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Abstract We prove an epsilon-regularity theorem for critical and super-critical systems
with a non-local antisymmetric operator on the right-hand side. These systems contain as
special cases, both, Euler—Lagrange equations of conformally invariant variational function-
als as Riviere treated them, and also Euler—Lagrange equations of fractional harmonic maps
introduced by Da Lio-Riviere. In particular, the arguments give new and uniform proofs of
the regularity results by Riviere, Riviere-Struwe, Da-Lio-Riviere, and also the integrability
results by Sharp-Topping and Sharp, not discriminating between the classical local, and the
non-local situations.
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1 Introduction

In recent years there has been quite some research on the effect of antisymmetric potentials in
the regularity theory of critical and super-critical elliptic partial differential equations. This
was initiated by Riviere who in his celebrated [19] proved that solutions u € whi2(p, RN
to the equation

Au=Q-Vu in DCR? (1.1)

which is a contracted notation of

N
Aui=Z§2,~k-Vuk 1<i<N, in DCR?
k=1
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are Holder continuous, under the condition that Q;; € L?(D,R?) and the at first sight
seemingly non-descript condition

Qik = =i, 1=<i,k<N. (1.2)

As Riviere showed, (1.1) with (1.2) is essentially the general form of Euler—Lagrange
equations of conformally invariant variational functionals which allow the characterization
of Griiter [13], take for example a manifold A~ C R and the Dirichlet energy

2|Vu|2, u:DCR>— N CRY.

R

We refer the interested reader to the introduction of [19] for more details. In [20] this was
generalized to an epsilon-regularity theorem for D C R™, m > 3.

If the antisymmetry-condition (1.2) is violated, solutions to (1.1) might exhibit singulari-
ties such as Frehse’s [10] counter-example log log ﬁ In fact, the antisymmetry is shown to
be closely related to the appearance of Hardy spaces, and also to Hélein’s [14] moving frame
technique, cf. [22].

Motivated by this, Da Lio and Riviere [6] (for m = 1) showed that this regularizing effect
of antisymmetry exists and appears also in the setting of m /2-harmonic maps, critical points

of the energy

which satisfy (roughly) an Euler-Lagrange equation of the form

m 2 N
|V|7u‘, u:R™ - N CRY.

N
ATu =" Qu|V|Tuk 1<i<N, in DCR" (1.3)
k=1

Here, Q;; € L2(R™) satisfies again (1.2), and |V|* = (—A)% is the elliptic differential
operator of differential order o with the symbol |£|%, for the precise definition we refer to
Sect. 1.

As well in the classical situation [14,19], as also in the case of fractional harmonic maps,
the argument relies on transforming the equation with an orthogonal matrix P . That is,
one computes the respective equation PVu instead of Vu, or PA%u instead of A% u and
obtains a transformed 2p, which for the right choice of P exhibits better properties than
the original 2: In the classical case, div(2p) = 0, while in the fractional case, Qp € L1
(where L>! C L? is the Lorentz space dual to the weak L2, denoted by L>>). Note that
while a condition like div(f) = 0 is destroyed under a distortion like f := fg, even for
g € L™, the condition f € L>! is also valid for f = fg,if g € L*™.

Thus, the techniques developed in the fractional setting [5—7,24,25], seem somewhat more
dynamic and stable under certain distortions. For example, in [8] Da Lio and the author were
able to extend some of the results to the degenerate situation of the energy

/ IVIu|“, u:R" > N CRV,

the Euler-Lagrange equation of which have the form

N
V| (\|V|“u\%*2|V|“u) = [|V%ul« > @ IVI*u* 1<i<N. in DCR".
k=1
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The aim of the present work is to shed more light on the connection between the two systems
(1.3) and (1.1) in the critical and supercritical case, and we are going to extend the techniques
developedin [6,7,24,25] to give a uniform argument for e-regularity for quite general systems
which in particular include as special cases both (1.3) and (1.1). Setting w := (—A) 3 U=
IVI'u € LE®R™), (1.1) reads as

m N
Arw' =" QI R, [wh], (1.4)

y=1k=1

[N}

where R, = BVA_% denotes the Riesz transform. Thus, (1.1) is of the form (1.3), but Q
is not a pointwise matrix anymore, but a non-local, linear operator mapping L?(R"") into
L'(R™). This was our main motivation, to study the regularity, and, in the super-critical
regime, e-regularity of solutions w € L*(R™) of

/w,- [VIFe = —/Qik[wk]ga forall ¢ € C§°(D), (1.5)

where € is a linear mapping which maps L?(R™) into L' (R™). For the largest part of this
article, we will restrict ourselves to 2 of the form

m
Qijll =D AL R[], where Al = —Al; e L*R™),i,jel.....m. (16
=0

and Ry[] is the /th Riesz transform for [ = 1, ..., m and Ro[] is the identity on R”. The
arguments presented here hold also for more general potentials 2 : L? — L!, under suitable
conditions on quasi-locality and its commutators. But as (1.6) contains already the most
interesting examples (see below), we shall restrict our attention to this setting for the sake of
overview.

Our main result is then the following e-regularity:

Theorem 1.1 Let ;1 < min{l, %} or = % Let D CC R™, p € (1, 00), then there exists
0 > 0 such that the following holds: Let w € L2(R™y N L@ (D), that is,

2

—m
lwllzgm + sup p~ 2" [lwlly p, < 00, (1.7)
B,CD

be a solution to (1.5), where 2 is of the form (1.6). If Q satisfies moreover
2pu—m
sup p T ALl <0 1=0..miij=1.....m (1.8)
B, (x),xeD iats

thenw € LY (D).

loc

Let us remark the following corollaries from Theorem 1.1.

As mentioned above, by the representation (1.4) and the stability of the arguments as
n — 1, this gives a new proof of Riviere’s theorem [19], and also the e-regularity theorem
of [20].

Moreover, from Theorem 1.1 a new proof of Sharp and Topping’s integrability theorem
[29] for (1.1) follows, and also an extension to the super-critical setting. The latter has been
done independently, and by different methods by Sharp [28].

The extension of [29] to the case of non-local elliptic operators was one of the motivations
for the research that led to this article. In fact, we are able to extend these integrability results
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3534 A. Schikorra

to the non-local case for ¢ < 1. For u > 1 it seems already in the classical setting of the
biharmonic maps, cf. [31], that for e-regularity we need more information on the growth of
2 in terms of the solution, a fact which appeared also in our setting and forced us to restrict
=5ifu>1
Another corollary worth mentioning is that the arguments presented here also enable us
to treat (e-)regularity for critical points of more general non-local energies, e.g.,

E(u):/|V°‘u|2 u:R"™ > N CRV, (1.9)

where for R = [Ry, ..., Ru]?, and R; being the ith Riesz transform,
Veu :=R[|IV|*u].

Another remark regards the smallness condition of (1.8). In the critical setting 2 = m,
it is easy to verify, that this condition holds, if D is chosen appropriately small. In the super-
critical regime 2 < m, this condition would follow from some kind of monotonicity formula
for stationary points of energies of the form (1.9), which for the non-classical settings are
unknown so far, though there are some results into this direction [18].

Let us now sketch the arguments we are going to need. Firstly, motivated by the arguments
in [20], we are going estimate the growth of the norm possibly far below the natural exponent
2. More precisely we estimate the growth in R of

I —m
sup r Pr
B, CBg

lwl,, s, (1.10)

starting with « = p, where

m — K

P = .
m—K

The main work is to show that for any « € [1, 210) there is a good growth of these quantities,
then starting for ko = p, we can find a sequence of «; which converges to 2u, such that each
growth of the k;-norm (that is (1.10) with «;) is controlled by the «;_-norm. Finally, for «
sufficiently close to 2/¢, we show that we can actually have an estimate for p > 2. From this
we have

Theorem 1.2 There is 63 > 0 such that if & < 0,, there exists p > 2, A < 2, such that

w e LY (D).

loc

For Theorem 1.2, the antisymmetry of 2 will be crucial. Once Theorem 1.2 is established,
the system (1.5) becomes subcritical, and we can drop the antisymmetry condition and just
by the growth of the PDE, we have

Theorem 1.3 Assume w as in Theorem 1.1, where we do not require the antisymmetry of <.
Assume moreover, that w € LIPOIL,(D) for py > 2. Then for any p > 2, there is 0, > 0 such
thatif 0 < 0, in (1.8), also

we L (D).

loc
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The main difficulty is thus Theorem 1.2 and the estimates of the Morrey norm. For the
proof of this theorem we need the following two main technical ingredients: Firstly, we need
an extension of earlier commutator estimates from [6, 7], and also the pointwise estimates as in
[24,25]. We consider two types of commutators: For g € Cg°(R™), T : LP(R™) — L9(R™),
1 < p,q < oco. We then set for f € L?(R™) the commutator C(¢p, T)[ f]

Cle. D] = oT[f] = Tlof]. (1.11)

This commutator was estimated in terms of Hardy spaces for 7 = R the Riesz transform or
T = I; the Riesz potential in [3,4], nevertheless we need more precise estimates and gener-
alizations. The next bilinear commutator was introduced in [7], in [24] pointwise estimates
were given.

