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Abstract We study the boundary behaviour of the solutions of (E) —A ,u + |Vu|? =0ina
domain @ C RV, when N > p > g > p — 1. We show the existence of a critical exponent
g« < psuch thatif p — 1 < g < g, there exist positive solutions of (E) with an isolated
singularity on 92 and that these solutions belong to two different classes of singular solutions.
If g« < g < p no such solution exists and actually any boundary isolated singularity of a
positive solution of (E) is removable. We prove that all the singular positive solutions are
classified according the two types of singular solutions that we have constructed.
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1 Introduction

Let N > p>1,g>p—1and Q c RY (N > 1) be a C? bounded domain such
that 0 € 9€2. In this article we study the boundary behavior at 0 of nonnegative functions
u € C1(Q) N C(R\{0}) which satisfy

—Apu+|Vul? =0 inQ, (1.1)

where A u = div(|Vu|?~2Vu).where Apu = div(|Vu|?~2Vu). The two main questions
we consider are as follows:

Q-1 Existence of positive solutions of (1.1).

Q-2 Description of positive solutions with an isolated boundary singularity at 0.

When p = 2 a fairly complete description of positive solutions of
—Au+|Vul? =0 (1.2)

in © is provided by Nguyen-Phuoc and Véron [11]. In particular they prove the following
series of results in the range of values 1 < ¢ < 2.

1. Any signed solution of (1.3) verifies the estimates

1

[Vux)| < eyg(d(x)) 4T Vx € Q, (1.3)

where d(x) = dist (x, 3S2). As a consequence, if u € C(Q\{0}) is a solution which
vanishes on 92\ {0}, it satisfies

1
1

[u(x)] < cqg.d(x)|x] T Vx € Q. (1.4)

2. If % < g < 2 any positive solution of (1.3) in € which vanishes on 92\{0} is
identically 0. An isolated boundary point is a removable singularity for (1.2).

3.Ifl<gqg< % and k > O there exists a unique positive solution u := uy of (1.2) in 2
which vanishes on d2\{0} and satisfies u(x) ~ cenk PR (x,0) as x — 0, where P% is
the Poisson kernel in € x 0€2.

4. If1 < g < NT“ there exists a unique positive solution u of (1.2) in the half-space
RZX = {x = (', xy): x’ € RN~ xy > 0} under the form u(x) = |x|7%a)(|x|_1x)
which vanishes on B]Rﬁ \{0}. The function w is the unique positive solution of

q
2-4\? 7 . B
—A'a)—i—((ql) a)2+|V’a)|2) —Angw =0 mSil I

w=0 inas¥ ! (1.5)

where SV~ is the unit sphere of RV, 85571 = BR_/X N SN~ A’ the Laplace-Beltrami
operator and Ay 4 > 0 an explicit constant.
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5.Ifl<qg < N&H and u is a positive solution of (1.3) in €, which is continuous in £\ {0}
and vanishes on 9$2\ {0} the following dichotomy occurs:

2,
(i) either u(x) ~ |x|" 7T (|x|"'x) as x — 0,
(i) or u(x) ~ key P2 (x,0) as x — 0 for some k > 0.

The aim of this article is to extend to the quasilinear case 1 < p < N the above mentioned
results. The following pointwise gradient estimate valid for any signed solution u of (1.1)
has been proved in [3]: if 0 < p — 1 < g there exists a constant ¢y, 4 > 0 such that

[Vu(x)| < cN_p’q(d(x))_m Vx € Q. (1.6)

As a consequence, any solution u € C'(Q\{0} satisfies

1
[u(xX)| < cpg.0d(x) x| 7= Vx € Q. (1.7)

Concerning boundary singularities, the situation is much more complicated than in the
case p = 2 and the threshold of critical exponent less explicit. We first consider the problem
in Rﬁ. Assuming p — 1 < g < p, separable solutions of (1.1) in Rﬁ vanishing on 8]&1\:\{0}
can be looked for in spherical coordinates (r, o) € R} x SN=1 (we denote R*. = (0, 00))
under the form

u@) =u(r,0) =r o), r>0 oesV .=V nRrY). (1.8)
Then w is solution of the following problem

p—2
2

=2
—div/((ﬂjwz n |V’w|2) 2 V/a)) — ByAp, (,85602 + |v’w|2) ®

q
+ (ﬂjwz + IV’wlz) =0 in 5171
w=0 ondSy!, (1.9)
where

P—4q
By =—"—""

Si+i-p and Ag =pBy(p—D+p—N, (1.10)

and V' is the covariant derivative on SV ~! identified to the tangential gradient thanks to the
canonical isometrical imbedding of S¥ ! into R, and div’ the divergence operator acting
on vector fields on SV~

The existence of a positive solution to this problem cannot be separated from the problem
of existence of separable p-harmonic functions which are p-harmonic in Rﬁ which vanish
on BRﬁ\{O} and have the form VY (x) = ¥ (r,0) = r‘ﬁiﬁ(a) for some real number B.
Necessarily such a ¥ must satisfy

p—2
2

—div' ((521//2 + V¥ %) vﬁp) — BAg (B*y* + |V/1//|2)% ¢ =0 insy!

v =0 ondsy !, (1.11)

where Ag = B(p—1)+p—N.Wewillreferto (1.11) as the spherical p-harmonic eigenvalue
problem. The study of this problem has been initiated in the 2-dim case by Krol [8] (8 < 0)
and Kichenassamy and Véron [9] (8 > 0). In this case w satisfies a completely integrable
second order differential equation. In the case where S f “Lis replaced by a smooth domain
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3474 M.-F. Bidaut-Véron et al.

S c SNl with N > 3, Tolksdorf [14] proved the existence of a unique couple (ﬁs, 1/73)
where 8, < 0 and v, has constant sign and is defined up to an homothety. Recently Porretta
and Véron [12] gave a simpler and more general proof of the existence of two couples (,B s, %)
and (B, ¥«s) Where By > 0 and Ws and ¥,  are positive solutions of (1.11) with 8 = ,BS
and B = P respectively and are unique up to a multiplication by a real number. When p = 2
this problem is an eigenvalue problem for the Laplace—Beltrami operator on a subdomain
of SN-1If § = Siv -1 ,55 and B, are respectively denoted by B and B, and accordingly
1/}3 and ¥, by ¥ and . Since x > xy is p-harmonic, ,3 = —1. Except in the cases
N = 2 where it is the positive root of some algebraic equation of degree 2, p = 2 where it
isSN—land p =N where it is 1, the value of B, is unknown besides the straightforward
estimate S, > max{l, p } Using the fact that v, depends only on the azimuthal variable

and satisfies a differential equatlon we prove in Appendix B the following new estimate:

Theorem A Let1 < p < N.

(1) If2 < p <N, then B, < N wzth equality only if p =2 or N.
(i) If1 < p <2, then B, > T,ll

The p-harmonic function W, (x) = W, (r,0) = r~ Py, (c) endows the role of a Poisson
kernel. To this exponent By is associated the critical value q. of q defined by Bx = By, or
equivalently

B«(p—D+p P

% = =p— . 1.12
1 Bs+1 P Bs+1 (1-12)

The following result characterizes strong singularities.
Theorem B Let 0 < p — 1 < N, then

(1) If p — 1 < q < g« problem (1.9) admits a unique positive solution w,.
(i) If g« < q < p problem (1.9) admits no positive solution.

This critical exponent corresponds to the threshold of criticality for boundary isolated
singularities.

Theorem C Assume g, < q < p < N. Ifu € C'(Q\{0}) is a nonnegative solution of (1.1)
in Q2 which vanishes on dQ\{0}, it is identical zero.

As in the case p = 2, there exist positive solutions (1.1) in 2 with weak boundary
singularities which are characterized by their blow-up near the singularity. By opposition to
the case p = 2 where existence is obtained by use of a weak formulation of the boundary value
problem, combined with uniform integrability of the absorption term thanks to Poisson kernel
estimates (see [11]), this approach cannot be performed in the case p # 2; the obtention
of solutions with weak singularities necessitates a very long and delicate construction of
subsolutions and supersolutions. Furthermore, when p # N, the construction is done only
if  is locally an hyperplane near 0.

In the sequel we denote by Bg(a) the open ball of center a and radius R > 0 and
Bp = BR(O) We also set B} (a) := RY N Bg(a), B :=RY N Bg, Bg (a) := RY N Bg(a)
and By := RY N Bg, where RY := {x =, xy): x' € RN I xy < 0}. If  is an open
domain and R > 0, we put Qg = QN Bg.
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Theorem D Let Q2 C RQ\_’ be a bounded domain such that 0 € 9<2. Assume there exists § > 0
such that Qs = B(;r and0 < p—1 < q < g« < p < N. Then for any k > 0 there exists a
unique u = uy, € C'(Q\{0}), solution of (1.1) in Q, vanishing on dQ2\{0} and such that

lim x| ur (x) = ki (o). (1.13)
Hooesi!

Furthermore limy_, o0 Uy = Uso and

lim  [xPuse(x) = ¥ (0). (1.14)
x—=0
ﬁ—m’ESivfl
When p = N, then g, = N — %; in such a range of values we use the conformal

invariance of A y and prove that the previous result holds if £ is any C? domain. Finally, the
isolated singularities of positive solutions of (1.1) are completely described by the two types
of singular solutions obtained in the previous theorem and we prove:

Theorem E Let Q2 be a bounded domain such that 0 € 0K2. Assume there exists § > 0 such
that Qs = B;' and0 < p—1<q <qe < p < N.Ifu € C'(Q\{0}) is a positive solution
of (1.1) in Q which vanishes on 0Q\{0}, then

(i) either there exists k > 0 such that

Tim x| ) =k (@); (1.15)
f—oesy™!
>ii) or
Tim - [x|Pu) = (o). (1.16)
f—ooesy™!

2 A priori estimates
2.1 The gradient estimates and its applications

We recall the following estimate and its consequences which are proved in [3].
Proposition 2.1 Assume g > p — 1 and u is a C' solution of (1.1) in a domain Q. Then
IVu@)| < en.pg(d(x) 77 Vx € Q. @.1)
The first application is a pointwise upper bound for solutions with isolated singularities.

Corollary 2.2 Assume g > p — 1 > 0, R* > 0 and Q is a domain containing 0 such that
d(0) > 2R*. Then for any x € Br+\{0}, and 0 < R < R*, any u € C'(Q\{0}) solution of
(1.1) in (2\{0}) satisfies

u@)| < eNopg |[X1TTF — RITT | + max{u(2)] : 2] = R}, 2.2)

if p#q,and
lu(x)] < cn,p (In R —1In|x]) + max{|u(z)| : |z] = R}, (2.3)
ifp=gq.
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3476 M.-F. Bidaut-Véron et al.

The second application corresponds to solutions with boundary blow-up. For § > 0 small
enough we set Q5 :={z € Q: d(z) < §}.

Corollary 2.3 Assume g > p — 1 > 0, Q is a bounded domain with a C* boundary. Then
there exists 8 > 0 which depends only on 2 such that any u € C'(2) solution of (1.1) in
satisfies

q—p

()| < enpg [@O)TTF — 877 | 4 max{|u(z)| : d(z) = 81} Vx € Qs (2.4)
if p #q, and
lu(x)| < en,p,q Ind) —Ind(x)) + max{lu(z)| : d(z) =81} Vx € Qs (2.5)
fp=gq.
Remark As a consequence of (2.4) there holds for p > g > p — 1
u(x) < (cn,p.q + K max{u(z)| : d(z) = 81}) (d(x))% Vx € Q (2.6)
where K = (diam(Q))qi%, with the standard modification if p = ¢.

