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Abstract We study the boundary behaviour of the solutions of (E)−�pu + |∇u|q = 0 in a
domain � ⊂ R

N , when N ≥ p > q > p − 1. We show the existence of a critical exponent
q∗ < p such that if p − 1 < q < q∗ there exist positive solutions of (E) with an isolated
singularity on ∂� and that these solutions belong to two different classes of singular solutions.
If q∗ ≤ q < p no such solution exists and actually any boundary isolated singularity of a
positive solution of (E) is removable. We prove that all the singular positive solutions are
classified according the two types of singular solutions that we have constructed.
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1 Introduction

Let N ≥ p > 1, q > p − 1 and � ⊂ R
N (N > 1) be a C2 bounded domain such

that 0 ∈ ∂�. In this article we study the boundary behavior at 0 of nonnegative functions
u ∈ C1(�) ∩ C(�\{0}) which satisfy

−�pu + |∇u|q = 0 in �, (1.1)

where �pu := div(|∇u|p−2∇u).where �pu := div(|∇u|p−2∇u). The two main questions
we consider are as follows:

Q-1 Existence of positive solutions of (1.1).
Q-2 Description of positive solutions with an isolated boundary singularity at 0.

When p = 2 a fairly complete description of positive solutions of

−�u + |∇u|q = 0 (1.2)

in � is provided by Nguyen-Phuoc and Véron [11]. In particular they prove the following
series of results in the range of values 1 < q < 2.

1. Any signed solution of (1.3) verifies the estimates

|∇u(x)| ≤ cN ,q(d(x))−
1

q−1 ∀x ∈ �, (1.3)

where d(x) = dist (x, ∂�). As a consequence, if u ∈ C(�\{0}) is a solution which
vanishes on ∂�\{0}, it satisfies

|u(x)| ≤ cq,�d(x)|x |− 1
q−1 ∀x ∈ �. (1.4)

2. If N+1
N ≤ q < 2 any positive solution of (1.3) in � which vanishes on ∂�\{0} is

identically 0. An isolated boundary point is a removable singularity for (1.2).
3. If 1 < q < N+1

N and k > 0 there exists a unique positive solution u := uk of (1.2) in �

which vanishes on ∂�\{0} and satisfies u(x) ∼ cN kP�(x, 0) as x → 0, where P� is
the Poisson kernel in �× ∂�.

4. If 1 < q < N+1
N there exists a unique positive solution u of (1.2) in the half-space

R
N+ := {x = (x ′, xN ) : x ′ ∈ R

N−1, xN > 0} under the form u(x) = |x |− 2−q
q−1 ω(|x |−1x)

which vanishes on ∂RN+\{0}. The function ω is the unique positive solution of

−�′ω +
((

2− q

q − 1

)2

ω2 + |∇′ω|2
) q

2

− λN ,qω = 0 in SN−1+ ,

ω = 0 in ∂SN−1+ , (1.5)

where SN−1 is the unit sphere of RN , ∂SN−1+ = ∂RN+ ∩ SN−1, �′ the Laplace–Beltrami
operator and λN ,q > 0 an explicit constant.
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Boundary singularities of positive solutions… 3473

5. If 1 < q < N+1
N and u is a positive solution of (1.3) in �, which is continuous in �\{0}

and vanishes on ∂�\{0} the following dichotomy occurs:

(i) either u(x) ∼ |x |− 2−q
q−1 ω(|x |−1x) as x → 0,

(ii) or u(x) ∼ kcN P�(x, 0) as x → 0 for some k ≥ 0.

The aim of this article is to extend to the quasilinear case 1 < p ≤ N the above mentioned
results. The following pointwise gradient estimate valid for any signed solution u of (1.1)
has been proved in [3]: if 0 < p − 1 < q there exists a constant cN ,p,q > 0 such that

|∇u(x)| ≤ cN ,p,q(d(x))−
1

q+1−p ∀x ∈ �. (1.6)

As a consequence, any solution u ∈ C1(�\{0} satisfies
|u(x)| ≤ cp,q,�d(x) |x |− 1

q+1−p ∀x ∈ �. (1.7)

Concerning boundary singularities, the situation is much more complicated than in the
case p = 2 and the threshold of critical exponent less explicit. We first consider the problem
in R

N+ . Assuming p− 1 < q ≤ p, separable solutions of (1.1) in R
N+ vanishing on ∂RN+\{0}

can be looked for in spherical coordinates (r, σ ) ∈ R
∗+ × SN−1 (we denote R

∗+ = (0,∞))
under the form

u(x) = u(r, σ ) = r−βqω(σ), r > 0, σ ∈ SN−1+ := {SN−1 ∩ R
N+}. (1.8)

Then ω is solution of the following problem

−div′
((

β2
qω

2 + |∇′ω|2
) p−2

2 ∇′ω
)
− βq	βq

(
β2
qω

2 + |∇′ω|2
) p−2

2
ω

+
(
β2
qω

2 + |∇′ω|2
) q

2 = 0 in SN−1+
ω = 0 on ∂SN−1+ , (1.9)

where

βq = p − q

q + 1− p
and 	βq = βq(p − 1)+ p − N , (1.10)

and ∇′ is the covariant derivative on SN−1 identified to the tangential gradient thanks to the
canonical isometrical imbedding of SN−1 into R

N , and div′ the divergence operator acting
on vector fields on SN−1.

The existence of a positive solution to this problem cannot be separated from the problem
of existence of separable p-harmonic functions which are p-harmonic in R

N+ which vanish
on ∂RN+\{0} and have the form 
(x) = 
(r, σ ) = r−βψ(σ) for some real number β.
Necessarily such a ψ must satisfy

−div′
((

β2ψ2 + |∇′ψ |2) p−2
2 ∇′ψ

)
− β	β

(
β2ψ2 + |∇′ψ |2) p−2

2 ψ = 0 in SN−1+

ψ = 0 on ∂SN−1+ , (1.11)

where	β = β(p−1)+ p−N .Wewill refer to (1.11) as the spherical p-harmonic eigenvalue
problem. The study of this problem has been initiated in the 2-dim case by Krol [8] (β < 0)
and Kichenassamy and Véron [9] (β > 0). In this case ω satisfies a completely integrable
second order differential equation. In the case where SN−1+ is replaced by a smooth domain
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3474 M.-F. Bidaut-Véron et al.

S ⊂ SN−1 with N ≥ 3, Tolksdorf [14] proved the existence of a unique couple (β̃s, ψ̃s)

where β̃s < 0 and ψ̃s has constant sign and is defined up to an homothety. Recently Porretta
andVéron [12] gave a simpler andmore general proof of the existence of two couples (β̃s, ψ̃s)

and (β∗ s, ψ∗ s) where β∗ s > 0 and ψ̃s and ψ∗ s are positive solutions of (1.11) with β = β̃s

and β = β∗ s respectively and are unique up to amultiplication by a real number.When p = 2
this problem is an eigenvalue problem for the Laplace–Beltrami operator on a subdomain
of SN−1. If S = SN−1+ , β̃s and β∗ s are respectively denoted by β̃ and β∗ and accordingly
ψ̃s and ψ∗ s by ψ̃ and ψ∗. Since x �→ xN is p-harmonic, β̃ = −1. Except in the cases
N = 2 where it is the positive root of some algebraic equation of degree 2, p = 2 where it
is N − 1 and p = N where it is 1, the value of β∗ is unknown besides the straightforward
estimate β∗ ≥ max{1, N−p

p−1 }. Using the fact that ψ∗ depends only on the azimuthal variable
and satisfies a differential equation, we prove in Appendix B the following new estimate:

Theorem A Let 1 < p ≤ N.

(i) If 2 ≤ p ≤ N, then β∗ ≤ N−1
p−1 with equality only if p = 2 or N.

(ii) If 1 ≤ p < 2, then β∗ > N−1
p−1 .

The p-harmonic function 
∗(x) = 
∗(r, σ ) = r−β∗ψ∗(σ ) endows the role of a Poisson
kernel. To this exponent β∗ is associated the critical value q∗ of q defined by β∗ = βq , or
equivalently

q∗ := β∗(p − 1)+ p

β∗ + 1
= p − β∗

β∗ + 1
. (1.12)

The following result characterizes strong singularities.

Theorem B Let 0 < p − 1 ≤ N, then

(i) If p − 1 < q < q∗ problem (1.9) admits a unique positive solution ω∗.
(ii) If q∗ ≤ q < p problem (1.9) admits no positive solution.

This critical exponent corresponds to the threshold of criticality for boundary isolated
singularities.

Theorem C Assume q∗ ≤ q < p ≤ N. If u ∈ C1(�\{0}) is a nonnegative solution of (1.1)
in � which vanishes on ∂�\{0}, it is identical zero.

As in the case p = 2, there exist positive solutions (1.1) in � with weak boundary
singularities which are characterized by their blow-up near the singularity. By opposition to
the case p = 2where existence is obtained by use of aweak formulation of the boundary value
problem, combinedwith uniform integrability of the absorption term thanks to Poisson kernel
estimates (see [11]), this approach cannot be performed in the case p �= 2; the obtention
of solutions with weak singularities necessitates a very long and delicate construction of
subsolutions and supersolutions. Furthermore, when p �= N , the construction is done only
if � is locally an hyperplane near 0.

In the sequel we denote by BR(a) the open ball of center a and radius R > 0 and
BR = BR(0). We also set B+R (a) := R

N+ ∩ BR(a), B+R := R
N+ ∩ BR , B

−
R (a) := R

N− ∩ BR(a)

and B−R := R
N− ∩ BR , where R

N− := {x = (x ′, xN ) : x ′ ∈ R
N−1, xN < 0}. If � is an open

domain and R > 0, we put �R = � ∩ BR .
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Boundary singularities of positive solutions… 3475

Theorem D Let� ⊂ R
N+ be a bounded domain such that 0 ∈ ∂�. Assume there exists δ > 0

such that �δ = B+δ and 0 < p − 1 < q < q∗ < p ≤ N. Then for any k > 0 there exists a
unique u := uk ∈ C1(�\{0}), solution of (1.1) in �, vanishing on ∂�\{0} and such that

lim
x→0

x
|x |→σ∈SN−1+

|x |β∗uk(x) = kψ∗(σ ). (1.13)

Furthermore limk→∞ uk = u∞ and

lim
x→0

x
|x |→σ∈SN−1+

|x |βq u∞(x) = ψ∗(σ ). (1.14)

When p = N , then q∗ = N − 1
2 ; in such a range of values we use the conformal

invariance of �N and prove that the previous result holds if � is any C2 domain. Finally, the
isolated singularities of positive solutions of (1.1) are completely described by the two types
of singular solutions obtained in the previous theorem and we prove:

Theorem E Let � be a bounded domain such that 0 ∈ ∂�. Assume there exists δ > 0 such
that �δ = B+δ and 0 < p − 1 < q < q∗ < p ≤ N. If u ∈ C1(�\{0}) is a positive solution
of (1.1) in � which vanishes on ∂�\{0}, then
(i) either there exists k ≥ 0 such that

lim
x→0

x
|x |→σ∈SN−1+

|x |β∗u(x) = kψ∗(σ ); (1.15)

(ii) or

lim
x→0

x
|x |→σ∈SN−1+

|x |βq u(x) = ψ∗(σ ). (1.16)

2 A priori estimates

2.1 The gradient estimates and its applications

We recall the following estimate and its consequences which are proved in [3].

Proposition 2.1 Assume q > p − 1 and u is a C1 solution of (1.1) in a domain �. Then

|∇u(x)| ≤ cN ,p,q(d(x))−
1

q+1−p ∀x ∈ �. (2.1)

The first application is a pointwise upper bound for solutions with isolated singularities.

Corollary 2.2 Assume q > p − 1 > 0, R∗ > 0 and � is a domain containing 0 such that
d(0) ≥ 2R∗. Then for any x ∈ BR∗\{0}, and 0 < R ≤ R∗, any u ∈ C1(�\{0}) solution of
(1.1) in (�\{0}) satisfies

|u(x)| ≤ cN ,p,q

∣∣∣|x | q−p
q+1−p − R

q−p
q+1−p

∣∣∣+max{|u(z)| : |z| = R}, (2.2)

if p �= q, and

|u(x)| ≤ cN ,p (ln R − ln |x |)+max{|u(z)| : |z| = R}, (2.3)

if p = q.
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3476 M.-F. Bidaut-Véron et al.

The second application corresponds to solutions with boundary blow-up. For δ > 0 small
enough we set �δ := {z ∈ � : d(z) < δ}.
Corollary 2.3 Assume q > p − 1 > 0, � is a bounded domain with a C2 boundary. Then
there exists δ1 > 0 which depends only on � such that any u ∈ C1(�) solution of (1.1) in �

satisfies

|u(x)| ≤ cN ,p,q

∣∣∣∣(d(x))
q−p

q+1−p − δ

q−p
q+1−p
1

∣∣∣∣+max{|u(z)| : d(z) = δ1} ∀x ∈ �δ1 (2.4)

if p �= q, and

|u(x)| ≤ cN ,p,q (ln δ1 − ln d(x))+max{|u(z)| : d(z) = δ1} ∀x ∈ �δ1 (2.5)

if p = q.

Remark As a consequence of (2.4) there holds for p > q > p − 1

u(x) ≤ (
cN ,p,q + K max{|u(z)| : d(z) ≥ δ1}

)
(d(x))

q−p
q+1−p ∀x ∈ � (2.6)

where K = (diam(�))
p−q

q+1−p , with the standard modification if p = q .

As a variant of Corollary 2.3 the following upper estimate of solutions in an exterior
domain will be used in the sequel.

Corollary 2.4 Assume q > p − 1 > 0, R > 0 and u ∈ C1(Bc
R0

) is any solution of (1.1) in
Bc
R0
. Then for any R > R0 there holds

|u(x)| ≤ cN ,p,q

∣∣∣(|x | − R0)
q−p

q+1−p − (R − R0)
q−p

q+1−p

∣∣∣+max{|u(z)| : |z| = R} ∀x ∈ Bc
R

(2.7)

if p �= q and

|u(x)| ≤ cN ,p,q (ln(|x | − R0)− ln(R − R0))+max{|u(z)| : |z| = R} ∀x ∈ Bc
R (2.8)

if p = q.