Hi(a,b) :=|V|*(ab) — a|V|’b — b|V|’a. (1.12)

For these commutators the following holds

Theorem 1.4 For any u € (0, 1], we have the following Hardy-space H estimate (for R[]
any zero-multiplier operator, we need it for the Riesz-transform, only)

NIV I* (RIR 1,6 — RIA 1,b) |4, < llAll2 15112,
Moreover, we have

ICCARUVIell S NIV flla [elsmo,
and its pointwise counter-part: For any §; € (0, 1) and any y; € (0,6;),i =1, 2,
ICa. RB] < Cr.s1p L1 |IVI7 a] Ly D] + CR 531 Iy (I3 101 [1V[2a]).
Finally we have

I Hu(p. o), S MIVI“gla [@lsmo-

and
IIVI“Hy(a, D)l S IIVI*ally 1IVIFbI, for w e (0, 1], (1.13)

as well as its pointwise counterpart: for any u € [0, m] there is L € N such that for
any B € [0, min(u, 1)), u € [0,m), T € (max{B, u + B — 1}, u] there are, si € [0, p),
ty € [0, T), where T — B — s — tx > 0, such that the following holds

L
(IVIPHy(a, )| S D Te—psii (I |1V 1#a] 1, [IVIB]).
k=1
Remark 1.5 For ;1 < 1 the Hardy-space estimates above follow essentially from an obvious
adaption of Da Lio and Riviere’s argument [7], and (1.13) has been proved by them. For
u > 1, already from the pointwise arguments in [24] there is no hope for similar results. The
interesting and new case i = 1, for which even (1.13) was unclear up to now, needs a more
careful adaption of the arguments in [7].

Since the arguments leading to Theorem 1.4 are rather technical and are not otherwise needed
in this paper, we will present the details of the proof in a forthcoming paper [26]. We gather
a few more estimates of this sort in Sect. 1.

The second main ingredient is the choice of the “gauge” or “frame” P for our antisym-
metric operator €2.

Theorem 1.6 Let 2 be as in (1.6), and assume that Q;;[] = —Qj;[]. For any B, C R"™, we
can then choose P : R™ — SO(N), supp(P — I) C B,. Then for any ¢ € C3°(B;),
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3536 A. Schikorra

—/sz”nvmo] < Al [olsuo

[plmo if we 1],
HIANZ ] o :
HVI#ell ooy if w>1,
where
P o U p. T ' T
Q1 f1:= (IVI*Pix) Py f+ Pl Py f1.
In [22] the construction of such a P is done via minimization of E(P) = |PVPT +

PQP||i2 under the condition that P maps into SO(N), a.e.. This is essentially the argu-
ment that Hélein [14] used for his moving-frame technique, and it provides an alternative
to Riviere’s adaption of Uhlenbecks [35] gauge-theoretic construction of P in [19]. Both
techniques can be extended to the fractional case, where €2 is still a pointwise multiplica-
tion [6,24]. We adapt the arguments [22,24] to this case of a non-local operator 2[], by
minimizing in Sect. 1.6 the energy

E(P) := sup / [y,
weLsz

and showing that several terms of the Euler-Lagrange equations fall under the realm of
Theorem 1.4.

Notation Let L7-9 be the Lorentz spaces, cf., e.g. [12,15,34], whose norm we denote with

I llpq)- We set
A—m
1/ Np.grn = W IMmcp.gy == sup r 7 [ fllp.g).B, (1.14)
B, CR™
and for A C R™,
A=m
L lp.an.a = 1A N fllp.g).as (1.15)
1l pgysna = SUP [f1(p.q).B,- (1.16)
B,CA

We say that f belongs to the Morrey space L9 (A), if the respective norm ||f||(p’q)A’A is
finite.
We will also use frequently the following annuli

A 1= B \Byine Ab= AL (w17

In Sect. 1 we recall several facts on the fractional laplacian, which we are going to use
throughout this work.

2 L?**“.integrability: Proof of Theorem 1.2

It is helpful, to check once and for all,

m — A
m—2pu = , K€ [w,2w), 2.1
P«
where 5 )
A 1= ’"(/‘7_", (2.2)
m—K
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m

Pe = . 2.3)
m —K

Assume w : R" — RN,y < %, w e L2@®R™), |[V|*w € L2(R™) is for D cC R™ a
solution to (1.5). We are going to establish that for any « € [u, 2n), if 6 = 6, in (1.8) is
suitably small, for any D CC D, we have

I —m
sup ~r b ”w”PmBr(XO) = Cb,w,/(' (24)
r>0,x0eD

Note that possibly p, < 2 for all « € [i, 21t). In order to show (2.4), we first note that its
satisfied by assumption (1.7) for k = w. In fact, if xg € D ccC D, then for any r > 0, or
B,(xo) C Dorr > cdist(D, dD).

Now, we show that for arbitrary x € [1t, 2u), thereisk; > «, so that (2.4) holds. Moreover,
we will show a lower bound on k] — «, in order to ensure that we come arbitrarily close to
2 if we repeat this construction finitely many times.

Then we can show that if we choose x € [u, 2u) close enough to 2, (2.4) suffices to
conclude the better integrability of Theorem 1.2.

Establishing (2.4)

For mappings P : R" — SO(N), P = I on R™\ D (denoting with I = (5;);; € RN*N the
identity matrix) from (1.5) we have

/Pikwk Vg = /wk IVI*(Pirxep) —/wk (IVI*Pit) ¢ —/wk Hy (Pii, ¢)

= —/ka[wzl Pirg _/wk (IVI*Pi) @ —/wk Hy (P = Dik, ),

where H), is the bilinear operator defined in (1.12).
Setting v; := P;;w, this is

/vi [VIFe = —/ (Pl Pjiv;] + (IVIMPik)ijvj)w—/ wi Hy (P—=Dj, ¢). (2.5)

The Growth Estimates The main difficulty is the following estimate of the right-hand side
of (2.5).

Theorem 2.1 (Right-hand side estimates) If © € (0, min{l, 2}] or 2u = m, there is a
uniform A = A, > 0, depending only on , such that the following holds: Let B, C R™,
and assume (2.5) holds for all ¢ € C§°(B,). Then there exists a choice of P such that (2.5)
implies for any ¢ € C°(Bp-1,), and for any T € (max{u — 1, 0}, u] sufficiently close to,
or greater than 2|1 — k,

@ [uivig < c o (T

THK—[L

o0
FCONVION o) AT KT ) ke

THK—p k=1

where we recall that the right-hand side norms were defined in (1.15), (1.16), Alr‘ is as in
(1.17), and ;i as in (2.2), p, asin (2.3).
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3538 A. Schikorra

Theorem 2.1 is a direct consequence of the Eq. (2.5), the choice of P and estimates on the
term involving the antisymmetric potential €2 transformed by this P, see Lemma 3.2, and the
estimates on the remaining term involving H,,, see Lemma 3.1.

Once Theorem 2.1 is obtained, we proceed as follows: From Lemma 5.18 (applied to
A~'r instead of ) we infer for any t € (0, 1] sufficiently close to i and any A > Ay
sufficiently large [for the right-hand side norms recall (1.15) and (1.16)], also in view of
Proposition 5.14,

m+pu—Tt—K’ A2y

=2 \2u—m n—t
LR\ (P

< A" C 60 |l e 00,5,
o0
A2 AR C. 0 ZZk(K—M) [w]

k=1
-2 \2pu— —m—+71—
+C (A r) m—m A k—m+t M”w”(p,(,oo),BA,l

(Pie 9OO)A_K ,A]; :

o0
-2 \2u— —m4T— k(c—m-+t—p)
HC AT NS R

k=1
2.1 m—2u
< CcOA ”w”(p,c,oo))w,B,

1y

oo
+Cc 0 AT 2RI )
k=1
1+C AK+‘L’—3/1. “w”(p,(,

(P, 003, A

00)s»By—1,

%)
+C Ak+t—3p. sz(l(+r—3,u) [w](p,(

00) e AR |
k=1 A" lr

p.AT
S (Ce 0 A" L CA T [wllpy 00, B,

o0
+(CK 0 AmfZ[,L +C AK+‘L’73;L) ZZk(K+173M) [w](pK
k=1

,00)5,c AR+

For later reference, we write this as

A2 VF )| m

=00 By-2,

< (Ce 0 A" 4 Cp AT w00y, B,

o0
H(Crep O A2 4 € AT S DREFTIO ] (26)
k=1

For t = u,
-2 22—
(A7 ol e, 5, o,

< (Ce 0 A" 4 Cp A7) [wll (00, B,

oo
H(Crep 0 A7 4 Cp ATHY D TRETI ] e 2.7)
k=1
The Iteration Procedure Note that |w| = |v|, so we can use them equivalently. Equation

(2.7) holds for any B, (xg), where xo € D and r < J(xo) := C dist(xp, 9 D) (the constant
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e-regularity for systems involving non-local. . . 3539

essentially only depending on the construction of P and the set where 2 is small). For xo € D
and R > 0 set

Py (R) = sup p"

lwll(p, 00,8,
B, CBR(x0)

and its centered counter-part

Wy (K, R) = sup P Wl 009, By ) < Prg 2K R)
p€(0,KR),xeBR(x0)

then from (2.7) for any R, xg € D with R < d(x¢), we have
Dy (AT2R) < (Cc OA™ 2 + C A7) @ (R)

o0
H(Ce OA™ T 4 € AT D220 g (2 R).
k=1
Note that from (2.4), we know that ®, (KR) < Cp ., for all K > 0, whenever xo € D,
R < d(xp).
In order to iterate, set A2 := 2L, some L € N, and apply Lemma 5.19, we set (fixing R)

ar = 0y (2'R), by = Wy, (25, 2'R),

then we have forany / < —1,

oo
arp < (Ce OA™ 7+ C A H)ap+ (C OA" 72 4 C ATHY) D2k py
k=1

Now we can iterate, Lemma 5.19, satisfying the assumption (5.22) by choosing 6 :=
(z‘é—;'()z < 6,and A = A, large enough, and then 6 small enough. Then, for any r < R,

2u— 6=
sup  p w0008, = sup o IV, 008,
B, C B, (x0) B, CB;(x0)
2
1 (2n—«
S Cieow, AR ro, where o = Z ( MC ) .
"