As a variant of Corollary 2.3 the following upper estimate of solutions in an exterior
domain will be used in the sequel.

Corollary 2.4 Assumeq > p—1>0, R > 0andu € Cl(Bfeo) is any solution of (1.1) in
B%O. Then for any R > Rq there holds

U@)| < cn.pg (X — RO)TT7 — (R — Ro)7 7 | + max{|u(z)| : |z| = R} Vx € B,
Q.7)

ifp #qand

lu(x)| < en,p.g An(lx| — Ro) — In(R — Rp)) + max{|u(z)| : |z| = R} Vx € By (2.8)
ifp=gq.

Proof The proof is a consequence of the identity

1 1
u(x) = u(z) +/ %u(tx + (1 —1t)z)dt = / (Vu(tx + (1 —t)z), x — z)dt
0 0

where z = %x. Since by (2.1)
1
[Vu(tx + (1 = )2)| < Cn p gt x|+ (1 = 1)R — Ro) +1-7,
Equations (2.7) and (2.8) follow by integration. ]

2.2 Boundary a priori estimates

The next result is the extension to isolated boundary singularities of a previous regularity
estimate dealing with singularity in a domain proved in [3, Lemma 3.10].
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Lemma 2.5 Assume p —1 < q < p, Q is a bounded C? domain such that 0 € 9. Let
u € CH(Q\{0}) be a solution of (1.1) in Q2 which vanishes on 3Q\{0} and satisfies

lu@) < ¢(x]) Vx € €2, 2.9
where ¢: R% +— Ry is continuous, nonincreasing and satisfies

$(rs) < y¢(p(s) and riTIG(r) <c, (2.10)

for some y,c > 0 and any r,s > 0. There exist @ € (0, 1) and c1 = c1(p, q, 2) > 0 such
that

@) [Vu@)l < crp(lxh) e~ Vx € Q, 2.1
(i) [Vu(x) = Vu(y)| < cip(x) x|~ [x = y|*  Vx,y € Q, x| < |yl.
Furthermore
d
ux) < cmb(lxl)% Vx € Q. (2.12)
X
Proof For £ > 0, we set Q=10 10 ¢ (0, 1] the curvature of 92¢ remains uniformly

bounded. As in [5, p 622], there exists 0 < §o < 1 and an involutive diffeomorphism v from
E(;O N QSO into Eso N (£2%)¢ which is the identity on Ego N 9Q% and such that Dy (§) is
the symmetry with respect to the tangent plane T¢ 92 for any & € 92 N Bs,. We extend any

filnction v defined in E(;O N 550 and vanishing on E@O N 9% into a function ¥ defined in
B 8o by

(x) = [ " e (2.13)

—voy(x) ifx e Bs N(QRY),

If v € C!(Bs, N Q") is a solution of (1.1) in Bs, N 2% which vanishes on 3% N By,, 7
satisfies

0 ~
—Za—Aj(x,Vﬁ)—i-B(x,Vﬁ):O in Bs,. (2.14)
— 0x;
J

Asin [5, (2.37)] the A; and B satisfy the following estimates
(i) Aj(x,00=0
. J - _
iy > g i i = Colnl? LiEP

ij oo (2.15)

0 -~
GOEDS —Aj(x,m‘ < CalnP72,
ij nj
and
|BGx, )| < C3(1 + In))?, (2.16)

where the C; are positive constants. These estimates are the ones needed to apply Tolksdorf’s
result [15, Th1, 2]. There exists a constant C, such that for any ball B3z C Bj,, there holds

VOl ooy < Cs (2.17)
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3478 M.-F. Bidaut-Véron et al.

where C depends on the constants Cy (k = 1,2, 3), N, p and [ 0] foo(p,,)- We define

D[ul(y) == ug = mu(éy) vy e Q" (2.18)
Then
dlyD ¢
lue(¥)] < ) <yo(yl) VyeQ (2.19)
and
— Apug 4 (P07 7P |Vuglf =0 in Q°. (2.20)

Using formula (2.13) we extend u, into a function i1y which satisfies

- iA» Vii 2Pagp ()1 =PB(y, Vii)) =0 in B 221
0y, iy, Vi) + (LR ¢ (L)) (y, Vitg) in By,. (2.21)
: J
J

For 0 < |x| < §p there exists £ € (0, 2) such that % < |x| < 8pf. Then y +— iy (y)
with y = 5 satisfies (2.21) in Bs, and |ig(y)| < y«¢(]y|) since ¥ is a diffeomorphism
and Diﬂ(i—‘) € O(N) for any £ € 022 N Bs,. The function i, remains bounded on any ball
Bir(z) C T :={y e RV : ‘S—" < |y| < 8o}, therefore |Viig(y)| < ¢ forany y € Br(z), for

some constant ¢ > 0. This 1mp11es
[Vu(x)| < cyxdod ( )¢(IXI)|XI ' ¥x eQn By, (2.22)

which is (2.11)-(i). Moreover, by standard regularity estimates [10], there exists « € (0, 1)
such that |Vﬁg(y) - Vﬁg(y/)| <c |y - y/|°t forall y and y’ belonging to Bg(z). This implies
(2.11)-(ii).

Next we prove (2.12). Let 0 < §; < o such that at any boundary point z there exist
two closed balls of radius §; tangent to 92 at z and which are included in U {z} and in
Q°U{z) respectively (8; corresponds to the maximal radius of the interior and exterior sphere
condition). Let x € 2 such that d(x) < §; (this is not a loss of generality) and z, be the
projection of x on d€2. We first assume that x does not belong to the cone Z% with vertex 0,
axis —ngp, where ng is the normal outward unit vector at 0, and angle %. Consider the path ¢
from z, to x defined by ¢(¢) = tx + (1 — t)z, with 0 < < 1. Then

1 1
ulx) = / iu o (t)dt :/ (Vuot¢(t), x — zy)dt (2.23)
o0 dt 0
Thus, by the Cauchy—Schwarz inequality, using (2.11),
¢SO
d ———dt. 2.24
lu()| < c1 ()/ ) t (2.24)

Since x ¢ E%, ¢(t) ¢ L= and there exists ¢c; > 0 depending on 2 such that c{l x| <
[(@)] < cz|x[forall0 <7 < 1. Therefore ¢ (IS (#)]) < d(c2 Ix]) < yP(c2)¢(Ix]) by (2.10).
This implies
d(x)¢(x])
lu(x)| < V0102¢(02)+ (2.25)

by (2.12) whenever x ¢ E%. When x € E% then d(x) < |x| < c3d(x) where c3 > 0
depends on the curvature of d€2. Then (2.9) combined with (2.10) implies the claim. m}
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Lemma 2.6 Assume p —1 < g < D Q is a bounded C?* domain such that 0 € 32 and
Ry = max{|z] : z € Q). Ifu € C(Q\{0}) N CY(Q) is a positive solution of (1.1) which
vanishes on dQ\{0}, it satisfies

(1777 - R57)
c | |x|atl-r — yq <p
u(x) < 0 (2.26)
(p—Din (&) ifg=p
forall x € Q, where ¢y = c2(p, q) > 0.
Proof For € > 0 we denote by P : R — R, the function defined by
0 ifO0<r<e
P.(r) = _%+1L23_6€L2+5r—37€ ife <r <2e (2.27)
r— 376 if r > 2e,

and by u. the extension of P.(u) by zero outside 2. There exists Ry such that @ C Bg,.
Since 0 < P.(r) < |r| and P is convex, uc € C(RN\{0}) N W17 (RN \{0}) and

oc
—Aptte +|Vuel? <0 inRN.

LetR>Rop.Ifp—1<g<p

Uer(x) = 2 (] = 977 — (R = )77 ) in Bp\Be, (2.28)

withcy = (p — q)*l(q +p— 1)14?551’ .Then —A,Uc g + |VUE,R|q > 0. Since u, vanishes
on dBp and is finite on 9 B, it follows u, < U, g. Letting successively € — 0 and R — Ry
yields to (2.26). If ¢ = p we take

Uer(Ix]) = (p—DIn (@7_1) in Bg\Be, (2.29)

which turns out to be a supersolution of (1.1); the end of the proof is similar.
As a consequence of Lemmas 2.5 and 2.6, we obtain. O

Corollary 2.7 Let p,q Q2 and u be as in Lemma 2.6. Then there exists a constant ¢z =
c3(p, q, ) > 0 such that

[Vu(x)| < c3 |x|_'l+‘l*1’ Vx € Q (2.30)
and
u(x) < czd(x) |x|_4+i*ﬂ Vx e Q\{0}. 2.31)

Remark 1f Q2 is locally flat near 0, then estimates (2.30) and (2.31) are valid without any sign
assumption on u. More precisely, if 92 N Bs, = Tpd2 N Bs, we can perform the reflection
of u through the tangent plane 702 to 9<2 at 0 and the new function # is a solution of (1.1)
in Bs,\{0}. By Proposition 2.1, it satisfies

1
IVi(x)| < en.pq IxI7 7177 ¥x € By \{O}. (2.32)
2
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Integrating this relation as in [3], we derive that for any x € Bs, N €2, there holds
2

-8 )
eN.pd (|x|—ﬁq -(%) ) +max(ju()| : 2l = %) ifp£g

lu(x)| < 5 )
ewpIn (3) +max(lu(@)] : 2] = %) if p=gq.

(2.33)

In the next result we allow the boundary singular set to be a compact set.

Proposition 2.8 Let p — 1 < g < p and 8 as above. There exist r* € (0,81] and ¢4 =
c4(N, p, q) > 0such that for any nonempty compact set K C 9S2, K # 92 and any positive
solution u € C(Q\K) N CY() of (1.1) which vanishes on 3Q\K, there holds

w(x) < cad(¥)(di (X)) T Vx € 0Q 5.t d(x) < r*, (2.34)
where dg (x) = dist (x, K).

Proof Step 1: tangential estimates Let x € 2 such that d(x) < §;. We denote by o (x) the

projection of x onto d€2, unique since d(x) < §;. Letr, r’, T > 0 such that %r <r < %r

and 0 < 7 < %, and put w; x = 0(x) + Thy(y). Since IL2 is C?2, there exists 0 < r* < §;
depending on €2 such that dg (w7, x) > %r whenever d(x) < r*.Leta > 0and b > 0 to be
specified later on; we define 9(s) = a(r’ — s)'rqgf!’ —bandv(y) = 6(‘y — Wrx |) in [0, )
and B, (w- x) respectively. Then
_ _ N -1 - p-1 __4q
’ﬁ/‘P 2(’5/‘(1—&-2 P _(p— 1) — 17/):ap—1 ( pP—q ) ' — ) T X (s)
s q+1—-p
where

X(S):(a P—q )"“f’_ p—1  (N=D(' =)
g+1—p g+1—p s '

For any T € (0, r’) there exists a > 0 such that

(a P—q )‘f“‘g p—1_  (N-DC' =9
g+1—-p Tgqgt+l-p s

Ve <s <r.
This implies
- Apv +|Vu[? >0 in B, (w7 x)\ Bt (wr,x)- (2.35)

q—pr —_—
Next we take b = a(r’ — 7)4+1-7, thus v = 0 on 3 B; (w ). Clearly B;(w; ) C Q° since
7 < §1. Therefore v > 0 = u on Q2N By (wr,x) andu < v = oo on 2N 3B, (wr, ). By the
comparison principle, v > u in 2 N B,/ (w; x). In particular

q—pr q—pr
u(x) <v) <a@' —t—dx)#7r —a(@’ — 1),
We take now 7 = ’7/ andd(x) < % and we derive by the mean value theorem
1 1
u(x) < chr’ " d(x) = cyd (x) (di (x)) T, (2.36)

with ¢} = ¢j(p. q) > O Letting v’ — Zr, we get (2.12).
Step 2: global estimates If d(x) > %d k (x), there holds

1 2 =
d(x)(dy (x)) T > 27 ()i
Combining this inequality with (2.6) and obtain (2.34). O
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Remark Under the assumption of Proposition 2.8, it follows from the maximum principle
that u is upper bounded in the set er* = {x € Q:d(x) > r*} = Q\Q;+ by the solution
w of

—Apw+ |[Vw|? =0 in Q-
1
w = c4d (x)(dg (x))” 4F1-7  in 0+, (2.37)
1
and w itself is bounded by d* = max{cd (x)(dg (x)) ¥1-r : d(x) = r*}.
Next we prove a boundary Harnack inequality. We recall that §; has been introduced at

Corollary 2.3, and that the interior and exterior sphere conditions hold in the set {x € RV :
d(x) < d1}.

