = ρ(r)
2(p+1)
p+3 −2r

2(n−1)(p+1)
p+3 −2

(p + 3)2h(r)
2(p+4)
p+3

·
[
2h(r)2

(
(n − 1)[n + 2 − (n − 2)p]ρ(r)2 + 4r2ρr (r)

2

− rρ(r)
(
(p + 3)rρrr (r) + 2(n − 1)(p − 1)ρr (r)

)) + (p + 5)r2ρ(r)2hr (r)
2

− rρ(r)h(r)
[
(p + 3)rρ(r)hrr (r) + (p − 5)hr (r)

(
rρr (r) + (n − 1)ρ(r)

)]]
.

We set

ν = 2(n − 1)(p + 1)

p + 3
.

From ν > 1, we can easily see a(r) → 0 and b(r) → 0 as r → 0, which yields (B2). Since
we have ν > 2 if n ≥ 3 and ν < 2 if n = 2, we can find

lim
r→0

c(r) =
{

0 if n ≥ 3,

∞ if n = 2.

We consider the case 2 < n < 3. Since ν > 2 is equivalent to p > (4 − n)/(n− 2), we have

lim
r→0

c(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 2 < n < 3 and p > (4 − n)/(n − 2),

(n−2)2ρ(0)
2

n−2

h(0)
n−2
n−1

if 2 < n < 3 and p = (4 − n)/(n − 2),

∞ if 2 < n < 3 and p < (4 − n)/(n − 2).

Hence we have shown (B3). ��
We give the following three lemmas. Although Lemmas 1 and 2 are slightly different from

[47, Lemmas 1 and 2], the proofs of [47, Lemmas 1 and 2] work well. Lemma 3 is same as
[47, Lemma 3].

Lemma 1 Let p > 1. Assume (B1) (i) and a nonnegative function u ∈ C2((R′, R)) satisfies

urr (r) + fr (r)

f (r)
ur (r) − g(r)u(r) + h(r)u(r)p = 0 for each r ∈ (R′, R). (4.1)
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If (B1) (iii) and (B1) (iv) are satisfied and u is bounded in a neighborhood of R′, then
ur (r) → 0 as r → R′. If R < ∞, (B1) (iii) is satisfied, and u is a positive solution of (3.1),
then u is continuously differentiable at R and ur (R) ∈ (−∞, 0).

Lemma 2 Let p > 1. Assume (B1) (i), (B1) (iii) and (B1) (iv). If nonnegative functions
u, v ∈ C([R′, R)) ∩ C2((R′, R)) satisfies (4.1) and u(R′) = v(R′), then they coincide.

Lemma 3 Let p > 1. Assume (B1) (i)–(iv). Let u and v be positive solutions of (3.1). Then

d

dr

(
v(r)

u(r)

)
= 1

u(r)2

∫ r

R′
f (τ )

f (r)
h(τ )

(
u(τ )p−1 − v(τ)p−1) u(τ )v(τ ) dτ

for each r ∈ (R′, R).

Proposition 3 Let p > 1. Assume (B1) and (B2). Let u and v be positive solutions of (3.1)
such that u(R′) < v(R′) and J (r; u) ≥ 0 on (R′, R). Then

d

dr

(
v(r)

u(r)

)
< 0 for each r ∈ (R′, R).

Proof Assume that the conclusion does not hold. We set w(r) = v(r)/u(r) for r ∈ (R′, R).
Then by Lemma 3, there exists r∗ ∈ (R′, R) such that wr (r∗) = 0 and wr (r) < 0 on (R′, r∗).
We note w(r∗) < 1. We define

X (r) = w(r)2 J (r; u) − J (r; v) for each r ∈ (R′, R). (4.2)

Then we have

X (r) = 1

2
a(r)

(
v(r)2ur (r)2

u(r)2 − vr (r)
2
)

+ b(r)

(
v(r)2ur (r)

u(r)
− vr (r)v(r)

)

+ 1

p + 1
a(r)h(r)v(r)2(u(r)p−1 − v(r)p−1) (4.3)

for each r ∈ (R′, R). From (B2) and Lemma 1, we have

lim
r→R′ X (r) = 0. (4.4)

From wr (r∗) = 0 and w(r∗) < 1, we also have

X (r∗) = 1

p + 1
a(r∗)h(r∗)v(r∗)2(u(r∗)p−1 − v(r∗)p−1) > 0.

On the other hand, from wr (r) < 0 on (R′, r∗) and J (r; u) ≥ 0 on (R′, R), we have

Xr (r) = 2w(r)wr (r)J (r; u) ≤ 0 on(R′, r∗),

which contradicts (4.4) and X (r∗) > 0. Hence we have shown our assertion. ��

Now, we assume all assumptions in Theorem 1.

Proposition 4 Let u be a positive solution of (3.1). In the case of R = ∞, assume J (r; u) →
0 as r → ∞. Then J (·; u) �≡ 0, and J (r; u) ≥ 0 for each r ∈ (R′, R).
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Proof From (B2) and (B3), we have limr→R′ J (r; u) ≥ 0. In the case R < ∞, we have
limr→R J (r; u) = (1/2)a(R)ur (R)2 > 0, and hence J (·; u) �≡ 0. In the case of R = ∞,
we have limr→∞ J (r; u) = 0 by the assumption, and we can find J (·; u) �≡ 0 by G− �≡ 0.

We will show J (r; u) ≥ 0 for each r ∈ (R′, R). Since it is trivial in the case (B5) (i), we
consider the case (B5) (ii). If J (r; u) ≥ 0 does not hold, then there exists r0 ∈ (R′, R) such
that

J (r0; u) < 0 and 0 = d

dr
J (r0; u) = G(r0)u(r0)

2.

Then we can find G(r0) = 0, and

0 >
2J (r0; u)

u(r0)2 > a(r0)
ur (r0)

2

u(r0)2 + 2b(r0)
ur (r0)

u(r0)
+ c(r0) − a(r0)g(r0).

So we have D(r0) > 0, which contradicts (B5) (ii). Hence we have shown J (r; u) ≥ 0 for
each r ∈ (R′, R). ��
Proof of Theorem 1 Suppose that the conclusion does not hold. Then there exist distinct
positive solutions u, v of (3.1), and in the case of R = ∞, they satisfy J (r; u) → 0 and
J (r; v) → 0 as r → ∞. We may assume u(R′) < v(R′). By Proposition 4, we have
J (r; u) ≥ 0, J (r; v) ≥ 0 for each r ∈ (R′, R) and J (·; u) �≡ 0, J (·; v) �≡ 0. We define
w and X as in the proof of Proposition 3. From its proof, we have (4.4). We also have
limr→R X (r) = 0, which is obtained by (4.3) in the case of R < ∞. In the case of R = ∞,
it is obtained by (4.2), wr (r) < 0, limr→∞ J (r; u) = 0 and limr→∞ J (r; v) = 0. However,
we have

Xr (r) = (w(r)2)r J (r; u) ≤ 0 for each ∈ (R′, R) and Xr (·) �≡ 0,

which is a contradiction. Therefore, we have shown our assertion. ��
Remark 13 Assumptions (B3) and (B5) were only used to show Proposition 4. So if there
is another condition which yields the consequence of Proposition 4, we can obtain another
uniqueness theorem. This fact will be used in the proof of Theorem 5.

Remark 14 In the proof of Theorem 1 with R = ∞, we used J (r; u) → 0 as r → ∞ but
we did not use u(r) → 0 as r → ∞.

Next, we give a proof of the existence of a unique positive solution of (3.1).

Proposition 5 Under the assumptions of Theorem 2, there exists u ∈ X such that ‖u‖L = 1,
u ≥ 0 in (R′, R) and

R(u) = inf{R(v) : v ∈ X , ‖v‖L = 1}, (4.5)

where R is a C2-functional defined by

R(u) = ‖u‖2
X

‖u‖2
L

for each u ∈ X\{0}.

Proof Since we have R(|u|) = R(u) for each u ∈ X\{0}, it is enough to show that there
is u ∈ X satisfying ‖u‖L = 1 and (4.5), which is easily shown in the case (B7) (i). So
we consider the case (B7) (ii). Let {um} ⊂ X such that ‖um‖L = 1 for each m ∈ N and
‖um‖2

X → Sg . We may assume that {um} converges weakly to u ∈ X . Noting

lim
m→∞

(‖um‖p+1
L − ‖um − u‖p+1

L
) = ‖u‖p+1

L ,
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see [5], we have

Sg = ‖um‖2
X + o(1) =

(
Sĝ − Sg

Sĝ
+ Sg

Sĝ

)
‖um − u‖2

X + ‖u‖2
X + o(1)

= Sĝ − Sg
Sĝ

‖um − u‖2
X + Sg

Sĝ

∫ R

R′

(|um,r − ur |2 + ĝ(r)|um−u|2) f (r) dr+‖u‖2
X + o(1)

≥ Sĝ − Sg
Sĝ

‖um − u‖2
X + Sg(‖um − u‖2

L + ‖u‖2
L) + o(1)

≥ Sĝ − Sg
Sĝ

‖um − u‖2
X + Sg

(‖um − u‖p+1
L + ‖u‖p+1

L
) 2
p+1 + o(1)

= Sĝ − Sg
Sĝ

‖um − u‖2
X + Sg + o(1).

So we obtain ‖um − u‖X → 0, and we can find that u satisfies ‖u‖L = 1 and (4.5). ��

Proof of Theorem 2 Let u ∈ X be the function obtained in the previous proposition. Setting
ū = ‖u‖−2/(p−1)

X u, we can find ū is a nontrivial, nonnegative critical point of I . By the
standard regularity arguments, we can see that ū ∈ C2((R′, R)) and

ūrr (r) + fr (r)

f (r)
ūr (r) − g(r)ū(r) + h(r)ū(r)p = 0 for r ∈ (R′, R),

and that in the case of R < ∞, ū also belongs to C1((R′, R]). By (B8) and a subsolution
estimate, we can see that ū is bounded in a neighborhood of R′; see Proposition 6. So,
from Lemma 1, we can consider that ū and ūr are continuous at R′ and ūr (R′) = 0. We
have ū(r) > 0 in (R′, R). If not, there is r0 ∈ (R′, R) with ū(r0) = 0. Then we can find
ūr (r0) = 0 and hence we have ū ≡ 0, which is a contradiction. From Lemma 2, we also
have ū(R′) > 0. Hence ū is a positive solution of (3.1). By (B9) and Theorem 1, we can see
that ū is a unique positive solution of (3.1) in X . ��

Next, we give a proof of Theorem 3 which shows if G �≡ 0 then the unique positive solution
of (3.1) is a nondegenerate critical point of I . For a critical point u of I , we define the Morse
index of I ′′(u) by

max
{

dim H : H is a subspace of X such that I ′′(u)[v, v] < 0 for each v ∈ H\{0}
}
.

Proof of Theorem 3 From G �≡ 0 in (R′, R), we can find a closed interval [r1, r2] ⊂ (R′, R)

such that

min
r∈[r1,r2] |G(r)| > 0.

We choose γ ∈ C∞
0 ((R′, R))\{0} such that γ ≥ 0 and supp γ = [r1, r2]. Let δ > 0, which

will be fixed later. We define

gδ(r) = g(r) + δγ (r)h(r)ū(r)p−1, hδ(r) = (1 + δγ (r))h(r) (4.6)

in (R′, R). Using these functions instead of g and h, we define aδ , bδ , cδ , Gδ and Dδ in
(R′, R) as follows:
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aδ = f
2(p+1)
p+3 h

− 2
p+3

δ , bδ = −1

2
aδ,r + fr

f
aδ, cδ = −bδ,r + fr

f
bδ,

Gδ = bδgδ + 1

2
cδ,r − 1

2

(
aδgδ

)
r , Dδ = b2

δ − aδ

(
cδ − aδgδ

)
. (4.7)

Since gδ = g and hδ = h in (R′, R)\[r1, r2], we can easily see

aδ = a, bδ = b, cδ = c, Gδ = G, Dδ = D in (R′, R)\[r1, r2].
Now we fix δ > 0 small enough such that

min
r∈[r1,r2] |Gδ(r)| > 0.