Proof The proof is a consequence of the identity

u(x) = u(z)+
∫ 1

0

d

dt
u(t x + (1− t)z)dt =

∫ 1

0
〈∇u(t x + (1− t)z), x − z〉dt

where z = R
|x | x . Since by (2.1)

|∇u(t x + (1− t)z)| ≤ CN ,p,q(t |x | + (1− t)R − R0)
− 1

q+1−p ,

Equations (2.7) and (2.8) follow by integration. ��
2.2 Boundary a priori estimates

The next result is the extension to isolated boundary singularities of a previous regularity
estimate dealing with singularity in a domain proved in [3, Lemma 3.10].
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Boundary singularities of positive solutions… 3477

Lemma 2.5 Assume p − 1 < q < p, � is a bounded C2 domain such that 0 ∈ ∂�. Let
u ∈ C1(�\{0}) be a solution of (1.1) in � which vanishes on ∂�\{0} and satisfies

|u(x)| ≤ φ(|x |) ∀x ∈ �, (2.9)

where φ : R∗+ �→ R+ is continuous, nonincreasing and satisfies

φ(rs) ≤ γφ(r)φ(s) and r
p−q

q+1−p φ(r) ≤ c, (2.10)

for some γ, c > 0 and any r, s > 0. There exist α ∈ (0, 1) and c1 = c1(p, q,�) > 0 such
that

(i) |∇u(x)| ≤ c1φ(|x |) |x |−1 ∀x ∈ �,

(i i) |∇u(x)− ∇u(y)| ≤ c1φ(|x |) |x |−1−α |x − y|α ∀x, y ∈ �, |x | ≤ |y| . (2.11)

Furthermore

u(x) ≤ c1φ(|x |)d(x)

|x | ∀x ∈ �. (2.12)

Proof For � > 0, we set �� := 1
�
�. If � ∈ (0, 1] the curvature of ∂�� remains uniformly

bounded. As in [5, p 622], there exists 0 < δ0 ≤ 1 and an involutive diffeomorphism ψ from

Bδ0 ∩ �
δ0 into Bδ0 ∩ (�δ0)c which is the identity on Bδ0 ∩ ∂�δ0 and such that Dψ(ξ) is

the symmetry with respect to the tangent plane Tξ ∂� for any ξ ∈ ∂� ∩ Bδ0 . We extend any

function v defined in Bδ0 ∩ �
δ0 and vanishing on Bδ0 ∩ ∂�δ0 into a function ṽ defined in

Bδ0 by

ṽ(x) =
{

v(x) if x ∈ Bδ0 ∩�
δ0

−v ◦ ψ(x) if x ∈ Bδ0 ∩ (�δ0)c,
(2.13)

If v ∈ C1(Bδ0 ∩ �
δ0

) is a solution of (1.1) in Bδ0 ∩ �δ0 which vanishes on ∂�δ0 ∩ Bδ0 , ṽ
satisfies

−
∑
j

∂

∂x j
Ã j (x,∇ṽ)+ B(x,∇ṽ) = 0 in Bδ0 . (2.14)

As in [5, (2.37)] the A j and B satisfy the following estimates

(i) Ã j (x, 0) = 0

(i i)
∑
i, j

∂

∂ηi
Ã j (x, η)ξiξ j ≥ C1 |η|p−1 |ξ |2

(i i i)
∑
i, j

∣∣∣∣ ∂

∂η j
Ã j (x, η)

∣∣∣∣ ≤ C2 |η|p−2 ,

(2.15)

and

|B(x, η)| ≤ C3(1+ |η|)p, (2.16)

where theC j are positive constants. These estimates are the ones needed to apply Tolksdorf’s
result [15, Th1, 2]. There exists a constant C , such that for any ball B3R ⊂ Bδ0 , there holds

‖∇ṽ‖L∞(BR) ≤ C, (2.17)
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3478 M.-F. Bidaut-Véron et al.

where C depends on the constants Ck (k = 1, 2, 3), N , p and ‖ṽ‖L∞(B3R). We define

��[u](y) := u� = 1

φ(�)
u(�y) ∀y ∈ ��. (2.18)

Then

|u�(y)| ≤ φ(� |y|)
φ(�)

≤ γφ(|y|) ∀y ∈ �� (2.19)

and

−�pu� + (�βqφ(�))q+1−p |∇u�|q = 0 in ��. (2.20)

Using formula (2.13) we extend u� into a function ũ� which satisfies

−
∑
j

∂

∂y j
Ã j (y,∇ũ�)+ (�βqφ(�))q+1−p B(y,∇ũ�) = 0 in Bδ0 . (2.21)

For 0 < |x | < δ0 there exists � ∈ (0, 2) such that δ0�
2 ≤ |x | ≤ δ0�. Then y �→ ũ�(y)

with y = x
�
satisfies (2.21) in Bδ0 and |ũ�(y)| ≤ γ∗φ(|y|) since ψ is a diffeomorphism

and Dψ(ξ) ∈ O(N ) for any ξ ∈ ∂� ∩ Bδ0 . The function ũ� remains bounded on any ball
B3R(z) ⊂ � := {y ∈ R

N : δ0
2 < |y| < δ0}, therefore |∇ũ�(y)| ≤ c for any y ∈ BR(z), for

some constant c > 0. This implies

|∇u(x)| ≤ cγ∗δ0φ
(

2
δ0

)
φ(|x |)|x |−1 ∀x ∈ � ∩ Bδ0 , (2.22)

which is (2.11)-(i). Moreover, by standard regularity estimates [10], there exists α ∈ (0, 1)
such that

∣∣∇ũ�(y)− ∇ũ�(y′)
∣∣ ≤ c

∣∣y − y′
∣∣α for all y and y′ belonging to BR(z). This implies

(2.11)-(ii).
Next we prove (2.12). Let 0 < δ1 ≤ δ0 such that at any boundary point z there exist

two closed balls of radius δ1 tangent to ∂� at z and which are included in � ∪ {z} and in
�

c∪{z} respectively (δ1 corresponds to the maximal radius of the interior and exterior sphere
condition). Let x ∈ � such that d(x) ≤ δ1 (this is not a loss of generality) and zx be the
projection of x on ∂�. We first assume that x does not belong to the cone �π

4
with vertex 0,

axis −n0, where n0 is the normal outward unit vector at 0, and angle π
4 . Consider the path ζ

from zx to x defined by ζ(t) = t x + (1− t)zx with 0 ≤ t ≤ 1. Then

u(x) =
∫ 1

0

d

dt
u ◦ ζ(t)dt =

∫ 1

0
〈∇u ◦ ζ(t), x − zx 〉dt (2.23)

Thus, by the Cauchy–Schwarz inequality, using (2.11),

|u(x)| ≤ c1d(x)
∫ 1

0

φ(|ζ(t)|)
|ζ(t)| dt. (2.24)

Since x /∈ �π
4
, ζ(t) /∈ �π

4
and there exists c2 > 0 depending on � such that c−12 |x | ≤

|ζ(t)| ≤ c2 |x | for all 0 ≤ t ≤ 1. Therefore φ(|ζ(t)|) ≤ φ(c2 |x |) ≤ γφ(c2)φ(|x |) by (2.10).
This implies

|u(x)| ≤ γ c1c2φ(c2)
d(x)φ(|x |)

|x | (2.25)

by (2.12) whenever x /∈ �π
4
. When x ∈ �π

4
then d(x) ≤ |x | ≤ c3d(x) where c3 > 0

depends on the curvature of ∂�. Then (2.9) combined with (2.10) implies the claim. ��
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Boundary singularities of positive solutions… 3479

Lemma 2.6 Assume p − 1 < q ≤ p, � is a bounded C2 domain such that 0 ∈ ∂� and
R0 = max{|z| : z ∈ �}. If u ∈ C(�\{0}) ∩ C1(�) is a positive solution of (1.1) which
vanishes on ∂�\{0}, it satisfies

u(x) ≤

⎧⎪⎨
⎪⎩
c2

(
|x | q−p

q+1−p − R
q−p

q+1−p
0

)
if q < p

(p − 1) ln
(
R0|x |
)

if q = p
(2.26)

for all x ∈ �, where c2 = c2(p, q) > 0.

Proof For ε > 0 we denote by Pε : R �→ R+ the function defined by

Pε(r) =

⎧⎪⎨
⎪⎩
0 if 0 ≤ r ≤ ε

− r4

2ε3
+ 3r3

ε2
− 6r2

ε
+ 5r − 3ε

2 if ε < r < 2ε
r − 3ε

2 if r ≥ 2ε,
(2.27)

and by uε the extension of Pε(u) by zero outside �. There exists R0 such that � ⊂ BR0 .

Since 0 ≤ Pε(r) ≤ |r | and Pε is convex, uε ∈ C(RN\{0}) ∩W 1,p
loc (RN\{0}) and

−�puε + |∇uε |q ≤ 0 in R
N .

Let R > R0. If p − 1 < q < p

Uε,R(|x |) = c2
(
(|x | − ε)

q−p
q+1−p − (R − ε)

q−p
q+1−p

)
in BR\Bε, (2.28)

with c2 = (p− q)−1(q + p− 1)
q−p

q+1−p . Then−�pUε,R +
∣∣∇Uε,R

∣∣q ≥ 0. Since uε vanishes
on ∂BR and is finite on ∂Bε , it follows uε ≤ Uε,R . Letting successively ε → 0 and R → R0

yields to (2.26). If q = p we take

Uε,R(|x |) = (p − 1) ln

(
R − ε

|x | − ε

)
in BR\Bε, (2.29)

which turns out to be a supersolution of (1.1); the end of the proof is similar.
As a consequence of Lemmas 2.5 and 2.6, we obtain. ��

Corollary 2.7 Let p, q � and u be as in Lemma 2.6. Then there exists a constant c3 =
c3(p, q,�) > 0 such that

|∇u(x)| ≤ c3 |x |−
1

q+1−p ∀x ∈ � (2.30)

and

u(x) ≤ c3d(x) |x |− 1
q+1−p ∀x ∈ �\{0}. (2.31)

Remark If� is locally flat near 0, then estimates (2.30) and (2.31) are valid without any sign
assumption on u. More precisely, if ∂� ∩ Bδ0 = T0∂� ∩ Bδ0 we can perform the reflection
of u through the tangent plane T0∂� to ∂� at 0 and the new function ũ is a solution of (1.1)
in Bδ0\{0}. By Proposition 2.1, it satisfies

|∇ũ(x)| ≤ cN ,p,q |x |−
1

q+1−p ∀x ∈ B δ0
2
\{0}. (2.32)
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Integrating this relation as in [3], we derive that for any x ∈ B δ0
2
∩�, there holds

|u(x)| ≤

⎧⎪⎨
⎪⎩
cN ,p,q

(
|x |−βq −

(
δ0
2

)−βq
)
+max{|u(z)| : |z| = δ0

2 } if p �= q

cN ,p ln
(

δ0
2|x |

)
+max{|u(z)| : |z| = δ0

2 } if p = q.

(2.33)

In the next result we allow the boundary singular set to be a compact set.

Proposition 2.8 Let p − 1 < q < p and δ1 as above. There exist r∗ ∈ (0, δ1] and c4 =
c4(N , p, q) > 0 such that for any nonempty compact set K ⊂ ∂�, K �= ∂� and any positive
solution u ∈ C(�\K ) ∩ C1(�) of (1.1) which vanishes on ∂�\K, there holds

u(x) ≤ c4d(x)(dK (x))−
1

q+1−p ∀x ∈ ∂� s.t. d(x) ≤ r∗, (2.34)

where dK (x) = dist (x, K ).

Proof Step 1: tangential estimates Let x ∈ � such that d(x) ≤ δ1. We denote by σ(x) the
projection of x onto ∂�, unique since d(x) ≤ δ1. Let r , r ′, τ > 0 such that 3

4r < r ′ < 7
8r

and 0 < τ ≤ r ′
2 and put ωτ,x = σ(x) + τnσ(x). Since ∂� is C2, there exists 0 < r∗ ≤ δ1

depending on � such that dK (ωτ,x ) > 7
8r whenever d(x) ≤ r∗. Let a > 0 and b > 0 to be

specified later on; we define ṽ(s) = a(r ′ − s)
q−p

q+1−p − b and v(y) = ṽ(
∣∣y − ωτ,x

∣∣) in [0, r ′)
and Br ′(ωτ,x ) respectively. Then

∣∣ṽ′∣∣p−2 (∣∣ṽ′∣∣q+2−p − (p − 1)ṽ′′ − N − 1

s
ṽ′
)
=a p−1

(
p − q

q + 1− p

)p−1
(r ′ − s)−

q
q+1−p X (s)

where

X (s) =
(
a

p − q

q + 1− p

)q+1−p

− p − 1

q + 1− p
− (N − 1)(r ′ − s)

s
.

For any τ ∈ (0, r ′) there exists a > 0 such that(
a

p − q

q + 1− p

)q+1−p

≥ p − 1

q + 1− p
+ (N − 1)(r ′ − s)

s
∀τ ≤ s ≤ r ′.

This implies

−�pv + |∇v|q ≥ 0 in Br ′(ωτ,x )\Bτ (ωτ,x ). (2.35)

Next we take b = a(r ′ − τ)
q−p

q+1−p , thus v = 0 on ∂Bτ (ωτ,x ). Clearly Bτ (ωτ,x ) ⊂ �
c
since

τ < δ1. Therefore v ≥ 0 = u on ∂�∩ Br ′(ωτ,x ) and u ≤ v = ∞ on �∩ ∂Br ′(ωτ,x ). By the
comparison principle, v ≥ u in � ∩ Br ′(ωτ,x ). In particular

u(x) ≤ v(x) ≤ a(r ′ − τ − d(x))
q−p

q+1−p − a(r ′ − τ)
q−p

q+1−p .

We take now τ = r ′
2 and d(x) ≤ r

4 and we derive by the mean value theorem

u(x) ≤ c′4r
′− 1

q+1−p d(x) = c′4d(x)(dK (x))−
1

q+1−p , (2.36)

with c′4 = c′4(p, q) > 0 Letting r ′ → 7
8r , we get (2.12).

Step 2: global estimates If d(x) ≥ 1
4dK (x), there holds

d(x)(dK (x))−
1

q+1−p ≥ 2−
2

q+1−p (d(x))
q−p

q+1−p .

Combining this inequality with (2.6) and obtain (2.34). ��
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Remark Under the assumption of Proposition 2.8, it follows from the maximum principle
that u is upper bounded in the set �′r∗ := {x ∈ � : d(x) > r∗} = �\�r∗ by the solution
w of

−�pw + |∇w|q = 0 in �r∗

w = c4d(x)(dK (x))−
1

q+1−p in ∂�r∗ , (2.37)

and w itself is bounded by d∗ = max{cd(x)(dK (x))−
1

q+1−p : d(x) = r∗}.
Next we prove a boundary Harnack inequality. We recall that δ1 has been introduced at

Corollary 2.3, and that the interior and exterior sphere conditions hold in the set {x ∈ R
N :

d(x) ≤ δ1}.
Theorem 2.9 Let q > p − 1 and 0 ∈ ∂�. Then there exists c5 = c5(N , p, q,�) > 0 such
that for any positive solution u ∈ C(�∪ ((∂�\{0})∩ B2δ1)∩C1(�) of (1.1) in �, vanishing
on ∂�\{0}) ∩ B2δ1 , there holds

u(y)

c5d(y)
≤ u(x)

d(x)
≤ c5

u(y)

d(y)
(2.38)

for all x, y ∈ B 2δ1
3
∩� such that 1

2 |x | ≤ |y| ≤ 2 |x |.
For proving Theorem 2.9we need some intermediate lemmas. First we recall the following

result from [1].

Lemma 2.10 Assume that a ∈ ∂�, 0 < r < δ1 and h > 1 is an integer. There exists an
integer N0, depending only on δ1, such that for any points x and y in � ∩ B 3r

2
(a) verifying

min{d(x), d(y)} ≥ r/2h, there exists a connected chain of balls B1, . . . , Bj with j ≤ N0h
such that

x ∈ B1, y ∈ Bj , Bi ∩ Bi+1 �= ∅ for 1 ≤ i ≤ j − 1

and 2Bi ⊂ B2r (Q) ∩� for 1 ≤ i ≤ j. (2.39)

The next result is a standard Harnack inequality.

Lemma 2.11 Assume a ∈ (∂� \ {0}) ∩ B 2δ1
3

and 0 < r ≤ |a| /4. Let u ∈ C(� ∪ ((∂� \
{0}) ∩ B2δ1)) ∩ C1(�) be a positive solution of (1.1) vanishing on (∂� \ {0}) ∩ B2δ1 . Then
there exists a positive constant c6 > 1 depending on N , p, q and δ1 such that

u(x) ≤ ch6u(y), (2.40)

for every x, y ∈ B 3r
2
(a) ∩� such that min{d(x), d(y)} ≥ r/2h for some h ∈ N.

Proof For � > 0, we define T�[u] by
T�[u](x) = �

p−q
q+1−p u(�x), (2.41)

and we notice that if u satisfies (1.1) in �, then T�[u] satisfies the same equation in �� :=
�−1�. If we take in particular � = |a|, we can assume |a| = 1, thus the curvature of the
domain �|a| remains bounded. By Proposition 2.8

u(x) ≤ c′6 ∀x ∈ B2r (a) ∩� (2.42)

where c′6 depends on N , q , δ1. Then we proceed as in [11], using Lemma 2.10 and internal
Harnack inequality as quoted in [16, Corollary 10]. ��
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Since the solutions are Hölder continuous, the following statement holds as in [16,
Theorem 4.2]:

Lemma 2.12 Let the assumptions on a and u of Lemma 2.11 be fulfilled. If b ∈ ∂�∩ Br (a)

and 0 < s ≤ 2−1r , there exist two positive constants δ and c7 depending on N, p, q and �

such that

u(x) ≤ c7
|x − b|δ

sδ
max{u(z) : z ∈ Br (b) ∩�} (2.43)

for every x ∈ Bs(b) ∩�.