Theorem 2.9 Let g > p — 1 and 0 € 092. Then there exists cs = c5(N, p, g, 2) > 0 such

that for any positive solutionu € C(QU ((92\{0}) N Bys,) N clQ) of (1.1) in Q, vanishing
on dQ\{0}) N Bas,, there holds

u(y) - u(x) e u(y)

csd(y) — d(x) d(y)

forallx,y € B@ N Q such that % x| < |y] <2]x].

(2.38)

For proving Theorem 2.9 we need some intermediate lemmas. First we recall the following
result from [1].

Lemma 2.10 Assume that a € 02, 0 < r < &1 and h > 1 is an integer. There exists an
integer No, depending only on 81, such that for any points x and y in Q2 N B37r (a) verifying

min{d(x),d(y)} > r/2h, there exists a connected chain of balls By, ..., Bj with j < Noh
such that

X€B,yeBj, BNBiy1 #0 forl <i<j—1
and 2B; C B2, (Q)NQ forl <i < j. (2.39)
The next result is a standard Harnack inequality.
Lemma 2.11 Assume a € (02\ {0}) N B2s; and 0 < r < |a| /4. Letu € C(Q U (02 \
3

{0})) N By, ) N CY(Q) be a positive solution of (1.1) vanishing on (92 \ {0}) N Bos,. Then
there exists a positive constant c¢ > 1 depending on N, p, q and §1 such that

u(x) < cgu(y), (2.40)
foreveryx,y € B% (a) N Q such that min{d (x), d(y)} > r/2" for some h € N.

Proof For £ > 0, we define Ty[u] by

To[u](x) = L7905 u(ex), (2.41)
and we notice that if u satisfies (1.1) in €2, then T [u] satisfies the same equation in Qt .=
£71Q. If we take in particular £ = |a|, we can assume |a| = 1, thus the curvature of the
domain /%! remains bounded. By Proposition 2.8

u(x) <cg Vx € Byr(@) N Q (2.42)

where c’6 depends on N, g, 8;. Then we proceed as in [11], using Lemma 2.10 and internal
Harnack inequality as quoted in [16, Corollary 10]. O
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Since the solutions are Holder continuous, the following statement holds as in [16,
Theorem 4.2]:

Lemma 2.12 Let the assumptions on a and u of Lemma 2.11 be fulfilled. If b € 02 N B, (a)
and 0 < s < 27y, there exist two positive constants § and c7 depending on N, p, q and Q
such that

5
lx — bl

ux) <cy max{u(z) : z € B,(b) N Q} (2.43)

for every x € Bs(b) N Q.
As a consequence we derive the following Carleson type estimate.

Lemma 2.13 Assume a € (022\ {0}) N Bas; and 0 < r < |a| /8. Letu € C(QU ((022\
3

{0}) N Bys,)) N C3(Q) be a positive solution of (1.1) vanishing on (02 \ {0}) N Bys,. Then

there exists a constant cg depending only on N, p and q such that

u(x) < egu (a - %n) Vx € By(a) N Q. (2.44)

Proof By Lemma 2.11 it is clear that for any integer 47 and x € B,(a) N Q such that
d(x) = 27"r, there holds

ux) < c’gu (a — %na) . (2.45)

Therefore u satisfies inequality (2.43) as any Holder continuous function does. The proof
that the constant is independent of r and u is more delicate. It is done in [1, Lemma 2.4] for
linear equations, but it is based only on Lemma 2.12 and a geometric construction, thus it is
also valid in our case. O

Lemma 2.14 Assume a € (02 \ {0}) N B2s; and 0 < r < |a| /8. Letu € C(2 U ((0R2\
3

{0}) N Bas,)) N CX(Q) be a positive solution of (1.1) vanishing on (02 \ {0}) N Bys,. Then
there exist € (0, 1/2) and c9 > 0 depending on N, p and q such that
if - u(b —tn,) _ t

- 2.46
cor ~ u(a—5n,) _Cgr ( )

foranyb € B (a)NdQand0 <t < 3r.
Proof 1t is similar to the one of [11, Lemma 3.15]. O

Proof of Theorem 2.9 Assume x € B2s; N Q and setr = %‘.
3

Step 1: tangential estimate: we suppose d(x) < Fr.Leta € 92\ {0} such that |a| = |x|

and x € B,(a). By Lemma 2.14,

_r _r
8 u(a—3n,) _u) 869”(” Zna).

2.47
o Wl Cdm S ] @47

We can connect a — 5n, with —2rn, by m (depending only on N) connected balls B; =
B% (x;) with x; € Q and d(x;) > % for every 1 <i < m. It follows from (2.44) that

mi

Cé_mlu(—zrno) <u (a — %n‘l) <<¢g u(=2rn,),
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which, together with (2.47) leads to

1 u(— 2rn0) u(x) . u(—2rn,)
o W dm ST

, (2.48)

with ¢19 = 8cocy .

Step 2: internal estimate: we suppose d(x) > Fr. We can connect —2rn, with x by
(depending only on N) connected balls B] = By (x}) with x{ € Q and d(x]) > Fr for
every 1 < i < mj. By Harnack and Carleson inequalities (2.40) and (2.44) and since
T lxl <dx) < x|, we get

/

(Zn u(—2rn,) - u(x) - o' u(—2rn,) (2.49)

deg? Ixl d(x) o |x|
Step 3: end of proof Suppose 5 bl <5 < 21x|, we can connect —2rn,, with —sn, by m3
(depending only on N) connected balls B/ = B: (x’ "y withx/ € Qand d(x]') > r for every
1 <i < m3. This fact, jointly with (2. 48) and (2 49), yields to

1 u(—sn,) u(x) u(—sn,)

—_ c 2.50
e ko de) - T (230

where c;1 = c11(N, g, 2). Finally, if y € B@ N Q satisfies % < |y| < 2|x|, then by
applying twice (2.50) we get (2.38) with c¢5 = c%l. O
The following inequality is a consequence of Theorem 2.9.

Corollary 2.15 Assume g > p — 1 and 0 € d2. Then there exists c12 > 0 depending on p,
q and 2 such that for any positive solutions uy, up € C(2U ((92\{0}) N Bas;)) N cl)
of (1.1) in &, vanishing on (d2\{0}) N Bas,, there holds

sup‘ 1) ui(y) y
uz(y) uz(y)

.y € B\B: ] <cn inf[ € Br\B%] . (2.51)

3 Boundary singularities
3.1 Strongly singular solutions

In this section we consider the Eq. (1.1) in ]R_,A_’. We denote by (r,0) € Ry X SN=1 the
spherical coordinates in R and

SN ! [(s1n¢o cosp): o "e SN2 ,¢ € [0, —)]

If v(x) = r Pw (o) satisfies (1.1) in R+ and vanishes on GR_’X\{O}, then 8 = B, and wis a
solution of

EAZ p—=2
—div’((ﬂza) £V a)|) 2 )—ﬁqAﬂq (ﬁ§w2+|v/w|2) 7 @

q
2

+ (ﬁ§w2+|v/w|2) =0 ingV! 3.1)

w=0 onasy™!
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where B; and Ap, have been defined in (1.10). We denote by (B, ¥s) € R x C2(S+ )
the unique couple such max v, = 1 with the property that the function (r, &) > r Py, (0)
is positive, p-harmonic in R{X and vanishes on 8Rﬁ \{0}. Then ¥, = i satisfies

pP—
2

—div’((ﬁ$w2+|vw )"Tw) Bilg, (B2 +IV'y?) T ¢y =0 ins) !

¢ =0 ondsy L. (3.2)

Since the function 1, is unique it depends only on the azimuthal variable 6 _1 = cos - H Ny
(see Appendix B). Our first result is the following

Theorem 3.1 Ifg > g, or equivalently B; < B, there exists no positive solution to problem

@3.0).

Proof Suppose such a solution w exists and put & = B,/B4, then0 < 0 < 1. Setn = ¥,
where ¥ is a positive solution of (3.2), and define the operator 7 by

2

T(n)=—div’((ﬂ§n2+lv/n|2)p22 ) Butg, (8202 +1V0F)

+ (B +19nR) (3.3)

Since Vi = 09?1V,

p=2 P

(B2n2 +19/n2) T = or 2y 000D (8292 4 |9y ) T

[S]

N

p=2 p—

(B2 +19/nP) = Vi =00ty D0 (8242 1 VY 2) T vy,

therefore
T(n) = -7~ Ly @=DP=Dgiy/ ((,B*W + V'Y )pT /w)

— 0710 — D)(p — Dy DD (g2y2 +|V ") 7 IV'y?
— BgAp, 0P 2y @Dl (BRy 24V )T Sy @D B2+ V'Yt

But ﬂqAﬁqOP_z = ,B*A,quP_l < ﬂ*Alg*Gl’_l since B; < Ps. Using (3.2), we see that
7T (n) > 0. Because Hopf Lemma is valid, there holds d, < O on 851_1. Since w is C!

inS ﬁrv ~!and v is defined up to an homothety, there exists a smallest function 1 such that

n > w, and the graphs of 1 and w over Sf ~!are tangent, either at some @ € S iv ~1or only
atapointo € 8Sffl. We put w = n — w. Then

T =Tm) —T(w) =) —2(0), (3.4)

where ®(t) = 7 (w;) with w; = w + tw.
We use local coordinates (oq,...,0y_1) on near . We denote by g = (g;;) the
metric tensor on S¥ ~! and by g/ its contravariant components. Then, forany ¢ € C!(SV~1),

dg d¢
IVol? Z ]k(‘)(rj G0y = (Vo VOl

SN—I
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If X = (Xl,...,Xd) e CHT SNy is a vector field, we lower indices by setting
Xt = > g% X; and define the divergence of X by

. 1 a 1 9 .
divyX = ﬁ;@ (\/I?IXZ) = ﬁ;@ ( Iglgizxi).

We write ® (1) = ®1(t) + Po(r) + P3(¢) where

p—=2
2

[

10 =~y A, (B2} +1Vr ) 7 o, @2() = (B0} + V')

and
p—2
®3(1) = —div/((ﬂgwar IV/w[|2) 2 V/wt).
Then

ow Jw
<I>1(1)—<I>1(0)=—ZajT—bw and Cbz(l)—CD2(0)=zch+dw,
TR i 0%

where
2 2 2 g_z 2.2 2
b= g, (ol +Varl?)” (= DB} + IVer?).
52 )
aj = (p =Dy, (B + IVorl?) "o 365,
k
41
d =qB; (B + |Vor *)? " .,
and
i-1 )
2
cj =Q(:3q2w12+|va)t|2) Zg',k?:.
X k
Furthermore

p—4

3(1) = @3(0) = ~(p — 2)div ((ﬂswf +IVar2) * (Blow + (Ver, Vi), vw,)

-2

P
_div’((ﬁjw3+|v’w,|2) 2 V’w).