In the case (B5) (i), we can easily see that

Gδ(r) ≥ 0 in (R′, κ) and Gδ(r) ≤ 0 in (κ, R). (4.8)

In the case (B5) (ii), we have

{r ∈ (R′, R)\[r1, r2] : Gδ(r) = 0, Dδ(r) > 0}
= {r ∈ (R′, R)\[r1, r2] : G(r) = 0, D(r) > 0} = ∅

and

{r ∈ [r1, r2] : Gδ(r) = 0, Dδ(r) > 0} ⊂ {r ∈ [r1, r2] : Gδ(r) = 0} = ∅,

which yields

{r ∈ (R′, R) : Gδ(r) = 0, Dδ(r) > 0} = ∅. (4.9)

Since we can easily see ū is a positive solution of
{

urr (r) + fr (r)
f (r) ur − gδ(r)u(r) + hδ(r)u(r)p = 0, R′ < r < R,

u(R′) ∈ (0,∞), u(R) = 0,
(4.10)

from (4.8), (4.9), (B9’) and Theorem 1, we can find that ū is its unique positive solution.
Now, we will show that ū is a nondegenerate critical point of I . Suppose not, i.e., there

exists ϕ ∈ X\{0} satisfying

I ′′(ū)[ϕ,ψ] = 0 for each ψ ∈ X , (4.11)

which yields

ϕrr + fr (r)

f (r)
ϕr (r) − g(r)ϕ(r) + ph(r)ū(r)p−1ϕ(r) = 0 for R′ < r < R. (4.12)

We define a C2-functional Iδ by

Iδ(u) =
∫ R

R′

(
1

2
(|ur |2 + gδ(r)|u|2) − 1

p + 1
hδ(r)|u|p+1

)
f (r) dr for u ∈ X .

We can easily see

I ′′
δ (ū)[ψ,ψ] = I ′′(ū)[ψ,ψ] − δ(p − 1)

∫ R

R′
γ (r)h(r)ū(r)p−1ψ(r)2 f (r) dr
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for each ψ ∈ X , and

I ′′(ū)[ū, ū] = −(p − 1)

∫ R

R′
h(r)ū(r)p+1 f (r) dr < 0.

Moreover, we have

∫ R

R′
γ (r)h(r)ū(r)p−1|ϕ(r)|2 f (r) dr > 0.

Indeed, if not, we have ϕ ≡ 0 on supp γ . Then from (4.12), we have ϕ ≡ 0 in (R′, R), which
contradicts ϕ ∈ X\{0}. Using (4.11) and the two inequalities above, we can see

I ′′
δ (ū)[αū + βϕ, αū + βϕ] < 0 for each (α, β) ∈ R

2\{(0, 0)},
which yields that the Morse index of I ′′

δ (ū) is at least two. However, since the Morse index
of I ′′

δ (ū) is one, we obtain a contradiction. Hence we have shown that ū is a nondegenerate
critical point of I .

Although it is well known, for the reader’s convenience, we briefly show that the Morse
index of I ′′

δ (ū) is one. Since ū is the unique positive solution of (4.10), for each v ∈ X , it
satisfies α(t; v) ≥ α(0; v) for each t ∈ R with |t | � 1, where

α(t; v) =
∫ R
R′(|ūr + tvr |2 + gδ(r)|ū + tv|2) f (r) dr(∫ R

R′ hδ(r)|ū + tv|p+1 f (r) dr
) 2

p+1

.

Since we have αt (0; v) = 0 and αt t (0; v) ≥ 0, we obtain

I ′′
δ (ū)[v, v] ≥ −

(p − 1)
(∫ R

R′(ūrvr + gδ(r)ūv) f (r) dr
)2

∫ R
R′(|ūr |2 + gδ(r)|ū|2) f (r) dr

.

We can consider that

(w, z) �→
∫ R

R′
(wr zr + gδ(r)wz) f (r) dr : X × X → R

is an inner product on X , which induces an equivalent norm on X . For each v ∈ X which is
orthogonal to ū by this inner product, we have I ′′

δ (ū)[v, v] ≥ 0. Since I ′′
δ (ū)[ū, ū] < 0, we

find that the Morse index of I ′′
δ (ū) is one. ��

Next, we give a proof of the nondegeneracy result for the unique positive solution of (3.1)
in the space Xρ .

Lemma 4 Suppose the assumptions in Theorem 4 and let ū be the unique positive solution
which is obtained in Theorem 2. Then there holds ūr (r) < 0 for each r ∈ (0, R).

Proof We set

E(r) = 1

2
ūr (r)

2 − 1

2
g(r)ū(r)2 + 1

p + 1
h(r)ū(r)p+1 for 0 < r < R.
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From fr ≥ 0, gr ≥ 0 and hr ≤ 0, we have

Er (r) = ūr ūrr − 1

2
gr ū

2 − gūūr + 1

p + 1
hr ū

p+1 + hū pūr

= − fr
f
ū2
r − 1

2
gr ū

2 + 1

p + 1
hr ū

p+1 ≤ 0

for each r ∈ (0, R). We will show E(r) ≥ 0 for each r ∈ (0, R). In the case R < ∞, from
E(r) → ūr (R)2/2 as r → R, we have E(r) ≥ 0 for r ∈ (0, R). In the case R = ∞, from
fr (r) ≥ 0 and f (r) > 0 for each r ∈ (0, R), we have limr→∞ f (r) ∈ (0,∞]. So, from∫ ∞

0
|E(r)| f (r) dr ≤

∫ ∞

0

(
1

2
(ūr (r)

2 + |g(r)|ū(r)2) + 1

p + 1
h(r)ū(r)p+1

)
f (r) dr < ∞,

we can infer E(r) → 0 as r → ∞, and hence we have E(r) ≥ 0 for r ∈ (0,∞). Next, we
will show ūr (r) < 0 for 0 < r � 1. From hr (r) ≤ 0 and h(r) > 0 for r ∈ (0, R), we have
limr→0 h(r) ∈ (0,∞]. Since ū(r) → ū(0) ∈ (0,∞) and ūr (r) → 0 as r → 0, E(r) ≥ 0
for each r ∈ (0, R), and p > 1, we can infer

−g(r)ū(r) + h(r)ū(r)p > 0 for 0 < r � 1,

which yields

ūr (r) = − 1

f (r)

∫ r

0
(−g(s)ū(s) + h(s)ū(s)p) f (s) ds < 0 for 0 < r � 1.

Now, we will show ūr (r) < 0 for each r ∈ (0, R). Assume not. Then there is r0 ∈ (0, R)

such that ūr (r0) = 0 and ūr (r) < 0 for each r ∈ (0, r0). So we have ūrr (r0) ≥ 0. On the
other hand, from E(r0) ≥ 0, we have

ūrr (r0) = −(−g(r0)ū(r0) + h(r0)ū(r0)
p) < 0,

which is a contradiction. Hence, we have shown our assertion. ��
Proof of Theorem 4 Suppose that the conclusion does not hold. Then there existsw ∈ Xρ\{0}
such that

I ′′(ū)[w, v] =
∫
BR

(∇w∇v + gwv − phū p−1wv
)
ρ dx = 0 for each v ∈ Xρ. (4.13)

That is, w ∈ Xρ\{0} is a weak solution of

�w + ∇w∇ρ

ρ
− gw + phū p−1w = 0 in BR .

We note that such w satisfies the following in the weak sense:

0 = �w + ∇w∇ρ

ρ
− gw + phū p−1w

= wrr + n − 1

r
wr + 1

r2 �Sn−1w + rn−1

f
wr (r

1−n f )r − gw + phū p−1w

= wrr + fr
f

wr + 1

r2 �Sn−1w − gw + phū p−1w.

Let {μk} be the eigenvalues of the Laplace-Beltrami operator on Sn−1 and let {ek} be their
corresponding eigenfunctions whose L2(Sn−1) norm is one. Then it is well known that

μ0 = 0 < μ1 = · · · = μn = n − 1 < μn+1 ≤ · · ·
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and {ek} is a complete orthogonal basis of L2(Sn−1). We put

wk(r) =
∫
Sn−1

w(r, ω)ek(ω) dω for each k ∈ N ∪ {0}. (4.14)

From w ∈ Xρ , we can infer wk ∈ X . Since wk satisfies

wk,rr + fr
f

wk,r +
(

−g(r) + ph(r)ū p−1 − μk

r2

)
wk = 0 in (0, R)

in the weak sense, it belongs to C2((0, R)) and it satisfies the differential equation above
in the classical sense in (0, R). In the case R < ∞, we can see that wk is continuously
differentiable at R. By assumption (B13), we can see that wk is continuously differentiable
at 0, and in the case of R = ∞, wk(r) → 0 and wk,r (r) → 0 as r → ∞. From w �≡ 0,
there is k ∈ N ∪ {0} such that wk �≡ 0. Since μ0 = 0 and w0 ∈ X , we have w0 ≡ 0 by
Theorem 3. So we have k ∈ N. From (4.14), we have wk(0) = 0 and wk,r (0) ∈ R. Let α and
β be consecutive zeros of wk such that 0 ≤ α < β ≤ R, and in the case R = ∞, at least
one inequality in (3.5) is not identically equal in (α, β). Without loss of generality, we may
assume wk > 0 in (α, β). From

ūrr + fr
f
ūr − gū + hū p = 0 in (0, R),

we have

ūrrr + fr
f
ūrr +

((
fr
f

)
r
− g + phū p−1

)
ūr + (−gr ū + hr ū

p−1) = 0 in (0, R).

Since we have gr ≥ 0, hr ≤ 0 and

0 ≤ (log ρ(r))rr =
(

fr
f

)
r
+ n − 1

r2 ≤
(

fr
f

)
r
+ μk

r2 ,

we obtain

0 =
[
f (ūrrwk − ūrwk,r )

]β

α
+

∫ β

α

((
fr
f

)
r
+ μk

r2

)
ūrwk f dr+

∫ β

α

(−gr ū + hr ū
p)wk f dr

<
[
f (ūrrwk − ūrwk,r )

]β

α
= ξ(β) − ξ(α)

in the case R = ∞, and 0 ≤ ξ(β) − ξ(α) in the case R < ∞, where

ξ(r) = f (r)(ūrr (r)wk(r) − ūr (r)wk,r (r))

= −( fr (r)ūr (r) + f (r)g(r)ū(r) − f (r)h(r)ū(r)p)wk(r) − f (r)ūr (r)wk,r (r).

From assumption (B12), we can see{
ξ(α) > 0 in the case of α > 0,

ξ(α) = 0 in the case of α = 0,

and {
ξ(β) < 0 in each case of β ≤ R < ∞ and β < R = ∞,

ξ(β) = 0 in the case of β = R = ∞.

So we have ξ(β) − ξ(α) ≤ 0 in the case R = ∞ and ξ(β) − ξ(α) < 0 in the case R < ∞,
which is a contradiction. Hence we have shown our assertion. ��
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5 Nondegeneracy in the case R < ∞ and G ≡ 0

We continue to study the nondegeneracy of the unique positive solution ū of (3.1) in the case
G ≡ 0 with R < ∞. Although assumption (B10′) seems to be complicated, it works for
some examples; see Remarks 16 and 17.

Theorem 5 Let p > 1. Assume (B1)–(B3) with R < ∞, (B6)–(B8) and the following.

(B10′) (i) g, h are continuous at R′, f is monotone increasing in a neighborhood of R′.
(ii) G ≡ 0 in (R′, R).
(iii) For each {θm}(⊂ (0,∞)) with θm → ∞ and {rm}(⊂ [R′, R)) with rm → R′,
there exist a subsequence {mi } of {m} and f̃ ∈ C1((0,∞))∩C([0,∞)) such that
f̃ is positive in (0,∞),

lim
i→∞

( f (θ
− p−1

2
mi t + rmi ))t

f (θ
− p−1

2
mi t + rmi )

= f̃t (t)

f̃ (t)
in Cloc((0,∞))

and the problem⎧⎪⎨
⎪⎩

wt t (t) + f̃t (t)
f̃ (t)

wt (t) + h(R′)|w(t)|p−1w(t) = 0, t ∈ (0,∞),

w(0) = 1,

0 ≤ w(t) ≤ 1, t ∈ (0,∞)

(5.1)

does not admit a solution in C2((0,∞)) ∩ C([0,∞)).