We can assume, that o, < 24 — «. Since

sup 2= —m

Il (pe.c0). B, o) S B Nwll(pye.00, B>
p>R

we arrive at

2QU—0r —
r T N Wl (g 00,8, (x0) < Cieawxo

so we get for any B, (xo) C Bgr(xop)

—o—
FOTM Wl (g 00), By (x0) = Creaw-

r% ”XBrw”(pK,OO))W +sup p
p>0
Plugging this into (2.6), we have for all T € (max{0, u — 1}, ] sufficiently close to, or
greater than 2u — «,

ee)

< Cewr™ + Coy 1% Y 26720490 (2 8)

2u—m n—t
r v v
v ”(ﬁ’m)’BA’Ir(XO) ~ P
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3540 A. Schikorra

so that we have for all small r,

2u—m— —
PN ) i S o

m+pu—T1—K’

Moving the Bg(xo), for any D1 CC D, we have that

IIIVI’HvII( . Cuw.ic,1v1,,D

<
~
m+p—t—k ’OO)A’DI

for A such that (choosing t possibly even closer to u, ensuring that [ — 7| < "7”)

A 3u—t—Kk—0x _ 3 — T — Kk — 0 (2i2))»7,(+u—‘r—a,(
m m4+pu—17—Kk m—K m m—K
Choosing the next ¥ Assume for a moment that 24 < m. we can guarantee
0 <A <A —Cpog,
and we choose k1.1 € (k,2u) via

20 —
P it
m—Ki1

By (2.10),

2 — K11 2u—«
m <m
m— K11 m—K

— Cm—2u Ok

and thus we have

(m —Kq,1)(m —«)

Ki1,1 > K+ 0Cm—2pu m

(2.9)

(2.10)

On the other hand, by a localized version of Adams’ [1]-argument on Riesz potentials, we

infer from (2.9) that for any D, CC Dy,

IVl (p,00),. 02 = 10l (p,00);, D, < OO
where
%:mﬂ‘nj_"—’”bzr € 0, 1).
Letting
m
m — K172 -

we can estimate
K12 —K ( ) 1 1 -
— =(u—1)(=-— — 0kCyy-
m H Ao om) T K

Thus for a certain o > 0,
K1 =minky 1, k1,2 > ko + coCp — k)%,

and since

m 21 — K
p = R }»<m7'u l,
m— K| m— K|
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e-regularity for systems involving non-local. . . 3541

for any D3 CC D, we arrive at

||w||(pklsoo) 2u—kq ,D3 < 0.
m—

HZ—K]
Varying this in D3 CC D, we have (2.4) for 1. If 2,0 = m, we use this same argument, to
conclude that w € L?(D3) for some p > 2, which is already the claim of Theorem 1.2.

Estimating the growth of « Iterating this procedure [for smaller and smaller € in (1.8)], we
obtain k. € [u, 21), and

Kk+1 = ki +cou — )%,

Since the sequence (ki) is monotone and bounded, and the only fixed point is koo = 21,
for any ¢ > O there is a step-count L such that [y — 2u| < €. This shows (2.4) m}

Integrability above 2

So far, it is possible, that p, < 2 for all x < 2u. But since A, ﬂ 0,as k — 2u, we will
now show that the conditions for Theorem 1.3 for w will be satisfied eventually.

By the arguments above, fixing D cc D, going back to (2.8), if 2u — k < & small
enough, for T € (max{e, u — 1}, u], ignoring o, > 0,

sup r2 ||V [F |
B,CD

SCo. 5
(m+u.rir—x’oo)’BA_lr(x0) ~ Tew,D

If 2 = m, choosing T = u, we have

m Kk—2u=m
m+pu—pn—K

}

which proves Theorem 1.2, and in fact even Theorem 1.1. So let from now on 2u < m,
u < 1.Thenfor A; . € (0,m), s == p — 1,

Ase —m

o =2u—m
m+pu—t—K
=2
@Xs,e=+(3M—T—K)MO
m+pu—1T—K
and
I m+u—t—« n—r
p m e Gl = T = k)
m—i—u—r—x_(u—r)(m—i—,u—r—/c)
o m mBu—1—«)
HW—T—K (n—1)
= 1+—2"""% 00 ) — T
+m(3u—1:—/c)(u+r 2 3u—1—k
we have by Adams’ [1],
(P,00)ig e
veL,. (D).

One checks that one can choose k &~ 2u, and then t suitably close to p such that p > 2,
Ase < 2. (In fact, also in this case one can see that p will be arbitrarily close to 00). Thus
Theorem 1.2 is established. ]
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3 Ingredients for the Proof of Theorem 2.1
3.1 Estimates of the H-term
This is to estimate for ¢ € C3°(B,) the following term

/w Hy(P—1,9) =/I/3w IVIPH,.(P, ¢) (3.1

Lemma 3.1 Let u € (0, 5], u < 1 or p = 5. For any k € [u,2u), there are Cy., > 0,
T € (0, ) such for any ¢ € CG°(By-1,) the following holds: If supp(P — I) C Bp-1,,

(A~ 1p)2m—m / w Hy (P —1,¢)

< Cop VIOl o) AT 2NV Pl 1wl o0,

K+T—p>

o0
+Cop |||V|%o||( n ) (AT TS IVIFPLL DA T W], o0,k

K+T—pn? k=1

where we recall the definition A’,‘ from (1.17), L from (2.2), and p, from (2.3). As for the
asymptotic behavior as k — 2u, one can choose t approaching max{u — 1,0}, and Cy
blows up.

Proof of Lemma 3.1 For asomewhat clearer presentation, we are going to show the following
claim for ¢ € C§°(B,) and supp(P — I) C B,

p2u—m / w H,(P—1,9)

K+T—p’

= Cen |||V|T¢||( n_2) r* I NIVIEP lwllp, 00),,, . Bar

oo
FCon VI oy 2 IIVICPI DN T Wl k-

K+T—p’
! k=1

Applied to 7 := A~!r gives the original claim.
As usual, we decompose

o
/wHM(P—I,q)):I—{-ZIIk,

k=1

where

I :=/XBA,w Hy(P—1,9),
and, denoting Ay := AII‘\’,,

11 ::/w H, (P —1,¢)xa,-

As for I}, since supp ¢ U supp(P — I) C B,

Hy (P —1,0)xa, = x4, |/VI*((P — D).
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By Lemma 5.15 we then have for any t € (0, u], using also Lemma 5.12,

Hy, (P —1 < (2FAr) T (2K Ar) B P_1
VHW(P = Lol ) 0 S (27 ) rE Nl 1P =

K—p’

—m—u K om
< (2ar) T (2ar) NI ) NP

K+T—p’

K+T—p’

—m-+Kk— m
= (2*a) VI _a ) ™ HUIVI P
Consequently,

—m-+K—u m
TS Twial g, 00 (2) I oy 1P

K+T—p1°

2.1) B —m—+Kk— m
S QAN [ poon, (2°0) 97l )™ FIVIPIL

K+T—p°

K+T—p

<R <2’fA)“*3"|||V|f¢||( o)™ MV P XA oo,
As for I, set w := xp,,w and write

/w Hy (P, ) =/1ﬁw|V|ﬁHu<P, o)

Actually, the claim follows quite straight forward from (5.30) for u < 1, B := u, but the
pointwise estimates on H, Lemma 5.20, are strong enough to deal with our situation, and
they do not make use of para-products which were necessary for the proof of (5.30): By
Lemma 5.13

MWl () o0, S NPl p, 000,

where for < min2u — «, 1),

1 m—k 2u—«—p

— = € (0, 1).
Pi m 2u —«

If =75, weset p =0,if u < 5, let e > 0 such that 4 + € < 5. Now we estimate
||V|ﬂHM(P, ¢)|, applying Lemma 5.20 for any t € (max{8, u + 8 — 1}, u], we have to
control terms of the form (fors € (0, u),t € (0,7),t — B —s5 —1t € [0, €))

Le—ps—t (L[ IV P 1[IV [T g]).
We have

1 1 s
Iz < H — = - —
VIV Pl gy ) S NVIPI, — =5 = € (0.1,

1 K+1T—pn ¢
AN S Ivf° s o=~ e 0D,
VTl S NVl e o= =5 = e @)
Note that
111 —n—s—t 1 - — !
LIRS S A Uit Bl S Uk - VL o D
P2 p3 2 m 2 " g "
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consequently,

Me—p—s—i (I [IVI“P] L1917 ), 1y S TIVIFPIL Vel

#"7,1’2)’
where
1 1 1 —B—-s—1t 1 —
Pyt reBosmr Lok Bok o),
ps P2 3 m 2 m
Now we have to ensure that the f(8) < 1 for admissible 8 (and admissible 7):
1 1 3w m—2u
fBy=—+—=3-——
propa 2 m

— >0
mQ2u —«)
Obviously, f(0)

= 1 holds, if u = % (so B = 0, and 7 arbitrarily between (. — 1, i]). As
for the case u < %, uw <1, Wehave2u —k < 1fork € [u,2un), then
I
FCu—x)= 5 +

— < 1.
m

so we can take 8 < 1 sufficiently close to 2u — «, so that f(8) < 1, and take 7 € (8, )
sufficiently close to or greater than 24 — . Consequently,

o0
|1|5/ IﬁmwﬂHﬂ(P,wHZ/ Igw [VIP H, (P, ¢)
Bar =1 7 Al
S Mgl 005, NIVIPHLP, @)y ™70 7

o0
+ D Bl oot NVIPHL(P @)y 1y a5 5" P18
k=1

m—ii - _m _m
<P gy ey, 11V Ha (P @)y ) 7" 5

o0 N
+ D@5 MU0y ooy, MVIPHL(PL @)y ar @)™ 7700
k=1

S 0l peoon, WVIPHLP, @), qy 7™ 70 7

Pl P4,

o0
m—Ax N _m m
+ Q) P, ey, 4t IIVIPHLP O 1) a2 25D
k=1

By Proposition 5.22, for the same t as above,

V1P H (P, @)y 1y S VP VIl .