Therefore we can write ®(1) — ®(0) under the form

@ (1) — @(0) = —div'(AV'w) + (B, V'w), + Cw := Lw (3.5)

where

L74
(AX, X)g = (B20? + Vo) * (p = D(Vor, X2+ IVer PIXP)

p—4

2

> (ﬂgwf n |V’w,|2) min{1, p — 1}V, 21X 2. (3.6)

and B and C can be computed from the previous expressions. It is important to notice that

ﬂgwtz + |V |2 is bounded between two positive constants m and mj in S f ~!. Thus the
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operator L is uniformly elliptic with bounded coefficients. Since w is nonnegative and either
at some point &, V'w(a) = 0 and w(a) > 0, or at some boundary point & where w(a) = 0
and dhw(a) < 0, it follows from the strong maximum principle or Hopf Lemma (see [7])
that w = 0, contradiction. ]

Theorem 3.2 Assume q < gy or equivalently B, > .. There exists a unique positive
solution w, to problem (3.1).

Proof Existence It will follow from [4]. Indeed problem (3.1) can be written under the form

A(w) := —div' a(w, V'w) = B(w, Vo) inSY~! 37)
w=0 on 3Si’71,

where

p—2

a(r.§) = (B2 +1612) 7 &,
B(r.) = fyAg, (B5r+ |s|2)1%2 r— (24 1eP) (3.8)

The operator A is a Leray—Lions operator which satisfies the assumptions (1.6)—(1.8) of [4,
Theorem 2.1], and the term B satisfies (1.9), (1.10) in the same article. Therefore the existence
of a positive solution o € Wol'p(Sf_l) N L“(Sf_l) is ensured whenever we can find a

supersolution w € W”’(Siv_l) N L°°(S$’_1) and a nontrivial subsolution w € Wl”’(Sf_l)
of (3.7) such that

O<w<w insy (3.9)

First we note that n = 19 is a supersolution if the positive constant 7o is large enough. In
order to find a subsolution, we set again n = ¥ with 0 = By/Bx and ¥ as in (3.2). Now

0 > 1,thusn € Wol‘p(Sivfl). As above we have

T(n) = —0" "'y O7Dr D div’ ((ﬂ*w vy W)

— 07710 — D(p — Dy OD@e=D=1 (g2y2 +|V ) v
— BgAp, 0P 2y OmDPD (B2 4 |V | ) w+9"w<" D9 (B2 2|V %)

q
2

Now By Ap, 0772 = BuAp,0P7" = Bi(Ap, — Ap)0P ™" + B.Ap 0P ' and Ag, — Ag, =
(Bg = B)(p — 1) = B (p — 1)(6 — 1), hence

T(p) = —0P= Ly @D giy/ ((ﬂflﬁz N IV’WIZ)% VH//)

pP—
2

_ 017—1(9 — 1)(p — 1)w(9—l)(l7—1)—] (’Bfwz n |V’¢| )
- ﬂ*(Aﬂq — Alg*)el’*lw@*l)(pfl) (ﬂzwz + |V/I//|2)p772 1//

CBAp 0PI OO (8202 g P) T gty @ (g2y2 4 vy ) E

V'
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Using the equation satisfied by ¥ yields to the relation

T(n) =—0"""0 - D(p— Dy DD (g2y2 4 Vg ?) vy
—B2p = 1)@ — DB7 D (522 1wy )Ty
01y O (5292 1y )

= 07710 — 1)(p — DY (B2y2 4 Vg )¢
+69y 01 (B2y2 4 vy ) E
If we replace n := n; = ¥ by n := n,, = (my)? in the above computation, the inequality
T nm) < 0 will be true provided

w0 @H=P)  O-Da =P+ < gr=l=a(g _ 1)(p — 1) (8297 + IV/W|2)¥ ,

which is satisfied if we choose m small enough so that (m/)? < 5o and satisfying

rP—q
min, gy (8207 + 199 P)

O—D(g+1-p)+1
max, . gN-1 v gt+i-pr

mPa+1-p) < ﬂie—l)(q+1—P)+19p—l—q(6 “Dp-1)

Therefore 0 < 7,, < 1o and standard regularity implies that the solution e is C! in Si\_/_l

Actually w is C*° since the operator is not degenerate.

Uniqueness We use the tangency method developed in the proof of Theorem 3.1. Assume w;
and w; are two positive solutions of (3.2), then they are positive in Si’ ~!and dpw; < 0 on

aS f ~!. Either the w; are ordered and w; < ws, or their graphs intersect. In any case we can
define

T =inf{s > 1:5w; > wr}.

We set ™ = tw;. Then either the graphs of w, and w* are tangent at some interior point «,
or they are not tangent in Sf_l, Onw* < Ohwr < 0 on asf—l and there exists o € asf—l
such that dp0™* () = dphwr () < 0. Furthermore 7 (w*) > 0. If we set w = w* — wy, then,
as in Theorem 3.1,

—div'(AV'w) + (B, V'w), + Cw = Lw > 0

where

IS

p—

(AX, X)g = (Bl + Vo) * (p =2V X)2+ [V PIXP)

IS

pP—

> (Bo? +1V'er?) T min(l, p— DIV PIXP, (3.10)

in which @; = @ + 1(0* — @2) and ¢ € (0, 1) is obtained by applying the mean value
theorem and B and C are defined accordingly. Since £ is uniformly elliptic and has bounded
coefficients, it follows from the strong maximum principle that w = 0. Thus w* = Tw; = @,
and T = 1 from the equation. This ends the proof. O
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3.2 Removable boundary singularities

The following is the basic result for removability of isolated singularities. It is valid in the
general case, but with a local geometric constraint.

Theorem 3.3 Assume g* < g < p < N, Qisa C? bounded domain with 0 € 9, such
that QN Bs = B;r for some § > 0. Ifu € C1(Q\{0}) is a nonnegative solution of (1.1) in Q
which vanishes on dQ2\{0}, then it is identically 0.

Proof Step 1: assume  C RY For e > 0, we set Q. = Q N BE and H. = RY N BE. For
k,n € Ny, n > diam (2), we denote by v , ¢ (n € N,) the solution of the problem
—Apu+|Vu[7=0 in H. N B,
v=ky on d(He N By). (3.11)

RY Nd Be

_q=p_ . .
If k > cpeatT=r for a suitable ¢, = ¢2(p, ¢) > 0 (see Lemma 2.6), then vy, > u in Q..
Moreover there holds v .« < vp'.,.c forn < n’ and k < k’. Furthermore the function

Uen(x) =2 ((|x| — e)% —(n- 6)%)

is a supersolution in B, \ B¢, and there holds vk , ¢ < Uc ,. By monotonicity and standard a
priori estimate, we obtain that v , e — ve When n, k — oo and that the function v = v is
solution of
—Apu+|Vu[?=0 inH,
limjy| e v(x) =00
v=0 ondRY NBE (3.12)
Furthermore

U(x) < ve(x) < ea(lx| — )7 in QL. (.13)

The function v, may not be unique, however it is the minimal solution of the above problem
since the vk ;¢ is unique, and monotonicity in 7 and k holds. Actually, ve < v if0 <€ < €.
For £ > 0, we recall that the transformation v +> T;[v] defined by (2.41) leaves Eq. (1.1)
invariant. As a consequence of the uniqueness of the approximations we have Ty[vg ».c] =
vV p—q_ , which implies

CatT=pPk ¢=1n 0 1e

To[vel = v, (3.14)

Lettinge — 0, we derive from the monotonicity with respect to € and standard C-* estimates,
that the following identity holds:

T¢[vo]l =vo V€ > 0. (3.15)

The function vy is a positive and separable solution of (1.1) in Rﬁ which vanishes on 92\ {0}.
It follows from Theorem 3.1 that vg = 0, and so is u.

Step 2: the general case We assume that Q N By C Rf and we denote by M the maximum
of u on dBs N Q. Then the function (# — M) is a subsolution of (1.1) in & N Bs which
vanishes on 92 N Bs\{0}. By Step 1, it is dominated by vg, which ends the proof. O
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Remark The previous result is valid if  is a subsolution with the same regularity. If u is
no longer assumed to be nonnegative, only u™ vanishes. Furthermore, the regularity of the
boundary has not been used, but only the fact that 2 is locally contained into a half space to
the boundary of which 0 belongs.

Remark If no geometric assumption is made on €2, we can prove that u(x) = o(|x|~Pa)
near 0. The next result shows that the removability holds if ¢ > g.

Theorem 3.4 Assume q* < q < p < N and Q is a C? bounded domain with 0 € 9Q. If u
is a nonnegative solution of (1.1) in 2 which belongs to C'(Q\{0}) and vanishes on 32\{0},
it is identically 0.

Proof As it is proved in [12], for any smooth subdomain § C SV~!, there exists a unique
Bxs > 0 and ¥ > 0, unique up to an homothety, such that x — x| P 1//;,“(|x|71 x)is p
harmonic in the cone Cg = {x € RV\{0} : Ix|7'x € §} and Y satisfies

p=2
2

p=2
—div' ((ﬂfsws*erlV/w;‘Iz) ’ V’w;)—ﬂ*mﬁ“ (Bog¥* > +IV'YIP) 2 yi=0 inS

Yy =0 onds, (3.16)

Furthermore § ¢ § ¢ §V-! implies 5 < B«s. Using the system of spherical coordinates
defined in (6.5) in Appendix B, for ¢ > 0 we denote by S := S, the spherical shell with
vertex the north pole N and latitude angle Oy _ € [0, % + €]. Because of uniqueness of S,
Bxsc T B« as € — 0. Therefore, if ¢ > g4, or equivalently B, < B, there exists §,€ > 0
such that 2 N Bs C Cs, N Bs and B; < Py, . Since 3.1 is valid if Sf71 is replaced by Se
and B, < Byg, it follows that u = 0 as in the proof of Theorem 3.3, Steps 1 and 2. O

The next result, valid in the case p = N, is based upon the conformal invariance of the
N-Laplacian. In this case the exponent B, corresponding to the first spherical N-harmonic
elgenvalue is equal to 1 and the corresponding spherical N-harmonic eigenfunction in SN !
is xn/ x|

Theorem 3.5 Assume N — % < q < N, Q is a bounded domain and 0 € 92 is such
that there exists a ball B C Q€ to the boundary of which 0 belongs. If u is a nonnegative
solution of

—Ayu+1|Vul? =0 inQ, (3.17)
which belongs to C(Q\{0}) N Wy (2\Be (0)) for any € > 0, it is identically 0.

Proof We assume that the inward normal unit vector to BQ atOisey = (0,0,...,1) and
that the ball B = B 1 (a) of centera = ;e ~ and radius 2 5 touches 9€2 at 0 and is exterior to
2 (this can be assumed up to a rotation and a dilation). This is the consequence of the exterior
sphere condition at the point 0. It is always valid if 92 is C 2. We denote by 7, the inversion
of center ® = —ey and power 1, i.e. Z,(x) = w + |2 Under this transformation, the

|
complement of the ball B 1 (a), which contains €2, is transformed into the half space RN

which contains the image Q of Q. Since u satisfies (3.17), u = u o T, satisfies
—Ayii 4 |x — 0PV Vil =0 in Q. (3.18)
Furthermore since 0 = Z,,(0) and Z,, is a diffeomorphism, &z € C (Q\{O}) N CH() and it

vanishes on BQ\{O} Since |[x —w| < 1 and ¢ < N, u is a subsolution for (3.17) in G. By
Theorem 3.4, u = 0. O
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3.3 Weakly singular solutions

The main result of this section is the following existence and uniqueness result concerning
solutions of (1.1) with a boundary weak singularity. We recall that v, is unique positive
solution of (1.11) such that sup ¥, = 1. Our first result is valid for any 1 < p < N but it
needs a geometric constraint on 2.