Then the unique positive solution ū of problem (3.1) is a nondegenerate critical point of the
C2-functional I defined by (3.2).

Theorem 6 Assume the assumptions of Theorem 4with R < ∞ and (B10′) instead of (B10).
Then the conclusion of Theorem 4 holds.

Remark 15 In (B10′) (iii), f̃ may depend on {θm}, {rm} and {mi }.
Remark 16 Let R′ = 0 and let f (r) = rn−1ρ(r) such that n ≥ 1, ρ ∈ C2([0,∞)) ∩
C3((0,∞)) and ρ > 0 in [0,∞). In this case, the function f̃ defined by

f̃ (t) =
{

(t + C)n−1 in the case when θ
(p−1)/2
mi rmi → C ∈ [0,∞),

1 in the case when θ
(p−1)/2
mi rmi → ∞

satisfies the properties in (B10′) (iii).

Remark 17 The following are examples which satisfy G(r) ≡ 0 and (B1)–(B3).

(i) n > 5/2, f (r) = rn−1, h(r) = r (n−2)p+n−4 and g(r) = C1r2(n−3) with C1 ∈ R.
(ii) n > 5/2, f (r) = rn−1 exp(r2/4), h(r) = r (n−2)p+n−4 and

g(r) = C1 exp

(
− p − 1

2(p + 3)
r2

)
r2(n−3) − (n − 2)p + n + 2

2(p + 3)
− p + 1

2(p + 3)2 r
2

with C1 ∈ R.

These examples can be found through the next remark. See also Appendix 1.
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Remark 18 By direct calculations, it holds that

d

dr

(
f (r)−2D(r)

) = −2 f (r)−2a(r)G(r)

and that f (r)−2D(r) ≡ C1 ∈ R is equivalent to

g(r) = 1

(p + 3)2 f (r)2h(r)2

(
C1(p + 3)2 f (r)

8
p+3 h(r)

4
p+3 +2 + 4 fr (r)

2h(r)2

− f (r)h(r) (2(p + 3) frr (r)h(r) + (p − 1) fr (r)hr (r))

+ f (r)2 (
(p + 4)hr (r)

2 − (p + 3)h(r)hrr (r)
))

.

Once Theorem 5 is given, we can obtain Theorem 6 by the same proof of Theorem 4. So we
give a proof of Theorem 5 only. We assume its assumptions. For each δ > 0, we define gδ ,
hδ , aδ , bδ , cδ by (4.6) and (4.7) with γ ≡ 1, and we define

Jδ(r; u) = 1

2
aδ(r)ur (r)

2 + bδ(r)ur (r)u(r) + 1

2
cδ(r)u(r)2 (5.2)

− 1

2
aδ(r)gδ(r)u(r)2 + 1

p + 1
aδ(r)hδ(r)u(r)p+1.

We also define Sδ as the set of all positive solutions of{
urr (r) + fr (r)

f (r) ur − gδ(r)u + hδ(r)u p = 0, R′ < r < R,

u(R′) ∈ (0,∞), u(R) = 0.
(5.3)

We can see that ū is a positive solution of (5.3) for each δ > 0.

Lemma 5 It holds that

inf
0<δ<1

inf
u∈Sδ

‖u‖X > 0.

Proof Let
√
C1 be the infimum value of the left hand side inequality in (B6). For each

δ ∈ (0, 1) and u ∈ Sδ , we have

(1 + δ)

∫ R

R′
u(r)p+1h(r) f (r)dr =

∫ R

R′
u(r)p+1hδ(r) f (r)dr

=
∫ R

R′

(
ur (r)

2 + gδ(r)u(r)2) f (r)dr ≥
∫ R

R′

(
ur (r)

2 + g(r)u(r)2) f (r)dr

≥ C1

(∫ R

R′
u(r)p+1h(r) f (r)dr

) 2
p+1

,

which yields

(∫ R

R′
u(r)p+1h(r) f (r)dr

) p−1
p+1 ≥ C1

1 + δ
≥ C1

2
.

Thus we have shown our assertion. ��
Lemma 6 There exist δ0 ∈ (0, 1) such that

sup
0<δ<δ0

sup
u∈Sδ

max
R′≤r≤R

u(r) < ∞. (5.4)
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Proof Suppose that the conclusion does not hold. Then there exist {δm} ⊂ (0, 1) with δm → 0
and {um} ⊂ C1([R′, R]) ∩ C2((R′, R)) such that um ∈ Sδm for each m ∈ N and θm ≡
maxR′≤r≤R um(r) → ∞ as m → ∞. For each m ∈ N, we choose rm ∈ (R′, R) with
θm = um(rm) and we define

vm(t) = 1

θm
um(θ

− p−1
2

m t + rm) for each t ∈ Lm,

where Lm = (
θ

p−1
2

m (R′ − rm), θ
p−1

2
m (R − rm)

)
. Without loss of generality, we may assume

rm → r∗ ∈ [R′, R]. We set

βm(t) = θ
− p−1

2
m t + rm for m ∈ N and t ∈ Lm .

Without loss of generality, we may assume that limm→∞ θ
(p−1)/2
m (R′−rm) exists in [−∞, 0]

and limm→∞ θ
(p−1)/2
m (R − rm) exists in [0,∞]. Let L(⊂ R) be the limit closed interval of

{Lm}. Then we have {
L ⊃ (−∞, 0] in the case r∗ > R′,
L ⊃ [0,∞) in the case r∗ = R′.

For each m ∈ N, we have vm(0) = 1, vm,t (0) = 0 and

vm,t t (t) + ( f (βm(t)))t
f (βm(t))

vm,t (t) + (1 + δm)h(βm(t))vm(t)p

−θ
−p+1
m

[
g(βm(t)) + δmh(βm(t))ū(βm(t))p−1]vm(t) = 0 (5.5)

for each t ∈ Lm , and hence we have

vm,t (t) f (βm(t)) =
∫ t

0
f (βm(s))

[
−(1 + δm)h(βm(s))vm(s)p

+ [
g(βm(s)) + δmh(βm(s))ū(βm(s))p−1]θ1−p

m vm(s)
]
ds (5.6)

for each t ∈ Lm . In the case of r∗ > R′, from (5.5) and (5.6), we can see that for each α > 0,

lim
m→∞

sup
t∈[−α,0]

|vm,t (t)| < ∞ and lim
m→∞

sup
t∈[−α,0]

|vm,t t (t)| < ∞.

Taking a subsequence {vmi } of {vm}, we can infer that there exists v ∈ C2((−∞, 0]) such
that ‖vmi − v‖C1

loc((−α,0]) → 0, v is nonnegative on (−∞, 0], and

{
vt t (t) + h(r∗)|v(t)|p−1v(t) = 0 for each t ∈ (−∞, 0],
v(0) = 1, vt (0) = 0.

However, such v never exists. So, we can find that the case r∗ > R′ does not occur. Next, we
consider the case r∗ = R′. From (B10′) (i), (5.5) and (5.6), for each α > 0 and ε ∈ (0, α),
we have

lim
m→∞

sup
t∈[0,α]

|vm,t (t)| < ∞ and lim
m→∞

sup
t∈[ε,α]

|vm,t t (t)| < ∞.

Using assumption (B10′) (iii) and taking a subsequence {vm j } of {vm}, we can infer that there

exist f̃ ∈ C([0,∞))∩C1((0,∞)) and w ∈ C2((0,∞))∩C([0,∞)) such that f̃ is positive
in (0,∞), ‖vm j − w‖Cloc([0,∞)) → 0, ‖vm j − w‖C1

loc((0,∞)) → 0, and w satisfies (5.1). By

(B10′) (iii), such w does not exist. So we have shown our assertion. ��
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Lemma 7 It holds that

sup
δ∈(0,δ0)

sup
u∈Sδ

‖u‖C1([R′,R]) < ∞ (5.7)

and

lim
δ→0

sup
u∈Sδ

‖u − ū‖C1([R′,R]) = 0.

Proof For each δ ∈ (0, δ0) and u ∈ Sδ , we have

f (r)ur (r) =
∫ r

R′
f (s)

(−gδ(s)u(s) + hδ(s)u(s)p
)
ds for each r ∈ (R′, R).

Since f, g, h, ū ∈ C([R′, R]), f is monotone increasing in a neighborhood of R′ and f is
positive on (R′, R], we can infer (5.7). From (5.3) and (5.7), we have

sup
δ∈(0,δ0)

sup
u∈Sδ

‖u‖C2([R′+ε,R]) < ∞ for each ε > 0. (5.8)

Let {δm} ⊂ (0, δ0) and {um} ⊂ C1([R′, R])∩C2((R′, R)) such that δm → 0 as m → ∞ and
um ∈ Sδm for each m ∈ N. Since we have (5.7) and (5.8), taking a subsequence if necessary,
we may assume that there exists ψ ∈ C([R′, R]) ∩ C2((R′, R)) such that ψ is nonnegative
on [R′, R], {um} converges to ψ in C([R′, R]) and C1

loc((R
′, R]), and ψ satisfies ψ(R) = 0

and

ψrr (r) + fr (r)

f (r)
ψr (r) − g(r)ψ(r) + h(r)ψ(r)p = 0, R′ < r < R.

Since ψ �≡ 0 by Lemma 5, ψ must be positive on [R′, R). Since (3.1) has the unique positive
solution ū, we have ψ = ū. From (B1) (iii) and

|um,r (r) − ūr (r)|
=

∣∣∣ 1
f (r)

∫ r
R′ f (s)(−gδm (s)um(s) + hδm (s)um(s)p + g(s)ū(s) − h(s)ū(s)p) ds

∣∣∣
≤ 1

f (r)

∫ r
R′ f (s)(|g(s)| + h(s)) ds ·

(
‖um − ū‖C([R′,R]) + ‖u p

m − ū p‖C([R′,R])
+ δm‖ū p−1um‖C([R′,R]) + δm‖u p

m‖C([R′,R])
)

for each r ∈ [R′, R], we can infer that our assertion holds. ��
Proof of Theorem 5 From (d/dr)J (r; ū) = G(r)ū(r)2 = 0 for each r ∈ (R′, R), we have

J (r; ū) = 1

2
a(R)ūr (R)2 > 0 for each r ∈ [R′, R].

So we have c(R′) ≡ limr→R′ c(r) ∈ (0,∞) and

J (R′; ū) ≡ lim
r→R′ J (r; ū) = 1

2
c(R′)u(R′)2.

Noting
⎧⎪⎨
⎪⎩
aδ(r) = a(r)

(1+δ)
2

p+3
, bδ(r) = b(r)

(1+δ)
2

p+3
, cδ(r) = c(r)

(1+δ)
2

p+3
,

Jδ(r; u) = J (r;u)

(1+δ)
2

p+3
+ δ

(1+δ)
2

p+3

(
− 1

2a(r)h(r)ū(r)p−1u(r)2 + 1
p+1a(r)h(r)u(r)p+1

)
,

(5.9)
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and using the previous lemma, we have

lim
δ→0

sup
u∈Sδ

sup
r∈[R′,R]

|Jδ(r; u) − J (r; ū)| = 0.

Then we can choose 0 < δ � 1 satisfying

inf
u∈Sδ

inf
r∈[R′,R]

Jδ(r; u) > 0.