Now we apply Proposition 5.23 (using that ¢ and P — I have support in B,), and using
m— mQ2u—«)

m—K m

m m
+m—-——-—— m—p+—
P1 P1 P4 D4
—2u + k,
and
m— Ay m m m
- —— 4+ ——u=m-2u
D1 1 ps 2
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we conclude

-2 ~ _m
S r™ =l gy o0y, 77 NIVIEPI VTl

K—T—p’

2

oo
) -2 ~ -3
S 2NN, ey, W o) "IV Pl

k=1 K+T—p’

< Cer™ M wys,,

I IVIFPI NVITell_n

l(py.00)s SR

3.2 Better integrability for transformed potential

This section is devoted to the proof of the following Lemma:

Lemma 3.2 Let B, C R™, Q as in (1.6), A > 2. There exists P : R — SO(N), P =1
on R"™\ B -1,., with the estimate

1\ 2uom
AT IVIFPlorn <6, (3.2)

such that for any t € (0, u] sufficiently close or greater than 2 — «, k € [, 2u), 6 > 0
from (1.8) in D = B, and for any ¢ € C°(Bp-1,), if p € (0,1], or p =15,

(A‘lr)z“_m/ ((IVI“P)PTw + PQ[PTw]) )

<Ciepb |||V|T<P||( m 1) lwll(py,00)5, . B

K+T—p’

o
FCen O NI o) h(CAVIN L 17 I TS

K+T—p’ k=1

where we recall the definition A’r‘ from (1.17), Ay from (2.2), and p, from (2.3).

As in the proof of Lemma 3.1, we prove the scaled claim for replacing r by Ar which makes
the presentation of the proof somewhat lighter: We are going to show the existence of P such
that for ¢ € C5°(B))

rzﬂ—'"/ (avIPyPTw+ PRIPTwI) ¢

S CI(,/J. 6 |||V|Tg0||( m 1) ”w”(p,(,oo))w,BA,

K+T—p’

oo
FCen O NI o) D QAT W, ) ks (3.3)
k=1 ’

K+T—p’

Fix B, C R™. In order to prove this claim, note that

/ (AVI P PTw + PRIPTW]) ¢ = / (V1P PTw + Py @LPTw]) g,

so we are going to assume that the A; in (1.6)

suppA; C By, [l = x5,QIl (3.4)
and consequently assuming (from (1.8)) that
2pu—m 2pu—m
2 Al g 1fl2+ sup pm 2 QL s, SO 1f]2 (3.5)
pe(0,Ar)
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Let P : R™ — SO(N) be the minimizer, P = [ on R"\B,, of E(-) = Er,x,Aﬂ,ll(')s
where A, is from Lemma 5.5. Using (5.6), (3.4), we have the estimates (for from now on
fixed A > 2),

2u—m
rm T IVI*Pllarm S0, (3.6)
which after rescaling amounts to (3.2), and with the help of (3.5),
2u—m
Al (D SV RS 2= VLry| R TP )
sDAr
Let
o o0
W=, D, = w0+ D
k=1 k=1
Then,

/ ((lVl“P)PTw + PQ[PTw]) P
:/(|V|“P)PTw0go+PQ[PTw()(p] —/PC(ga,Q)[PTwo]—l—Z/PQ[Pka]ga
k=1
=1 —II+I1II

The disjoint support part (IIT)

Since u <k < 2u,

(1.6)
/ POIPTwil e < [1Alg, ¢l IRIPTwillls g,

p.B.1 n_ein .
S NAllgs, 72 Vel

~

k —m+K
o CRAD T el 0
2.1) o .
S rfT Al IIVITell

k A \—mK Ak m—=2u
e GG
(3.5)

S 0T QA TH V)|

K+T—p

Wiy, 00,45 -
The same-support/commutator part (II)
We have

G mau
1111 S 1Al 1€, RIIP wollas, S r 2 6 1Cw, RIP wolll 5, -

~

Now we apply Lemma 5.26, and have for arbitrary § € (0, 1), y12 € (0, §),

Clo, RIPTwol| < Is—p 11Vl I, lwol + CR.s.n Ty (I1V1°0] Is—y, lwo))
Now, if we choose § < T

s 1P 0l oy S NVl g

Vit THk—p’

and for B < 2 — «, using [1], see Lemma 5.13,
A —m

W gwoll g, oy S 5W0N Gy 0y, S 1000y o0
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where
1 —Kk 2 — K —
Lomzk 2=k b o,
Dp m 2u —k
Now,
1 + K —
1 nte-p
Py m
2 —K) —
Y i,
m mQ2u — )
1
<=, 3.8
=5 (3.8)

if we choose y1 € (0, 2 —«) as follows: If © = % we can choose y arbitrarily. If 4 < % and
n < 1, then we pick y; sufficiently close to 2 — k < 1. That is, for any 7 < u sufficiently
close or greater than 2j4 — « such that thereisa y; < § < 7,6 < 2u — «, satisfying the
above equation, we have

m

m__ _m__ _ m—hgx
2 s 1+« M)r

L= IV P Iy lwollly < 7 VIR o) 100l o0,
THK—p’

and

m m m— Ay m m

- ——nte—pw+ =5 -—+ek—wW—-QCu—-rk—y) =5 —n

2 pu Py 2 2

As for the second term, for § — y» < 2 — «, using the formula (3.8) with § instead of yy,

P2. m Ps—y>
S+Kk—p 1 m—kK 1 m—K
= — o < s <1,
ps mQ2u—rx) ~ 2 mQ2u —«)

1 §+x — 1
— “+

if we choose y; < § (as above y) close enough 21 — «, and y» very small. Consequently,
if we set

A= Ag,
Y A—m _ A—m :
and A € (0, m) such that =ty that is
X A—m m Ae — M m
— = +—= +8+Kk—pn+
p2 Ps—y» p2 Ps—y» Ps—y
m—«k 2u—k — (8§ —
— (W) w ( V2)+5+K_M
m 2u — Kk
=p+n (3.9
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then

B ~ = B
(I 162—y2|w0|||(p2,2)i ~ S:Pﬂ RN 182—y2|w0|||(p2,2),3p
o

;.—IT'
S |||V|r§0”( m 2) sup p P2 ”]52*}’2|w0|||(p527y2,oo)’3p
THKk—p’ 3

~ T
~ ”lV' 90”(14—;’:1—;1'2) ||I52—V2|w0|||(1,527y2,oo))”30

S |||V|’<p||< n_2) woll p, .0,
THK—p

Now observe

L(L_&) ol pw
2 [ 22 2 pau+y)

K (82+K—M+m—x2u—fc—(82—n))
n+ v m m 2u — Kk

jz m—2u H o om—Kk y
- 2u—k)—8 + =+ >0,
M+7/2((( wee 2)m(ZM—K) m m QM—K) -

= N =

for sufficiently small y» and &, sufficiently close to 24 — «. In fact, this holds obviously, if

L oLt — 1 e have
m 2 m 2

2 m—2pu W om—K ¥ 2 1 )/2) 1
2 — k) — ) ————— + — + = —_y 2 ) ==
%) ((( oo Z)m(2M—K) m m 2M—K) w2 (2 2n) 2

Moreover, one checks

m nw m w o m—»>i m oA @39 m

2 u+wmp v opp 2 ptnp 2
Thus,

12y, 1V 12 I,y [woDlly g S 72 7 11, (112 Isy—ys [woD) (e )
),

s

m_ s
S P3NV Ly lwolll

m__
Sr2h |||V|I<P||(r+:'7w2) lwoll (p,,00)s, -

The same-support/commutator part (I)

Here, we decompose
wog = |VI* (nar (Iu(wop))) + IVI*((1 = nar) (Iu(wop))) =: IVI*g1 + IVI* &
and
I = /(|V|“P>PT|V|“g1 +PQ[PTWWgﬂ+/(|V|“P>PT|V|“g2+PQ[PT|V|“gz]
=11+ D.
For I, we use Theorem 1.6 in the form of Lemma 5.7,

[g1]BMO if uw=<1,

I Z/QPHVI“gl] < o :
rh2 |||V|“g1||(2,oo) if uw>1.
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Note that

supp(pwo) C By,

and moreover for g, = oo, for k > u, and g, = 1 for k = p, (for arbitrary v > 0)

T
w0l 000 s S 100 ( o) 108 0, S WV 2y 10 o,

o (3.10)

m

Then, the claim for /; follows from
Proposition 3.3 Let u < 1, g := na, 1. (f), supp f C By, then for any k € 1, 210),

m—u

Proof From [1, Proposition3.3.]

[glemo < 1VI*glly,-

Since,

IVI“g = f+IVI*((1 = nar I f).

we have,

[glamo S 11 £y, + VI (1= nar) L )y,
SN ), IV =101 )

m—p’
m—p

and by Proposition 5.17

VI = na) T f)lw S sup (AT IIVIFTA = nar)m

ael0,un] H
S ANl 3.11)

m
m

Since supp f C B,

A S W Dy, © ||f||(L (3.12)

m—pup ,OO) pum
m—i

Moreover, as in (3.11), from Proposition 5.17 and (3.10),

” G12)
IIVI#gall, < (AF)”2 llowoll; < r2 M|||V|I<ﬂ||( n_ )||w||(pK,OO)AK’BQ,7

kFT—p1r
implying

o T
(2l S 19y AN UV A0l i,

Kk+T—p’
3.7

2
< 6r “|||V|f‘l)“(¢ qu)”w||(m~,<>0m.82r'

K+T—p1

This proves the claim (3.3) and thus Lemma3.2.
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4 Higher integrability: Proof of Theorem 1.3

This section treats the regularity arguments, which can be used once the equation becomes

sub-critical, that is once we have obtained a sufficient initial integrability of the solution. In

that case, the antisymmetry of the right-hand side operator is irrelevant, and the regularity

follows from a bootstrapping argument, which nevertheless might be of independent interest.
Letw e L% (D) N L%(R™) be a solution to

loc

IVI*w = Q[w] in D CC R™.