Theorem 3.6 Let p — 1 < g < g« < p < Nand Q C R{X be a bounded C?* domain
such that 0 € 0K2. Assume that there exists § > O such that Qs := Q2N By = B;‘. Then for
any k > 0 there exists a unique positive solution u := uy of (1.1) in 2, which belongs to
CH(Q\{0}), vanishes on 3Q\{0} and satisfies

ug(x)
m =
x—0 Wy (x)

(3.19)

in the C'-topology of Sf_l, where
Wi (x) = x| P g (3]

The proof of this theorem is long and difficult and requires a certain number of intermediate
results.

Lemma 3.7 Let the assumptions on p, q and Q of Theorem 3.6 be satisfied. There exists a
unique positive p-harmonic function ®, in 2, which is continuous in Q\{0}, vanishes on
dQ\{0} and satisfies
D, (x)
im =
x—0 W, (x)

(3.20)

Proof For0 < € < § let ve be the unique nonnegative p-harmonic function in Q\Bie+ which
is continuous in Q\Bj , vanishes on 92\ B, and achieves the value W, on d B, N 2. Since

QcC Rﬁ, ve < W, in Q\BJ. Hence inequalities 0 < € < €’ < § imply ve < ver in Q\?ZC.
Because W, < 8P+, there holds
ve + 8P > w,, (3.21)

in Q\B;". Since ve and W, coincide on B} and vanish on 9RY N (B;"\BS), (3.21) holds
also in B;\Bj. Because ve > 0 there holds

(W, — 8P <ve < W, inQ\B. (3.22)

By astandard regularity result v, converges to a function @, continuous in \ {0}, p-harmonic
in €2 such that

(W =8Py, <@, <,

in Q. Therefore (3.20) holds provided ﬁ remains in a compact subset of Siv ~! Let us
define a function g?)* by 43*(x) = |x|P* ®,(x), then g?)*(r, 0) < Y4(o) where r = |x| and

o= I%I € S_}‘Y*l. By standard C1* estimates, (/3* (r, .) is relatively compact in the C(Sffl)—

D, (x)
W, (x)

in a compact subset of Si’ ~! but uniformly on Siv ~! which implies (3.20). Uniqueness
follows classically by (3.20) and the maximum principle. O

topology. Therefore the convergence of to 1 when x to 0 holds not only when ﬁ remains
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Lemma 3.8 Let the assumptions on p, q and Q of Theorem 3.6 be satisfied. If for some k > 0
there exists a solution uy of (1.1) in Q, which belongs to C'(Q\{0}), vanishes on 392\{0}
and satisfies (3.19), then for any k > O there exists such a solution.

Proof We notice that for any ¢ < 1 (resp ¢ > 1), cuy is a subsolution (resp. supersolution)
of (1.1) in Q. Let ®, be as in Lemma 3.7. If ¢ < 1, the function ck®, is a supersolution of
(1.1) which vanishes on 92\ {0}. Furthermore

cup(x) ~ ok — lim ck®,(x)

im =ck = .
x—0 Wy (x) x—0 W.(x)

Then there exists a solution u. of (1.1) in  which satisfies cuy < ucp < ck®,.If ¢ > 1,

we set u* := T,o[uy], which means u*(x) = c#1%uy(c? x) with & = (B; — B.)~!. Then u*

is a solution of (1.1) in Q' = LQ. In particular, u* satisfies the equation in B¥ (0). Since
¢ 7
A > 1, B‘g 0 c B;'(O). Put m = max{u* : x € BBt (0)}. The function (u* — m)+,
& &

extended by 0 outside BE (0), is a subsolution of (1.1) in Q. Furthermore it satisfies

K

W —=m)y(x)

lim —————— =k,

x—0 W, (x)
uniformly on any compact subset of Sf ~!. Therefore there exists a solution ucr of (1.1) in
Q which satisfies (u™ — m)y < ucr < ck®,, and in particular it vanishes on @\{0} and
belongs to C'(2\{0}). By [13], ue is positive in . Thus u belongs to C*(B; (0)\{0})
and satisfies
|Viter () = Va1 _

M

1P Juer (o) =+ x| P [ Vuer ()] + x| TP+ sup «
IyI<lx| X =yl
xF#y
by (2.11). Therefore the set of functions (Bt IV (r, D=0 s uniformly relatively compact

. . N-1 . . .
in the topology of uniform convergence on S| . Since it converges to ckV'v, uniformly

on compact subsets of S_,A_/ “Lasr — 0, this convergence holds in C (S_If ~1). This implies

ek (x)
=ck
x—0 Wy(x)

(3.23)
O

The next Lemma is the keystone of our construction. Its proof is very delicate and needs
several intermediate steps.

Lemma 3.9 Under the assumptions of Theorem 3.6 there exists a real number Ry such that
0 < Ro < 8 and a positive subsolution u of (1.1) in B;{O which is Lipschitz continuous in

B;{O\{O}, vanishes on B;{O N BRﬁ\{O}, is smaller than V, and satisfies
u(x)
im =
x—0 W, (x)

(3.24)

Proof The construction of the function #. We look for a subsolution under the form & =
W, — w for a suitable nonnegative function w.

Step 1: reduction of the problem We use spherical coordinates for a C! function u : x >
ulx) =u(r,o), r = |x|,o = ﬁ Then Vu = uye + r~'V'u where e = |x| ! x, |Vu|2 =
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ke

u% + 72 |V’u|2 and |Vul? = (u% +r2 |V’u|2) . The expression of the p-Laplacian in
spherical coordinates is

p—=2
2

2, 2 N N—-1l¢, 2\ 7
—Apu = — (ur—i—r ‘V’u‘) ur | — (ur—i—r |V/u’) Uy
, r
1 N7
——2div/ (u%+r72|V/u|) Vul.
,

Put v(t, o) = rPu(r, o) witht = Inr € (—o0, In 8], then v satisfies

Qlv] :=
p—2

- (((vz — B+ |v’u|"‘)T (v — ﬁ*v))
t
11;

=2
- div’(((v, — B+ |V'[’) v’v)

g2 q
+ A, ((vt - ,B*v)z + |V/v|2) ’ (v; — Byv) + e’ ((v; — ,3*11)2 + ‘V/v}z) 2.0
(3.25)

in (—o0,1Ind) x Sf_l wherev=1—(@+1—-—p)Bs+1)=1- g:ill > 0and Ag, =
B«(p — 1) + p — N. Notice that ¥, satisfies

- div’((ﬂfwf Hwf)T V’w*) o, (B934 1V0F) T v =0
(3.26)

hence it is a supersolution for (3.25). We look for a subsolution under the form

V(t,0) = ¥x —a)g(¥)
where g is a continuous increasing function defined on R, vanishing at 0 and smooth on
R% and a(r) = e¥" with y > 0 to be chosen. Thus ¢’ = ya, a” = via, Vi = —yag(y),
Vi—= BV = =B+ a(Be — y)g(W), V'V = (1 — ag' () V', and
(Vi = BV + [VV[P = (—Buvi +a(Be — )gW)? + (1 — ag ) [V’
= (B2 +2aB.(y — B V) + (1 — 2ag' (1)) |V/1ﬂ*|2 + 0@ lgW)len)
=BV + |V'W*|2 +2a (Bu(y — BV (W) — &' (W) IVYl®) + 0@ lIg() ).

Therefore
p=2
(V= g2+ |vv[) 2
p—2

= (ﬁft/ff + |v’w*|2)T [1 +(p—2a

Bu(y — B)Wg (W) — &' () [Vl
B2Y2 + V' 2
+ 0@ lg@W)len),
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and

(SR

eV ((v, BV |v/v|2)

Be(y — BOVg(W) — &' (V) |w*|2}

q
— §j+v/*22 1+
o (B + 199 L) 1 g B2+ VY
+ 0" a® g ),

thus
(Vi =B+ V'V )T V= B V)

= (pvi+ lvw) T e+ alh— ) (B2 + |v'vf? )pTgw*)

—apu(p — PV = PIV-8 W) g(‘”)' Vel 4 0@ gl

(B32 + V'] )

Finally,

p=2
= (((Vt —BVP+VVE) T, - ﬂm)
t
p=2
2

=a [(yz — o) (B2 |VUl’) T s

* 2_ * * * - ! * v *2
+8y(p — ) P = ey )Vng W) — yE () [V m}omz lg(W)llc2).

(B2 +1V'?) T

(3.27)

Since
p—2
=

(V= gv2+[VVF) 7wy

= (ﬁM + |V )pT (1 —ag' ()

— 2
X|:l+a(p 2Bl = ﬂ*ﬁ(‘ffvf l(;pqu ]W*

+ 0@ lgWr)ller)
P2
= (B2 +|Vul’) * Vv
p—2

va (g2 +9vP) T

| (p— 2y By = B8 (W) — ') IV Yl
pP= 2
B2 + V'Yl

g/w*)} V',
+ 0@ lg(Wr)llen),
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we get similarly

- div’(((w — BV |v/v|2)%2 v/v) = —div’((ﬂfwf + lw*|2)p%2 V’w*)

I 2y By = BVeg (W) — 8 ) IVYl® :
adiv ((ﬁ*w* + | V'] ) [(p B2 1 VYT -8 (%)} v w*)

+ 0@ lgW)llc2)- (3.28)

Noting that

p=2 p—2

_ div’((ﬁflﬁf +vwl) T V’m) Ve = Betrp, (B2 + V) T v
(3.29)

we obtain

e 7'QV]

= [(ﬁ — Bov) (B207 + |V've| )T g ()

+B:(p —2)

Bu(y? — By )8 (re) — &' (Y) V2 ’ }
(B2Y2 + V' D)

- div’((ﬁfwf + !V’w*lz)%z

ﬁ*()/ Bi)Vsg (Vi) — &' (¥s) |V‘/f* / ’
* V *k
i [(” B2+ IVl e )} v )

~ Ap, ((y — B (B2v2 + \vwz)T g

+B«(p—2)

By = BIVxg (i) — 8 (lﬁ*) IVW*Izw )
(B292 + |V )7

q _ o 2
e (5292 + [V )} [1 1 ga P = BOVss () = ¢ () IV ]

BIY2 + IV
+ O0(@aligWllc)- (3.30)
In this expression we have in particular

—2

- dw’((ﬂfwf + IV’w*IZ)pT

/3*()/ Bvg(ry) — g (lﬁ*) |V¢* / /
) | Vb
x|:(P P gW)] w)

p=2
_ (p . ])div’ |:g/(w*) (ﬂfl/ff + |V’1//*|2) 2 Vl/f*j|
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p—4
2

—ﬁ*div’((ﬁftﬁfﬂv’w*\) [(P = 2)Bers' W)+ (0 = Dy — ﬁ*>g<w*>]w*)

P
2

P2
= (p = 1g" W) (B2 + VL) T 1Vl

+(p = g/ Wdiv/ ((ﬁfwf +|vie?) T vw*)

_ / 2
i {((y P + B VV2) w*} | a3
(B2W2 + IV'yl?) 2
Using the Eq. (3.26) satisfied by v, it infers that
_div/((ﬁfwj V'] )T
By — BIVg(Ws) — g (1//*) |V¢*| ’ ’
* \Y% *
x[(p 2) 570+ VT g(tp)} w)
= (-1 (p2v7+ |vm|2)T (8" W IVl = Butp.g (V)
_ / 2
iy {((y s + B WV2) m} | 5
(B2Y2 + V') 2

Plugging this identity into the expression (3.30), we obtain after some simplifications

eOVI = (B2 + Vv )T g QiIVI+ e M RIV]+ Otallg (@)l c2).
(3.33)

where

q . _ 2
Rivi = e (5202 + [Vf?) [1+ peld = Bua)g (V) — ag' () [V | }

BIY2 + |V
(3.34)
and
Bl ] Vg (Y)
V]= — A — By |1 —2D)——r————— | —(p—DBLA
QilVI=(y — Ap)y ﬁ)[ +(p )ﬂ3w3+|v/¢*|2 (p — DBuAg, 2 (V)

+[(p = BN p Vs — 20"Y4] (V — Bs (1 _ V8 (w*))) Bt

) B2Y2 + |V, |?
Vg (Vi) w,%g”(w*)]
(p )[g(w*) ((Be+ Dy — Bslp, +B) +v — B+ B o
V'] AT
_— —1 Vi . 3.35
* gerr vl TP Vg IV (3:35)

In this expression the difficult term to deal with is [( P — BB P — 24 1//*] since it has
not a prescribed sign. However A’ = O () by (6.19) in Appendix B.
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Step 2: the perturbation method and the computation with g(¥,) = ¥, With such a choice
of function g

B2

BZYZ + |V r|?
Vv

B2Y2 + |V |?