By Remark 13, we can see that ū is the unique positive solution of (5.3). As in the proof of
Theorem 3, we can show that if ū is a degenerate critical point of I , then the Morse index
I ′′
δ (ū) is at least two, which is a contradiction. Hence, ū is a nondegenerate critical point

of I . ��

6 Annulus or exterior domain case

In this section, we study the problem{
urr (r) + fr (r)

f (r) ur − g(r)u + h(r)u p = 0, R′ < r < R,

u(R′) = 0, u(R) = 0,
(6.1)

where −∞ < R′ < R ≤ ∞, p > 1 and f , g, h are some functions. In the case of R = ∞,
u(R) = 0 means that u(r) → 0 as r → ∞. We say u is a positive solution of (6.1) if{

u ∈ C([R′,∞)) ∩ C2((R′,∞)) in the case of R = ∞,

u ∈ C([R′, R]) ∩ C2((R′, R)) in the case of R < ∞,

u(r) > 0 for each r ∈ (R′, R), and u satisfies (6.1). We impose the following conditions on
f , g and h.

(A1) (i) −∞ < R′ < R ≤ ∞, g ∈ C([R′, R)) ∩ C1((R′, R)), f, h ∈ C2([R′, R)) ∩
C3((R′, R)), and f, h are positive on [R′, R).

(ii) In the case of R < ∞, g ∈ C([R′, R]), f, h ∈ C2([R′, R]), f (R) > 0 and
h(R) > 0.

In the following, a(r), b(r), c(r), G(r) and J (r; u) are the ones given in Proposition 1. By
similar arguments as in the proof of Theorem 1, we can prove the next theorem. So we omit
its proof.

Theorem 7 Let p > 1. Assume (A1) and the following.

(A2) One of the following conditions is satisfied.

(i) There exists κ ∈ [R′, R] such that

G(r) ≥ 0 in (R′, κ) and G(r) ≤ 0 in (κ, R).

(ii) {R′ < r < R : G(r) = 0, D(r) > 0} = ∅.
Then in the case of R < ∞, problem (6.1) has at most one positive solution, and in the case
of R = ∞, problem (6.1) has at most one positive solution u which satisfies J (r; u) → 0 as
r → ∞.

Remark 19 In the case of R = ∞, G− �≡ 0 is not assumed as in Theorem 1. However,
if (6.1) has a positive solution u such that J (r; u) → 0 as r → ∞, it must be G− �≡ 0.
Indeed, we have J (R′; u) = (1/2)a(R′)ūr (R′)2 > 0 and J (r; u) → 0 as r → ∞. From
(d/dr)J (r; u) = G(r)u(r)2, we have G− �≡ 0.
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As in Sect. 3, we define

‖ϕ‖X =
(∫ R

R′
(
ϕr (r)2 + g(r)ϕ(r)2

)
f (r) dr

) 1
2

for each ϕ ∈ C∞
0 (R′, R),

‖ϕ‖L =
(∫ R

R′ h(r)|ϕ(r)|p+1 f (r) dr

) 1
p+1

for each ϕ ∈ C∞
0 (R′, R),

and we impose the following conditions.

(A3) inf
ϕ∈C∞

0 ((R′,R))\{0}
‖ϕ‖X
‖ϕ‖L > 0, inf

ϕ∈C∞
0 ((R′,R))\{0}

‖ϕ‖2
X∫ R

R′
(
ϕ2
r + |g|ϕ2

)
f dr

> 0.

We denote by X and L the completion of C∞
0 ((R′, R)) with respect to ‖ · ‖X and ‖ · ‖L,

respectively. We can see that both inequalities in (A3) hold even if the infimums are taken
on X\{0}.
Theorem 8 Let p > 1 and assume (A1)–(A3). Assume also the following.

(A5) The embedding X ↪→ L is compact.
(A6) In the case of R = ∞, for each u ∈ X ∩C2((R′,∞)) ∩C([R′,∞)) which is positive

in (R′,∞) and satisfies

urr (r) + fr (r)

f (r)
ur (r) − g(r)u(r) + h(r)u(r)p = 0 for each r ∈ (Ru,∞)

with some Ru ∈ (R′,∞), there holds

lim
r→∞ J (r; u) = 0.

Then problem (6.1) has a unique positive solution in X and it is a nondegenerate critical
point of C2-functional I defined by

I (u) =
∫ R

R′

(
1

2
(|ur (r)|2 + g(r)|u(r)|2) − 1

p + 1
h(r)|u(r)|p+1

)
f (r) dr for u ∈ X .

Remark 20 In the case R = ∞ and G− ≡ 0, if (A1)–(A3) are satisfied, then (A5) or (A6)
must not hold; see Remark 19.

By similar arguments as in the proof of Theorem 2, we can show that there exists a unique
positive solution ū of (6.1). If G �≡ 0 in (R′, R), as in the proof of Theorem 3, we can show
that ū is a nondegenerate critical point of I . Even if G ≡ 0 in (R′, R), by similar arguments
as in the proof of Theorem 5, we can show that ū is a nondegenerate critical point of I .
However, for the reader’s convenience, in Appendix 3, we show the nondegeneracy in the
case G ≡ 0 in (R′, R).

7 Applications

For a given function space, by adding subscript “rad”, we denote its restriction to radial
functions. If q ≥ 1 and a function α is given, we denote by Lq

α , the space consists of
functions such that the integral of |u(·)|qα(·) is finite.
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7.1 The scalar field equation

Although the results in this subsection are well known, for the reader’s convenience, we
consider the problem

�u(x) − u(x) + u(x)p = 0 in R
n, u(x) → 0 as |x | → ∞, (7.1)

where n ∈ N with n ≥ 2 and 1 < p < (n+2)/(n−2). The uniqueness of a positive solution
(7.1) up to translation was established by Kwong [25]. Setting R′ = 0, R = ∞, ρ(r) = 1,
f (r) = rn−1, g(r) = 1 and h(r) = 1, we apply our results. Since we have

G(r) = n − 1

(p + 3)3 r
2(n−1)(p+1)

p+3 −3

×
(

2((n − 2)p + n − 4)(n + 2 − (n − 2)p) − (p − 1)(p + 3)2r2
)
,

we can see that in the case of n = 2, G(r) < 0 in (0,∞), and in the case of n ≥ 3,
there is κ ∈ (0,∞) such that G(r) > 0 in (0, κ) and G(r) < 0 in (κ,∞). Each radially
symmetric, positive solution u of (7.1) decays exponentially and so does ur , which implies
J (r; u) → 0 as r → ∞ and u belongs to H1

rad(R
n). Moreover, it is well known that the

embedding H1
rad(R

n) ↪→ L p+1(Rn) is compact. Hence by our theorems, there is a unique
radially symmetric, positive solution ū of (7.1) and it is a nondegenerate critical point of
I|H1

rad(Rn), where I is defined by

I(u) =
∫
Rn

(
1

2
(|∇u(x)|2 + |u(x)|2) − 1

p + 1
|u(x)|p+1

)
dx for u ∈ H1(Rn).

Since (log ρ(r))rr = 0, gr (r) = 0 and hr (r) = 0, we can not apply Theorem 4. Actually,
we know that the kernel of I ′′(ū) is spanned by ∂ ū/∂x1, . . . , ∂ ū/∂xn , see [39, Lemma 4.2],
and ū is a degenerate critical point of I.

7.2 Matukuma’s equation

Let n ∈ N with n ≥ 3 and 1 < p < (n + 2)/(n − 2). We study

u ∈ Ḣ1(Rn) and �u(x) + u(x)p

1 + |x |2 = 0 in R
n . (7.2)

Here, Ḣ1(Rn) is the completion of C∞
0 (Rn) with respect to the norm defined by

‖u‖ =
(∫

Rn
|∇u|2 dx

) 1
2

.

For the problem, we refer to [27–31,40,41,47,52,53]. Since Ḣ1(Rn) is continuously embed-
ded into L2n/(n−2)(Rn), we can easily see that there is C1 > 0 such that

(∫
Rn

|u|p+1

1 + |x |2 dx

) 1
p+1 ≤ C1‖u‖ for each u ∈ Ḣ1(Rn).

So we can define a C2-functional I on Ḣ1(Rn) by

I(u) =
∫
Rn

(
1

2
|∇u(x)|2 − 1

p + 1

|u(x)|p+1

1 + |x |2
)
dx for u ∈ Ḣ1(Rn).
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We apply our results with R′ = 0, R = ∞, ρ(r) = 1, f (r) = rn−1, g(r) = 0 and
h(r) = 1/(1 + r2). Since we have

|u(r)| ≤
∫ ∞

r
|ut (t)| dt ≤

(∫ ∞

r
|ut (t)|2tn−1 dt

) 1
2 r

2−n
2√

n − 2

for each r > 0 and u ∈ C∞
0 (Rn), we can see that there exists C2 > 0 which satisfies

∫ ∞

r

1

1 + s2 |u(s)|p+1sn−1 ds ≤ C2‖u‖p+1
∫ ∞

r
s

2−n
2 (p+1)+n−3 ds

and ∫ r

0

1

1 + s2 |u(s)|p+1sn−1 ds ≤ C2‖u‖p+1
∫ r

0
s

2−n
2 (p+1)+n−1 ds

for each r > 0 and u ∈ Ḣ1
rad(R

n). Noting

2 − n

2
(p + 1) + n − 3 < −1 ⇔ p > 1,

2 − n

2
(p + 1) + n − 1 > −1 ⇔ p <

n + 2

n − 2
,

we can find that the embedding Ḣ1
rad(R

n) ↪→ L p+1
h (Rn) is compact.

Next, we will show (B9’). Let u be a positive solution of

u ∈ Ḣ1
rad(R

n) and (rn−1ur (r))r + rn−1

1 + r2 u(r)p = 0 for r ≥ Ru, (7.3)

where Ru > 0. Without loss of generality, we may assume u ∈ C([Ru,∞))∩C2((Ru,∞)).
We know u(r) = O(r (2−n)/2) as r → ∞, and we will show u(r) = O(r2−n) and ur (r) =
O(r1−n) as r → ∞. Let ε > 0 be any number satisfying n − 2 < (n − 2 − ε)p. Assume
u(r) = O(r−α) as r → ∞ with (n − 2)/2 ≤ α < n − 2 − ε. Setting v(r) = r−s with
0 < s < n − 2 and s ≤ αp, we can see

(u − Cv)(Ru) ≤ 0 and (u − Cv)rr + n − 1

r
(u − Cv)r ≥ 0 for r > Ru

with some C > 0, which yields u(r) = O(r−s) as r → ∞. Applying this procedure several
times, we can infer u(r) = O(r2−n+ε) as r → ∞. Since we can take any small ε > 0,
from (7.3), we can easily see that rn−1ur (r) → β ∈ R as r → ∞. By l’Hôptail’s rule,
we have rn−2u(r) → −β/(n − 2) as r → ∞. So we have shown u(r) = O(r2−n) and
ur (r) = O(r1−n) as r → ∞. On the other hand, by Appendix 1, we can see

a(r) = O(rν), b(r) = O(rν−1) and c(r) = O(rν−2) as r → ∞,

where ν = 2(n − 1)(p + 1)/(p + 3). Hence we have shown (B9’).
In [47, Section 5.2], we have shown that there is κ ∈ (0,∞) such that G(r) > 0 in (0, κ)

and G(r) < 0 in (κ,∞). Hence there is a unique positive solution ū ∈ Ḣ1
rad(R

n) of (7.2).
From ū(r) = O(r2−n) and ūr (r) = O(r1−n) as r → ∞, we have (B12) (ii). By the elliptic
regularity, we can infer that (B13) holds. Since it is easy to see that other assumptions are
satisfied, ū is a nondegenerate critical point of I. Summing up, we have shown the following.

Theorem 9 Let n ∈ N with n ≥ 3 and 1 < p < (n + 2)/(n − 2). Then there exists a unique
positive radial solution of (7.2) and it is a nondegenerate critical point of I.
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Remark 21 In the argument above, we can show β < 0. Indeed, from (rur (r) + (n −
2)u(r))r < 0 for r > Ru , we can see rur (r) + (n − 2)u(r) > 0 for r > Ru . Since
(rn−2u(r))r = rn−3(rur (r) + (n − 2)u(r)), we have limr→∞ rn−2u(r) > 0, which yields
β < 0.