As a consequence we derive the following Carleson type estimate.

Lemma 2.13 Assume a ∈ (∂� \ {0}) ∩ B 2δ1
3

and 0 < r ≤ |a| /8. Let u ∈ C(� ∪ ((∂� \
{0}) ∩ B2δ1)) ∩ C2(�) be a positive solution of (1.1) vanishing on (∂� \ {0}) ∩ B2δ1 . Then
there exists a constant c8 depending only on N, p and q such that

u(x) ≤ c8u
(
a − r

2
na

)
∀x ∈ Br (a) ∩�. (2.44)

Proof By Lemma 2.11 it is clear that for any integer h and x ∈ Br (a) ∩ � such that
d(x) ≥ 2−hr , there holds

u(x) ≤ ch6u
(
a − r

2
na

)
. (2.45)

Therefore u satisfies inequality (2.43) as any Hölder continuous function does. The proof
that the constant is independent of r and u is more delicate. It is done in [1, Lemma 2.4] for
linear equations, but it is based only on Lemma 2.12 and a geometric construction, thus it is
also valid in our case. ��
Lemma 2.14 Assume a ∈ (∂� \ {0}) ∩ B 2δ1

3
and 0 < r ≤ |a| /8. Let u ∈ C(� ∪ ((∂� \

{0}) ∩ B2δ1)) ∩ C2(�) be a positive solution of (1.1) vanishing on (∂� \ {0}) ∩ B2δ1 . Then
there exist α ∈ (0, 1/2) and c9 > 0 depending on N, p and q such that

1

c9

t

r
≤ u(b − tnb )

u(a − r
2na )

≤ c9
t

r
(2.46)

for any b ∈ Br (a) ∩ ∂� and 0 ≤ t < α
2 r .

Proof It is similar to the one of [11, Lemma 3.15]. ��
Proof of Theorem 2.9 Assume x ∈ B 2δ1

3
∩� and set r = |x |

8 .

Step 1: tangential estimate: we suppose d(x) < α
2 r . Let a ∈ ∂� \ {0} such that |a| = |x |

and x ∈ Br (a). By Lemma 2.14,

8

c9

u(a − r
2na )

|x | ≤ u(x)

d(x)
≤ 8c9

u(a − r
2na )

|x | . (2.47)

We can connect a − r
2na with −2rn0 by m1 (depending only on N ) connected balls Bi =

Br
4
(xi ) with xi ∈ � and d(xi ) ≥ r

2 for every 1 ≤ i ≤ m1. It follows from (2.44) that

c−m1
6 u(−2rn0) ≤ u

(
a − r

2
na

)
≤ cm1

6 u(−2rn0),
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which, together with (2.47) leads to

1

c10

u(−2rn0)

|x | ≤ u(x)

d(x)
≤ c10

u(−2rn0)

|x | , (2.48)

with c10 = 8c9c
m1
6 .

Step 2: internal estimate: we suppose d(x) ≥ α
2 r . We can connect −2rn0 with x by m2

(depending only on N ) connected balls B ′i = B αr
4
(x ′i ) with x ′i ∈ � and d(x ′i ) ≥ α

2 r for
every 1 ≤ i ≤ m2. By Harnack and Carleson inequalities (2.40) and (2.44) and since
α
4 |x | < d(x) ≤ |x |, we get

α

4c′m2
6

u(−2rn0)

|x | ≤ u(x)

d(x)
≤ 4c′m2

6

α

u(−2rn0)

|x | . (2.49)

Step 3: end of proof Suppose |x |
2 ≤ s ≤ 2 |x |, we can connect −2rnQ with −snQ by m3

(depending only on N ) connected balls B ′′i = Br
2
(x ′′i ) with x ′′i ∈ � and d(x ′′i ) ≥ r for every

1 ≤ i ≤ m3. This fact, jointly with (2.48) and (2.49), yields to

1

c11

u(−sn0)

|x | ≤ u(x)

d(x)
≤ c11

u(−sn0)

|x | (2.50)

where c11 = c11(N , q,�). Finally, if y ∈ B 2r0
3
∩ � satisfies |x |2 ≤ |y| ≤ 2 |x |, then by

applying twice (2.50) we get (2.38) with c5 = c211. ��
The following inequality is a consequence of Theorem 2.9.

Corollary 2.15 Assume q > p − 1 and 0 ∈ ∂�. Then there exists c12 > 0 depending on p,
q and � such that for any positive solutions u1, u2 ∈ C(� ∪ ((∂�\{0}) ∩ B2δ1)) ∩ C1(�)

of (1.1) in �, vanishing on (∂�\{0}) ∩ B2δ1 , there holds

sup

{
u1(y)

u2(y)
: y ∈ Br\Br

2

}
≤ c12 inf

{
u1(y)

u2(y)
: y ∈ Br\Br

2

}
. (2.51)

3 Boundary singularities

3.1 Strongly singular solutions

In this section we consider the Eq. (1.1) in R
N+ . We denote by (r, σ ) ∈ R+ × SN−1 the

spherical coordinates in R
N and

SN−1+ =
{
(sin φσ ′, cosφ) : σ ′ ∈ SN−2, φ ∈ [0, π

2
)
}

.

If v(x) = r−βω(σ ) satisfies (1.1) in R
N+ and vanishes on ∂RN+\{0}, then β = βq and ω is a

solution of

− div′
((

β2
qω

2 + |∇′ω|2
) p−2

2 ∇′ω
)
− βq	βq

(
β2
qω

2 + |∇′ω|2
) p−2

2
ω

+
(
β2
qω

2 + |∇′ω|2
) q

2 = 0 in SN−1+ (3.1)

ω = 0 on ∂SN−1+
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where βq and 	βq have been defined in (1.10). We denote by (β∗, ψ∗) ∈ R
∗+ × C2(S

N−1
+ )

the unique couple such maxψ∗ = 1 with the property that the function (r, σ ) �→ r−β∗ψ∗(σ )

is positive, p-harmonic in R
N+ and vanishes on ∂RN+\{0}. Then ψ∗ = ψ satisfies

−div′
((

β2∗ψ2 + |∇′ψ |2) p−2
2 ∇′ψ

)
− β∗	β∗

(
β2∗ψ2 + |∇′ψ |2) p−2

2 ψ = 0 in SN−1+

ψ = 0 on ∂SN−1+ . (3.2)

Since the functionψ∗ is unique it depends only on the azimuthal variable θN−1 = cos−1( xN|x | )
(see Appendix B). Our first result is the following

Theorem 3.1 If q ≥ q∗, or equivalently βq ≤ β∗, there exists no positive solution to problem
(3.1).

Proof Suppose such a solution ω exists and put θ = βq/β∗, then 0 < θ ≤ 1. Set η = ψθ ,
where ψ is a positive solution of (3.2), and define the operator T by

T (η) = −div′
((

β2
qη

2 + |∇′η|2
) p−2

2 ∇′η
)
− βq	βq

(
β2
qη

2 + |∇′η|2
) p−2

2
η

+
(
β2
qη

2 + |∇′η|2
) q

2
. (3.3)

Since ∇η = θψθ−1∇ψ ,

(
β2
qη

2 + |∇′η|2
) p−2

2 = θ p−2ψ(θ−1)(p−2) (β2∗ψ2 + |∇′ψ |2) p−2
2 ,

(
β2
qη

2 + |∇′η|2
) p−2

2 ∇′η = θ p−1ψ(θ−1)(p−1) (β2∗ψ2 + |∇′ψ |2) p−2
2 ∇′ψ,

therefore

T (η) = −θ p−1ψ(θ−1)(p−1)div′
((

β2∗ψ2 + |∇′ψ |2) p−2
2 ∇′ψ

)

− θ p−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1 (β2∗ψ2 + |∇′ψ |2) p−2
2 |∇′ψ |2

− βq	βq θ
p−2ψ(θ−1)(p−1) (β2∗ψ2+|∇′ψ |2) p−2

2 ψ+θqψ(θ−1)q (β2∗ψ2 + |∇′ψ |2) q
2 .

But βq	βq θ
p−2 = β∗	βq θ

p−1 ≤ β∗	β∗θ
p−1 since βq ≤ β∗. Using (3.2), we see that

T (η) ≥ 0. Because Hopf Lemma is valid, there holds ∂nψ < 0 on ∂SN−1+ . Since ω is C1

in SN−1+ and ψ is defined up to an homothety, there exists a smallest function ψ such that

η ≥ ω, and the graphs of η and ω over SN−1+ are tangent, either at some α ∈ SN−1+ , or only
at a point α ∈ ∂SN−1+ . We put w = η − ω. Then

T (η) = T (η)− T (ω) = �(1)−�(0), (3.4)

where �(t) = T (ωt ) with ωt = ω + tw.
We use local coordinates (σ1, . . . , σN−1) on SN−1 near α. We denote by g = (gi j ) the

metric tensor on SN−1 andby g jk its contravariant components. Then, for anyϕ ∈ C1(SN−1),

|∇ϕ|2 =
∑
j,k

g jk ∂ϕ

∂σ j

∂ϕ

∂σk
= 〈∇ϕ,∇ϕ〉g.
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If X = (X1, . . . , Xd) ∈ C1(T SN−1) is a vector field, we lower indices by setting
X� =∑

i g
�i Xi and define the divergence of X by

div′g X =
1√|g|

∑
�

∂

∂σ�

(√|g|X�
)
= 1√|g|

∑
�,i

∂

∂σ�

(√|g|g�i Xi

)
.

We write �(t) = �1(t)+�2(t)+�3(t) where

�1(t) = −βq	βq

(
β2
qω

2
t + |∇′ωt |2

) p−2
2

ωt , �2(t) =
(
β2
qω

2
t + |∇′ωt |2

) q
2

and

�3(t) = −div′
((

β2
qω

2
t + |∇′ωt|2

) p−2
2 ∇′ωt

)
.

Then

�1(1)−�1(0) = −
∑
j

a j
∂w

∂σ j
− bw and �2(1)−�2(0) =

∑
j

c j
∂w

∂σ j
+ dw,

where

b = βq	βq

(
β2
qωt

2 + |∇ωt |2
) p

2−2 (
(p − 1)β2

qω
2
t + |∇ωt |2

)
,

a j = (p − 2)βq	βq

(
β2
qωt

2 + |∇ωt |2
) p

2−2
ωt

∑
k

g jk ∂ωt

∂σk
,

d = qβ2
q

(
β2ωt

2 + |∇ωt |2
) q
2−1 ωt ,

and

c j = q
(
β2
qωt

2 + |∇ωt |2
) q

2−1∑
k

g jk ∂ωt

∂σk
.

Furthermore

�3(1)−�3(0) = −(p − 2)div′
((

β2
qω

2
t + |∇′ωt |2

) p−4
2
(
β2
qωtw + 〈∇′ωt ,∇′w〉g

)
∇′ωt

)

− div′
((

β2
qω

2
t + |∇′ωt |2

) p−2
2 ∇′w

)
.

Therefore we can write �(1)−�(0) under the form

�(1)−�(0) = −div′(A∇′w)+ 〈B,∇′w〉g + Cw := Lw (3.5)

where

〈AX, X〉g =
(
β2
qω

2
t + |∇′ωt |2

) p−4
2
(
p − 2)〈∇′ωt , X〉2g + |∇′ωt |2|X |2

)

≥
(
β2
qω

2
t + |∇′ωt |2

) p−4
2

min{1, p − 1}|∇′ωt |2|X |2. (3.6)

and B and C can be computed from the previous expressions. It is important to notice that

β2
qω

2
t + |∇′ωt |2 is bounded between two positive constants m1 and m2 in SN−1+ . Thus the
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operator L is uniformly elliptic with bounded coefficients. Since w is nonnegative and either
at some point α, ∇′w(α) = 0 and w(α) > 0, or at some boundary point α where w(α) = 0
and ∂nw(α) < 0, it follows from the strong maximum principle or Hopf Lemma (see [7])
that w = 0, contradiction. ��

Theorem 3.2 Assume q < q∗ or equivalently βq > β∗. There exists a unique positive
solution ω∗ to problem (3.1).

Proof Existence It will follow from [4]. Indeed problem (3.1) can be written under the form

A(ω) := −div′ a(ω,∇′ω) = B(ω,∇′ω) in SN−1+
ω = 0 on ∂SN−1+ ,

(3.7)

where

a(r, ξ) =
(
β2
qr

2 + |ξ |2
) p−2

2
ξ,

B(r, ξ) = βq	βq

(
β2
qr

2 + |ξ |2
) p−2

2
r −

(
β2
qr

2 + |ξ |2
) q

2
. (3.8)

The operator A is a Leray–Lions operator which satisfies the assumptions (1.6)–(1.8) of [4,
Theorem 2.1], and the termB satisfies (1.9), (1.10) in the same article. Therefore the existence
of a positive solution ω ∈ W 1,p

0 (SN−1+ ) ∩ L∞(SN−1+ ) is ensured whenever we can find a
supersolution ω ∈ W 1,p(SN−1+ )∩ L∞(SN−1+ ) and a nontrivial subsolution ω ∈ W 1,p(SN−1+ )

of (3.7) such that

0 ≤ ω ≤ ω in SN−1+ . (3.9)

First we note that η = η0 is a supersolution if the positive constant η0 is large enough. In
order to find a subsolution, we set again η = ψθ with θ = βq/β∗ and ψ as in (3.2). Now

θ > 1, thus η ∈ W 1,p
0 (SN−1+ ). As above we have

T (η) = −θ p−1ψ(θ−1)(p−1)div′
((

β2∗ψ2 + |∇′ψ |2) p−2
2 ∇′ψ

)

− θ p−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1 (β2∗ψ2 + |∇′ψ |2) p−2
2 |∇′ψ |2

− βq	βq θ
p−2ψ(θ−1)(p−1) (β2∗ψ2 + |∇′ψ |2) p−2

2 ψ+θqψ(θ−1)q (β2∗ψ2+|∇′ψ |2) q
2 .

Now βq	βq θ
p−2 = β∗	βq θ

p−1 = β∗(	βq −	β∗)θ
p−1 + β∗	β∗θ

p−1 and 	βq −	β∗ =
(βq − β∗)(p − 1) = β∗(p − 1)(θ − 1), hence

T (η) = −θ p−1ψ(θ−1)(p−1)div′
((

β2∗ψ2 + |∇′ψ |2) p−2
2 ∇′ψ

)

− θ p−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1 (β2∗ψ2 + |∇′ψ |2) p−2
2 |∇′ψ |2

− β∗(	βq −	β∗)θ
p−1ψ(θ−1)(p−1) (β2∗ψ2 + |∇′ψ |2) p−2

2 ψ

− β∗	β∗θ
p−1ψ(θ−1)(p−1) (β2∗ψ2 + |∇′ψ |2) p−2

2 ψ+θqψ(θ−1)q (β2∗ψ2+|∇′ψ |2) q
2 .
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Using the equation satisfied by ψ yields to the relation

T (η) = −θ p−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1 (β2∗ψ2 + |∇′ψ |2) p−2
2 |∇′ψ |2

− β2∗(p − 1)(θ − 1)θ p−1ψ(θ−1)(p−1)−1 (β2∗ψ2 + |∇′ψ |2) p−2
2 ψ2

+ θqψ(θ−1)q (β2∗ψ2 + |∇′ψ |2) q
2

= −θ p−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1 (β2∗ψ2 + |∇′ψ |2) p
2

+ θqψ(θ−1)q (β2∗ψ2 + |∇′ψ |2) q
2 .

If we replace η := η1 = ψθ by η := ηm = (mψ)θ in the above computation, the inequality
T ηm) ≤ 0 will be true provided

mθ(q+1−p)ψ(θ−1)(q+1−p)+1 ≤ θ p−1−q(θ − 1)(p − 1)
(
β2∗ψ2 + |∇′ψ |2) p−q

2 ,

which is satisfied if we choose m small enough so that (mψ)θ ≤ η0 and satisfying

mθ(q+1−p) ≤ β
(θ−1)(q+1−p)+1∗ θ p−1−q(θ − 1)(p − 1)

minx∈SN−1+
(
β2∗ψ2 + |∇′ψ |2) p−q

2

maxx∈SN−1+
ψ(θ−1)(q+1−p)+1 .