QV]= —Ag)y — Bs) [1 +(p—-2) }—(p— DBsAg,

—(p =2 [(y — Ap)Bs +2v] +y oWd. (3.36)

Equivalently
Biv: 2
QilVl= |:1 +(p - 2)m] (v® = (Mg +BO)Y)
A2 )
—v|(P—=2)(B +2)m + O0(Wy)
and finally

pavi
s }y[y — (Mg, + B+ (P = (B +2) + OW)].

Vi=|1 -2
AVl [ T e v
(3.37)

Using the fact that 8, > % ifl<p<22andl < B, < % if 2 < p < N (see Theorem
6.1 in Appendix B), we have

Ap, +Bs«(p—1) ifp>2

N+3(p—-2)>N-3 ifl<p<?2. (3.38)

Aﬁ*+l3*+(p—2)(ﬁ*+2)2[

When N = 2, we have explicitly 8, = ]4_237 "(ZZ__SPH (see [9, Th 3.3]). Therefore for all
N > 2 and p > 1, there holds

Ap, + B+ (p —2)(B: +2) > 0. (3.39)

We fix €9 > 0 such that, whenever ¥, < €, there holds

1
Ap, + B+ (p—=D(Bs+2)+ O > 3 (Ap, + B+ (P —2)(Bs +2)) . (340)

If we fix y9 > 0 such that

1
% <min[E (Aﬁ*+ﬂ*+(p—2)(5*+2)),v,,3*], (3.41)

we obtain

2

91[V] < —min{l, p — 1}ym~ V0 <y <y, (3.42)

whenever ¥, < €g, for some m depending only on p, g and N (through v, and v), which,
in the same range of value of v, yields to

p=2
(B202+[V'0l’) T gW0QiIVI = —er YO<y w0, (43

for some c17 > 0 depending on N, p, g. This estimate is valid whateveris p > 1, but only in
a neighborhood of ¥, = 0. If we replace g(V,) = V. by gk (V%) = Yee K for0 < k < 1,
and denote by Q; [ V] the corresponding expression of Q1 [V ] which becomes now Q; o[V ].
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We define similarly Qx[V], and Q[V ] becomes Qo[ V]. Since g} (V) = e KU _ kgr ()
and g = —2ke ¥V + kg (), we obtain

2k 2
QuilV]I= QiolVI+k(p — DB«ApYs+(p— 1) (_17 + kz) V']
*
+ 2= p)Bu (“2k +K2) Y + O(YD) (3.44)
Notice that V', vanishes only at the North pole ey, thus there exists kg € (0, 1] such that

2k
k(1 — p)BeAp Vs + (P — 1)(1/7

whenever 1, < €9 which yields to

1
- kz) VUul® 2 5@ = p)eBe (<2 + k) v Vhsko

p=2

(8202 + [V'v’) T sk QalV] < —cisk VK < ko (3.45)

for some c¢j3 = c13(N, p, q, €p). There exists c14 = c14(N, p, g) > 0 such that

4 _ _ o 2
(ﬂ3w3+|v/w*|2)2|:1+q€y[)3*()/ Be) Vg (¥) gk(w*)ww}

B2 + [V =
(3.46)
in Siv_] X (—00, In §]. Moreover
Oallg(lic) < e’'éx (3.47)
for some ¢ = ¢x (N, p, q) > 0. We derive from (3.45)—(3.47)
eV QIV] < —cizk +c1aeV TV 4 VG Yk < ko (3.48)

Thus there exists 7; < In§ such that Qx[V] < 0, for all # < Ty and provided V., < €p. This
local estimate will be used in the construction of the subsolution when p > 2.

Step 3: the case 1 < p < 2 Since the function ¥* depends only on the azimuthal angle
6 € (0; 5] we will write /.. (o) = ¥+(6) and V', (6) = 4 (6)n where n is the downward
unit vector tangent to SV ~! in the hyperplane going through o and the poles. From (6.8),

; B2V + Vrigs
—4)B A « — 20" Yy = -2 W« A\ « +2————= ), 3.49
(p — DB Ve = (p )(ﬂ g Vs + PR ) (3.49)

since 1//*29 = ‘V’w*‘z and thus

’ BxY Vs
— B A « — 20" Yry) —————
(= ®Bsv V) BEY2 + y2,
B2y2 B2 + Vago Vs
= -2 A + 284 . 3.50
v )y( A A N WA 20

From Theorem 6.1-Step 4 in Appendix B, we know that ,Bfl/f* + Yspp = 0, thus the con-
tribution of this term to Q;[V] is nonpositive. We replace this expression in Q[V] with
g(x) = V¥, and obtain
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B2y2
Vi=(y —Ap)(y — B 1 —y— = ) Ag Bup—1
QIV] = (v — Ap)(y /3)( +(p >ﬂ3¢3+%) g Be(p— 1)
=Dy Lo (B4 2y — App)
gy + 2, " PP gy 4y,
B2Y2 + Yrugo Vs
+2B8.(p —2)————F—
Pl =2 g g2 ?
2.1.2
<J’(1+(P—2)m)(y_1\ﬁ*_ﬁ*)
(B +2)¥2, — Ap, B2
—(p—2
P
B2y2
1 - 2) =
Ey( T )ﬁfllff-i-wfe)
(Bs + 202y — Ap, B2
A rs+8+p—2 . 351
X(y (ﬁ* R P e (3.51)

We can write

(Be + 2% — Ap, B2V2
(p— VB2 + V],
(Mg (p—DB) B+ (Ap + B(p— D +2(p — D) ¥,
- (p— DBV + ¥,
> c15 (Ap, + Bulp — 1) +2(p — 2)) (3.52)

Ap, + B+ (p—2)

for some positive constant c;s. This expression A g, + B« (p — 1) +2(p —2) is always positive:
obviously if N > 3 and by using the explicit expression of S, if N = 2. Thus there exists yp
and c16 > 0 such that Q1[V] < —cj¢ for 0 < y < yp. The perturbation method of Step 2, is
valid in the whole range of values of 1, and we derive from (3.42)—(3.43) that (3.48) holds
for all kK < kg and r < T. Therefore Q;[V] < 0.

Step 4; the case p > 2 For ¢ > 0 to be fixed and ¥, > €p, ¥ € (0, ypl, we take g(¥,) =

P >
cry P Then we derive from (3.35):

(p — DB2Y2 + V'Y ( y )
—(p— DB |1 - =
RN R Ul LS

QiV]I=(y — Ap)(y — Bx)

—(p- )”(ﬂ; YBe =) B 19y P = (0= 2)(Be — 1) — Ap)
Vv
A
BEY2 + |V |
=(-p) [J/(ﬁ* y)+y(ﬁ’; YBe =) R |2]. (3.53)
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Y

P e=k<0 and we define g by

s
P = epe k0 = ¢ = €)

1_
For k < ko we fix ¢ such that ce

Y KV if0 <y, <e
Y

¥ —r (3.54)
e e oy, Tifep <y <1,

pa 1-X
g(¥x) = min [me—’“”*, e e 0 ] = ‘

and we set V(t,0) = ¥*(0) — a(t)g(Y«(0)) with (t,0) € (—o0, Ty] x Sﬁrv_l and define
u(r,o) = r*ﬁ*(l/f*(a) —a(lnr)g(y«(o))) accordingly for (r,0) € (—o0, eTk] x Sf_].
Since v, is a decreasing function the coincidence set {o € Si’ -1, Y« (o) = €p} is a circular
cone Xy, with vertex 0, axis ey and angle 6y. We set Ry = ek

M={r=00 el 0<0<3}={00)el0.R) x5 :0 < y(0) <o},
P={r=00 Bl :0<0<t]={00)€10.R)x Y1) < vul0) < 1},

and define

ii(r,0) = r P (Yu(0) — 7 g(Y.(0)))
ui(r, o) = r=Pe(1 — rY e K@y, (o) if (r,0) ey

= Z Y

uy(r, o) = r =P (1 — rye(fje_kfo(w*(a))l_ﬂ*) V(o) if (r,0) e .

The function i is a subsolution separately on I'y and I'; and is Lipschitz continuous in Q\{0}.
If we denote by g and g» the restriction of g to I'; and I', respectively, that is to €21 and
o, then g’1 (€0) > gé (€9) > 0.Let¢ € C Cl (B;{O) which vanishes in neighborhoods of 0 and

IBf . ¢ > 0, then
/ IVIZIP_2 Vﬁ.V;dx+/ |Vii|? ¢dx 5/ |Vu;|P~2 On,u;8dS, (3.55)
I Q; 2o,
where n; is the normal unit vector on Xg, outward from I';. Actually, np = —n; = n thus
Vi =iie +r P 1 =7 W)V = dive +r P71 =17 g () e .
and on X,

Vii = ire—r Pl —rVgl(e)Yom inT)
iire+r=P=1(1 =17 g)(eo))¥som  in T
Therefore

|Vaur [P~ 0, uy

p=2
= —r PN = gl eo)) (7 +r PP = g (€0) W) T e inT
and
IVuz|P~2 dnyur
=2
=Pl = Y gy eo)) (i + T = 1Y gh (€007 Wy) T Yo in T,

By adding the two inequalities (3.55)
/Q|Vﬁ|”’2Vﬁ.V§dx+/Q|Vﬁ|q ;‘dxs/z (IVur P72 8nyur + [Vua|P 72 dnyuz) £dSS.

%0

(3.56)
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»
By monotonicity of the function X +— (12% + X 2) 2 and since
rP A = gh(eo)) = PN = gl (e0) 2 0,

we derive

p—=2

r P A = Y ghe0)) (2 + rm T2 — Y gh(eo)2u)
> r Pl (1 = 17 gl (e0)) (@2 + r 72721 — 17 g (€0))? ¥ E)

We derive that the right-hand side of (3.56) is nonpositive because .9 < 0, and therefore i
is a positive subsolution of (1.1) in BI}LO dominated by W, and satisfying (3.24). ]

p—2

Proof of Theorem 3.6 Let M = max{W,(x) : x € 8B;§0}, then M = R&’S*. The function u™*
defined by

(@(x)— M), ifxe B;O

* J—
uix) = [0 it x € Q\Bj .

is indeed a subsolution of (1.1) in whole  where it satisfies u* < W, and it vanishes on
dQ\{0}. Since &, is a positive p-harmonic function in €2 which vanishes on 92\ {0} and
satisfies (3.20), it is supersolution of (1.1) and therefore it dominates u*. Therefore there
exists a solution u of (1.1) in € which vanishes on d2\{0} and satisfies u* < u < ®,. This
implies that (3.19) holds with k = 1 and we conclude with Lemma 3.8. This ends the proof
of Lemma 3.9. ]

When p = N the statement of Theorem 3.6 holds without the flatness assumption on 9€2.
The proof of the next theorem is an easy adaptation to the one of Theorem 3.6, provided
Lemmas 3.7, 3.8 and 3.9 are modified accordingly.