Choosing for any domain D ccC D, we can~choose a domain D>, D ccC D, CcC D anda
cutoff function nz € C§°(D2), nj = lin D. Then wp = npw € L% (R™) is a solution
to

IVIFwp = Qwyl + QLw — wp] + [VI*(wj — w) in D,
and in 5,
10w —wal+ VI*(ws =Wl 5 = Cp p sy fwlly
So Theorem 1.3 follows from the following argument.
Lemmad.l Let p > 2,and0 < pu < % A <2u, andlet w € L4 be a solution to
IVI*w = Q[w]+ f in D cC R™, 4.1)

where f € L°°(D). Then, for any P € [p, 00) there exists ¢ € (0, 1) such that if 0 from (1.8)

. p
satisfies 0 < ¢, thenw € L;,.(D).

Proof In order to keep the presentation short, we are going to assume that Q[ = AR[]. Also

note that if w € L for some p > 2, than for some p € (2, p), w € L?*, for some <A,
so we can assume w.l.o.g. that . < 2u. From (4.1) we have for any B, C Bg C D,

mPx2
IIIVI"wII%Br S Al g IR, B, + 1 flloo 7 27
el

(1‘8) m—2u m—2u > —km mLﬂ
ST 0wy, A7 02 27wl a4 Il 7
k=2

r2 o r v 0wy, B

A

m—=2u m—»

00

m—h s m P2

trozor 92 2 7wl By T 1 flleo 77 2
k=2

That is, for

2 p
AN = A—— +2 e (h,2u), 4.2
N T M2+p (A, 2p) 4.2)

" < < —k2% ANZ—H
VWl 2, 5y 59 wll(py,. 5 +0 D27 P Wiy, By + I flloo R 2
k=2
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Consequently, by Proposition 4.2 (note that % > 1), for pp =2p/(p+2)and p; > p
(since Ay < 2u) defined by

— =t (4.3)

_mom ] AN AN m
lwlly, g, S A Prree lwly g, + (A7) 702 P |||V|”w||(

2
PTfZ)AN’Br
m 0 m
FATI 2T T )y
k=1

_A -1 m _ &
SA AT P wlp),, B,

)‘N m
20wl s,

o
+(ATIH T
1 _M_M+M+ﬂ > ,ki
HATI) T T 0 Y 2T [l By,
k=2

_AN AN m p+2
AT T TR f g Y

oo
_ m _ Ao A —kx
HATI PP AT 2T (W, By,

k=1
-1 ,M,M+u+ﬂ _
S@ATr)y or 2 @+ A P) wlpy,, s,

AN _ AN m PR L
N -2 —k%
HAT) T T @+ AT D 27 Wy, By,
k=1
NN m Ay 22
AT TP TR f g £

Consequently,

1 z_m
lwlpp,_, < A7 7wl g

-1 m_i\/—mﬂt -
ST 2RO+ A ) wllp,, By

m_*

N [e.¢]
_ N _*N _A gk
HATI T T O+ AT D2 P Wl By,
k=1

Now

which implies finally, for any By, C D,
_x
”w”(p))“BAflr SO+ A ) wllp),, s,

o0
-2 —k2 oy 22
O+ AT S 2 gy, a1l
k=1
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.. . . . —4
Now we argue similar to the iteration in Sect. 2: Choose A, := 2Cp1 2" assume that @ <
X

A, 7" and choose Cp,u sothat (5.22) is satisfied. Then we can choose anew A} = A — et for
which the above estimate holds and the right-hand side is finite. Repeating this argument (for
smaller and smaller 8), we obtain a monotone decreasing sequence of A; 1 = A; — c)»? >0,
which has as only fixed point 0. Thus, for any A > 0 there exists & > 0 such that for any
Dcc D,

”w”(p))”b < Cﬁ,D,)u,u)'

Note that for A — 0, Ay — M% and thus pp in (4.3) tends to infinity. Thus, we have
obtain for any p > 1 a A5 > O such that p; = p1(A3) > p, and if 6 is small enough, we
have to iterate the above argument finitely many steps to obtain that w € Llpolc(ﬁ). O

Proposition 4.2 For any f, ;v € (0, m) we have for p; € (1, 00), pa € (1,00), A € (0, m)
such that

the following estimate for any A > 2
m m A m
R/ —) 1 e tpt
Il B, S A PEree Al g, + (A7) 2P [V fll ), B,

0 m m
—im o0 .o M )
+ 27T ATI T

i=1

Proof Let1 < p4y < pi,

11
R —
P pa

11

—=— 2.

Py P2 A

There exists ¢ € C5°(Bj-1,), ||<p||pr1 < 1, such that

sy, S [ fo= [ I,L(nB,|V|“f)¢+i/f 91 (1Tt

k=1
Rm BA* 1, Rm

= / I/t(’iB,WWf)SU"‘i/f|V|M(UA¢IIL‘/’)+i

kler k=1 i=1

oo

/ fIvI® (nAﬁ I/LSD)

A1y Al

o0
S U@ AV Pl 5, el +;||f||1,g, VI (rastue )1,

o0 o0
+ 2 D Ul NV (nag g )l -

k=1 i=1
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The claim follows then from the following estimates: Firstly, (this argument holds, if k > 2
by Lemma 5.15, if k = 1 one has to apply Lemma 5.17 to get the same estimate)

IV (rag o)l 1 ls, S @O gl ag 1F 1 s,
SN 1l a1 f s, ST @) gl 11 f 111,
< @ TR @) AT I | flly g, = e 2R AT £

By Lemma 5.17,

NI (magug )l S 279 A790 ",

And for |i — k| > 2, twice using Lemma 5.15

. —m—p Iz
S (m ) (25 el

1
00, AL

I
o

191 (nag )
Y

< gmax{i,k)(—p—m)+ki A~ Fr T hy

Since ps < pi.

m m

ol 5, S (A7 71
And using Lemma 5.13
k@A Py S AT 5 eV )l ), S A7) 5 1V fll 5,

Consequently, we have shown the claim. O

5 Energy approach for optimal frame: Proof of Theorem 1.6

In this section we construct a suitable frame P for our equation, transforming the antisym-
metric (essentially) L2-potential [] into an L?!- or even better in an 1, H-potential Q7[].
Here, H is the Hardy space, and with the previous statement we essentially mean that

/ QPLf1 < Car I fllpoy. OF / QP[VI*0] < Cor 9]l apo.  respectively, (5.1)

where BM O is the space dual to . This is an improvement, since for the non-transformed
2, we only had the estimate

/ QL1 < Ca I (5.2)

For motivation of the arguments presented here, let us recall the classical setting [19], where
we have the equation (usually for w' := Vu' € L>(R", R?))

— div(wi) = Qix - w!,

for ﬁik = —s”zk,» € L%*(R™, R?), and we look for an orthogonal transformation P €
WL2Z@®R™, SO(N)), SO(N) C RV*N being the special orthogonal group, such that

/Q'Z Ve =0, (5.3)
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where
fz,f]’. = P,-kVP,g + Pikfzkl PIJT, or equivalently, — div(P,-lw[) = Qf,z . Pklwl.

Also in this case, the estimate (5.3) is an improvement from the estimate for the non-
transformed 2

/Q-w < C4 1V,

philosophically similar to the improvement (5.1) from the starting point (5.2).

For the construction of P such that (5.3) holds, there are two different arguments known:
Riviere [19] adapted a result by Uhlenbeck [35] which is based on the continuity method
(for the set t<2, t € [0, 1]) and relies on non-elementary a-priori estimates for QF, which
also needs L2-smallness of €. In [22] the author proposed to use arguments from Hélein’s
moving frame method [14]: Then the construction of P relies on the fact that (5.3) is the
Euler-Lagrange equation of the energy

E(Q) := ||§zQ||§, Q € SO(N), ae., (5.4)

the minimizer of which exists by the elementary direct method.

Both construction arguments have been generalized to the fractional setting for Q[] = Q-
a pointwise multiplication-operator [6,24]. In our situation, where [] is allowed to be a
linear bounded operator from L2t L, we adapt the argument in [14,22,24], and minimize
essentially the energy

E(Q) := sup / Qy]l, Qe SON),a.e.
vel?

‘While the construction of a minimizer of E, see Lemma 5.5, is not much more difficult as in the
earlier situations [14,22,24], when computing the Euler—Lagrange equations, see Lemma 5.6,
we have several error terms, which stem from commutators of the form fQ[g] — Q[ fgl,
which are trivial if €[] is a pointwise-multiplication operator Q[] = 2-. In Lemma 5.7 we
then show that these error terms all behave well enough, if we take the for us relevant case
of Q[] being of the form AR[].

5.1 Preliminary propositions

Here we recall some elementary statements, which enter into the proof of Theorem 1.6.
Proposition 5.1 and Proposition 5.2 are simple duality arguments for linear, bounded map-
pings between Banach spaces. Proposition 5.4 is a quantified embedding from BM O into
L.