Therefore 0 < ηm ≤ η0 and standard regularity implies that the solution ω is C1 in S
N−1
+ .

Actually ω is C∞ since the operator is not degenerate.

UniquenessWe use the tangency method developed in the proof of Theorem 3.1. Assume ω1

and ω2 are two positive solutions of (3.2), then they are positive in SN−1+ and ∂nωi < 0 on
∂SN−1+ . Either the ωi are ordered and ω1 ≤ ω2, or their graphs intersect. In any case we can
define

τ = inf{s > 1 : sω1 ≥ ω2}.
We set ω∗ = τω1. Then either the graphs of ω2 and ω∗ are tangent at some interior point α,
or they are not tangent in SN−1+ , ∂nω∗ ≤ ∂nω2 < 0 on ∂SN−1+ and there exists α ∈ ∂SN−1+
such that ∂nω∗(α) = ∂nω2(α) < 0. Furthermore T (ω∗) ≥ 0. If we set w = ω∗ − ω2, then,
as in Theorem 3.1,

−div′( Ã∇′w)+ 〈B̃,∇′w〉g + C̃w = L̃w ≥ 0

where

〈 ÃX, X〉g =
(
β2
qω

2
t + |∇′ωt |2

) p−4
2
(
p − 2)〈∇′ωt , X〉2g + |∇′ωt |2|X |2

)

≥
(
β2
qω

2
t + |∇′ωt |2

) p−4
2

min{1, p − 1}|∇′ωt |2|X |2, (3.10)

in which ωt = ω2 + t (ω∗ − ω2) and t ∈ (0, 1) is obtained by applying the mean value
theorem and B̃ and C̃ are defined accordingly. Since L̃ is uniformly elliptic and has bounded
coefficients, it follows from the strongmaximum principle thatw = 0. Thusω∗ = τω1 = ω2

and τ = 1 from the equation. This ends the proof. ��
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3.2 Removable boundary singularities

The following is the basic result for removability of isolated singularities. It is valid in the
general case, but with a local geometric constraint.

Theorem 3.3 Assume q∗ ≤ q < p ≤ N, � is a C2 bounded domain with 0 ∈ ∂�, such
that �∩ Bδ = B+δ for some δ > 0. If u ∈ C1(�\{0}) is a nonnegative solution of (1.1) in �

which vanishes on ∂�\{0}, then it is identically 0.

Proof Step 1: assume � ⊂ R
N+ For ε > 0, we set �′ε = � ∩ Bc

ε and Hε = R
N+ ∩ Bc

ε . For
k, n ∈ N∗, n ≥ diam (�), we denote by vk,n,ε (n ∈ N∗) the solution of the problem

−�pv + |∇v|q = 0 in Hε ∩ Bn

v = kχ
R
N+∩∂Bε

on ∂(Hε ∩ Bn). (3.11)

If k > c2ε
q−p

q+1−p for a suitable c2 = c2(p, q) > 0 (see Lemma 2.6), then vk,n,ε ≥ u in �′ε .
Moreover there holds vk,n,ε ≤ vk′,n′,ε for n ≤ n′ and k ≤ k′. Furthermore the function

Uε,n(x) = c2
(
(|x | − ε)

q−p
q+1−p − (n − ε)

q−p
q+1−p

)
is a supersolution in Bn\Bε , and there holds vk,n,ε ≤ Uε,n . By monotonicity and standard a
priori estimate, we obtain that vk,n,ε → vε when n, k →∞ and that the function v = vε is
solution of

−�pv + |∇v|q = 0 in Hε

lim|x |→ε v(x) = ∞
v = 0 on ∂RN+ ∩ Bc

ε . (3.12)

Furthermore

u(x) ≤ vε(x) ≤ c2(|x | − ε)
q−p

q+1−p in �′ε . (3.13)

The function vε may not be unique, however it is the minimal solution of the above problem
since the vk,n,ε is unique, andmonotonicity in n and k holds. Actually, vε ≤ vε′ if 0 ≤ ε ≤ ε′.
For � > 0, we recall that the transformation v �→ T�[v] defined by (2.41) leaves Eq. (1.1)
invariant. As a consequence of the uniqueness of the approximations we have T�[vk,n,ε] =
v
�

p−q
q+1−p k,�−1n,�−1ε

, which implies

T�[vε] = v�−1ε . (3.14)

Letting ε → 0,wederive from themonotonicitywith respect to ε and standardC1,α estimates,
that the following identity holds:

T�[v0] = v0 ∀� > 0. (3.15)

The function v0 is a positive and separable solution of (1.1) inRN+ which vanishes on ∂�\{0}.
It follows from Theorem 3.1 that v0 = 0, and so is u.

Step 2: the general case We assume that � ∩ Bδ ⊂ R
N+ and we denote by M the maximum

of u on ∂Bδ ∩ �. Then the function (u − M)+ is a subsolution of (1.1) in � ∩ Bδ which
vanishes on ∂� ∩ Bδ\{0}. By Step 1, it is dominated by v0, which ends the proof. ��
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Remark The previous result is valid if u is a subsolution with the same regularity. If u is
no longer assumed to be nonnegative, only u+ vanishes. Furthermore, the regularity of the
boundary has not been used, but only the fact that � is locally contained into a half space to
the boundary of which 0 belongs.

Remark If no geometric assumption is made on ∂�, we can prove that u(x) = o(|x |−βq )

near 0. The next result shows that the removability holds if q > q∗.

Theorem 3.4 Assume q∗ < q < p ≤ N and � is a C2 bounded domain with 0 ∈ ∂�. If u
is a nonnegative solution of (1.1) in� which belongs to C1(�\{0}) and vanishes on ∂�\{0},
it is identically 0.

Proof As it is proved in [12], for any smooth subdomain S ⊂ SN−1, there exists a unique
β∗ s > 0 and ψ∗s > 0, unique up to an homothety, such that x �→ |x |−β∗ s ψ∗s (|x |−1 x) is p
harmonic in the cone CS = {x ∈ R

N\{0} : |x |−1 x ∈ S} and ψ∗s satisfies

−div′
((

β2∗ sψ∗ 2s + |∇′ψ∗s |2
) p−2

2 ∇′ψ∗s
)
− β∗ s	β∗ s

(
β2∗ sψ∗ 2 + |∇′ψ∗s |2

) p−2
2 ψ∗s = 0 in S

ψ∗s = 0 on ∂S, (3.16)

Furthermore S ⊂ S̃ ⊂ SN−1 implies β∗ s̃ ≤ β∗ s . Using the system of spherical coordinates
defined in (6.5) in Appendix B, for ε > 0 we denote by S := Sε the spherical shell with
vertex the north pole N and latitude angle θN−1 ∈ [0, π

2 + ε]. Because of uniqueness of β∗ s ,
β∗ sε ↑ β∗ as ε → 0. Therefore, if q > q∗, or equivalently βq < β∗, there exists δ, ε > 0
such that � ∩ Bδ ⊂ CSε ∩ Bδ and βq < β∗ sε . Since 3.1 is valid if SN−1+ is replaced by Sε

and βq < β∗ sε it follows that u = 0 as in the proof of Theorem 3.3, Steps 1 and 2. ��
The next result, valid in the case p = N , is based upon the conformal invariance of the

N-Laplacian. In this case the exponent β∗ corresponding to the first spherical N-harmonic
eigenvalue is equal to 1 and the corresponding spherical N-harmonic eigenfunction in SN−1+
is xN / |x |2.
Theorem 3.5 Assume N − 1

2 ≤ q < N, � is a bounded domain and 0 ∈ ∂� is such
that there exists a ball B ⊂ �c to the boundary of which 0 belongs. If u is a nonnegative
solution of

−�Nu + |∇u|q = 0 in �, (3.17)

which belongs to C(�\{0}) ∩W 1,N
0 (�\Bε(0)) for any ε > 0, it is identically 0.

Proof We assume that the inward normal unit vector to ∂� at 0 is eN = (0, 0, . . . , 1) and
that the ball B = B 1

2
(a) of center a = − 1

2eN and radius 1
2 touches ∂� at 0 and is exterior to

� (this can be assumed up to a rotation and a dilation). This is the consequence of the exterior
sphere condition at the point 0. It is always valid if ∂� is C2. We denote by Iω the inversion
of center ω = −eN and power 1, i.e. Iω(x) = ω + x−ω

|x−ω|2 . Under this transformation, the

complement of the ball B 1
2
(a), which contains �, is transformed into the half space R

N−
which contains the image �̃ of �. Since u satisfies (3.17), ũ = u ◦ Iω satisfies

−�N ũ + |x − ω|2(q−N ) |∇ũ|q = 0 in �̃. (3.18)

Furthermore since 0 = Iω(0) and Iω is a diffeomorphism, ũ ∈ C(�̃\{0}) ∩ C1(�̃) and it
vanishes on ∂�̃\{0}. Since |x − ω| ≤ 1 and q < N , ũ is a subsolution for (3.17) in G̃. By
Theorem 3.4, ũ = 0. ��
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3.3 Weakly singular solutions

The main result of this section is the following existence and uniqueness result concerning
solutions of (1.1) with a boundary weak singularity. We recall that ψ∗ is unique positive
solution of (1.11) such that supψ∗ = 1. Our first result is valid for any 1 < p ≤ N but it
needs a geometric constraint on �.

Theorem 3.6 Let p − 1 < q < q∗ < p ≤ N and � ⊂ R
N+ be a bounded C2 domain

such that 0 ∈ ∂�. Assume that there exists δ > 0 such that �δ := � ∩ Bδ = B+δ . Then for
any k > 0 there exists a unique positive solution u := uk of (1.1) in �, which belongs to
C1(�\{0}), vanishes on ∂�\{0} and satisfies

lim
x→0

uk(x)


∗(x)
= k (3.19)

in the C1-topology of SN−1+ , where


∗(x) = |x |−β∗ ψ∗(|x |−1x).
The proof of this theorem is long and difficult and requires a certain number of intermediate

results.

Lemma 3.7 Let the assumptions on p, q and � of Theorem 3.6 be satisfied. There exists a
unique positive p-harmonic function �∗ in �, which is continuous in �\{0}, vanishes on
∂�\{0} and satisfies

lim
x→0

�∗(x)

∗(x)

= 1. (3.20)

Proof For 0 < ε < δ let vε be the unique nonnegative p-harmonic function in �\B+ε which
is continuous in �\B+ε , vanishes on ∂�\Bε and achieves the value 
∗ on ∂Bε ∩ �. Since

� ⊂ R
N+ , vε ≤ 
∗ in �\B+ε . Hence inequalities 0 < ε < ε′ ≤ δ imply vε ≤ vε′ in �\B+

ε′ .
Because 
∗ ≤ δ−β∗ , there holds

vε + δ−β∗ ≥ 
∗, (3.21)

in �\B+δ . Since vε and 
∗ coincide on ∂B+ε and vanish on ∂RN+ ∩ (B+δ \B+ε ), (3.21) holds
also in B+δ \B+ε . Because vε ≥ 0 there holds

(
∗ − δ−β∗)+ ≤ vε ≤ 
∗ in �\B+ε . (3.22)

By a standard regularity result vε converges to a function�∗ continuous in�\{0}, p-harmonic
in � such that

(
∗ − δ−β∗)+ ≤ �∗ ≤ 
∗

in �. Therefore (3.20) holds provided x
|x | remains in a compact subset of SN−1+ . Let us

define a function φ̃∗ by φ̃∗(x) = |x |β∗ �∗(x), then φ̃∗(r, σ ) ≤ ψ∗(σ ) where r = |x | and
σ = x

|x | ∈ SN−1+ . By standard C1,α estimates, φ̃∗(r, .) is relatively compact in the C(SN−1+ )-

topology. Therefore the convergence of �∗(x)

∗(x) to 1when x to 0 holds not onlywhen

x
|x | remains

in a compact subset of SN−1+ , but uniformly on SN−1+ , which implies (3.20). Uniqueness
follows classically by (3.20) and the maximum principle. ��
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Lemma 3.8 Let the assumptions on p, q and� of Theorem 3.6 be satisfied. If for some k > 0
there exists a solution uk of (1.1) in �, which belongs to C1(�\{0}), vanishes on ∂�\{0}
and satisfies (3.19), then for any k > 0 there exists such a solution.

Proof We notice that for any c < 1 (resp c > 1), cuk is a subsolution (resp. supersolution)
of (1.1) in �. Let �∗ be as in Lemma 3.7. If c < 1, the function ck�∗ is a supersolution of
(1.1) which vanishes on ∂�\{0}. Furthermore

lim
x→0

cuk(x)


∗(x)
= ck = lim

x→0

ck�∗(x)

∗(x)

.

Then there exists a solution uck of (1.1) in � which satisfies cuk ≤ uck ≤ ck�∗. If c > 1,
we set u∗ := Tcθ [uk], which means u∗(x) = cβqθuk(cθ x) with θ = (βq − β∗)−1. Then u∗

is a solution of (1.1) in �cθ = 1
cθ �. In particular, u∗ satisfies the equation in B+δ

cθ
(0). Since

cθ > 1, B+δ
cθ

(0) ⊂ B+δ (0). Put m = max{u∗ : x ∈ ∂B+δ
cθ

(0)}. The function (u∗ − m)+,

extended by 0 outside B+δ
cθ

(0), is a subsolution of (1.1) in �. Furthermore it satisfies

lim
x→0

(u∗ − m)+(x)


∗(x)
= ck,

uniformly on any compact subset of SN−1+ . Therefore there exists a solution uck of (1.1) in
� which satisfies (u∗ − m)+ ≤ uck ≤ ck�∗, and in particular it vanishes on ∂�\{0} and
belongs to C1(�\{0}). By [13], uck is positive in �. Thus uck belongs to C1,α(B+δ (0)\{0})
and satisfies

|x |β∗ |uck(x)| + |x |1+β∗ |∇uck(x)| + |x |1+β∗+α sup
|y|≤|x |
x �=y

|∇uck(x)− ∇uck(y)|
|x − y|α ≤ M

by (2.11). Therefore the set of functions {rβ∗+1∇uck(r, ·)}r>0 is uniformly relatively compact

in the topology of uniform convergence on S
N−1
+ . Since it converges to ck∇′ψ∗ uniformly

on compact subsets of SN−1+ as r → 0, this convergence holds in C(SN−1+ ). This implies

lim
x→0

uck(x)


∗(x)
= ck. (3.23)

��
The next Lemma is the keystone of our construction. Its proof is very delicate and needs

several intermediate steps.

Lemma 3.9 Under the assumptions of Theorem 3.6 there exists a real number R0 such that
0 < R0 ≤ δ and a positive subsolution ũ of (1.1) in B+R0

which is Lipschitz continuous in

B+R0
\{0}, vanishes on B+R0

∩ ∂RN+\{0}, is smaller than 
∗ and satisfies

lim
x→0

ũ(x)


∗(x)
= 1. (3.24)

Proof The construction of the function ũ. We look for a subsolution under the form ũ =

∗ − w for a suitable nonnegative function w.
Step 1: reduction of the problem We use spherical coordinates for a C1 function u : x �→
u(x) = u(r, σ ), r = |x |, σ = x

|x | . Then ∇u = ure + r−1∇′u where e = |x |−1 x , |∇u|2 =
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u2r + r−2
∣∣∇′u∣∣2 and |∇u|q =

(
u2r + r−2

∣∣∇′u∣∣2) q
2
. The expression of the p-Laplacian in

spherical coordinates is

−�pu = −
((

u2r + r−2
∣∣∇′u∣∣2) p−2

2
ur

)
r

− N − 1

r

(
u2r + r−2

∣∣∇′u∣∣2) p−2
2

ur

− 1

r2
div′

((
u2r + r−2

∣∣∇′u∣∣2) p−2
2 ∇′u

)
.