Remark 22 The existence of a unique positive solution of (7.2) was obtained by Yanagida [52,
53]. He showed the problem has a unique positive radial solution u with finite total mass,
i.e.,

∫
Rn u(x)p/(1 + |x |2) dx < ∞.

7.3 Nonlinear Schrödinger equation with harmonic potential

We study the problem

�u − (λ + |x |2)u + u p = 0 in R
n and u(x) → 0 as |x | → ∞, (7.4)

where n ∈ Nwith n ≥ 2, λ > −n, 1 < p < ∞ in the case n = 2 and 1 < p ≤ (n+2)/(n−2)

in the case n ≥ 3. For the problem, we refer to [15,16,19–21,47]. We know that each positive
solution u of (7.4) is radially symmetric, and u and ur decay exponentially; so we have u ∈ �,
where

� = {
u ∈ H1(Rn) : |x |u ∈ L2(Rn)

}
.

We set

‖u‖� =
(∫

Rn
(|∇u|2 + |x |2|u|2) dx

) 1
2

for each u ∈ �.

It is well known that the embedding (�, ‖ · ‖�) ↪→ L2(Rn) is compact,

n = inf
u∈�\{0}

∫
Rn (|∇u|2 + |x |2|u|2) dx∫

Rn |u|2 dx ,

and the infimum is attained by x �→ exp(−|x |2/2). Since λ > −n, the norm defined by

‖u‖ =
(∫

Rn
(|∇u|2 + (λ + |x |2)|u|2) dx

) 1
2

for u ∈ �

is equivalent to ‖ · ‖� . We define

I(u) =
∫
Rn

(
1

2
(|∇u|2 + (λ + |x |2)|u|2) − 1

p + 1
|u|p+1

)
dx for u ∈ �.

We note that I ∈ C2(�,R) by the Sobolev embedding theorem. Setting R′ = 0, R = ∞,
f (r) = rn−1, g(r) = λ + r2 and h(r) = 1, we apply our results. In the case of n ≥ 3, we
have shown in [47, Section 5.4] that there is κ ∈ [0,∞) such that G(r) > 0 in (0, κ) and
G(r) < 0 in (κ,∞). In the case of n = 2, we have

G(r) = − r− p+7
p+3

(p + 3)3

(
(p − 1)(p + 3)2r2(λ + r2) + (p + 3)3r4 + 16

)
,

D(r) = r2− 8
p+3

(p + 3)2

(
(p + 3)2r2 (

λ + r2) − 4
)
,

which yields {r ∈ (0,∞) : G(r) = 0, D(r) > 0} = ∅. So we have shown (B5). By the
compactness of � ↪→ L2(Rn), in the subcritical case, it is easy to see that (B7) (i) holds. In
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the critical case, assuming λ < 0 in the case n ≥ 4 and λ < −1 in the case n = 3, and setting
ĝ(r) = r2, we have Sg < Sĝ; see [15, Section 5]. Using the compactness of � ↪→ L2(Rn)

again, we can see that (B7) (ii) holds. Since it is easy to see that other assumptions hold, we
can obtain the following.

Theorem 10 Let n ∈ N with n ≥ 2, p > 1 and λ > −n. If p < (n + 2)/(n − 2), or

p = n + 2

n − 2
and λ <

{
0 in the case of n ≥ 4,

−1 in the case of n = 3,
(7.5)

then problem (7.4) has a unique positive solution, it is radially symmetric, and it is a nonde-
generate critical point of I.

Remark 23 In the critical case, if λ does not satisfy the inequality in (7.5), problem (7.4)
does not have a positive solution. See [16] and [47, Theorem 7].

Remark 24 In the subcritical case with n ≥ 2, the uniqueness of a positive solution was
studied by Hirose–Ohta [19–21]. In [47, Section 5.4], we studied the uniqueness of a positive
solution including the critical case, but we could not treat the case n = 2. Here, applying the
condition (B5) (ii), we show its uniqueness even in the case n = 2.

7.4 The Haraux–Weissler equation

We study the problem

u ∈ Ḣ1
ρ (Rn) and �u(x) + 1

2
x · ∇u(x) + λu(x) + u(x)p = 0 in R

n . (7.6)

Here, n ∈ N with n ≥ 2, λ < n/2, 1 < p ≤ (n + 2)/(n − 2), and

Ḣ1
ρ (Rn) =

{
u ∈ Ḣ1(Rn) :

∫
Rn

|∇u|2ρ(x)dx < ∞
}
,

where ρ(x) = exp(|x |2/4) and Ḣ1
ρ (Rn) is endowed with the norm

‖u‖Ḣ1
ρ (Rn) =

(∫
Rn

|∇u(x)|2ρ(x) dx

) 1
2

for each u ∈ Ḣ1
ρ (Rn).

For the problem, we refer to [1,12,13,17,18,43,47,50,51]. It is well known that the embed-
ding Ḣ1

ρ (Rn) ↪→ L2
ρ(Rn) is compact,

inf
v∈Ḣ1

ρ (Rn)\{0}

∫
Rn |∇v(x)|2ρ(x) dx∫
Rn |v(x)|2ρ(x) dx

= n

2
,

and the infimum is attained by x �→ exp(−|x |2/4) ∈ Ḣ1
ρ (Rn). We define

‖u‖ =
(∫

Rn
(|∇u(x)|2 − λ|u(x)|2)ρ(x) dx

) 1
2

for each u ∈ Ḣ1
ρ (Rn).

Since λ < n/2, the norm is equivalent to ‖ · ‖Ḣ1
ρ (Rn). We define

I(u) =
∫
Rn

(
1

2
(|∇u|2 − λ|u|2) − 1

p + 1
|u|p+1

)
ρ(x) dx for u ∈ Ḣ1

ρ (Rn).
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Setting R′ = 0, R = ∞, ρ(r) = exp(r2/4), f (r) = rn−1 exp(r2/4), g(r) = −λ and
h(r) = 1, we apply our results. In the case of n ≥ 3, we have shown in [47, Section 5.5]
that there is κ ∈ [0,∞) such that G(r) > 0 in (0, κ) and G(r) < 0 in (κ,∞). In the case of
n = 2, we have

G(r) = −

(
e
r2
4 r

) 2(p+1)
p+3

4(p+3)3r3

(
(p2 − 1)r6 +2(5p2 + 6p − 3)r4 + 12(p2 − 1)r2 + 64

−2λ(p − 1)(p + 3)2(r2 + 2)
)
,

D(r) =

(
e
r2
4 r

) 4(p+1)
p+3

2(p+3)2r2

(
(p + 1)r4 + 2(3p + 5)r2 − 8 − 2λ(p + 3)2r2

)
.

Since

(p2 − 1)r6 + 2(5p2 + 6p − 3)r4 + 12(p2 − 1)r2 + 64 − 2λ(p − 1)(p + 3)2(r2 + 2)

−(p − 1)(r2 + 2)
(
(p + 1)r4 + 2(3p − 5)r2 − 8 − 2λ(p + 3)2r2)

= 2(p + 3)
(
(p + 1)r4 + 8

)
,

we can see {r ∈ (0,∞) : G(r) = 0, D(r) > 0} = ∅, which yields (B5) (ii). We know
that if 2 ≤ q < 2n/(n − 2), the embedding Ḣ1

ρ (Rn) ↪→ Lq
ρ(Rn) is compact, and if n ≥ 3,

the embedding Ḣ1
ρ (Rn) ↪→ L2n/(n−2)

ρ (Rn) is continuous. So in the subcritical case, we have
(B7) (i). In the critical case, assuming λ > max{1, n/4} and setting ĝ(r) = 0, we have
Sg < Sĝ; see [13, Theorem 4.10]. So we can see (B7) (ii). Next, we will show (B9’). Let u
be a positive solution of

{
u ∈ Ḣ1

ρ,rad(R
n),

(rn−1 exp(r2/4)ur (r))r + rn−1 exp(r2/4)(λu(r) + u(r)p) = 0 for r > Ru,

where Ru is some positive real number. By [47, (5.26)], we can find

u(r) = O
(
r2λ−n exp(−r2/4)

)
and ur (r) = O(r2λ−n+1 exp(−r2/4)) as r → ∞.

On the other hand, by Appendix 1, we have

a(r) = O(α(r)), b(r) = O(rα(r)) and c(r) = O(r2α(r)) as r → ∞,

where α(r) = (rn−1 exp(r2/4))2(p+1)/(p+3). So we can see that (B9’) holds. Hence there
is a unique radially symmetric, positive solution of (7.6). Since we have fr (r) = (r2/2 +
n − 1)rn−2 exp(r2/4), (log ρ(r))rr = 1/2, gr (r) = 0 and hr (r) = 0, we can see that (B11)
holds. By [34, Proposition A.1] and [35, Proposition A.1], we can see that (B13) holds. Hence
by our theorems, we can obtain the following.

Theorem 11 Let n ∈ N with n ≥ 2, p > 1 and λ < n/2. If p < (n + 2)/(n − 2), or
p = (n + 2)/(n − 2) and λ > max{1, n/4}, then problem (7.6) has a unique positive radial
solution and it is a nondegenerate critical point of I.

Remark 25 In the case of n ≥ 3 and 1 < p < (n+2)/(n−2), with an additional assumption
λ > 0, Hirose [18, Theorem 1.1] obtained the uniqueness of a positive radial solution of (7.6).
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7.5 The Brezis–Nirenberg problem on a spherical cap and a spherical band

Let n ∈ Nwith n ≥ 2 and let �Sn be the Laplace–Beltrami operator on Sn , where Sn = {X =
(X1, . . . , Xn, Xn+1) ∈ R

n+1 : |X | = 1}. Let p > 1 and we consider the Brezis–Nirenberg
problem on a spherical cap{

�Sn u + λu + u p = 0 in �θ1 ,

u = 0 on ∂�θ1 ,
(7.7)

where �θ1 = {X ∈ Sn : Xn+1 > cos θ1} with θ1 ∈ (0, π) and λ < λ1. Here, λ1 is the
first eigenvalue of −�Sn on �θ1 with the Dirichlet boundary condition. For the problem, we
refer to [2–4,7,10,47]. Let P : Sn\{(0, . . . , 0,−1)} → R

n be the stereographic projection
defined by

P(X1, . . . , Xn, Xn+1) = 1

Xn+1 + 1
(X1, . . . , Xn), X ∈ Sn\{(0, . . . , 0,−1)}. (7.8)

We set

R = tan
θ1

2
and BR = {x ∈ R

n : |x | < R}. (7.9)

We can easily see BR = P(�θ1). We consider the problem
{

�v + n(n−2)+4λ

(1+|x |2)2 v + 4(1 + |x |2) (n−2)p−(n+2)
2 v p = 0 in BR,

v = 0 on ∂BR .
(7.10)

Then we can see that u is a positive solution of (7.7) if and only if the function v defined by

u(P−1x) = (1 + |x |2) n−2
2 v(x) for x ∈ BR (7.11)

is a positive solution of (7.10). Setting f (r) = rn−1,

g(r) = −n(n − 2) + 4λ

(1 + r2)2 and h(r) = 4(1 + r2)
(n−2)p−(n+2)

2 , (7.12)

we have

G(r) = 2
p−1
p+3 (n − 1)

(p + 3)3 r
2(n−1)(p+1)

p+3 −3
(1 + r2)

n+2−(n−2)p
p+3 −3

(1 − r2)(Ar4 + Br2 + A),

where

A = (
n + 2 − (n − 2)p

)(
(n − 2)p + n − 4

)
= (p + 3)[3n2 − 6n − (n2 − 4n + 4)p] − 8(n − 1)2,

B = (p + 3)[−6n2 + 12n + (2n2 + 4λ − 4)p + 2λp2 − 6λ − 12] + 16(n − 1)2.

We note that A < 0 for n = 2, and that for n ≥ 3,

A > 0 ⇔ p <
n + 2

n − 2
, A = 0 ⇔ p = n + 2

n − 2
, A < 0 ⇔ p >

n + 2

n − 2
.