Proposition 5.1 For any s > O there exists Ao, Cs > 1 such that the following holds: Let
f e L2(R™), IVI*f € L2(R™) and assume f = 0onR"\B, for some B, C R™. Then for
any A > Ay,

VE £y s, < Cs A2 NIVE fll2.84,
Proof Using Corollary 5.16,

[IVE £l pmp,, S ATZNIVE fllazmps, + A2 IIVE fll2 5y, -

Thus, if A > A for a Ag depending only on s, we can absorb and conclude. O
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Let us also recall the following observations which can be proven via duality and Riesz
representation theorem

Proposition 5.2 Let A : L2(R™) — LY(R™) be a linear, bounded operator. Then there
exists g € L>(R™), ||glla.gm = 1 such that

sup /A[w] z/A[él.
¥ ll2,mm <1

In particular (taking instead of A the operator A= Alxp-], for any D C R™ there exists
&p € L*(D), |gpll2.p < 1, supp§ C D, such that

sup /A[lﬂ] =/A[§'D].

¥ ll2,gm <1,supp ¥ CD

Proposition 5.3 Let A : L2(R™) — LY(R™) be a linear, bounded operator. Then there
exists a linear, bounded operator A* : L (R™) — L>(R™) such that

/g Alf] = / f A*g] foranyf € L>(R™), g € L®[R™).
Moreover, g = ||A(1)||2_l A*(1) for the g from Proposition 5.2.
Finally, we have the following well-known fact:
Proposition 5.4 Let ¢ € CG°(By), then

lelly < Cm r™ [@lemo-

5.2 Energy with potentials
Let %/ : L2(R™) — L'(R™), 1 < i, j < N be a linear bounded Operator. And set
QELf1:= (IVI"(Q = Dix) OF; f + QuQul Q] f1.

for supp(Q — I) C B, |VI*Q € LE®RN*Ny and Q € SO(N) almost everywhere. For
Y R — RNV we write

QP 1= (IVI"(Q — Dix) OF; vij + QuxQul Q[ ¥ifl,
Having in mind (5.4), we then define the energy
SUP yecgo sy, Ny [ (QOIY] if supp(Q — 1) C B (x),

E(Q) = Erx,as52(0) = I¥la=1 R™
o) else.

(5.5)
Obviously, Q = [ is admissible and E (/) < oco. Since E() > 0, there exists a minimizing
sequence, and one can hope for a minimizer:

Lemma 5.5 For any p > 0 there exists Ao > 1 such that for any A > Ay, the following
holds: There exists an admissible function P for E such that E(P) < E(Q) for any other
admissible function Q. Moreover,

VPl g, o+ AT NVIPly 2y o < Coe 1902518000 (5.6)
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Here,

1R202-1,p = sup lIS2[ 1114
VECF (D.RVXN), |yl <1

Proof Take Ao from Proposition 5.1 and assume A > Ap. We have for any ¢ €
C B RN, [yl < 1

E(Q) > /(IVI"(Q—I) QT),-,w,-,+/QQ[QTw1
> /(IVI"(Q — DO Yij — 19 1.,

which (taking the supremum over such ) implies

IVI*(Q = Dll2,8s, < E(Q) + 1R2-1,84, -

According to Proposition 5.1, this implies (as Q = I on R"\ B,),

IIVI“(Q — Dllagn < Cp (E(Q) + 1R0l21.84,)-

Consequently, for a minimizing sequence Py,

IVI*(Px — Dllorn < Cpu 1120121, B4, »

and up to taking a subsequence, we may assume that there is an admissible function P such
that |V |* P converges L2-weakly to |V|* P and Py converges pointwise and strongly to P.
Then, for any fixed ¥ € C3°(Ba,), [[¥ [l gvxv <1

E(Py) > / QP [yl + / QP g1 - Qv

We claim that

/ Qfy) - ef ] =% o, 5.7)
which, once proven, implies that
inf £() > / Q’y,

which by the arbitrary choice of i implies that P is a minimizer. In order to show (5.7), note
that

Qi1 - QP [yl = IVI*Pe (Pl — PTYY +IVI*(P.— P) Py
+(P = PR[PIY] + P[] - PTyy]
=L+ 1L+ 111+ 1V

Since | Pg|, | P| < 1, all terms of the form (PkT — Py k_)—oo> 0in L2, by Lebesgue’s dom-

inated convergence. Thus, f I, + f 1V k_)—oo> 0. By the weak L2—Convergence of |[V|* Py,
k—o00

also [ 11 =% 0. Since Ply — PTyin L2R™), also Q[P y] —> Q[PTy]in L'

and in particular pointwise almost everywhere. Then also f 111 k_)—oo> 0. O
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Lemma 5.6 Let P be a minimizer of E(-) as in (5.5), and assume that
Qijll=—-Qill 1<i,j<N. (5.8)

Then for any ¢ € Ci°(B,(x)),

_/QanWgo] = %/H,AP —1,PT — 1) [VI'g
—/so (e, 2 [PT" 1, )
+/so(FXDAPHM(<p, | )
— / s0(C(P, Q[IV|*¢]1PT)

+/sz”[<1 — xo)IVIel.

Here, we denote for amatrix A € RN*N | the antisymmetric part with so(A) = 2~ (A—AT),
and for a mapping g : L> — L', we denote g as in Proposition 5.2.

Proof We set D = B,(x) and Dy = Bj,(x). Let ¢ € Cj°(D), € so(N). We distort the
minimizer P of E(-) by

Q, =e*”P=P+epwP+o(c) € H (D, SO(N)),

that is we know that
E(Q:)—E(P)=0 (5.9)

We compute

IVI“(Q: — D) QT
—|VI*(P—1) PT + sga(a) V(P —1) PT —|V|*(P — 1) PT a))

+elVIhp @+ e w Hy(p, P — PT +o(e), (5.10)
and
0.9 [QZ.] — PQ [PT-] +e(vo PQ [PT-] —PQ [PT u)(,o']) Fole).  (5.11)

Together, we infer from (5.10) and (5.11) (denoting the Hilbert-Schmidt matrix product
A:B = A,’ j B,’ j)

QO [y] = "Y1+ 5 (pw QW] - @ [wpgl) + eV o v
+ew Hy(p. P — 1) PT -y +o(e)[y].
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Thus, for any & > 0, % € C°(Da, RV*M) Iyl < 1,
1 1 »
(E(Q0) ~ E(P) = - /sz [y - E(P)
+ [ (v0 27191 - 2" 0ve))
+/|V|“ww:w
+/a)H,L(<p,P—I)PT:w

+o(1).

Let W € L2(DA) such that E(P) = fQP[E] (cf. Proposition 5.2), this implies for the
choice ¢y =y

59 1 — _
0% —(E(Qo) — E(P) 2/(<pw Q[ - 2" lovyl)
+ 191w
+/a)H,L(<p,P—I) PT .y
+o(1).

Letting ¢ — 0, we then have
—/ VI oy > /«pw Q"Y1 - Q" (ol
+/wHM((p,P—I) Py

which holds for any ¢ € C§°(B;). Replacing ¢ by —¢, we arrive at

—~ / IVItp w9 = /(pa) QP Y1 - QF [wye] +/w Hu(p, P— 1) PT 1y, (5.12)
Now we need to be more specific about the characteristics of . We have

E(P) = s:;p/ Qf[y] = s:;p/ V1% P BT i + P ual PL U1,

Let Qf, : L°(R™) — L2(R™) be the linear bounded operator such that (cf. Proposition 5.3)

/ngz[f] z/QZI[g] f, foranyf € L*(R™), g € L®(R™).
R R

Set then,
*
((QP) )i,'[f] = IVI" Pu Pkcf + S Lf Pik] P1]T~ € LZ(R’"),
and

of) =((2")) 11er@m.
ij ij
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Since

[e(@r), = [((2")), e forall £ e 2@, g € LR,

we have
E(P) =s3p/F: ¥ XDa =c/szP Q" 1o, —c/sz”[FxDA],
for some normalizing constant c. That is,
@)= [ (@F) 10,27,
and we can assume ¥ = cxp AF =cxXp AF for some normalizing constant c. Now,
—/|V|“gow:$= —c /IVI“w winDASTf}
= -ay [@fuvrer+ [0 010 - )1l
Consequently, (5.12) reads as
—/w L QPVIMg] = /wwik (%), [(27) xos1 = (2) ow(2F) ol
kj ij ij kj

+/wHu(<p,P—1)PT:F
Dy

+/a) QP 1A = xp)IVIHel.

Note that, since ¢ € Cg°(R™) C L,

ik /(QP)U [(?)kjga]:w,»k /(F)] (F)kjw wgso ), (5.13)

By the same argument,
Wik /fp (Qp)kj[XDA (?)ij]
—an o (07), s (7)o [ (), 1) 0
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o [ (#((@) ) 0= (7)), 1) (), 0
Do [ (o(@)), 0 (@)),10) @), 70

= wik /C(w,sz,f,-)uﬁ)ij XDa -

where we denote the commutator C
CO, TSI =bTf—T(O®f).