Put v(t, σ ) = rβ∗u(r, σ ) with t = ln r ∈ (−∞, ln δ], then v satisfies

Q[v] :=

−
((

(vt − β∗v)2 + ∣∣∇′v∣∣2) p−2
2

(vt − β∗v)

)
t

− div′
((

(vt − β∗v)2 + ∣∣∇′v∣∣2) p−2
2 ∇′v

)

+	β∗
(
(vt − β∗v)2 + ∣∣∇′v∣∣2) p−2

2
(vt − β∗v)+ eνt

(
(vt − β∗v)2 + ∣∣∇′v∣∣2) q

2 = 0

(3.25)

in (−∞, ln δ) × SN−1+ where ν = 1 − (q + 1 − p)(β∗ + 1) = 1 − β∗+1
βq+1 > 0 and 	β∗ =

β∗(p − 1)+ p − N . Notice that ψ∗ satisfies

− div′
((

β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2) p−2

2 ∇′ψ∗
)
− β∗	β∗

(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

ψ∗ = 0,

(3.26)

hence it is a supersolution for (3.25). We look for a subsolution under the form

V (t, σ ) = ψ∗ − a(t)g(ψ∗)

where g is a continuous increasing function defined on R+, vanishing at 0 and smooth on
R
∗+ and a(t) = eγ t with γ > 0 to be chosen. Thus a′ = γ a, a′′ = γ 2a, Vt = −γ ag(ψ∗),

Vt − β∗V = −β∗ψ∗ + a(β∗ − γ )g(ψ∗), ∇′V = (1− ag′(ψ∗))∇′ψ∗ and
(Vt − β∗V )2 + ∣∣∇′V ∣∣2 = (−β∗ψ∗ + a(β∗ − γ )g(ψ∗))2 + (1− ag′(ψ∗))2

∣∣∇′ψ∗∣∣2
= (

β2∗ψ2∗ + 2aβ∗(γ − β∗)g(ψ∗)ψ∗
)+ (

1− 2ag′(ψ∗)
) ∣∣∇′ψ∗∣∣2 + O(a2 ‖g(ψ)‖C1)

= β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2 + 2a

(
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

)+ O(a2 ‖g(ψ∗)‖C1).

Therefore(
(Vt − β∗V )2 + ∣∣∇′V ∣∣2) p−2

2

=
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

[
1+ (p − 2)a

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

]

+ O(a2 ‖g(ψ)‖C1),
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and

eνt
(
(Vt − β∗V )2 + ∣∣∇′V ∣∣2) q

2

= eνt
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) q
2

[
1+ qa

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

]

+ O(eνt a2 ‖g(ψ∗)‖C1),

thus

(
(Vt − β∗V )2 + ∣∣∇′V ∣∣2) p−2

2
(Vt − β∗V )

= −β∗
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

ψ∗ + a(β∗ − γ )
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

g(ψ∗)

− aβ∗(p − 2)
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2(

β2∗ψ2∗ + |∇′ψ∗|2
) 4−p

2

ψ∗ + O(a2 ‖g(ψ∗)‖C1).

Finally,

−
((

(Vt − β∗V )2 + ∣∣∇′V ∣∣2) p−2
2

(Vt − β∗V )

)
t

= a

[
(γ 2 − β∗γ )

(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

g(ψ∗)

+β∗(p − 2)
β∗(γ 2 − β∗γ )ψ∗g(ψ∗)− γ g′(ψ∗) |∇ψ∗|2(

β2∗ψ2∗ + |∇′ψ∗|2
) 4−p

2

ψ∗

⎤
⎦+ O(a2 ‖g(ψ∗)‖C2).

(3.27)

Since

(
(Vt − β∗V )2 + ∣∣∇′V ∣∣2) p−2

2 ∇′V

=
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

(1− ag′(ψ∗))

×
[
1+ a(p − 2)

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

]
∇′ψ∗

+ O(a2 ‖g(ψ∗)‖C1)

=
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2 ∇′ψ∗

+ a
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

×
[
(p − 2)

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

− g′(ψ∗)
]
∇′ψ∗

+ O(a2 ‖g(ψ∗)‖C1),

123



3494 M.-F. Bidaut-Véron et al.

we get similarly

− div′
((

(Vt − β∗V )2 + ∣∣∇′V ∣∣2) p−2
2 ∇′V

)
= −div′

((
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2 ∇′ψ∗

)

− a div′
((

β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2) p−2

2

[
(p − 2)

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

− g′(ψ∗)
]
∇′ψ∗

)

+ O(a2 ‖g(ψ∗)‖C2 ). (3.28)

Noting that

− div′
((

β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2) p−2

2 ∇′ψ∗
)

ψ∗ = β∗	β∗
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

ψ∗,

(3.29)

we obtain

e−γ tQ[V ]

=
[
(γ 2 − β∗γ )

(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

g(ψ∗)

+β∗(p − 2)
β∗(γ 2 − β∗γ )ψ∗g(ψ∗)− γ g′(ψ∗) |∇ψ∗|2

(β2∗ψ2∗ + |∇′ψ∗|2)
4−p
2

ψ∗

]

− div′
((

β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2) p−2

2

×
[
(p − 2)

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

− g′(ψ∗)
]
∇′ψ∗

)

−	β∗

(
(γ − β∗)

(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

g(ψ∗)

+β∗(p − 2)
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

(β2∗ψ2∗ + |∇′ψ∗|2)
4−p
2

ψ∗

)

+ e(ν−γ )t
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) q
2

[
1+ qa

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

]

+ O(a ‖g(ψ∗)‖C2). (3.30)

In this expression we have in particular

− div′
((

β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2) p−2

2

×
[
(p − 2)

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

− g′(ψ∗)
]
∇′ψ∗

)

= (p − 1)div′
[
g′(ψ∗)

(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2 ∇ψ∗

]
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− β∗div′
((

β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2) p−4

2 [
(p − 2)β∗ψ∗g′(ψ∗)+(p − 2)(γ − β∗)g(ψ∗)

]
ψ∗

)

= (p − 1)g′′(ψ∗)
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2 |∇ψ∗|2

+ (p − 1)g′(ψ∗)div′
((

β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2) p−2

2 ∇ψ∗

)

− (p − 2)β∗div′
⎡
⎣(

(γ − β∗)g(ψ∗)ψ∗ + β∗g′(ψ∗)ψ2∗
)

(
β2∗ψ2∗ + |∇′ψ∗|2

) 4−p
2

∇′ψ∗
⎤
⎦ . (3.31)

Using the Eq. (3.26) satisfied by ψ∗, it infers that

− div′
((

β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2) p−2

2

×
[
(p − 2)

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

− g′(ψ∗)
]
∇′ψ∗

)

= (p − 1)
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2 (

g′′(ψ∗)|∇′ψ∗|2 − β∗	β∗g
′(ψ∗)ψ∗

)

− (p − 2)β∗div′
⎡
⎣(

(γ − β∗)g(ψ∗)ψ∗ + β∗g′(ψ∗)ψ2∗
)

(
β2∗ψ2∗ + |∇′ψ∗|2

) 4−p
2

∇′ψ∗
⎤
⎦ . (3.32)

Plugging this identity into the expression (3.30), we obtain after some simplifications

e−γ tQ[V ] =
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

g(ψ∗)Q1[V ] + e(ν−γ )t R[V ] + O(a ‖g(ψ∗)‖C2),

(3.33)

where

R[V ] = eνt
(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) q
2

[
1+ q

β∗(a′ − β∗a)ψ∗g(ψ∗)− ag′(ψ∗) |∇ψ∗|2
β2∗ψ2∗ + |∇′ψ∗|2

]
,

(3.34)

and

Q1[V ] = (γ −	β∗)(γ − β∗)
[
1+ (p − 2)

β2∗ψ2∗
β2∗ψ2∗ + |∇′ψ∗|2

]
− (p − 1)β∗	β∗

ψ∗g′(ψ∗)
g(ψ∗)

+ [
(p − 4)β∗	β∗ψ∗ − 2�′ψ∗

] (
γ − β∗

(
1− ψ∗g′(ψ∗)

g(ψ∗)

))
β∗ψ∗

β2∗ψ2∗ + |∇′ψ∗|2

− (p − 2)

[
ψ∗g′(ψ∗)
g(ψ∗)

(
(β∗ + 1)γ − β∗	β∗ + β∗

)+ γ − β∗ + β∗
ψ2∗ g′′(ψ∗)
g(ψ∗)

]

×
∣∣∇′ψ∗∣∣2

β2∗ψ2∗ + |∇′ψ∗|2
+ (p − 1)

g′′(ψ∗)
g(ψ∗)

∣∣∇′ψ∗∣∣2 . (3.35)

In this expression the difficult term to deal with is
[
(p − 4)β∗	β∗ψ∗ − 2�′ψ∗

]
since it has

not a prescribed sign. However �′ψ∗ = O(ψ∗) by (6.19) in Appendix B.

123



3496 M.-F. Bidaut-Véron et al.

Step 2: the perturbation method and the computation with g(ψ∗) = ψ∗ With such a choice
of function g

Q1[V ] = (γ −	β∗)(γ − β∗)
[
1+ (p − 2)

β2∗ψ2∗
β2∗ψ2∗ + |∇′ψ∗|2

]
− (p − 1)β∗	β∗

− (p − 2)
[
(γ −	β∗)β∗ + 2γ

] ∣∣∇′ψ∗∣∣2
β2∗ψ2∗ + |∇′ψ∗|2

+ γ O(ψ2∗ ). (3.36)

Equivalently

Q1[V ] =
[
1+ (p − 2)

β2∗ψ2∗
β2∗ψ2∗ + |∇′ψ∗|2

] (
γ 2 − (	β∗ + β∗)γ

)

− γ

[
(p − 2)(β∗ + 2)

∣∣∇′ψ∗∣∣2
β2∗ψ2∗ + |∇′ψ∗|2

+ O(ψ2∗ )
]

and finally

Q1[V ] =
[
1+ (p − 2)

β2∗ψ2∗
β2∗ψ2∗ + |∇′ψ∗|2

]
γ [γ − (	β∗ + β∗ + (p − 2)(β∗ + 2))+ O(ψ2∗ )].

(3.37)

Using the fact that β∗ > N−1
p−1 if 1 < p < 2 and 1 < β∗ < N−1

p−1 if 2 < p < N (see Theorem
6.1 in Appendix B), we have

	β∗ + β∗ + (p − 2)(β∗ + 2) ≥
{

	β∗ + β∗(p − 1) if p ≥ 2
N + 3(p − 2) > N − 3 if 1 < p < 2.

(3.38)

When N = 2, we have explicitly β∗ = 1+2
√

p2−3p+3
3(p−1) (see [9, Th 3.3]). Therefore for all

N ≥ 2 and p > 1, there holds

	β∗ + β∗ + (p − 2)(β∗ + 2) > 0. (3.39)

We fix ε0 > 0 such that, whenever ψ∗ ≤ ε0, there holds

	β∗ + β∗ + (p − 2)(β∗ + 2)+ O(ψ2∗ ) >
1

2

(
	β∗ + β∗ + (p − 2)(β∗ + 2)

)
. (3.40)

If we fix γ0 > 0 such that

γ0 < min

{
1

2

(
	β∗ + β∗ + (p − 2)(β∗ + 2)

)
, ν, β∗

}
, (3.41)

we obtain

Q1[V ] ≤ −min{1, p − 1}γm2 ∀ 0 < γ ≤ γ0, (3.42)

whenever ψ∗ ≤ ε0, for some m depending only on p, q and N (through ψ∗ and ν), which,
in the same range of value of ψ∗, yields to(

β2∗ψ2∗ +
∣∣∇′ψ∗∣∣2) p−2

2
g(ψ∗)Q1[V ] ≤ −c17ψ∗ ∀ 0 < γ ≤ γ0, (3.43)

for some c17 > 0 depending on N , p, q . This estimate is valid whatever is p > 1, but only in
a neighborhood of ψ∗ = 0. If we replace g(ψ∗) = ψ∗ by gk(ψ∗) = ψ∗e−kψ∗ for 0 < k < 1,
and denote byQ1,k[V ] the corresponding expression ofQ1[V ]which becomes nowQ1,0[V ].
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We define similarly Qk[V ], and Q[V ] becomes Q0[V ]. Since g′k(ψ∗) = e−kψ∗ − kgk(ψ∗)
and g′′k = −2ke−kψ∗ + k2gk(ψ∗), we obtain

Q1,k[V ] = Q1,0[V ] + k(p − 1)β∗	β∗ψ∗ + (p − 1)

(
− 2k

ψ∗
+ k2

) ∣∣∇′ψ∗∣∣2
+ (2− p)β∗

(−2k + k2
)
ψ∗ + O(ψ2∗ ) (3.44)

Notice that ∇′ψ∗ vanishes only at the North pole eN , thus there exists k0 ∈ (0, 1] such that

k(1− p)β∗	β∗ψ∗ + (p − 1)

(
2k

ψ∗
− k2

) ∣∣∇′ψ∗∣∣2 ≥ 1

2
(2− p)+β∗

(−2k + k2
)
ψ∗ ∀k≤k0

whenever ψ∗ ≤ ε0 which yields to

(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) p−2
2

gk(ψ∗)Q1,k[V ] ≤ −c18k ∀k ≤ k0 (3.45)

for some c13 = c13(N , p, q, ε0). There exists c14 = c14(N , p, q) > 0 such that

(
β2∗ψ2∗ +

∣∣∇′ψ∗∣∣2) q
2

[
1+ qeγ t β∗(γ − β∗)ψ∗gk(ψ∗)− g′k(ψ∗) |∇ψ∗|2

β2∗ψ2∗ + |∇′ψ∗|2
]
≤ c14

(3.46)

in SN−1+ × (−∞, ln δ]. Moreover

O(a ‖g(ψ∗)‖C2) ≤ eγ t c̃k (3.47)

for some c̃k = c̃k(N , p, q) > 0. We derive from (3.45)–(3.47)

e−γ tQk[V ] ≤ −c13k + c14e(ν−γ )t + eγ t c̃k ∀k ≤ k0 (3.48)

Thus there exists Tk ≤ ln δ such that Qk[V ] ≤ 0, for all t ≤ Tk and provided ψ∗ ≤ ε0. This
local estimate will be used in the construction of the subsolution when p ≥ 2.
Step 3: the case 1 < p < 2 Since the function ψ∗ depends only on the azimuthal angle
θ ∈ (0; π

2 ]we will write ψ∗(σ ) = ψ∗(θ) and∇′ψ∗(σ ) = ψ∗θ (θ)n where n is the downward
unit vector tangent to SN−1 in the hyperplane going through σ and the poles. From (6.8),

(p − 4)β∗	β∗ψ∗ − 2�′ψ∗ = (p − 2)

(
β∗	β∗ψ∗ + 2

β2∗ψ∗ + ψ∗θθ

β2∗ψ2∗ + ψ2∗θ

)
, (3.49)

since ψ 2∗θ =
∣∣∇′ψ∗∣∣2 and thus
(
(p − 4)β∗	β∗ψ∗ − 2�′ψ∗

) β∗γψ∗
β2∗ψ2∗ + ψ2∗θ

= (p − 2)γ

(
	β∗

β2∗ψ2∗
β2∗ψ2∗ + ψ2∗θ

+ 2β∗
β2∗ψ2∗ + ψ∗θθψ∗
(β2∗ψ2∗ + ψ 2∗θ )2

)
. (3.50)

From Theorem 6.1-Step 4 in Appendix B, we know that β2∗ψ∗ + ψ∗θθ ≥ 0, thus the con-
tribution of this term to Q1[V ] is nonpositive. We replace this expression in Q1[V ] with
g(ψ∗) = ψ∗ and obtain
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Q1[V ] = (γ −	β∗)(γ − β∗)
(
1+ (p − 2)

β2∗ψ2∗
β2∗ψ2∗ + ψ2∗θ

)
−	β∗β∗(p − 1)

+ (p − 2)γ	β∗
β2∗ψ2∗

β2∗ψ2∗ + ψ2∗θ
− (p − 2)

(
(β∗ + 2)γ −	β∗β∗

) ψ2∗θ
β2∗ψ2∗ + ψ2∗θ

+ 2β∗(p − 2)
β2∗ψ2∗ + ψ∗θθψ∗
(β2∗ψ2∗ + ψ2∗θ )2

γ

≤ γ

(
1+ (p − 2)

β2∗ψ2∗
β2∗ψ2∗ + ψ2∗θ

) (
γ −	β∗ − β∗

)