We set

λn,p = 6 + (6 − 4n)p

(p + 3)(p − 1)
.
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Then we can easily see

λ > λn,p ⇔ 2A + B > 0, λ = λn,p ⇔ 2A + B = 0, λ < λn,p ⇔ 2A + B < 0,

and for n ≥ 3,

λn,p < 0 and λn,(n+2)/(n−2) = −n(n − 2)

4
.

For the reader’s convenience, we give the following.

Lemma 8 There hold the following.

(i) In the case of A > 0,

(a) if 2A + B ≥ 0, G(r) changes its sign only at r = 1 from plus to minus,
(b) if 2A + B < 0, then there exists unique r̄ ∈ (0, 1) with G(r̄) = 0 and G(r) changes

its sign as follows:

r 0 r̄ 1 1/r̄ ∞
G(r) + − + −

(ii) In the case of A = 0,

(a) if B > 0, then G(r) changes its sign only at r = 1 from plus to minus,
(b) if B = 0, then G(r) ≡ 0,
(c) if B < 0, then G(r) changes its sign only at r = 1 from minus to plus.

(iii) In the case of A < 0,

(a) if 2A + B ≤ 0, then G(r) changes its sign only at r = 1 from minus to plus,
(b) if 2A + B > 0, then there exists unique r̄ ∈ (0, 1) with G(r̄) = 0 and G(r) changes

its sign as follows:

r 0 r̄ 1 1/r̄ ∞
G(r) − + − +

Proof We set z(r) = Ar4 + Br2 + A for r ∈ (0,∞). We note that the sign of G(r) equals
to the sign of (1 − r)z(r) and that z(r) = A(r2 − 1)2 + (2A+ B)r2 and z(1) = 2A+ B. We
consider the case A > 0. If 2A + B ≥ 0, we have z(r) > 0 in (0, 1) ∪ (1,∞), which yields
(i) (a). If 2A + B < 0, there is unique r̄ ∈ (0, 1) with z(r̄) = 0. Since we have z(r) > 0 in
(0, r̄) ∪ (1/r̄ ,∞) and z(r) < 0 in (r̄ , 1/r̄), we can see that the conclusion of (i) (b) holds.
We can show other cases, similarly. ��
Now, we apply our results to problem (7.7) for the subcritical and critical cases. We note that
in the case of n = 3 and p = 5, Bandle and Benguria [4] studied the existence of a positive
radial solution of (7.7) and its uniqueness, and that the uniqueness results except for the case
n = 2 was also studied in [47]. In the following, recall that P , R, BR , g and h are the ones
given in (7.8), (7.9) and (7.12).

Theorem 12 Let n ∈ Nwith n ≥ 2 and θ1 ∈ (0, π). Assume one of the following conditions.

(i) n ≥ 3, 1 < p < (n + 2)/(n − 2) and one of the following holds:

(a) θ1 ≤ π/2 and λ ∈ (−∞, λ1),
(b) θ1 > π/2 and λ ∈ [λn,p, λ1).

(ii) n ≥ 4, p = (n + 2)/(n − 2) and λ ∈ (λn,(n+2)/(n−2), λ1).
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(iii) n = 3, p = 5 and λ ∈ (μ1, λ1), whereμ1 = (π2 −4θ2
1 )/(4θ2

1 ) and λ1 = (π2 −θ2
1 )/θ2

1 .
(iv) n = 2, p > 1 and one of the following holds:

(a) θ1 ≤ π/2 and λ ∈ (−∞, λ1),
(b) θ1 > π/2 and λ ∈ [−2/(p + 3), λ1).

Then problem (7.7) has a unique positive radial solution u. Moreover, let v be the posi-
tive radial solution to (7.10) defined by (7.11). Then v is a nondegenerate critical point of
I|H1

0,rad(BR) on H1
0,rad(BR), and if λ ≥ −n(n − 2)/4 is additionally assumed, then v is a

nondegenerate critical point of I on H1
0 (BR), where I is defined by

I(w) =
∫
BR

(
1

2
(|∇w|2 + g(|x |)w2) − 1

p + 1
h(|x |)|w|p+1

)
dx for w ∈ H1

0 (BR).

Proof of Theorem 12 For the case of n ≥ 3 and 1 < p < (n + 2)/(n − 2) and for the case
of n = 2 and p > 1, we know that the embedding H1

0 (BR) ↪→ L p(BR) is compact, and
hence (B7) (i) holds. Even for the case of n ≥ 4 and p = (n + 2)/(n − 2), it can be shown
by similar arguments in [6], we can see that (B7) (ii) holds with ĝ ≡ 0. For the case n = 3
and p = 5, from [4, Proof of Lemma 1], we can find that (B7) (ii) holds with

ĝ(r) = −n(n − 2) + 4μ1

(1 + r2)2 .

Hence, for the cases (i)–(iii), we can find that the problem has a unique positive solution by
using Theorem 2 and Lemma 8. We consider the case n = 2 and p > 1. In this case, we
have

D(r) = − 1

(p + 3)2

(
2r

1 + r2

) 2(p−1)
p+3 (

(r2 − 1)2 + (p + 3)(2 + (p + 3)λ)r2).
If θ1 ∈ (0, π) and −2/(p+3) ≤ λ < λ1, we can easily see {r ∈ (0, R) : G(r) = 0, D(r) >

0} = ∅, and if θ1 ≤ π/2 and λ ≤ λ2,p , we have G(r) ≤ 0 in (0, R) from Lemma 8.
Noting λ2,p ≥ −2/(p + 3) and using Theorem 2 and Lemma 8, we can show that the
problem has a unique positive solution as written in (iv). Finally, noting gr (r) ≥ 0 in the case
λ ≥ −n(n−2)/4 and hr (r) ≤ 0, we can obtain the nondegeneracy results from Theorems 3,
4 and 5. ��

Next, we consider the problem on a spherical band{
�Sn u + λu + u p = 0 in �θ ′

1,θ1
,

u = 0 on ∂�θ ′
1,θ1

,
(7.13)

where n ∈ N with n ≥ 2, p > 1, �θ ′
1,θ1

= {X ∈ Sn : cos θ ′
1 > Xn+1 > cos θ1} with

0 < θ ′
1 < θ1 < π , and λ < λ1. Here, λ1 is the first eigenvalue of −�Sn on �θ ′

1,θ1
with the

Dirichlet boundary condition. As before, u is a positive radial solution to (7.13) if and only
if the function v defined by (7.11) is a positive solution of{

�v + n(n−2)+4λ

(1+|x |2)2 v + 4(1 + |x |2) (n−2)p−(n+2)
2 v p = 0 in AR′,R,

v = 0 on ∂AR′,R,
(7.14)

where R′ = tan θ ′
1/2, R = tan θ1/2 and AR′,R = P(�θ ′

1,θ1
).

First, we study the subcritical and critical cases for (7.13).
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Theorem 13 Let n ∈ N with n ≥ 2 and 0 < θ ′
1 < θ1 < π . Assume one of the following

conditions.

(i) n ≥ 3, 1 < p ≤ (n + 2)/(n − 2) and one of the following holds:

(a) π/2 /∈ (θ ′
1, θ1) and λ ∈ (−∞, λ1),

(b) π/2 ∈ (θ ′
1, θ1) and λ ∈ [λn,p, λ1).

(ii) n = 2, p > 1 and one of the following holds:

(a) π/2 /∈ (θ ′
1, θ1) and λ ∈ (−∞, λ1).

(b) π/2 ∈ (θ ′
1, θ1) and λ ∈ [−2/(p + 3), λ1),

Then problem (7.13) has a unique positive radial solution u, and the positive radial solution
v to (7.14) defined by (7.11) is a nondegenerate critical point of I on H1

0,rad(AR′,R), where
I is defined by

I (w) =
∫
AR′,R

(
1

2
(|∇w|2 + g(|x |)w2) − 1

p + 1
h(|x |)|w|p+1

)
dx (7.15)

for w ∈ H1
0,rad(AR′,R).

Remark 26 For the sake of completeness, under assumption 0 < θ ′
1 < θ1 < π , π/2 /∈

(θ ′
1, θ1) is equivalent to 0 < θ ′

1 < θ1 ≤ π/2 or π/2 ≤ θ ′
1 < θ1 < π .

Proof of Theorem 13 We note that the embedding H1
0,rad(AR′,R) ↪→ L p(AR′,R) is compact.

So we can show that the problem has a unique positive solution by Theorem 8 and Lemma 8,
and we can show its nondegeneracy by Theorem 8. ��
Remark 27 In the case when n ≥ 3, p = (n + 2)/(n − 2) and λ = λn,p = −n(n − 2)/4, we
have G(r) ≡ 0, and this case is not excluded in the theorem above.

Next, we study the supercritical case. Even in this case, since the embedding H1
0,rad(AR′,R)

↪→ L p(AR′,R) is compact, we can obtain the following as before.

Theorem 14 Let n ∈ N with n ≥ 3 and p > (n + 2)/(n − 2). Let 0 < θ ′
1 < θ1 < π and

λ ∈ R which satisfy one of the following conditions

(i) (θ ′
1, θ1) ∩ [θλ, π − θλ] = ∅ and λ ∈ (−∞, λ1),

(ii) [θ ′
1, θ1] ⊂ [θλ, π − θλ] and λ ∈ (λn,p, λ1),

where θλ is defined by

θλ =
{

unique θ ∈ (0, π/2) satisfyingG(tan(θ/2)) = 0 for λ > λn,p,
π
2 for λ ≤ λn,p.

Then problem (7.13) has a unique positive radial solution u, and the positive radial solution
v to (7.14) defined by (7.11) is a nondegenerate critical point of I on H1

0,rad(AR′,R), where
I is defined by (7.15).

Remark 28 For the sake of completeness, under assumption 0 < θ ′
1 < θ1 < π , (θ ′

1, θ1) ∩
[θλ, π − θλ] = ∅ is equivalent to 0 < θ ′

1 < θ1 ≤ θλ or π − θλ ≤ θ ′
1 < θ1 < π .

Remark 29 In Theorem 13, we can choose any n ≥ 2, any p > 1 which is subcritical or
critical, and any θ ′

1, θ1 ∈ (0, π) with θ ′
1 < θ1. Once they are chosen, λ1 is determined by

θ ′
1, θ1, and we can obtain a subinterval of (−∞, λ1) in which problem (7.13) has a unique

positive solution. However, in Theorem 14, after we choose n ≥ 3 and p > (n+ 2)/(n− 2),
in order to obtain an interval in which there exists at most one positive solution of (7.13),
we also need to choose 0 < θ ′

1 < θ1 < π and λ ∈ R which satisfy one of the conditions in
Theorem 14.
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Appendix 1: The functions a(r), b(r), c(r), G(r) and D(r)

In this appendix, we give detailed expressions of a(r), b(r), c(r), G(r) and D(r) for some
specified f (r), g(r) and h(r). In the case f (r) = rn−1 (g and h are any functions), we have

a(r) = r
2(n−1)(p+1)

p+3 h(r)
−2
p+3 , b(r) = r

2(n−1)(p+1)
p+3 −1

(p + 3)h(r)
p+5
p+3

(
2(n − 1)h(r) + rhr (r)

)
,

c(r) = r
2(n−1)(p+1)

p+3 −2

(p + 3)2h(r)
2(p+4)
p+3

(
2(n − 1)

[
n + 2 − (n − 2)p

]
h(r)2 + (p + 5)r2hr (r)

2

− (n − 1)(p − 5)rh(r)hr (r) − (p + 3)r2h(r)hrr (r)
)
,

G(r) = r
2(n−1)(p+1)

p+3 −3

2(p + 3)3h(r)
2

p+3 +3

(
4(n − 1)

[
n + 2 − (n − 2)p

][
n − 4 + (n − 2)p

]
h(r)3

−
[
2(n − 1)(p − 1)(p + 3)2r2h(r)3 − 4(p + 3)2r3h(r)2hr (r)

]
g(r)

− (p + 3)3r3gr (r)h(r)3 + (n − 1)
[
(2n − 3)p(6 − p) + 6n − 33

]
rh(r)2hr (r)

+ 3(n − 1)(p − 1)(p + 5)r2h(r)hr (r)
2 − 2(p + 4)(p + 5)r3hr (r)

3

− 3(n − 1)(p − 1)(p + 3)r2h(r)2hrr (r)

+ 3(p + 3)(p + 5)r3h(r)hr (r)hrr (r) − (p + 3)2r3h(r)2hrrr (r)

)
,

D(r) = r
4(n−1)(p+1)

p+3 −2

(p + 3)2h(r)
2(p+5)
p+3

(
2(n − 1)[(n − 2)p + n − 4]h(r)2 + (p + 3)2r2g(r)h(r)2

− (p + 4)r2hr (r)
2 + (p + 3)r2h(r)hrr (r) + (n − 1)(p − 1)rh(r)hr (r)

)
.