Thus, we arrive at
- [wsso@uviton; = o [ (v (@), JI(7), xou)
+/w H,(p,P—1)PT :QPyp,
+/w L QPI(1 = xpy) VI ol.
One checks, that
C(w, (2") ‘)[(?)“xm] = Puc(p. ") 1P(27). xo,]
kj ij ij
Next, [and here the antisymmetry of €2, (5.8), plays its role]
1
so(@"NIVI* gDy = so(VI"(P = 1) PT)ij IVI"¢ + - PuSul Pil V1]
1 u
—Eijle[Pil|V| vl
G8) Iz T I 1 I
= so(|VI"(P —1) P");; |V| ¢+§PikaI[le|V| vl
1 u
+§leQk1[Pik|V| ®]
1
=so(|VI“(P = 1) PT);; V"o + 5 Pk QP V1" gl

1 1
+3 i1 P Qu[IVF @] — 3 i1C(Pix, Sun)[I V" ]
=so(IV[*(P — 1) PT);; |VI*¢ + PuSQulPjIV|*¢]

1 " 1 I
+§PikC(les Qu)lIVI*e] — EPjIC(Pik,ka)[IVI ¢l
+ [2r1a - xwrvrel
and

1 1
so(IVI*(P—=1) PT) = E|V|M(P -nprPT— EP|V|"(PT -0

IVI“(P—1) PT + %(—IVI“(P —n P’ — PP’ — 1))
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1

= [VI(P = 1) PT + S (IV/"(PPT) = IVI"(P = 1) PT = PIVI"(PT = D)
1

= |VI*(P -1 PT + 5 Hu(P =1, Pl -1

This implies finally (going with w;; € {—1, 0, 1} through all the possible matrices with two
non-zero entries)

—/sz”uqua] = %/H,AP—I, PT —1)|V|*p
+/s0 (PC(q;, Q) [PTFTXDA])
+/so(?XDAPHM(<p, rT — 1y
— / s0(C(P, Q[VI*¢]1PT)
+/QP[<1 — xo)IVI el
O

Then, using the commutator estimates in [4], (5.28), (5.29), and (5.30), we have shown
the following Lemma, which implies Theorem 1.6

Lemma 5.7 Let P be a minimizer of E(-) as in (5.5), Lemma 5.6. Assume moreover, that <2
satisfies (1.6). Then for any ¢ € C3°(B;)

_m_, om_ [elemo if e (0,1],
—/sz”nw“go] SATEE I Al [elsmo F AN :
VIl 200 1> 1.
Proof By Lemma 5.5 and Lemma 5.6,
1927 sy + 1QF 1l + 1IVI#Plla £ 19012~ < 1AL,

and by Lemma 5.6 we need to estimate

/HM(P —I,PT — 1) |V|*y (5.14)
[se(pew. [P 1,])| S 1Al et R [PTRP 00, ], 515)
/so (2% x0s PHuto. PT = D) | S 1971 (o, PT = D, | (5.16)
/ s0C(P. QUYI"¢IPT)| < | All2 ICP. RIVI*6]> . (5.17)
/sz”[(l - XDA)WWJ‘ SR a1 10 = xp IVl (5.18)

The estimate of (5.14) is immediate from (5.30), for the estimate of (5.15) we apply [4]. For
the estimate of (5.16) we use (5.29), for (5.17) we have (5.28). It remains to estimate (5.18),
which follows from
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o 1.B.1 2 m
I = xp IVl £ D MIVIFely e S D@ ANTT el

k=1 k=1
p.5.4 X m
< D @ AT [plaumo.
k=1

m}
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Appendix 1: Some facts on our fractional operators

The fractional laplacian A% is usually defined via its Fourier-symbol —|&|*. Here, we will
mostly use the negative fractional laplacian (— A)% = |V/|® (which here plays the role of the
gradient, or the divergence and rotation in the classical settings), deﬁned via its symbol |£]°.
These operators are defined for s € (—m, m), if s < 0, we write A2 = Ijg.

Most of the time, we will use the potential definition: For Schwartz functions f,

fo) =,

o
VI f) = lim s

[x—y|>¢ |X -

1/ S+ + fx—2)—2f(x)
lx—y|>¢

|z|" s

= ¢ lim

f 2).
Lim > dy fors € (0,2)

For s € (2, m) one can easily extend this formula. For example, |V|3f = |V|1(—A)f. The
inverse is the Riesz potential,

I f(x) = ¢ 11m f(y) dy fors € (0,m).

x—y|>e [x — "™

We refer, e.g., to [17,21] on hyper-singular operators, generalizations, and different rep-
resentation formulas. For interpolation (in particular fractional Sobolev spaces), Tartar’s
monograph [34] might be very useful.

Next, we state some useful facts about the fractional laplacian, which we are going to use
throughout our paper, as standard repertoire.

We have the standard Poincaré inequality, for a proof, we refer, e.g., to [23].

Lemma 5.8 [Poincaré inequality with compact support] Let s € [0, m), p € (1,00), g €
[1, o0], then for any B, C R™, and any f € C{°(B;)

1 N prary < Cs P NVE Fllpran)-
The (scaling invariant) Sobolev inequality takes the form

Lemma 5.9 [Sobolev inequality] Let s € [0, m), p1, p2 € [1,00), ¢ € [1, 00], for any
f eSS,

1 gy < 1VE gy
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where
1 1 s

P piom

For p; = oo, we have the following limiting version of Sobolev’s inequality:

Lemma 5.10 [Limiting Sobolev inequality] Let s € (0, m). For any f € S(R™),
1o < HIVE Flln 1y,
Also, we have the following Holder-like inequality
Lemma 5.11 [Holder inequality] Let s € [0, m), then for any p1 < pa, for any B, C R™,
and any f € C§°(B;)
HVE Fllprgn < Coprps 7777 1VE Fllpyio0y

Proof Let A > 2, then

mo_m
|||V|Sf||(p],ql),B/\r 5 CS,pl,pz,A ree.n |||V|Yf||(p2,oo)

On the other hand, for some 6 > 0, by Lemma 5.15, Lemma 5.8,

. -0 — —6
HVE flprgnrmnsy, S AT 1 gy S ATHVEfllg0-

For sufficiently large A we can absorb the latter term into the left-hand side, and obtain the
claim. O

From the Lemmata before, we also have
Lemma 5.12 [Poincaré-Sobolev inequality with compact support] Let s € (0, m), p1,q1 €
(1, 00), then we have s < t, for any B, C R"™, and any f € C;°(B;)

m m
s Ly TS t
HVE fllipran = Coigiopargas TP 72 VT Al (p.g2)»

where py € (1, 00) such that
1 1 s —1t
<

P2 pi m

and gy = o0 if the above inequality is strict, else g1 = q2.

A very important ingredient in our arguments is the boundedness of the Riesz potential
on Morrey spaces.

Lemma 5.13 [1] Let s € [0, m), p1, p2 € (1,00), q € [1, 00, A € (0, m], such that
1 1 s
pi P2 A
Then for any f € S(R™),
”Iu\'f”(pl,q);L S ”f”(Pqu))L'

The following is an easy equivalence result, recall (1.17).
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Proposition 5.14 Let A > 2, 0 > 0. Then,

o o0
2 2 N Mgyt < Coll Flipgy.mar + 25275 1 Ny, at
k=K k=0

Proof Letky = |logy A| > 1, then
2k < A < kot
We have

—o (I+ko) < n—0okon—a(l—1) —oko ~ol
2 1ty S22 Nprat,, + 2770 27 W N

Appendix 2: Quasi-locality

In this section we gather some facts which quantify the quasi-local behaviour of operators like
fractional laplacians |V|%, Riesz transforms R, and Riesz potentials I;. With “quasi-local”
we mean the following: Let A C R be some domain and assume that supp f C A. If we take
T to be any of the above mentioned operators, then there is no reason why supp 7f C A,
nor supp Tf C BsA for some finite § > 0. Nevertheless, if we take a domain B C R,
dist(A, B) > € > 0,then Tf € C*(B). In fact, in this case

Tf(x)=k=x f(x) forx e B,

where k is a kernel of the form k(y) = h(y/|y|) |y|™™"* for some s € (—m, m), h some
smooth function on §”~!. Since supp f C A and x € B, we can replace

Tf(x)=kx* f(x),

where Iz(y) = (I = n()k(y), and n € C°(B:(0)), n = 1 on B/2(0). Obviously, ke
C*°(R™), and consequently so is 7 f. In fact, by the usual Young-inequality, we have

1T flloo,s < Iklloo If 1l < Iklloo B0 1£111 < Clig €7 1 £ 11

That is, although we cannot ensure that 7f = 0 in B (as it would be, e.g., the case for
local operators like V), we can at least quantify that the farer away B is from A, the smaller
becomes the norm of T f on B. In particular, we have

Lemma 5.15 [Quasi-locality (I)] Let p1, p2, q1,q2 € [1,00], s € (—m, m) and Q, Q2 C
R™ be disjoint domains with d = dist(21, 22) > 0 and with positive and finite Lebesgue
measure. Then, for any f € S(R™),

IAZ(f e l(prgnon < d" 101 PU Y22 Fll gy 2o
where we set

V| if s>0,
A =1IdorR if s=0,
g if s <O.
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Often we will use the above also for 2] or €2 to be a complement of some ball B,. This is
valid, since R™\ B, = [J;2, A, recall (1.17). Then

o0
XR™\B, = Z XAk,
k=1

and for each A’f we have the correct estimate, so that for s € (—m, m) the sum on k is
convergent. Consequently, as a special case, using also Poincaré inequality (cf. Sect. 1), we
have

Corollary 5.16 [Quasi-locality (II)] Let p1, p2 € (1,00), q1,92 € [1,00], s,t € [0, m).
Then, for any B, C R™, f € SR), A > 1,

—m—s+2 M5+t

IV EC B pr.gi),Rm\Bar < Cs,pr,prqi A e NV (s, Ol pa.ga). B, -

Lemma 5.17 [Quasilocality (III)] Let f, g € S(R™), Q, Q2> C R™ be disjoint domains
with d = dist(R2, Q2) > 0 and with positive and finite Lebesgue measure.

VA2 fxeDgxe) lp.q)

< sup d—m—t—oz

~

a€el0,s]

1 xe 9~ Cexe) llipy.an)

foranyt € (—m,m), s € (0, m).