− (p − 2)γ
(β∗ + 2))ψ2∗θ −	β∗β

2∗ψ2∗
β2∗ψ2∗ + ψ2∗θ

≤ γ

(
1+ (p − 2)

β2∗ψ2∗
β2∗ψ2∗ + ψ2∗θ

)

×
(

γ −
(

	β∗+ β∗ + (p − 2)
(β∗ + 2)ψ2∗θ −	β∗β

2∗ψ2∗
(p − 1)β2∗ψ2∗ + ψ2∗θ

))
. (3.51)

We can write

	β∗ + β∗ + (p − 2)
(β∗ + 2)ψ2∗θ −	β∗β

2∗ψ2∗
(p − 1)β2∗ψ2∗ + ψ2∗θ

=
(
	β∗ + (p − 1)β∗

)
β2∗ψ2∗ +

(
	β∗ + β∗(p − 1)+ 2(p − 2)

)
ψ2∗θ

(p − 1)β2∗ψ2∗ + ψ2∗θ
≥ c15

(
	β∗ + β∗(p − 1)+ 2(p − 2)

)
(3.52)

for some positive constant c15. This expression	β∗ +β∗(p−1)+2(p−2) is always positive:
obviously if N ≥ 3 and by using the explicit expression of β∗ if N = 2. Thus there exists γ0
and c16 > 0 such thatQ1[V ] < −c16 for 0 < γ ≤ γ0. The perturbation method of Step 2, is
valid in the whole range of values of ψ∗ and we derive from (3.42)–(3.43) that (3.48) holds
for all k ≤ k0 and t ≤ Tk . Therefore Qk[V ] ≤ 0.
Step 4: the case p ≥ 2 For c > 0 to be fixed and ψ∗ ≥ ε0, γ ∈ (0, γ0], we take g(ψ∗) =
cψ

1− γ
β∗∗ . Then we derive from (3.35):

Q1[V ] = (γ −	β∗)(γ − β∗)
(p − 1)β2∗ψ2∗ + |∇′ψ∗|2

β2∗ψ2∗ + |∇′ψ∗|2
− (p − 1)β∗	β∗

(
1− γ

β∗

)

− (p − 1)
γ (β∗ − γ )

β2∗
ψ
−1− γ

β∗∗
∣∣∇′ψ∗∣∣2 − (p − 2)(β∗ − γ )(γ −	β∗)

×
∣∣∇′ψ∗∣∣2

β2∗ψ2∗ + |∇′ψ∗|2

= (1− p)

[
γ (β∗ − γ )+ γ (β∗ − γ )

β2∗
ψ
−1− γ

β∗∗
∣∣∇′ψ∗∣∣2

]
. (3.53)
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For k ≤ k0 we fix c such that cε
1− γ

β∗
0 = ε0e−kε0 ⇐⇒ c = ε

γ
β∗
0 e−kε0 and we define g by

g(ψ∗) = min

{
ψ∗e−kψ∗ , ε

γ
β∗
0 e−kε0ψ

1− γ
β∗∗
}
=
{

ψ∗e−kψ∗ if 0 ≤ ψ∗ ≤ ε0

ε

γ
β∗
0 e−kε0ψ

1− γ
β∗∗ if ε0 ≤ ψ∗ ≤ 1,

(3.54)

and we set V (t, σ ) = ψ∗(σ ) − a(t)g(ψ∗(σ )) with (t, σ ) ∈ (−∞, Tk] × SN−1+ and define
ũ(r, σ ) = r−β∗(ψ∗(σ ) − a(ln r)g(ψ∗(σ ))) accordingly for (r, σ ) ∈ (−∞, eTk ] × SN−1+ .
Since ψ∗ is a decreasing function the coincidence set {σ ∈ SN−1+ : ψ∗(σ ) = ε0} is a circular
cone �θ0 with vertex 0, axis eN and angle θ0. We set R0 = eTk

�1 =
{
x = (r, θ) ∈ B+R0

: θ0 < θ < π
2

}
=
{
(r, σ ) ∈ [0, R0)× SN−1+ : 0 < ψ∗(σ ) < ε0

}
,

�2 =
{
x = (r, θ) ∈ B+R0

: 0 < θ < θ0

}
=
{
(r, σ ) ∈ [0, R0)× SN−1+ : ε0 < ψ∗(σ ) < 1

}
,

and define

ũ(r, σ ) = r−β∗ (ψ∗(σ )− rγ g(ψ∗(σ ))
)

=
⎧⎨
⎩
u1(r, σ ) = r−β∗(1− rγ e−kψ∗(σ ))ψ∗(σ ) if (r, θ) ∈ �1

u2(r, σ ) = r−β∗
(
1− rγ ε

γ
β∗
0 e−kε0(ψ∗(σ ))

1− γ
β∗
)

ψ∗(σ ) if (r, θ) ∈ �2.

The function ũ is a subsolution separately on�1 and�2 and is Lipschitz continuous in�\{0}.
If we denote by g1 and g2 the restriction of g to �1 and �2 respectively, that is to �1 and
�2, then g′1(ε0) > g′2(ε0) > 0. Let ζ ∈ C1

c (B
+
R0

) which vanishes in neighborhoods of 0 and

∂B+R0
, ζ ≥ 0, then∫

�i

|∇ũ|p−2 ∇ũ.∇ζdx +
∫

�i

|∇ũ|q ζdx ≤
∫

�θ0

|∇ui |p−2 ∂ni uiζdS, (3.55)

where ni is the normal unit vector on �θ0 outward from �i . Actually, n2 = −n1 = n thus

∇ũ = ũre + r−β∗−1(1− rγ g′(ψ∗))∇′ψ∗ = ũre+ r−β∗−1(1− rγ g′(ψ∗))ψ∗θ n.

and on �θ0 ,

∇ũ =
{
ũre − r−β∗−1(1− rγ g′1(ε0))ψ∗θ n in �1

ũre + r−β∗−1(1− rγ g′2(ε0))ψ∗θ n in �2

Therefore

|∇u1|p−2 ∂n1u1

= −r−β∗−1(1− rγ g′1(ε0))
(
ũ2r + r−2β∗−2(1− rγ g′1(ε0))2ψ2∗θ

) p−2
2 ψ∗θ in �1

and

|∇u2|p−2 ∂n2u2

= r−β∗−1(1− rγ g′2(ε0))
(
ũ2r + r−2β∗−2(1− rγ g′2(ε0))2ψ2∗θ

) p−2
2 ψ∗θ in �2.

By adding the two inequalities (3.55)∫
�

|∇ũ|p−2 ∇ũ.∇ζdx +
∫

�

|∇ũ|q ζdx ≤
∫

�θ0

(|∇u1|p−2 ∂n1u1 + |∇u2|p−2 ∂n2u2
)
ζdS.

(3.56)

123



3500 M.-F. Bidaut-Véron et al.

By monotonicity of the function X �→ (
ũ2r + X2

) p
2 and since

r−β∗−1(1− rγ g′2(ε0)) ≥ r−β∗−1(1− rγ g′1(ε0)) ≥ 0,

we derive

r−β∗−1(1− rγ g′2(ε0))
(
ũ2r + r−2β∗−2(1− rγ g′2(ε0))2ψ2∗θ

) p−2
2

≥ r−β∗−1(1− rγ g′1(ε0))
(
ũ2r + r−2β∗−2(1− rγ g′1(ε0))2ψ2∗θ

) p−2
2

We derive that the right-hand side of (3.56) is nonpositive because ψ∗θ ≤ 0, and therefore ũ
is a positive subsolution of (1.1) in B+R0

dominated by 
∗ and satisfying (3.24). ��
.

Proof of Theorem 3.6 Let M = max{
∗(x) : x ∈ ∂B+R0
}, then M = R−β∗

0 . The function u∗
defined by

u∗(x) =
{

(ũ(x)− M)+ if x ∈ B+R0

0 if x ∈ �\B+R0
,

is indeed a subsolution of (1.1) in whole � where it satisfies u∗ ≤ 
∗ and it vanishes on
∂�\{0}. Since �∗ is a positive p-harmonic function in � which vanishes on ∂�\{0} and
satisfies (3.20), it is supersolution of (1.1) and therefore it dominates u∗. Therefore there
exists a solution u of (1.1) in � which vanishes on ∂�\{0} and satisfies u∗ ≤ u ≤ �∗. This
implies that (3.19) holds with k = 1 and we conclude with Lemma 3.8. This ends the proof
of Lemma 3.9. ��

When p = N the statement of Theorem 3.6 holds without the flatness assumption on ∂�.
The proof of the next theorem is an easy adaptation to the one of Theorem 3.6, provided
Lemmas 3.7, 3.8 and 3.9 are modified accordingly.

Theorem 3.10 Assume N − 1 < q < N − 1
2 and � be a bounded C2 domain such that

0 ∈ ∂�. Then for any k > 0 there exists a unique positive solution u := uk of (3.17) in
�, which belongs to C1(�\{0}), vanishes on ∂�\{0} and satisfies uniformly with respect to
σ ∈ SN−1+

lim
x→0

x/|x |→σ

|x | uk(x) = kψ∗(σ ). (3.57)

Since p = N , then β∗ = 1 and ψ∗(σ ) = xN|x | = cos θN−1 with the identification of σ and
θN−1 := θ . In a more intrinsic manner (3.57) can be written under the form

lim
x→0
x∈�

|x |2 uk(x)
d(x)

= k. (3.58)

We recall that if ω ∈ R
N and Iω denotes the inversion of center ω and power 1, i.e.

Iω(x) = ω + x−ω
|x−ω|2 , then ũ = u ◦ Iω satisfies (3.18).

Lemma 3.11 Assume � be a bounded C2 domain such that 0 ∈ ∂�. Then there exists a
unique N-harmonic function �∗ in �, which vanishes on ∂�\{0} and satisfies

lim
x→0

x/|x |→σ

|x |�∗(x) = ψ∗(σ ), (3.59)

uniformly with respect to σ ∈ SN−1+ .
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Proof Uniqueness is standard. Let ω = −eN ∈ �
c
, with the notations of the proof of

Theorem 3.5, ω′ = −ω, a = − 1
2eN and a′ = −a. We can assume that the balls B 1

2
(a)

and B 1
2
(a′) are tangent to ∂� at 0 and respectively subset of �c and �. The function x �→


(x) = − xN
|x |2 which is N -harmonic in R

N− and vanishes on ∂RN−\{0} is transformed by the

inversion Iω′ of center ω′ and power 1 into the function 
ω′ = 
 ◦ Iω which is positive
and N -harmonic in B 1

2
(a′) and vanishes on ∂B 1

2
(a′)\{0}. The function 
̂ = −
 which is

N -harmonic in R
N+ and vanishes on ∂RN+\{0} is transformed by the inversion Iω of center ω

and power 1 into the function 
ω = 
̂ ◦ Iω which is positive and N -harmonic in Bc
1
2
(a) and

vanishes on ∂B 1
2
(a)\{0}. For ε > 0 we denote by �ε the solution of

−�N�ε = 0 in � ∩ Bc
ε

�ε = 0 in (Bc
1
2
(a′) ∩ ∂Bε) ∪ (∂� ∩ Bc

ε )

�ε = 
ω′ in B 1
2
(a′) ∩ ∂Bε . (3.60)

If 0 < ε′ < ε, �ε′ ≥ 
ω′ in B 1
2
(a′) ∩ ∂Bε , thus �ε′ ≥ �ε′ in � ∩ Bc

ε . We also denote by

Ûε the solution of

−�N �̂ε = 0 in � ∩ Bc
ε

�̂ε = 0 in ∂� ∩ Bc
ε

�̂ε = 
ω in � ∩ ∂Bc
ε . (3.61)

In the same way as above

0 < ε′ < ε �⇒ �̂ε′ ≤ �̂ε in � ∩ ∂Bc
ε

Using the explicit form of 
, Iω : x �→ ω+ x−ω
|x−ω|2 and Iω′ : x �→ ω′ + x−ω′

|x−ω′|2 we see that


ω′ �B 1
2
(a′)∩∂Bε

≤ 1+ ε

1− ε

ω�B 1

2
(a′)∩∂Bε

,

thus

�ε ≤ 1+ ε

1− ε
�̂ε in � ∩ Bc

ε .

Letting ε → 0 we conclude that �ε converges uniformly in �\{0} to �∗ which vanishes on
∂�\{0} and satisfies (3.59). ��

The proof of the next statement is similar to the one of Lemma 3.8 up to some minor
modifications, so we omit it.

Lemma 3.12 Let the assumptions on q and� of Theorem 3.10 be satisfied. If for some k > 0
there exists a solution uk of (3.17) in �, which belongs to C1(�\{0}), vanishes on ∂�\{0}
and satisfies (3.57), then for any k > 0 there exists such a solution.

Lemma 3.13 Under the assumptions of Theorem 3.10 there exists a Lipschitz continuous
nonnegative subsolution ũ of (3.17) in � which vanishes on ∂�\{0}, is smaller than �∗ and
satisfies
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3502 M.-F. Bidaut-Véron et al.

lim
x→0

x/|x |→σ

|x | ũ(x) = σ, (3.62)

uniformly with respect to σ ∈ SN−1+ .

Proof Let τ > 0 to be fixed and let w be the solution of

−�Nw + |∇w|q = 0 in B−2 (3.63)

which vanishes on ∂B−2 \{0} and satisfies

lim
x→0

x/|x |→σ

|x |w(x) = σ (3.64)

in theC1-topology of SN−1− . Its existence follows fromTheorem3.6 and this function is domi-
nated by the N-harmonic function�∗ corresponding to this domain, obtained in Lemma 3.11.
By Iω′ , the half-ball B

−
2 is transform into the lunule G = B 1

2
(a′)\B 2

3
( 43ω

′) and w̃ = w ◦Iω′

satisfies

−�N w̃ + |x − ω′|2(q−N )|∇w̃|q = 0 in G. (3.65)

Since |x − ω′| ≤ 1 in G, −�N w̃ + |∇w̃|q ≤ 0 in G. We extend w̃ by 0 in �\G and the
resulting function ũ is a subsolution of (3.17) in � which vanishes on ∂�\{0}), is smaller
than the N-harmonic function �∗ obtained in Lemma 3.11, and satisfies (3.62). ��

4 Classification of boundary singularities

We assume that � ⊂ R
N is a C2 domain and 0 ∈ ∂�. Furthermore, in order to avoid

extremely technical computations, we shall assume either that ∂� is flat near 0 or p = N .
We suppose that the tangent plane to ∂� at 0 is ∂RN+ = {x = (x ′, 0)} and the normal inward
unit vector at 0 is eN , therefore n = −eN in the sequel. We denote by ωsN−1+

the unique

positive solution of (3.1) in SN−1+ and by UsN−1+
the corresponding singular solution of (1.1)

in R
N+ defined by

UsN−1+
(x) = |x |−βq ωsN−1+

(
x

|x |
)

. (4.1)

We recall that ψ∗ is the unique positive solution of (3.2) with maximum 1 and 
∗ the
corresponding p-harmonic function


∗(x) = |x |−β∗ ψ∗
(

x

|x |
)

. (4.2)

4.1 The case 1 < p < N

The first statement points out the link between weak and strong singularities.