In the case f (r) = rn−1 and h(r) = 1, we have

a(r) = r
2(n−1)(p+1)

p+3 , b(r) = 2(n − 1)

p + 3
r

2(n−1)(p+1)
p+3 −1

,

c(r) = 2(n − 1)[n + 2 − (n − 2)p]
(p + 3)2 r

2(n−1)(p+1)
p+3 −2

,

G(r) = r
2(n−1)(p+1)

p+3 −3

2(p + 3)3

(
4(n − 1)[(n − 2)p + n − 4][n + 2 − (n − 2)p]

− 2(n − 1)(p − 1)(p + 3)2r2g(r) − (p + 3)3r3gr (r)
)
,

D(r) = r
4(n−1)(p+1)

p+3 −2

(p + 3)2

(
2(n − 1)[(n − 2)p + n − 4] + (p + 3)2r2g(r)

)
.
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In the case f (r) = rn−1 exp(r2/4) and h(r) = 1, we have

a(r) =
(
e
r2
4 rn−1

) 2(p+1)
p+3

, b(r) =
(
2n + r2 − 2

) (
e
r2
4 rn−1

) 2(p+1)
p+3

(p + 3)r
,

c(r) =

(
e
r2
4 rn−1

) 2(p+1)
p+3

2(p + 3)2r2

(
4(n − 1)[n + 2 − (n − 2)p]

− 2(2n(p − 1) − p + 5)r2 − (p − 1)r4
)
,

G(r) =

(
e
r2
4 rn−1

) 2(p+1)
p+3

4(p + 3)3r3

(
8(n − 1)[(n − 2)p + n − 4][n + 2 − (n − 2)p]

− 12(n − 1)2(p2 − 1)r2 − 4(n − 1)(p − 1)(p + 3)2r2g(r)

− 2(p + 3)3r3gr (r) − 2(p − 1)(p + 3)2r4g(r)

− 2r4 (
3n

(
p2 − 1

) − (p − 6)p + 3
) − (p2 − 1)r6

)
,

D(r) =

(
e
r2
4 rn−1

) 4(p+1)
p+3

2(p + 3)2r2

(
4(n − 1)[(n − 2)p + n − 4] + 2(2n(p + 1) − p + 1)r2

+ 2(p + 3)2r2g(r) + (p + 1)r4
)
.

Next, we study the case G(r) ≡ 0. Letting f (r) = rn−1, h(r) = rq with q ∈ R and

g(r) = r−2(n+1)

(p + 3)2

(
C1(p + 3)2r

4(2n+p+q+1)
p+3 − (2n + q − 2)r2n[(n − 2)p + n − 4 − q]

)

with C1 ∈ R, we have

a(r) = r
2((n−1)(p+1)−q)

p+3 , b(r) = 2n + q − 2

p + 3
r

(2n−3)(p+1)−2(q+1)
p+3 ,

c(r) = (2n + q − 2)[n + 2 − (n − 2)p + 2q]
(p + 3)2 r

2[(n−2)p+n−4−q]
p+3 ,

G(r) = 0, D(r) = C1r
2n−2.

Letting f (r) = rn−1 exp(r2/4), h(r) = rq with q ∈ R and

g(r) = C1 exp

(
− (p − 1)r2

2(p + 3)

)
r

2(−(n−1)(p−1)+2q)
p+3 − p + 1

2(p + 3)2 r
2

+ (−4n(p + 1) − (p − 1)(q − 2))

2(p + 3)2 − 2(2n + q − 2)[(n − 2)p + n − 4 − q]
2(p + 3)2r2 ,
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we have

a(r) = (
exp(r2/4)rn−1) 2(p+1)

p+3 r− 2q
p+3 ,

b(r) =
(
exp(r2/4)rn−1

) 2(p+1)
p+3 r− 2q

p+3 −1

p + 3
(r2 + 2n + q − 2),

c(r) =
(
exp(r2/4)rn−1

) 2(p+1)
p+3 r− 2(p+q+3)

p+3

2(p + 3)2

(
2(2n + q − 2)[n + 2 − (n − 2)p + 2q],

− (4n(p − 1) + (p − 5)(q − 2))r2 − (p − 1)r4
)
,

G(r) = 0, D(r) = C1 exp(r2/2)r2n−2.

Appendix 2: Some properties of X
In this appendix, we assume p > 1, (B1) and (B6), and we understand that D, X and L are
the spaces defined in Sect. 3.

Lemma 9 The space X coincides with the completion of C∞
0 ((R′, R)) with respect to the

norm ‖ · ‖X .

Proof Since C∞
0 ((R′, R)) ⊂ D, it is enough to show that each element in D is approximated

by an element in C∞
0 ((R′, R)). Let u ∈ D and let ε > 0. We set C = maxR′≤r<R |u(r)|. We

define η ∈ W 1,∞(R′, R) by η(r) = 0 for R′ < r ≤ δ̂, η(r) = 1 for δ ≤ r < R, and

η(r) =
∫ r
δ̂

ds
f (s)∫ δ

δ̂
ds
f (s)

for δ̂ ≤ r ≤ δ,

where δ̂, δ ∈ (R′, R) with δ̂ < δ are chosen to be

2
∫ δ

R′

(|ur |2 + |g||u|2) f dr < ε and
∫ δ

δ̂

dr

f (r)
>

C2

ε
.

Then we obtain∫ R

R′

(|(ηu)r − ur |2 + |g||ηu − u|2) f dr
≤ 2

∫ R

R′
|η(r) − 1|2(|ur |2 + |g||u|2) f (r) dr + 2

∫ R

R′
|ηr (r)|2|u|2 f (r) dr

≤ ε + C2
(∫ δ

δ̂

dr

f (r)

)−2 ∫ δ

δ̂

dr

f (r)
≤ 2ε.

By the standard argument with mollifiers, we can infer that our assertion holds. ��

Lemma 10 Let u ∈ X . Then u+, u−, |u| ∈ X .

Proof Since u ∈ H1
loc(R

′, R), we have

(u+)r = ur · 1{u>0} and (u−)r = ur · 1{u<0},
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where 1 is the characteristic function. Let u ∈ X . By the previous lemma, there exists
{uk} ⊂ C∞

0 ((R′, R)) such that uk → u in X . We choose K ∈ C∞(R) such that

K (t) =
{
t for t ≥ 1,

0 for t ≤ 0,
0 ≤ K (t) ≤ t and 0 ≤ Kt (t) ≤ 2 for t ∈ R.

Let k,m ∈ N. We claim

∫ R

R′

∣∣∣∣
(

1

m
K (muk(r))

)
r
− (u+)r

∣∣∣∣
2

f (r) dr +
∫ R

R′
|g(r)|

∣∣∣∣ 1

m
K (muk) − u+

∣∣∣∣
2

f (r) dr

≤ 2
∫

{r : 0<uk (r)<1/m}
(u+

k )2
r f (r) dr + 4

∫ R

R′
|uk,r − ur |2 f (r) dr

+ 4
∫

{u>0}
|1{uk>0} − 1|2ur (r)2 f (r) dr + 4

∫
{u<0}

1{uk>0}ur (r)2 f (r) dr

+ 2
∫

{r : 0<uk (r)<1/m}
|g(r)|uk(r)2 f (r) dr + 2

∫ R

R′
|g(r)| |uk − u|2 f (r) dr.

Once the claim was shown, choosing a suitable sequence {mk}, we can obtain {K (mkuk(r))
/mk} ⊂ C∞

0 ((R′, R)) which converges to u in X . We will show the claim. We have

∫ R

R′

∣∣∣∣
(

1

m
K (muk)

)
r
− (u+)r

∣∣∣∣
2

f (r) dr

≤ 2
∫ R

R′
|Kr (muk(r))(uk)r − (u+

k )r |2 f (r) dr + 2
∫ R

R′
|(u+

k )r − (u+)r |2 f (r) dr

≤ 2
∫

{r : 0<uk (r)<1/m}
(u+

k )2
r f (r) dr

+ 2
∫ R

R′
|(uk,r − ur )1{uk>0} + ur (1{uk>0} − 1{u>0})|2 f (r) dr

≤ 2
∫

{r : 0<uk (r)<1/m}
(u+

k )2
r f (r) dr + 4

∫ R

R′
|uk,r − ur |2 f (r) dr

+ 4
∫

{u>0}
|1{uk>0} − 1|2ur (r)2 f (r) dr + 4

∫
{u<0}

1{uk>0}ur (r)2 f (r) dr.

Here, we used
∫
{u=0} ur (r)

2 f (r) dr = 0. On the other hand, we have

∫ R

R′
|g(r)|

∣∣∣∣ 1

m
K (muk) − u+

∣∣∣∣
2

f (r) dr

≤ 2
∫ R

R′
|g(r)|

∣∣∣∣ 1

m
K (muk) − u+

k

∣∣∣∣
2

f (r) dr + 2
∫ R

R′
|g(r)| |u+

k − u+|2 f (r) dr

≤ 2
∫

{r : 0<uk (r)<1/m}
|g(r)|uk(r)2 f (r) dr + 2

∫ R

R′
|g(r)| |uk − u|2 f (r) dr.

Hence we have shown the claim, and we finish our proof. ��

Now, we also assume (B8). We give the following subsolution estimate.
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Proposition 6 Let u ∈ X satisfy

∫ R̄

R′
(urϕr + guϕ) f dr ≤

∫ R̄

R′
|u|p−1uϕh f dr foreach ϕ ∈ Xwith ϕ ≥ 0.

Then supr∈(R′,(R′+R̄)/2] u+(r) < ∞.

Lemma 11 Let u ∈ X and let z be a measurable function such that

∫ R̄

R′
|z+| β+1

β−1 h f dr < ∞

with some β ∈ (1, p̄). Assume

∫ R̄

R′
(urϕr + guϕ) f dr ≤

∫ R̄

R′
zuϕh f dr for each ϕ ∈ X with ϕ ≥ 0.

Then supr∈(R′,(R′+R̄)/2] u+(r) < ∞.

Proof We follow the argument in [46, Theorem 2.26]. Let 1/
√
C1 be the infimum value in

(3.3), and set

γ = max{β, q}, z̄ = z+ + |g−|
h

and C2 =
(∫ R′+2t

R′
|z̄| γ+1

γ−1 h f dr

) γ−1
γ+1

.

Set also

σ = ( p̄ + 1)(γ − 1)

2( p̄ − γ )
and C3 = max

{
max

R′+t≤r≤R′+2t

144C1

h(r)
, (12C1C2)

σ+1
}
.