Appendix 3: Left-hand side estimates

Lemma 5.18 [Left-hand side estimates] For a uniform constant C, and any k € [, 21),

n=3Az4
1
Il s, <C sup - /v.IVIIW
(=09 Bac, pecg e, m%) VIRl )
+C AT IIUII(L,OO),B,

oo
+C AKTm okl 10 o).,y
k=0 m—k "’ ’ Al,‘

More generally, for T € (0, u],

1
v vll—n_ 5 _, <C Lk 7T — /U VIt
T AT 9eC (B, RN) |||V|T(P||(T+,:_u.l)
+C AK*WI‘FT*M ”v”(L Oo) B

K’

oo
+C Al(fm+‘l,’f;l, 22]((K7m+1’7ﬂ) ”U”(

k=1 iz 00) Al

Similar versions of this estimate have been appearing throughout the literature regarding
fractional harmonic maps, we give a sketched argument for the convenience of the reader:
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Proof Let f € C°(Bp-1,,RY), ||f||( ) < 1 such that

m 1
THK—p

n—t w=t,
[T oo).BA,I,fz/'V' v f.

m+pu—t—K’

Decompose for the usual cutoff 1,2 € CgO(B%), n=1on Bﬁ’

=V H+IVITA =0 f) = VITg1 + V[ g

As usual, using Lemma 5.20 (for 8 = 0) as an approximate product rule, for finitely many
sk €[0,t],sayk=1,...,L forsome L € N,

VIl oy S D0 Mo |IVIF g
k

o s | f Iy S WS-

lm T

Sk’

As for g, for a usual decomposition unity 1, € C§°(B,,\By-2,), that is pointwise
22 omtn; =1,

o0 o0
IVITg2= D IVI"ul f) = > IV['&
1==2 1==2
and with the help of Lemma 5.17,
NVIE&l 1y S QA" fll_n < QAR fll_n_,

THK—JL T+HK—[
and for k > 1,
5 —m+T—p Aki+max{k,l}(—m— )+l
“|V|Mgl”(%’1)1sz,\321<—1, < A¥ m+t—p oki+max{k,[}(—m—p)+iz “f”HT, )
Consequently, for any k € N,
k — _
IV 1*g2llm 1y, a5 S QEAY T £] T
So we conclude using
o0
/v AVIEg S Il ooy 5, IIVIFg2ll 2 1y 5, + D M0l ooy at HIVIFg2ll (2 1), k-
k=1

m}

Appendix 4: Iteration

The following is a version of the usual iteration lemma used to establish Dirichlet growth
(cf., e.g., [11]). The proof is based on the arguments in [32, p. 11]. Similar arguments also
appear in [7]. We leave the details of the proof to the reader, and refer to the presentation in

[2].

Lemma 5.19 Let (a))°__, (b1x)SS__ .. be positive sequences, such that
I=—00 K] k=—00

bix < Crajk (5.19)
sup by +supag < Ca. (5.20)
kleZ k<0
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Assume that

o
ap <eaq+ey 2% by (5.21)
k=1

If morerover for some 6 € (0, 0),

210 4¢3, 5 200 g < (5.22)

=

where

o0
Yo = Z 201
=0
Then, there exists a constant C > 0 such that

a<C27% foralll <O0.

Appendix 5: Commutators and fractional product rules: Theorem 1.4

In this section we state some commutator estimates and non-local expansion rules which
were introduced in [24], motivated by the results in [7,25]. The proofs can be found in [26].
The for us most important commutators are

Hy(a,b) =|V|*(ab) —a|V|*b —b|V|®a,
and for a linear operator T
C(a, T)[b] = aT[b] — T[ab].

The commutator H, (a, b) was introduced by Da Lio and Riviere in [7], where Hardy-space
‘H and BM O-estimates where shown, making use of the Hardy—-Littlewood decomposition
and paraproducts. This is also somewhat related to the techniques of the T1-Theorem cf. [16].
If one is interested in L?-estimates only (e.g., in the sphere case) then there is an extremely
elementary argument [25] somewhat inspired by Tartar’s proof of Wente’s inequality [33].
For general Lorentz space estimates there is also an argument using potential arguments,
which even gives pointwise estimates, and was introduced in [24]. As it is a direct, pointwise
argument not involving the Fourier transform, it is easier to apply in non-linear situations,
cf. [2].

The commutator C(a, T)[b] and its Hardy-space/BMO estimates were introduced in [4]
for the Riesz transform R, and later generalized to the Riesz potential I, in [3]. Again for
pointwise estimates the arguments in [25] can be adapted.

Here, we are going to state in “Pointwise fractional product rules via potentials” section
of Appendix 5 pointwise estimates on Hy (a, b), and in “Pointwise commutator estimates via
potentials section” of Appendix 5 pointwise estimates on C(a, T)[b] which can be proved
using and extending the techniques from [25]. For Hardy-space/BMO estimates, in “Frac-
tional product rules in the Hardy-space via para-products: including the limit case” section
of Appendix 5, the techniques in [7] have to be adapted.

Let us shortly recall the notion for Hardy space H and BM O. The latter space BM O is

defined as
g— |Br|_l/ g

g€ BMO :&(glpmo = sup |Br|_1/ < 0.

B,CR™
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Our interest in BM O stems from the fact, that it is a bigger space than L°°, and we have the
nice embedding

T—m

P
(glamo S supr 7 IVIgl(p.o0y.p, forT>0,p>1, (5.23)

r>0

wheras for L° we only have the following embedding, which is more difficult to control,
I8lloc S MVITgll(m 1) for T € (0, m). (5.24)

The Hardy space , on the other hand, is a slightly smaller space than L', with the (for us)
most important property that

/f 8 S ISl [8lBMo- (5.25)

That is, if we know that a quantity belongs to the Hardy space, it allows us to control the
integral of (5.25) in terms of the right-hand side of (5.23), instead of having to deal with the
terms on the right-hand side of (5.24).

The norm of the Hardy space H is usually defined via

I/l = lIsupgy * fl1,
t>0

where ¢ € Ci°(B1), f¢ =1, and ¢;(x) = t7"P(x/1), cf. [9,30], another very readable
overview in the context with Partial Differential Equations is given in [27].

Pointwise fractional product rules via potentials

Lemma 5.20 For any o € (0, m) there is L € N such that the following holds: For any
B € [0, min(e, 1)), B <m —oa, v € (max{f,a + B — 1}, ], € > 0, there are, s; € (0, w),
tr € (0, 1), where t — B — sk — 1ty € [0, €), such that the following holds
L
IVIP Hy(a, b)| S D e—psog (I |IVI%a] 1 [IVI7D]).
k=1
Lemma 5.21 Leta € (0, m), € > Oandassumethatty, 7o € (max{a—1, 0}, a], 11+12 > «.
Then for some L € N, there are s, € (0, 11), t; € (0, 12), 11 + 720 — 5k —tx — ¢ € [0, €) such

that
L

Ho(@. D) D Iy srs—si—i—a (I |1V I a] I, |IV12B]). (5.26)
k=1

Proposition 5.22 Let f, g € S(R™), Then
VI (2 )l o1y e < NV LI 5 NIVl

K+T—p>

where T is chosen as in Lemma 5.20
1 1 «k+8-—
1 «FB-n
po 2 m

Proposition 5.23 Let f, g € S(R™), supp f C B,. Then for any k > 2,
V1P H,.(f, ONpg, 1,4t S KT H v £ 1vI©ells,

K+T*M
where

1 1 K+ B —

Il 4B

Po 2 m
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Pointwise commutator estimates via potentials

In this section, we discuss commutators of which special cases have been appearing in [3,4].
There, usually estimates in the Hardy-space and BMO were proven. In contrast, in [26], we
prove the following pointwise estimates adapting our arguments from [24].

Lemma 5.24 Let B+ § < min(t, 1), § > 0, € > 0. There exists a finite number L, and
Sk Sk >0tk € (0,7), Sk +fr=sk+tr =1 — B — 68, 5 <€,
L L
C A IVIDIVIEBI S D I Al I, |BI+ > I, (I; 1Al |B]). (5.27)
k=1 k=1
The following estimate should be compared to the estimates in [3], who extended argu-
ments in [4] from Riesz transforms to Riesz Potentials. Their estimates treat cases in which
one of the involved functions b belongs to BM O, which one usually uses in applications
for estimates of that expression in terms of |V|*b. But if one knows that |V |*b exists, then
the following estimates are more precise than their B M O-counterparts in terms of Lorentz
space estimates.

Lemma 5.25 Forany § > 0 such thats + 6 < 1 and any y € (s, s + &), we have

||V|Sc(aa Is)[b]| < Cssy 1s+67y’|V|H5(1| I, —s|Isb|
+Cy 5, min {T,—s (11| Tss—y [IVI*0al), Iy (s | 15b] [V Fal)}.

For s = 0, a (non-trivial) version of Lemma 5.25, is the following result, for any Riesz
transform R. Like Lemma 5.25 was related to Chanillo’s [3], this estimate is related to [4].

Lemma 5.26 Then, for any § € (0, 1) and any y; € (0,48), i = 1,2, we have
IC(a, R)BI < Cruson Is—y [IVIa| Ly 1b] 4+ Cros.9 Ty (Is—y, B] ||V [°a]).

Fractional product rules in the Hardy-space via para-products: including the limit
case

In this section we introduce and state Hardy-space estimates on several commutators. In
order to prove these, one has to extend techniques developed by Da Lio and Riviere in [7] in
order to estimate their behavior involving the Hardy spaces H. The details are given in [26].
Technically, for the case it < 1 one uses a straight-forward generalization of the arguments
by Da Lio and Riviere. In the case u = 1, these arguments have to be extended.

ICCARUVIERIlL S IVIE £l [9lBmos (5.28)
I Hu(p, N, < MVI“gllz [9lsmo, (5.29)
IIVI“Hy (@, D)y S IIVIEall, [IVI#DIl, for w e (0, 1]. (5.30)
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