Proposition 4.1 Under the assumptions of Theorem 3.6 there exists limk→∞ uk = u∞ which
is the unique element of C(�\{0}) ∩ C1(�) which vanishes on ∂�\{0}, satisfies (1.1) in �

and

lim
x→0

u∞(x)

UsN−1+
(x)

= 1. (4.3)
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Proof Uniqueness follows from (4.3) and the maximum principle. For existence, since the
mapping k �→ uk is increasing and uk ≤ UsN−1+

, there exists limk→∞ uk := u∞ ≤ UsN−1+
and u∞ ∈ C(�\{0}) ∩ C1(�). It vanishes on ∂B+δ \{0} and satisfies (1.1) in B+δ . In order
to take into account the domain B+δ in the notations, we set uk = uk,δ . Since the mapping
δ �→ uk,δ is also increasing and uk,δ ≤ k
∗, there also exists limδ→∞ uk,δ := uk,∞ ≤ k
∗
Then, for all � > 0,

T�[uk,δ](x) = �βq uk,δ(�x) = uk�βq ,�−1δ(x). (4.4)

Letting k →∞, we obtain

T�[u∞,δ](x) = �βq u∞,δ(�x) = u∞,�−1δ(x), (4.5)

and letting δ →∞, we obtain

T�[u∞,∞](x) = �βq u∞,∞(�x) = u∞,∞(x). (4.6)

This implies that

u∞,∞(r, σ ) = r−βqω′(σ ), (4.7)

and ω′ is a positive solution of problem (3.1). Therefore ω′ = ωsN−1+
by Theorem 3.2. If we

let �→ 0 in (4.4) and take |x | = 1, x = σ , we derive

lim
�→0

�βq u∞,δ(�, σ ) = lim
�→0

u∞,�−1δ(1, σ ) = u∞,∞(1, σ ) = ωsN−1+
(σ ). (4.8)

This convergence holds in C1(SN−1+ ) because of Lemma 2.5. This implies (4.3). ��
The main classification result is as follows.

Theorem 4.2 Assume 1 < p < N, p−1 < q < q∗ and ∂�∩Bδ = {x = (x ′, 0) : ∣∣x ′∣∣ < δ},
for some δ > 0. If u ∈ C(�\{0})∩C1(�) is a positive solution of (1.1) in � which vanishes
on ∂�\{0}, then we have the following alternative:

(i) either there exists k ≥ 0 such that

lim
x→0

u(x)


∗(x)
= k, (4.9)

(ii) or

lim
x→0

u(x)

UsN−1+
(x)

= 1. (4.10)

Proof Step 1. Assume

lim inf
x→0

u(x)


∗(x)
<∞, (4.11)

then we claim that (4.9) holds. We first note that if (4.11) holds, there also holds

lim inf
x→0

u(x)

u1(x)
<∞, (4.12)

where u1 is the solution of (1.1) obtained in Theorem 3.6 with k = 1. If {xn} is converging
to 0 and such that for some k > 0

lim inf
x→0

u(x)

u1(x)
= k = lim

n→∞
u(xn)

u1(xn)
,
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3504 M.-F. Bidaut-Véron et al.

there also holds by the boundary Harnack inequality (2.38) applied to both u and u1,

u(xn)

u1(xn)
= u(xn)

d(xn)

d(xn)

u1(xn)
≥ c−25

u(x)

u1(x)
∀x s.t. |x | = |xn | .

This implies in particular

u(x) ≤ c25(k + εn)u1(x) ∀x s.t. |x | = |xn |
where {εn} is converging to 0+, and by the comparison principle

u(x) ≤ Ku1(x) ∀x ∈ R
N+ s.t. |xn | ≤ |x | ≤ δ

2
,

for some K > 0 and all n ∈ N∗. Therefore

lim sup
x→0

u(x)

u1(x)
<∞. (4.13)

We can assume that k �= 0, otherwise (4.9) holds with k = 0 and actually u remains bounded
near 0. As a consequence of the Hopf Lemma and C1 regularity, there exists K > 0 such
that

u(x) ≤ K
∗(x) ∀x ∈ B+δ
2
. (4.14)

Let m = max{u(x) : |x | = δ}. For 0 < τ < δ we denote by kτ the minimum of the κ > 0
such that u(x) ≤ κ
∗(x) + m for τ ≤ |x | ≤ δ. Then u(x) ≤ kτ
∗(x) + m, and either the
graphs of the mappings u(·) and kτ
∗(·)+m are tangent at some xτ ∈ B+δ \B+τ , or they are
tangent on the boundary of the domain, and the only possibility is that they are tangent on
|x | = τ . Since

|∇
∗(x)|2 = |x |−2(β∗+1) (β2∗ψ2∗ + |∇ψ∗|2),
it never vanishes. If we set w = u − (kτ
∗(x)+ m), then

− Lw + |∇u|q = 0 (4.15)

where the operator

L =
∑
i, j

∂

∂xi

(
ai j

∂

∂x j

)

is uniformly elliptic in a neighborhood of xτ (see [6, Lemma 1.3]). Furthermore w ≤ 0 and
w(xτ ) = 0 by the strong maximum principle∇u(xτ ) must vanish, which contradicts the fact
that ∇u(xτ ) = ∇w(xτ ) by the tangency condition, and ∇w(xτ ) �= 0. Therefore |xτ | = τ

and xτ /∈ ∂RN+ . If τ ′ < τ , kτ ≤ kτ ′ , and we set k = limτ→0 kτ , which is finite because of
(4.14). There exists {τn} such that σn := τ−1xτn → σ0. Furthermore

rβ∗u(r, σ ) ≤ kτψ∗(σ )+ mrβ∗ if τ ≤ r ≤ δ and τβ∗u(τ, στ ) = kτψ∗(στ )+ mτβ∗ .
(4.16)

Put

uτ (x) = τβ∗u(τ x) (4.17)

Then

−�puτ + τ p−q−β∗(p+1−q) |∇uτ |q = 0 in B+δ
τ

\{0}
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and, by (4.14),

0 ≤ uτ (x) ≤ K |x |−β∗ in B+δ
2τ
\{0}.

By Lemma 2.5, the set of functions {uτ (·)} is relatively compact in the C1
loc topology of

R
N+\{0}. Therefore, as q < q∗, there exist a sequence {τ ′n} ⊂ {τn} converging to 0, and a

positive p-harmonic function v in R
N+ , continuous in R

N+\{0} and vanishing on ∂RN+\{0},
such that uτ ′n → v, and v satisfies (4.14) in R

N+\{0}. By Theorem 5.1 in Appendix A, there
exists k∗ such that v = k∗
∗. In particular,

lim
τ ′n→0

uτ ′n (1, σ ) = k∗ψ∗(σ ) (4.18)

in the C1(SN−1+ ) topology. Combining (4.16), (4.17) and (4.18) we conclude that k∗ = k
and

lim
τ ′n→0

τ ′β∗n uτ ′n (1, σ ) = kψ∗(σ ) (4.19)

Using Theorem 3.6, it is equivalent to

lim
τ ′n→0

u(τ ′n, σ )

uk(τ ′n, σ )
= 1 (4.20)

uniformly on SN−1+ . For any ε > 0, there exists nε > 0 such that n ≥ nε implies

uk−ε(τ
′
n, σ ) ≤ u(τ ′n, σ ) ≤ uk+ε(τ

′
n, σ )

By comparison principle,

uk−ε ≤ u ≤ uk+ε + m in B+δ \B+τ ′n , (4.21)

and finally

uk−ε ≤ u ≤ uk+ε + m in B+δ , (4.22)

Since ε is arbitrary and using again Theorem 3.6, it implies

lim
r→0

u(r, σ )


∗(r, σ )
= k, (4.23)

locally uniformly on SN−1. But since the convergence holds in C1(SN−1+ ), (4.9) follows.
Step 2. Assume

lim
x→0

u(x)


∗(x)
= ∞. (4.24)

For any 0 < ε < δ and k > 0, there holds

uk(x) ≤ u(x) ≤ vε(x) in B+δ \B+ε (4.25)

where vε has been defined in (3.12) and uk is given by Theorem 3.6. Letting ε → 0, k →∞,
and using Proposition 4.1, we derive

u∞(x) ≤ u(x) ≤ v0(x) in B+δ \{0}. (4.26)
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We have seen in Theorem 3.3 that v0 is a separable solution of (1.1) in R
N+ which vanishes

on ∂RN+\{0}, therefore v0(x) = UsN−1+
(x). This implies

u∞(x) ≤ u(x) ≤ |x |−βq ωsN−1+

(
x

|x |
)

in B+δ \{0}. (4.27)

We conclude using Proposition 4.1. ��
4.2 The case p = N

When p = N , the assumption that ∂� is an hyperplane near 0 can be removed. The proof
of the next results is based upon Theorem 3.10. The following result is the extension to the
case p = N of Proposition 4.1.

Proposition 4.3 Under the assumptions of Theorem 3.10 there exists limk→∞ uk = u∞
which is the unique element of C(�\{0}) ∩ C1(�) which satisfies (3.17) in �, vanishes on
∂�\{0} and such that

lim
x→0

u∞(x)

UsN−1+
(x)

= 1. (4.28)

Proof We denote by u�
k the unique positive solution of (3.17) satisfying (3.57) obtained in

Theorem 3.6. Then

T�[u�
k ] = u��

�βq−β∗ k, (4.29)

because of uniqueness. We denote by B := B 1
2
(a) and B ′ := B 1

2
(a′) the two balls tangent

to ∂� at 0 respectively interior and exterior to � introduced in the proof of Lemma 3.11.
Estimate (3.58) implies

uB′c
k ≤ u�

k ≤ uB
k (4.30)

the left-hand side inequality holding in � and the right-hand side one in B. Therefore

T�[uB′c
k ] := uB′c �

�βq−β∗ k ≤ T�[u�
k ] ≤ T�[uB

k ] := uB�

�βq−β∗ k, (4.31)

the domains of validity of these inequalities being modified accordingly. Using again (3.58)
we obtain

T�′ [uB′c
k′ ] ≤ T�[uB′c

k ] in B ′c �′ , (4.32)

for any 0 < �′ ≤ � and �′βq−β∗k′ ≤ �βq−β∗k. In the same way

T�′ [uB
k′ ] ≥ T�[uB

k ] in B�, (4.33)

for any 0 < �′ ≤ � and �′βq−β∗k′ ≥ �βq−β∗k. Since u�
k uB

k , u
B′c
k are increasing with respect

to k, they converge respectively to u�∞ uB∞, uB′c∞ and there holds for any � > 0

T�[uB′c∞ ] ≤ T�[u�∞] ≤ T�[uB∞], (4.34)

from (4.31) and

(i) T�′ [uB′c∞ ] ≤ T�[uB′c∞ ] in B ′c �′

(i i) T�′ [uB∞] ≥ T�[uB∞] in B� (4.35)

123



Boundary singularities of positive solutions… 3507

for any 0 < �′ ≤ �. Notice that , replacing � by ��′ we can rewrite (4.34) as follows

T�′ [T�[uB′c∞ ]] ≤ T�′ [T�[u�∞]] ≤ T�′ [T�[uB∞]]. (4.36)

Because of the monotonicity with respect to � the following limits exist

UB′c = lim
�→0

T�[uB′c∞ ] and UB = lim
�→0

T�[uB∞]. (4.37)

By Lemma 2.5 applied with φ(|x |) = |x |−βq and since there holds uB∞(x) ≤ c|x |−βq and
uB′∞(x) ≤ c|x |−βq , we derive

(i) |∇T�[uB∞](x)| ≤ c2|x |−βq−1 ∀x ∈ B�

(i i) |∇T�[uB∞](x)− ∇T�[uB∞](y)| ≤ c2|x |−βq−1−α|x − y|α ∀x, y ∈ B�, |x | ≤ |y|
(i i i) T�[uB∞](x) ≤ c2|x |−βq−1(dist (x, ∂B�))α ∀x ∈ B�,

(4.38)

and

(i) |∇T�[uB′c∞ ](x)| ≤ c2|x |−βq−1 ∀x ∈ B ′c �

(i i) |∇T�[uB′c∞ ](x)− ∇T�[uB′c∞ ](y)| ≤ c2|x |−βq−1−α|x − y|α ∀x, y ∈ B ′c �, |x | ≤ |y|
(i i i) T�[uB′c∞ ](x) ≤ c2|x |−βq−1(dist (x, ∂B ′c �))α ∀x ∈ B ′c �.

(4.39)

Thus the sets of functions {T�[uB∞]} and {T�[uB′∞]} are equicontinuous in the C1-loc topology
and by uniqueness, the limit in (4.37) below holds in this topology. Hence UB′c and UBc

are positive solutions of (3.17) in R
N+ which vanish on ∂RN+\{0}. Furthermore UB′c ≤ UBc

Since for any �, �′ > 0, T�′ [T�[uB′c∞ ]] = T��′ [uB′c∞ ], it follows T�′ [UB′c ] = UB′c and in the
same way T�′ [UB] = UB . This means that UB and UB′c are self-similar solutions of (3.17)
in R

N+ and they vanish on ∂RN+\{0}. Hence
UB = UB′c = USN−1+

. (4.40)

Applying again Lemma 2.5 to u�∞ with φ(|x |) = |x |−βq we have

(i) |∇T�[u�∞](x)| ≤ c2|x |−βq−1 ∀x ∈ ��

(i i) |∇T�[u�∞](x)− ∇T�[u�
k ](y)| ≤ c2|x |−βq−1−α|x − y|α ∀x, y ∈ ��, |x | ≤ |y|

(i i i) T�[u�∞](x) ≤ c2|x |−βq−1(dist (x, ∂��))α ∀x ∈ ��.

(4.41)

This implies that the set of functions {T�[u�∞]}� is equicontinuous in the C1-loc topology of
R
N+ and there exists a sequence {�n} → 0 and a functionU such that T�n [u�∞] → U� in this

topology of RN+ , and U is a positive solution of (3.17) in R
N+ which vanishes on ∂RN+\{0}.

From (4.34) and (4.40) there holds U� = USN−1+
and therefore

lim
�→0

T�[u�∞] = USN−1+
. (4.42)

This implies (4.28) and

lim
r→0

rβq u�∞(r, σ ) = ωSN−1+
(σ ) (4.43)

uniformly on compact subsets of SN−1+ . ��

123



3508 M.-F. Bidaut-Véron et al.

Up to minor modifications the proof of the next classification theorem is similar to the
one of Theorem 4.2.

Theorem 4.4 Assume N − 1 < q < N − 1
2 If u ∈ C(�\{0})∩C1(�) is a positive solution

of (3.17) in � which vanishes on ∂�\{0}, then we have the following alternative:

(i) either there exists k ≥ 0 such that (4.9) holds,
(ii) or (4.10) holds.

Acknowledgments This research was supported by FONDECYT-1110268 for the first and second author
andMathamsud 13MATH-03 for the three authors. The authors are grateful to the referee for a careful reading
of the manuscript.

Appendix A: Positive p-harmonic functions in a half space

In this section we prove the following rigidity result.

Theorem 5.1 Assume 1 < p ≤ N and u ∈ C1(RN+)∩C(RN+\{0}) is a positive p-harmonic
function which vanishes on ∂RN+\{0} and such that |x |β∗ u(x) is bounded. Then there exists
k ≥ 0 such that

u(x) = k
∗(x) ∀x ∈ R
N+ . (5.1)

Proof Since |x |β∗ u(x) is bounded, |x |β∗+1 ∇u(x) is also bounded and there exists m > 0
such that u(x) ≤ m
∗(x) in B+δ . We denote by k the infimum of the c > 0 such that
u(x) ≤ c
∗(x). Then

0 ≤ u(x) ≤ k
∗(x) ∀x ∈ R
N+\{0} (5.2)

and we assume that k > 0 otherwise u = 0. Assume that the graphs overRN+ of the functions
x �→ u(x) and x �→ k
∗(x) are tangent at some point x0 ∈ R

N+ or x0 ∈ ∂RN+\{0}. Since∇
∗
never vanishes inR

N
+\{0} it follows from the strong maximum principle or Hopf Lemma that

u = k
∗. If the two graphs are not tangent in R
N
+\{0}, either they are asymptotically tangent

at 0, or at∞.

(i) In the first case there exists two sequences {kn} increasing to k and {xn} ⊂ R
N+ converging

to zero such that u(xn)

∗(xn) = kn . We set rn = |xn | and urn (x) = rβ∗

n u(rnx). Then urn is

p-harmonic and positive and 0 < urn (x) ≤ k |x |−β∗ ψ∗( x
|x | ); therefore∣∣∇urn (x)∣∣ ≤ C |x |−β∗−1 and

∣∣∇urn (x)− ∇urn (x ′)∣∣ ≤ C |x |−β∗−1−α
∣∣x − x ′

∣∣α
(5.3)

for 0 < |x | ≤ ∣∣x ′∣∣ and some constantsC > 0 andα ∈ (0, 1). Up to a subsequence, we can

assume thaturn converges to someU in theC1
loc topologyofR

N
+\{0} and xn

rn
→ ξ ∈ SN−1+ .