We claim that for each l > 0, s > 0 and r1, r2 with (R′ + R̄)/2 ≤ r1 < r2 ≤ R̄, there holds

(∫ r1

R′

∣∣u|ul |s
∣∣ p̄+1

h f dr

) 2
p̄+1 ≤ C3

(
s + 1

(r2 − r1)2 + (s + 1)σ+1
) ∫ r2

R′

∣∣u|ul |s
∣∣2
h f dr,

(7.16)

where

ul(r) = max{0, min{u(r), l}}.
We will show the claim. Let l > 0, s > 0 and (R′ + R̄)/2 ≤ r1 < r2 ≤ R̄. Let η ∈ D. Since
we can show η2u|ul |2s ∈ X by a similar proof of the previous lemma, we have

∫ R̄

R′
zη2u2|ul |2sh f dr

≥
∫ R̄

R′

(
ur (2ηηr u|ul |2s + η2ur |ul |2s + 2sη2u|ul |2s−2ulul,r ) + gη2u2|ul |2s

)
f dr

≥
∫ R̄

R′

(
1

2
η2|ur |2|ul |2s − 2η2

r u
2|ul |2s + 2sη2|ul,r |2|ul |2s + gη2u2|ul |2s

)
f dr,
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which yields
∫ R̄

R′

(
1

2
η2|ur |2|ul |2s + 2sη2|ul,r |2|ul |2s + g+η2u2|ul |2s

)
f dr

≤
∫ R̄

R′

(
2|ηr |2u2|ul |2s f + z̄η2u2|ul |2sh f

)
dr.

Noting ∣∣(ηu|ul |s
)
r

∣∣2 ≤ 3|ηr |2u2|ul |2s + 3η2|ur |2|ul |2s + 3s2η2|ul,r |2|ul |2s
and ηu|ul |s ∈ X , we have

(∫ R̄

R′

∣∣ηu|ul |s
∣∣ p̄+1

h f dr

) 2
p̄+1 ≤ C1

∫ R̄

R′

(∣∣(ηu|ul |s
)
r

∣∣2 + g+∣∣ηu|ul |s
∣∣2)

f dr

≤ 6(s + 1)C1

∫ R̄

R′

(
3|ηr |2u2|ul |2s f + z̄

∣∣ηu|ul |s
∣∣2
h f

)
dr.

For each ε > 0, we have
∫ R̄

R′

(
3|ηr |2u2|ul |2s f + z̄

∣∣ηu|ul |s
∣∣2
h f

)
dr ≤ 3

∫ R̄

R′
|ηr |2u2|ul |2s f dr

+ C2ε
2
(∫ R̄

R′

∣∣ηu|ul |s
∣∣ p̄+1

h f dr

) 2
p̄+1 + C2ε

−2σ

∫ R̄

R′

∣∣ηu|ul |s
∣∣2
h f dr.

Choosing ε−2 = 12(s + 1)C1C2 and using two inequalities above, we obtain

(∫ R̄

R′

∣∣ηu|ul |s
∣∣ p̄+1

h f dr

) 2
p̄+1 ≤ 36(s + 1)C1

∫ R̄

R′
|ηr |2u2|ul |2s f dr

+ (12(s + 1)C1C2)
σ+1

∫ R̄

R′

∣∣ηu|ul |s
∣∣2
h f dr.

Now, letting η satisfy

η(r) =
{

1 for R′ ≤ r ≤ r1,

0 for r ≥ r2,
and |ηr (r)| ≤ 2

r2 − r1
,

we can infer that claim (7.16) holds. We set

χ = p̄ + 1

2
and t = R̄ − R′

2
.

Applying (7.16) withm ∈ N, s = χm −1, r1 = R′+(1+2−m)t and r2 = R′+(1+2−m+1)t ,
and using the Lebesgue convergence theorem, we can infer

(∫ R′+(1+2−m )t

R′
|u+|2χm+1

h f dr

) 1
2χm+1

≤
[
C3

(
(4χ)m

t2 + χm(σ+1)

)] 1
2χm

(∫ R′+(1+2−m+1)t

R′
|u+|2χm

h f dr

) 1
2χm

≤
[
C3

( 1

t2 + 1
)
Cm

4

] 1
2χm

(∫ R′+(1+2−m+1)t

R′
|u+|2χm

h f dr

) 1
2χm

,
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where C4 = max{4χ, χσ+1}. So we have
(∫ R′+(1+2−m )t

R′
|u+|2χm+1

h f dr

) 1
2χm+1

≤
(
C3

( 1

t2 + 1
)) 1

2χ

∑m
i=1

1
χ i−1

C
1

2χ

∑m
i=1

i
χ i−1

4

(∫ R′+2t

R′
|u+|2χh f dr

) 1
2χ

≤
(
C3

( 1

t2 + 1
)) 1

2(χ−1)

C
1

2(χ−1)2

4

(∫ R̄

R′
|u+| p̄+1h f dr

) 1
p̄+1

.

Letting m → ∞, we can find that our assertion holds. ��
Proof of Proposition 6 First, we note that

∫ R̄

R′
|u|p−1uϕh f dr ≤

∫ R̄

R′
(u+)p−1uϕh f dr for each ϕ ∈ X with ϕ ≥ 0.

In the case of p < p̄, applying Lemma 11 with z = (u+)p−1 and β = p, we can see that our
assertion holds. So we consider the case p = p̄. We set s = ( p̄ − 1)/2. Let l > 0. Using the

notations is Lemma 11 and noting
∫ R̄
R′ |u|ul |s | p̄+1h f dr < ∞, we have

(∫ R̄

R′

∣∣ηu|ul |s
∣∣ p̄+1

) 2
p̄+1 ≤ C1

∫ R̄

R′

(∣∣(ηu|ul |s
)
r

∣∣2 + g+η2u2|ul |2s
)
f dr

≤ 18(s + 1)C1

∫ R̄

R′
|ηr |2u2|ul |2s f dr + 6(s + 1)C1

∫ R̄

R′
z̄η2u2|ul |2sh f dr

≤ 18(s + 1)C1

∫ R̄

R′
|ηr |2u2|ul |2s f dr

+ 6(s + 1)C1

(∫ R̄

R′
|z̄| p̄+1

p̄−1 h f dr

) p̄−1
p̄+1

(∫ R̄

R′

∣∣ηu|ul |s
∣∣ p̄+1

h f dr

) 2
p̄+1

.

We choose δ > 0 satisfying

6(s + 1)C1

(∫ R′+2δ

R′
|z̄| p̄+1

p̄−1 h f dr

) p̄−1
p̄+1

<
1

2
.

Then we have(∫ R′+2δ

R′

∣∣ηu|ul |s
∣∣ p̄+1

) 2
p̄+1 ≤ 36(s + 1)C1

∫ R′+2δ

R′
|ηr |2u2|ul |2s f dr

≤ max
r1≤r≤r2

72( p̄ + 1)C1

δ2h(r)

∫ R′+2δ

R′
|u+| p̄+1h f dr.

Letting l → ∞, we obtain
∫ R′+δ

R′
|u+| ( p̄+1)2

2 h f dr < ∞.

Since h, f and u are continuous in (R′, R), we have
∫ R̄
R′ |u+| ( p̄+1)2

2 h f dr < ∞. Choosing
β ∈ (1, p̄) such that

( p̄ − 1)
β + 1

β − 1
≤ ( p̄ + 1)2

2
,
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recalling p̄ = p, and applying Lemma 11 with z = (u+) p̄−1, we can infer that our assertion
holds. ��

Appendix 3: Proof of Theorem 8

It is enough to show that the unique positive solution ū is a nondegenerate critical point of I
in the case R < ∞ and G ≡ 0 in (R′, R); see Remark 19. For each δ > 0, we define gδ , hδ ,
aδ , bδ , cδ and Jδ by (4.6), (4.7) and (5.2) with γ ≡ 1; see also (5.9). We also define Sδ as the
set of all positive solutions of

{
urr (r) + fr (r)

f (r) ur + gδ(r)u + hδ(r)u p = 0, R′ < r < R,

u(R′) = 0, u(R) = 0.
(7.17)

We can see that ū is a positive solution of (7.17) for each δ > 0.
Since we can prove the next lemma as in Lemma 5, we omit its proof.

Lemma 12 It holds that

inf
0<δ<1

inf
u∈Sδ

‖u‖X > 0.

Lemma 13 There exist δ0 ∈ (0, 1) such that

sup
0<δ<δ0

sup
u∈Sδ

max
R′≤r≤R

u(r) < ∞. (7.18)

Proof Suppose that the conclusion does not hold. Then there exist {δm} ⊂ (0, 1) with δm → 0
and {um} ⊂ C([R′, R]) ∩ C2((R′, R)) such that um ∈ Sδm for each m ∈ N and θm ≡
maxR′≤r≤R um(r) → ∞ as m → ∞. For each m ∈ N, we choose rm ∈ (R′, R) with
θm = um(rm) and we define {vm}, {Lm} and {βm} as in the proof of Lemma 6. Without loss
of generality, we may assume that rm → r∗ ∈ [R′, R], limm→∞ θ

(p−1)/2
m (R′ − rm) exists

in [−∞, 0] and limm→∞ θ
(p−1)/2
m (R − rm) exists in [0,∞]. Let L(⊂ R) be the limit closed

interval of {Lm}. We can see that L is unbounded and 0 ∈ L . For each m ∈ N, we have
vm(0) = 1, vm,t (0) = 0 and

vm,t t (t) + ( f (βm(t)))t
f (βm(t))

vm,t (t) + (1 + δm)h(βm(t))vm(t)p

− θ
−p+1
m

[
g(βm(t)) + δmh(βm(t))ū(βm(t))p−1]vm(t) = 0

for each t ∈ Lm , and hence we have

vm,t (t) f (βm(t)) =
∫ t

0
f (βm(s))

[
−(1 + δm)h(βm(s))vm(s)p

+ [
g(βm(s)) + δmh(βm(s))ū(βm(s))p−1]θ1−p

m vm(s)
]
ds

for each t ∈ Lm . We recall R < ∞, f, h ∈ C2([R′, R]), g ∈ C([R′, R]) and f > 0 on
[R′, R]. From

sup
t∈Lm

∣∣∣∣ ( f (βm(t)))t
f (βm(t))

∣∣∣∣ ≤ maxr∈[R′,R] | fr (r)|
minr∈[R′,R] f (r)

· θ
−(p−1)

2
m → 0 as m → ∞,
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and the two equalities above, we can see

lim
m→∞

sup
t∈K

|vm,t (t)| < ∞ and lim
m→∞

sup
t∈K

|vm,t t (t)| < ∞

for each bounded closed interval K ⊂ L with 0 ∈ K . Taking a subsequence {vmi } of {vm},
we can infer that there exists v ∈ C2(L) such that ‖vmi − v‖C1(K ) → 0 for each bounded
closed interval K ⊂ L with 0 ∈ K , v is nonnegative on L , and

{
vt t (t) + h(r∗)|v(t)|p−1v(t) = 0 for each t ∈ L ,

v(0) = 1, vt (0) = 0.

However, since L is unbounded, v must be negative somewhere, which is a contradiction.
Thus we have shown our assertion. ��

Lemma 14 It holds that

lim
δ→0

sup
u∈Sδ

‖u − ū‖C1([R′,R]) = 0.

Proof For each δ ∈ (0, δ0), u ∈ Sδ and ru ∈ (R′, R) with ur (ru) = 0, we have

f (r)|ur (r)| ≤
∣∣∣∣
∫ r

ru

(
hδ(s)u(s)p + |gδ(s)|ū(s)p−1u(s)

)
f (s) ds

∣∣∣∣ for each r ∈ (R′, R),

So we have

sup
δ∈(0,δ0)

sup
u∈Sδ

‖u‖C1([R′,R]) < ∞,

and hence

sup
δ∈(0,δ0)

sup
u∈Sδ

‖u‖C2([R′,R]) < ∞.

Hence by similar arguments as in the proof of Lemma 7, we can infer that our assertion
holds. ��

Proof of Theorem 8 As already said, it is enough to show that in the case of R < ∞ and
G ≡ 0, ū is a nondegenerate critical point of I . From (d/dr)J (r; ū) = G(r)ū(r)2 = 0 for
each r ∈ (R′, R), we have

J (r; ū) = 1

2
a(R)ūr (R)2 > 0 for each r ∈ [R′, R].

Letting δ ∈ (0, δ0) be sufficiently small, we have

inf
u∈Sδ

inf
r∈[R′,R]

Jδ(r; u) > 0

by the previous lemma. By a similar proof of that of Theorem 1, we can see that ū is the
unique positive solution of (7.17). Hence, by a similar proof of that of Theorem 3, we can
find that ū is a nondegenerate critical point of I . ��
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