Theorem 3.10 Assume N —1 < g < N — % and Q be a bounded C? domain such that
0 € 92 Then for any k > 0 there exists a unique positive solution u = uy of (3.17) in
Q, which belongs to C'(Q\{0}), vanishes on dQ\{0} and satisfies uniformly with respect to
o€ Siv -

lim | () = k(o). (3.57)
xlxl>o

Since p = N, then B, = 1 and Y, (o) = % = cos Oy _1 with the identification of o and

On_1 := 6. In a more intrinsic manner (3.57) can be written under the form

fim 2
x—?g) d(x)

Xe

(3.58)

We recall that if @ € RY and Z,, denotes the inversion of center w and power 1, i.e.
To(x) = w ﬁ then it = u o Z,, satisfies (3.18).

Lemma 3.11 Assume 2 be a bounded C* domain such that 0 € 3S2. Then there exists a
unique N-harmonic function ®, in Q, which vanishes on dQ2\{0} and satisfies

lm = |x| @, (x) = ¥ (0), (3.59)

x/|x|—0o

uniformly with respect to o € Sffl.
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Proof Uniqueness is standard. Let o = —ey € ﬁc, with the notations of the proof of
Theorem 3.5, ' = —w, a = —+ey and @’ = —a. We can assume that the balls B (a)
2

and B ! (a’) are tangent to 92 at 0 and respectively subset of Q¢ and Q. The function x >
V() =— ")% which is N-harmonic in RV and vanishes on 9RY \{0} is transformed by the

inversion Z,, of center o’ and power 1 into the function ¥,, = W o Z,, which is positive
and N-harmonic in B ! (a’) and vanishes on 0 B ! (a)\{0}. The function ¥ = —W which is

N-harmonic in Rf and vanishes on 8]1%1 \{0} is transformed by the inversion Z,, of center w
and power 1 into the function W, = U 0 7,, which is positive and N-harmonic in B (a) and
2

vanishes on 83% (a)\{0}. For € > 0 we denote by ®, the solution of
~AN®. =0  inQnNBS
®. =0 in (B;' (@')N3B:) U (3R N BE)
o, =Y, in B% (@) N 9Be. (3.60)
If0 <€ <€, ®s > Y, in B% (@) N 9B, thus & > P in Q N BE. We also denote by
U, the solution of
—~Ay®. =0 inQnNBS
b =0 indQN B¢
b =W, inQNIBE. (3.61)
In the same way as above
0<e <e= o, <P, in QNIBS

/
o |;7$‘2 we see that

lx—awl?

Using the explicit form of ¥, 7, : x > w + andZ, : x — o' +

1+4+¢€
Vo LBy (@)n9B. < ——YolB, @)naB.
2 2

T 1—¢
thus
1+e€ 4
@65714_ b, inQﬂBEC.
—€

Letting € — 0 we conclude that ®, converges uniformly in Q\{0} to ®, which vanishes on
a2\ {0} and satisfies (3.59). O

The proof of the next statement is similar to the one of Lemma 3.8 up to some minor
modifications, so we omit it.

Lemma 3.12 Let the assumptions on q and Q2 of Theorem 3.10 be satisfied. If for some k > 0
there exists a solution uy, of (3.17) in 2, which belongs to C'(Q\{0}), vanishes on 3$2\{0}
and satisfies (3.57), then for any k > O there exists such a solution.

Lemma 3.13 Under the assumptions of Theorem 3.10 there exists a Lipschitz continuous

nonnegative subsolution u of (3.17) in Q which vanishes on dQ\{0}, is smaller than ©, and
satisfies
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lim |x|u(x) = o, (3.62)
x—0

x/|x|—o
uniformly with respect to o € Sf_].

Proof Let t > 0 to be fixed and let w be the solution of

—Ayw+|Vw|? =0 in By (3.63)
which vanishes on d B, \{0} and satisfies
lim |x|lw(x) =0 (3.64)
x—0
x/|x|—o

in the C'-topology of S N=1 Tts existence follows from Theorem 3.6 and this function is domi-
nated by the N-harmonic function @, corresponding to this domain, obtained in Lemma 3.11.
By Z,y, the half-ball B; is transform into the lunule G = B ! (a)\B 2 (%a)’ Yand W = woZ,
satisfies

—AND + x — PV VHI? =0 inG. (3.65)

Since [x —@'| < 1in G, —Ayw + |V®|? < 0in G. We extend @ by 0 in Q\G and the
resulting function # is a subsolution of (3.17) in € which vanishes on 92\{0}), is smaller
than the N-harmonic function ®, obtained in Lemma 3.11, and satisfies (3.62). ]

4 Classification of boundary singularities

We assume that @ C RV is a C? domain and 0 € 9. Furthermore, in order to avoid
extremely technical computations, we shall assume either that d€2 is flat near 0 or p = N.
We suppose that the tangent plane to 92 at 0 is dRY = {x = (x’, 0)} and the normal inward
unit vector at 0 is ey, therefore n = —ey in the sequel. We denote by w ~v-1 the unique
+
positive solution of (3.1) in S f ~!and by U ~-1 the corresponding singular solution of (1.1)
S+
in RY defined by
B X
Un-1(x) = |x|~Fa onN-1{ — ). “4.1)
+ + [x|
We recall that v, is the unique positive solution of (3.2) with maximum 1 and W, the

corresponding p-harmonic function

X

W, (x) = |x| Py, (—) : (4.2)

x|

4.1 Thecasel < p <N

The first statement points out the link between weak and strong singularities.

Proposition 4.1 Underthe assumptions of Theorem 3.6 there exists limy_ oo Uy = Uoo Which
is the unique element of C(Q\{0}) N C' () which vanishes on dQ\{0}, satisfies (1.1) in
and

Uoo(X) 1
—— =1. (4.3)
x—0 Uéi]—l (x)
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Proof Uniqueness follows from (4.3) and the maximum principle. For existence, since the
mapping k +— uy is increasing and u; < USJ}:/—] , there exists limg— o0 Ug = Uso < Usﬁ*'
and us € C(Q\{0}) N C!(). It vanishes on BB;\{O} and satisfies (1.1) in B;r. In order
to take into account the domain B; in the notations, we set uy = uy 5. Since the mapping
8 > uy s is also increasing and ug s < kW, there also exists lims_, oo Uk, s 1= Uk co < kW4
Then, for all £ > 0,

Tolur s10x) = €P0up 5(0x) =ty 415(x). (4.4)
Letting k — o0, we obtain
Tylttoo,5106) = P10, 5 (€x) = ttog -15(x), (4.5)
and letting § — 0o, we obtain
TolUoo,00l(x) = Z’Squoo’oo(ﬁx) = Uoo,00(X). (4.6)
This implies that
Uoo,00(F, 0) = r—ha w/(a), 4.7

and ' is a positive solution of problem (3.1). Therefore o’ = N1 by Theorem 3.2. If we
let ¢ — 01in (4.4) and take |x| = 1, x = o, we derive

}ig})ﬂﬂmoo,a(ﬁ, o) = l}g% Uoo ¢-15(1,0) = oo, 00(1, 0) = N1 (0). (4.8)
This convergence holds in C 1 (Sﬁrv _1) because of Lemma 2.5. This implies (4.3). ]

The main classification result is as follows.

Theorem 4.2 Assumel < p < N,p—1<q <q*anddQNBs = {x = (x',0) : }x’| < 8},
for some 8§ > 0. Ifu € C(Q\{0}) N clQ)is a positive solution of (1.1) in Q which vanishes
on dQ\{0}, then we have the following alternative:

(i) either there exists k > 0 such that

u(x)
im =k, 4.9)
x—0 W, (x)
(ii) or
lim ) . (4.10)
x—0 USN—I (X)
v
Proof Step 1. Assume
fiminf Y oo, @.11)
x—0 W, (x)
then we claim that (4.9) holds. We first note that if (4.11) holds, there also holds
. ou(x)
lim inf < 00, 4.12)
x—=0 ui(x)

where u is the solution of (1.1) obtained in Theorem 3.6 with & = 1. If {x,} is converging
to 0 and such that for some k > 0
fiminf L =y )
x=0 U (x) n=00 1 (xy)
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3504 M.-F. Bidaut-Véron et al.

there also holds by the boundary Harnack inequality (2.38) applied to both « and u,

u(xy,) _ u(xy) d(xy) . Cs_z u(x) Vi st x| = ||
ur(x,)  d(xy) ui(xy) u(x)

This implies in particular

u(x) < 2k + e)ui(x) Vst |x| = [x,]

where {€,} is converging to 04, and by the comparison principle
3
u(x) < Kui(x) Vx e Rﬁ st x| < x| < 7
for some K > 0 and all n € N,.. Therefore

. u(x)
lim sup
x>0 U1(x)

(4.13)

We can assume that k # 0, otherwise (4.9) holds with k = 0 and actually u remains bounded
near 0. As a consequence of the Hopf Lemma and C' regularity, there exists K > 0 such
that

u(x) < KW,(x) Vx e BY. (4.14)

2
Let m = max{u(x) : |x| = §}. For 0 < 7 < § we denote by k; the minimum of the « > 0
such that u(x) < kW,(x) +m for T < |x| < §. Then u(x) < k; W,(x) + m, and either the
graphs of the mappings u(-) and k; W, (-) 4+ m are tangent at some x; € B; \E?, or they are

tangent on the boundary of the domain, and the only possibility is that they are tangent on
|x| = 7. Since

VWL ()2 = x| 2PAD (B2 + [V ),
it never vanishes. If we set w = u — (k; W4 (x) + m), then
—Lw+ |Vul?! =0 (4.15)

where the operator

a a
L= .
Z ax,' (al] ij)
L]

is uniformly elliptic in a neighborhood of x; (see [6, Lemma 1.3]). Furthermore w < 0 and
w(x;) = 0 by the strong maximum principle Vu (x;) must vanish, which contradicts the fact
that Vu(x;) = Vw(x;) by the tangency condition, and Vw(x;) # 0. Therefore |x;| = 7
and x; ¢ SR_’X. If v/ < 1, k; < kg, and we set k = lim;_,o k¢, which is finite because of
(4.14). There exists {t,,} such that o,, := tflx,” — 0¢. Furthermore

rﬁ*u(r, 0) <k (o) + mrP ift <r<§ and rﬁ*u(r, or) = ki (o7) + mrhP.
(4.16)

Put
ur(x) = tu(rx) 4.17)
Then

—Apur + P4 B H1=0) |y 19 =0  in BZ\{O}
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and, by (4.14),

0 < ur(x) < K Ix|™P in BT \{0).
2t

By Lemma 2.5, the set of functions {u(-)} is relatively compact in the C! topology of

loc
R_’X\{O}. Therefore, as g < g™, there exist a sequence {,} C {t,} converging to 0, and a

positive p-harmonic function v in Rf , continuous in Rﬁ\{O} and vanishing on BRN \{0},

such that u;; — v, and v satisfies (4.14) in RY 2\{0}. By Theorem 5.1 in Appendix A, there
exists k* such that v = k*W,. In particular,

limour/(l,cr):k*w*(a) (4.18)
T, — "

in the C! (Siv_l) topology. Combining (4.16), (4.17) and (4.18) we conclude that k* = k
and

lim ©%u. (1,0) = kru (o) (4.19)
7,—0 "