The functionU is p-harmonic and positive in R
N+ and satisfies 0 ≤ U ≤ k
∗ in R

N+ and
U (ξ) = k
∗(ξ) if ξ ∈ SN−1+ or UxN (ξ) = k
∗ xN (ξ) if ξ ∈ ∂SN−1+ . It follows from the
strong maximum principle or Hopf Lemma thatU = k
∗. Therefore urn → k
∗ and in
particular

lim
rn→0

rβ∗
n u(rn, σ )

ψ∗(σ )
= k uniformly on SN−1+ . (5.4)
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For any ε > 0, there exists nε ∈ N∗ such that for n ≥ nε , (k − ε)
∗(x) ≤ u(x) ≤
(k + ε)
∗(x) if |x | = rn . This implies (k − ε)
∗(x) ≤ u(x) ≤ (k + ε)
∗ for |x | ≥ rn
and therefore in R

N . Since ε is arbitrary, we deduce that u = k
∗.
(ii) if the two graphs are tangent at infinity, there exist two sequences {kn} increasing to k

and {xn} such that rn = |xn | → ∞ with u(xn) = kn
∗(xn) and

lim
rn→∞

rβ∗
n u(rn, σ )

ψ∗(σ )
= k uniformly on SN−1+ . (5.5)

Therefore we look at the supremum of the c > 0 such that u ≥ c
∗. If the set of such c is
empty, it would mean that

inf
x∈RN+

u(x)


∗(x)
= 0.

Clearly, if this infimum is achieved at some point, the strong maximum principle or Hopf
Lemma imply u ≡ 0, contradicting (5.5), and this relation prevents also this infimum be
achieved at infinity. We are left with the case where there exists a sequence {zn} ⊂ R

N+ ,
converging to 0, such that

lim
n→∞

u(zn)


∗(zn)
= 0. (5.6)

By boundary Harnack inequality [2, th 2.11], there exists c > 0 such that

c−1 u(z)


∗(z)
≤ u(zn)


∗(zn)
≤ c

u(z)


∗(z)
∀z ∈ R

N+ s.t. |z| = |zn | (5.7)

Combining (5.6) and (5.7), we derive that

lim
n→∞ sup

|z|=|zn |
u(z)


∗(z)
= 0, (5.8)

Denoting by εn the supremum in the above relation, we obtain that u ≤ εn
∗ in R
N+\Bεn

and finally u = 0, contradiction. Thus we are left with the case where there exists k′ ∈ (0, k]
which is the supremumof the c > 0 such that u ≥ c
∗. In particular u ≥ k′
∗. Remembering
that u ≤ k
∗ we get k = k′, which implies u = k
∗.

Next we assume that k′ < k. Clearly the graphs of u and k′
∗ cannot be tangent in R
N
+ ,

because of strong maximum principle or Hopf Lemma. They cannot be tangent at infinity
because of (5.5). Therefore there exist two sequences {k′n} increasing to k′ and {x ′n} ⊂ R

N+
converging to 0 such that u(x ′n)


∗(x ′n)
= k′n . As in case (i) we obtain that

lim
r ′n→0

r ′β∗n u(r ′n, σ )

ψ∗(σ )
= k′ uniformly on SN−1+ , (5.9)

where r ′n =
∣∣x ′n∣∣, and finally derive that u = k′
∗, a contradiction with (5.5). Therefore

k = k′, which ends the proof. ��
Remark In the case p = N the result holds under the weaker assumption lim|x |→∞ u(x) = 0.

This is due to the fact that this condition implies by regularity

lim|x |→∞
u(x)

ωsN−1+

(
x
|x |
) = 0
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and therefore

u(x) ≤ m
∗(x) ∀x s.t. |x | ≥ 1,

where m = max|x |=1 u(x)
ω
sN−1+

( x
|x | )

. Using the inversion x �→ x
|x |2 , we obtain that the estimate

u ≤ m
∗ holds RN , and we conclude by Theorem 5.1.

Remark We conjecture that the rigidity result holds under the mere condition

lim|x |→∞
|x |−β̃ u(x) = 0, (5.10)

were β̃ is the (positive) exponent corresponding to the regular spherical p-harmonic function
under the form


̃ = |x |β̃ ψ̃(
x

|x | ), (5.10)

see [12,14]. Note that β̃ = 1 when p = N .

Appendix B: Estimates on β∗

When N = 2 and 1 < p ≤ 2, it is proved in [9] that

β∗ = 3− p + 2
√
p2 − 5p + 7

3(p − 1)
. (6.1)

Up to now no estimate is knownwhen N > 2 except in the cases p = 2 where β∗ = N−1
and p = N where β∗ = 1, besides the classical one

β∗ >
N − p

p − 1
, (6.2)

valid when p < N . In this section we prove the following result

Theorem 6.1 Assume 1 < p < N. Then the following estimates hold:

1 < p < 2 �⇒ β∗ >
N − 1

p − 1
, (6.3)

2 < p < N �⇒ max

{
1,

N − p

p − 1

}
< β∗ <

N − 1

p − 1
. (6.4)

Remark It is worth noticing that when p = 2 or p = N , there holds β∗ = N−1
p−1 .

.

Proof of Theorem 6.1 We consider the following set of spherical coordinates in R
N+ with

x = (x1, . . . , xN )

x1 = r sin θN−1 sin θN−2 . . . sin θ2 sin θ1

x2 = r sin θN−1 sin θN−2 . . . sin θ2 cos θ1

...

xN−1 = r sin θN−1 cos θN−2
xN = r cos θN−1 (6.5)
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with θ1 ∈ [0, 2π] and θk ∈ [0, π ] for k = 2, . . . , N − 2 and θN−1 ∈ [0, π
2 ]. Under this

representation, a solution ω of (3.2) verifies

− 1

sinN−2 θN−1

⎡
⎣sinN−2 θN−1

(
β2∗ω2 + ω2

θN−1 +
1

sin2 θN−1
|∇θ ′ω|2

) p−2
2

ωθN−1

⎤
⎦

θN−1

− 1

sin2 θN−1
div′θ ′

⎡
⎣sinN−2 θN−1

(
β2∗ω2 + ω2

θN−1 +
1

sin2 θN−1
|∇θ ′ω|2

) p−2
2 ∇θ ′ω

⎤
⎦

= β∗	β∗

⎡
⎣sinN−2 θN−1

(
β2∗ω2 + ω2

θN−1 +
1

sin2 θN−1
|∇θ ′ω|2

) p−2
2

ω

⎤
⎦ (6.6)

where ∇θ ′ and div′
θ ′ denotes respectively the spherical gradient the divergence in variables

θ ′ = (θ1, . . . , θN−2) parameterizing SN−2 and 	β∗ is defined in Introduction. If ω is the
unique positive solution of (3.2) (up to homothety), it depends only on θN−1 and is C∞. For
simplicity we set θN−1 = θ ∈ [0, π

2 ] and ω = ω(θ) satisfies

− 1

sinN−2 θ

[
sinN−2 θ

(
β2∗ω2 + ω2

θ

) p−2
2 ωθ

]
θ

= β∗	β∗

[
sinN−2 θ

(
β2∗ω2 + ω2

θ

) p−2
2 ω

]

in
(
0,

π

2

)
ω
(π

2

)
= 0, ωθ (0) = 0. (6.7)

Step 1: the eigenvalue identity Equation (6.7) can also be written under the form

−ωθθ − (N − 2) cot θ ωθ − (p − 2)
β2∗ω + ωθθ

β2∗ω2 + ω2
θ

ω2
θ = β∗	β∗ω. (6.8)

By multiplying (6.8) by cos θ sinN−2 θ and then integrating over (0, π
2 ) we obtain

−
∫ π

2

0
(ωθθ + (N − 2) cot θ ωθ ) cos θ sinN−2 θdθ = (N − 1)

∫ π
2

0
ω cos θ sinN−2 θdθ.

Noticing that

β∗	β∗ + 1− N = (p − 1)

(
β∗ − N − 1

p − 1

)
(β∗ + 1)

we derive

(2− p)
∫ π

2

0

β2∗ω + ωθθ

β2∗ω2 + ω2
θ

ω2
θω cos θ sinN−2 θdθ

= (p − 1)

(
β∗ − N − 1

p − 1

)
(β∗ + 1)

∫ π
2

0
ω cos θ sinN−2 θdθ. (6.9)

Step 2: elliptic coordinates and reduction Writing ω(θ) = ω(0) + aθ2 + o(θ2), ωθ(θ) =
2aθ + o(θ) and ωθθ (θ) = 2a+ o(1), then−Na = β∗	β∗ . This implies that ω is decreasing
near 0. It is immediate that it cannot have a local minimum in (0, π

2 ), therefore it remains
decreasing in the whole interval. We parameterize the ellipse

Er = {(x, y) : x > 0, y < 0, x2 + β−2∗ y2 = r2}
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by setting

ω = r cosφ and − ωθ = β∗r sin φ with φ = φ(θ) and r = r(θ).

The functions r and φ are C2. Hence rθ cosφ − r sin φφθ = −β∗r sin φ, then rθ cosφ =
(φθ − β∗)r sin φ and rθ = (φθ − β∗)r tan φ. Plugging this into (6.8), we derive

−
(
(p − 1)

rθ
r
+ φθ cot φ + (N − 2) cot θ

)
+	β∗ cot φ = 0, (6.10)

and finally

(p − 1)(φθ − β∗) tan φ + (φθ −	β∗) cot φ = (2− N ) cot θ. (6.11)

Step 3: estimates on φθ We can write (6.11) under the equivalent form

(p − 1)(φθ − β∗) tan2 φ + φθ −	β∗ = (2− N )
cos θ

cosφ

sin φ

sin θ
. (6.12)

Since

lim
θ→0

sin φ

sin θ
= lim

θ→0

cosφ

cos θ
φθ = φθ (0),

we derive φθ (0)−	β∗ = (2− N )φθ (0) and thus φθ (0) = 	β∗
N−1 . Similarly, the expansion of

φ(θ) near θ = π
2 yields to φθ (

π
2 ) = β∗. Since p < N , 	β∗/(N − 1) < β∗. We claim now

that

φθ (θ) ≤ β∗ ∀θ ∈
(
0,

π

2

)
. (6.13)

If 	β∗ ≤ β∗, then

(2− N ) cot θ = (p − 1)(φθ − β∗) tan φ + (φθ −	β∗) cot φ

≥ ((p − 1) tan φ + cot φ)(φθ − β∗)

thus (6.13) holds.
Next we assume β∗ < 	β∗ . It means 0 < (p−2)β∗ − (N − p) and thus p > 2. We claim

that

β∗ ≤ N − 2

p − 2
. (6.14)

We proceed by contradiction and assume

β∗ >
N − 2

p − 2
. (6.15)

Then

(p − 2)

(
β2∗ −

N − p

p − 2
β∗ − N − 2

p − 2

)
= (p − 2) (β∗ + 1)

(
β∗ − N − 2

p − 2

)
> 0.

Equivalently

β∗(	β∗ − β∗) > N − 2.

Since

lim
θ→ π

2

cot θ tan φ = lim
θ→ π

2

cos θ

cosφ
= lim

θ→ π
2

sin θ

φθ sin φ
= 1

β∗
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and

(p − 1)(φθ (θ)− β∗) tan2 φ = 	β∗ − φθ (θ)+ (2− N )
cos θ

cosφ

sin φ

sin θ

= 1

β∗
(
β∗(	β∗ − β∗)+ 2− N

)+ o(1), (6.16)

thus, if (6.15) holds there exists ε > 0 such that φθ (θ) > β∗ for any θ ∈ [π2 − ε, π
2 ). Since

φθ (0) < β∗, there exists θ̄ ∈ (0, π
2 ) such that φθ (θ̄) = β∗ and φθθ (θ̄) ≥ 0. We compute φθθ

and get

(p − 1)φθ (φθ − β∗) sec2 φ + ((p − 1) tan φ + cot φ) φθθ − φθ (φθ −	β∗) csc
2 φ

= (N − 2) csc2 θ

Hence, at θ = θ̄

φθθ (θ̄ )
(
(p − 1) tan φ(θ̄)+ cot φ(θ̄)

) = β∗(β∗ −	β∗) csc
2 φ(θ)+ (N − 2) csc2 θ̄

From (6.11),

cot φ(θ̄) = N − 2

	β∗ − β∗
cot θ̄

Therefore

A(θ̄) := φθθ (θ̄)
(
(p − 1) tan φ(θ̄)+ cot φ(θ̄)

)
=
(
1+

(
N − 2

	β∗ − β∗

)2

cot2 θ̄

)
β∗(β∗ −	β∗)+ (N − 2)(1+ cot2 θ̄ )

= β∗(β∗ −	β∗)+ N − 2−
(

(N − 2)2

	β∗ − β∗
+ 2− N

)
cot2 θ̄

= −(p − 2)(β∗ + 1)

(
β∗ − N − 2

p − 2

)
− N − 2

	β∗ − β∗
(
β∗(N − 1)−	β∗

)
cot2 θ̄

< 0, (6.17)

using (6.15) and the fact that N > p. This is a contradiction, thus (6.14) holds.
Next, if β∗ < N−2

p−2 , it follows from (6.16) that there exists ε > 0 such that φθ < β∗
in [π2 − ε, π

2 ). If (6.13) is not true, there exist 0 < θ1 < θ2 < π
2 − ε such that φθ (θ1) =

φθ (θ2) = β∗, φθθ (θ1) ≥ 0, φθθ (θ2) ≤ 0. Using the equation satisfied by φθθ , we obtain for
i = 1, 2,

A(θi ) = (2− p)(β∗ + 1)

(
β∗ − N − 2

p − 2

)
− N − 2

	β∗ − β∗
(β∗(N − 1)−	β∗) cot

2 θi . (6.18)

On one hand A(θ2) ≤ 0 ≤ A(θ1), and on the other

A(θ2)− A(θ1) = N − 2

	β∗ − β∗
(β∗(N − 1)−	β∗)(cot

2 θ1 − cot2 θ2) > 0,

since cot is decreasing in (0, π
2 ), cot2 θ1 > cot2 θ2, a contradiction. Therefore φθ ≤ β∗ in

(0, π
2 ).
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Finally, if β∗ = N−2
p−2 and the maximum of φθ on [0, π

2 ) is larger than β∗ and achieved at

some θ̄ < π
2 the exists θ1 < θ̄ such that φθ (θ1) = β∗ and φθθ (θ1) ≥ 0. In that case

0 ≤ A(θ1) = − N − 2

	β∗ − β∗
(
β∗(N − 1)−	β∗

)
cot2 θ1 < 0

which is again a contradictions.
Step 4: end of the proof Since r2 = β2∗ω2 + ω2

θ , rθ = r(φθ − β∗) tan φ, we have

rrθ =
(
β2∗ω + ωθθ

)
ωθ = r(φθ − β∗) tan φ.

Since ωθ < 0 on (0, π
2 ), it follows from Step 3 that β2∗ω + ωθθ ≥ 0 and thus

∫ π
2

0

β2∗ω + ωθθ

β2∗ω2 + ω2
θ

ω2
θω cos θ sinN−2 θdθ > 0,

since the integrand cannot be identically 0. The conclusion follows from (6.9). ��
Remark ωθ(

π
2 ) = −c2 < 0, it follows ω(θ) = −ωθ(θ) cot θ + O( π

2 − θ) as θ → π
2 , and

from the eigenfunction Eq. (6.8)

β2∗ω + ωθθ

β2∗ω2 + ω2
θ

ω2
θ = (β2∗ω + ωθθ )(1+ o(1)).

Therefore

−(p − 1)ωθθ = (β∗	β∗ + (p − 2)β2∗ + 2− N )ω(1+ o(1)) as θ → π

2

and since �′ω := ωθθ + (N − 2) cot θ ωθ

−�′ω = β∗(β∗(2p − 3)+ p − N )+ (p − 2)(N − 2)

p − 1
ω(1+ o(1)) as θ → π

2
.

Because ω is C∞ we obtain finally ∣∣�′ω∣∣ ≤ cω, (6.19)

for some c > 0.
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