Using Theorem 3.6, it is equivalent to

/
im o) (4.20)
7, —0 uk(‘r,g, U)

uniformly on S iv ~! For any € > 0, there exists ne > 0 such that n > n. implies
Up—e(z,,0) <u(t,,0) < tpte (1), 0)
By comparison principle,
Up—e <t <Upye+m in B;\Bj;, 4.21)
and finally
Uk—c <U < Ugte+m in By, (4.22)
Since € is arbitrary and using again Theorem 3.6, it implies

u(r, o)
im ——— =k, (4.23)
r—0 \IJ*(r, O‘)

locally uniformly on SN-1 But since the convergence holds in c! (Siv _1), (4.9) follows.
Step 2. Assume

im u(x) = 00. (4.24)
x—0 Wy (x)
Forany 0 < € < § and k > 0, there holds
ug(x) < u(x) < ve(x) in B \BJ (4.25)

where v, has been defined in (3.12) and uy is given by Theorem 3.6. Lettinge — 0,k — oo,
and using Proposition 4.1, we derive

Uoo(x) < u(x) < wvo(x) in B \{0}. (4.26)
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We have seen in Theorem 3.3 that vy is a separable solution of (1.1) in R_’X which vanishes
on BRﬁ\{O}, therefore v (x) = U v-1(x). This implies
+

X
oo (x) < u(x) < x|y (I)TI) in By \{0}. 4.27)
We conclude using Proposition 4.1. O

4.2 The case p = N

When p = N, the assumption that 32 is an hyperplane near 0 can be removed. The proof
of the next results is based upon Theorem 3.10. The following result is the extension to the
case p = N of Proposition 4.1.

Proposition 4.3 Under the assumptions of Theorem 3.10 there exists limyg_, o0 i = Uoo
which is the unique element of C(Q\{0}) N C' () which satisfies (3.17) in Q, vanishes on
dQ\{0} and such that

o) (4.28)
x—0 inv_l (x)

Proof We denote by u,iz the unique positive solution of (3.17) satisfying (3.57) obtained in
Theorem 3.6. Then
14
Tolufl = ulh, s, ,» (4.29)

because of uniqueness. We denote by B := B 1 (a) and B’ := B 1 (a’) the two balls tangent

to 92 at O respectively interior and exterior to €2 introduced in the proof of Lemma 3.11.
Estimate (3.58) implies

uf/c < u,iz < uf (4-30)
the left-hand side inequality holding in €2 and the right-hand side one in B. Therefore
e et ¢
Telug 1= uly, < Tolug] < Telud] = uly, 4., (4.31)

the domains of validity of these inequalities being modified accordingly. Using again (3.58)
we obtain

ToluB ] < Towf*) in BV, (4.32)
forany 0 < ¢’ < £ and ¢'Pa=P«/ < ¢Pa—P<k_In the same way
Tylub] > T,[uf] in B, (4.33)

forany 0 < ¢’ < € and ¢'Pe=Pek’ > ¢Pa=P<k. Since u® up, u,f/c are increasing with respect

to k, they converge respectively to ugzo ul u gO/C and there holds for any £ > 0

Telu® ) < Toluk] < Tylul), (4.34)
from (4.31) and

() TeluB]< Tyl ] inBe

(i1) Tw[ufo] > TZ[Mgo] in BY (4.35)
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for any 0 < ¢/ < £. Notice that , replacing £ by ££’ we can rewrite (4.34) as follows
Tp[TeuB 1] < To[Te[u2 ] < TolTelud ). (4.36)
Because of the monotonicity with respect to £ the following limits exist

U =1im Ty[uZ] and U® = lim Ty[u® ). 4.37)
1—0 —0

By Lemma 2.5 applied with ¢(|x|) = |x| =% and since there holds u5 (x) < c|x|7#s and
ul (x) < c|x| P4, we derive

(i) |VTe[u](x)] < colx| P! Vx € B
(@) IVTu)(x) = VTe[uZ )W) < calx| P17 — y[* Vx,y € BY, [x| < |y]
(i) TyuB1(x) < calx|~Pa=1(dist (x, dB))® Vx € BY,
(4.38)
and
(i) IVTeuE 1) < calx| P! Vx € Bt
(i) VT 100) = VIuf 1) < ealxe| P~ x — y|* V. y € BY, |x| < 1y]
(iii) Tp[uB 1(x) < colx| 7P~ (dist (x, 9B’ )™ Vx € B
(4.39)

Thus the sets of functions {7 [u fo]} and {T;[u g]} are equicontinuous in the C L loc topology
and by uniqueness, the limit in (4.37) below holds in this topology. Hence U B and UB
are positive solutions of (3.17) in R{X which vanish on BRﬁ \{0}. Furthermore U B* < yb*
Since for any £, £’ > 0, Ty [T[uB 1] = Tpe[uB], it follows Ty [UB“] = UE* and in the
same way Ty[UB] = UB. This means that U8 and U B" are self-similar solutions of (3.17)
in Rﬁ and they vanish on B]Rﬁ\{O}. Hence

UB =UP =Ugv. (4.40)
+
Applying again Lemma 2.5 to uffo with ¢ (|x|) = |x|7P7 we have
(i) VT [uS](x)] < ealx| P! vx e Qf
(i) |VTud](x) = VTe[ugl(y)| < calx| P17 |x — y|*  Vx,y € @, |x| < |yl
(i) To[us](x) < calx|~Pa1(dist (x, 3Q%))* Vx € QF.
(4.41)

This implies that the set of functions {T;[u 1}, is equicontinuous in the C'-loc topology of
Rﬁ and there exists a sequence {{,} — 0 and a function U such that T}, [u&] — U9 in this
topology of ]Rﬁ , and U is a positive solution of (3.17) in Rﬁ which vanishes on BRf\{O}.
From (4.34) and (4.40) there holds U = U st and therefore

. Qq_
KIE}) Tylug] = Usil—l. (4.42)
This implies (4.28) and
; Q
rlg% rPa Uy, (r,o) = WgN-1 (o) (4.43)
uniformly on compact subsets of S f -1 O
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Up to minor modifications the proof of the next classification theorem is similar to the
one of Theorem 4.2.

Theorem 4.4 Assume N —1 <q < N — % Ifu € C(Q\{0}) N CY() is a positive solution
of (3.17) in Q2 which vanishes on dQ\{0}, then we have the following alternative:

(i) either there exists k > 0 such that (4.9) holds,
>i1) or (4.10) holds.

Acknowledgments This research was supported by FONDECYT-1110268 for the first and second author
and Mathamsud 13 MATH-03 for the three authors. The authors are grateful to the referee for a careful reading
of the manuscript.

Appendix A: Positive p-harmonic functions in a half space

In this section we prove the following rigidity result.

Theorem 5.1 Assume 1 < p < Nandu € Cl(Rﬁ) N C(@\{O}) is a positive p-harmonic
function which vanishes on aRf\{O} and such that leﬂ* u(x) is bounded. Then there exists
k > 0 such that

u(x) = kW (x) Vx e RY. (5.1)

Proof Since |x|B* u(x) is bounded, leﬂ*"'1 Vu(x) is also bounded and there exists m > 0
such that u(x) < mW,(x) in B;. We denote by k the infimum of the ¢ > 0 such that
u(x) < cWi(x). Then

0 <u(x) <kWi.(x) Vxe Rﬂ\{O} (5.2)

and we assume that k > 0 otherwise # = 0. Assume that the graphs over Rf of the functions
X = u(x)and x — kW, (x) are tangent at some point xg € Rﬁ orxg € BRf\{O}. Since VW,
never vanishes in RZ\{O} it follows from the strong maximum principle or Hopf Lemma that

u = kW,. If the two graphs are not tangent in @_}Z\{O}, either they are asymptotically tangent
at 0, or at co.

(i) Inthe first case there exists two sequences {k, } increasing to k and {x, } C ]Rﬁ converging

u(xp)
Wy ()

p-harmonic and positive and 0 < u,, (x) < k x| 7B ‘/’*(ﬁ); therefore

to zero such that

= k,. We setr, = |x,| and u,, (x) = ry u(r,x). Then u,, is

|Vin, ()| < Clx|7#71 and  |Vuy, (x) — Yy, (X)] < C x| P17 |x — x|
(5.3)
for0 < |x| < |x’| and some constants C > Oand« € (0, 1). Up to a subsequence, we can
assume thatu,, converges to some U inthe C 110 . topology ofﬁf\{O} and “:—;’ — &€ Siv -1

The function U is p-harmonic and positive in Rﬁ and satisfies 0 < U < kW, in Rﬁ and
UE) = kWa(§) if & € SY 7 or Uy (§) = kW, (§) if & € 35V 1 Tt follows from the
strong maximum principle or Hopf Lemma that U = kW,.. Therefore u,, — kW, and in
particular

B ury, o)

1im
=0 Yy (o)

=k uniformly on SY~'. (5.4)
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For any € > 0, there exists ne € Ny such that for n > ne, (k — €)W, (x) < u(x) <
(k + €)W, (x) if |x| = ry. This implies (k — €)Wy (x) < u(x) < (k + €)W, for |x| > r,
and therefore in RV . Since € is arbitrary, we deduce that u = kW,.
(ii) if the two graphs are tangent at infinity, there exist two sequences {k,} increasing to k
and {x,} such that r,, = |x,| — oo with u(x,,) = k,, W«(x,) and
ﬂ*
lim Um0 4 niformly on SV, (5.5)
m—=>00 Y (o)
Therefore we look at the supremum of the ¢ > 0 such that u > cW,. If the set of such c is
empty, it would mean that

inf % .
cerl Uu(o)

Clearly, if this infimum is achieved at some point, the strong maximum principle or Hopf
Lemma imply u = 0, contradicting (5.5), and this relation prevents also this infimum be
achieved at infinity. We are left with the case where there exists a sequence {z,} C RY,
converging to 0, such that

u(zy)

lim = (5.6)
n—00 W, (zp,)
By boundary Harnack inequality [2, th 2.11], there exists ¢ > O such that
_1 u(@) u(zn) u(z) N
< <c Vz € R} s.t. |z] = |z, (5.7)
V@) T W) T W) ! ’
Combining (5.6) and (5.7), we derive that
lim sup o, (5.8)

n=>00 ||=|z,| Wx(2)

Denoting by €, the supremum in the above relation, we obtain that u < €, ¥, in ]RZX \Be,
and finally u = 0, contradiction. Thus we are left with the case where there exists k” € (0, k]
which is the supremum of the ¢ > Osuch thatu > cW,. Inparticular u > k’W,. Remembering
that u < kW, we get k = K/, which implies u = kW,.

Next we assume that kK < k. Clearly the graphs of u and k' W, cannot be tangent in ﬁﬁ,
because of strong maximum principle or Hopf Lemma. They cannot be tangent at infinity
because of (5.5). Therefore there exist two sequences {k),} increasing to k" and {x,} C Rf

u(x;)
L\ (x;,)

converging to 0 such that = kj,. As in case (i) we obtain that

ru, o)

lim =k’ uniformly on S¥ !, 5.9
700 (o) yon ot (59)
where r), = |x,’1|, and finally derive that u = k' W,, a contradiction with (5.5). Therefore
k = k’, which ends the proof. |

Remark In the case p = N the result holds under the weaker assumption | llim u(x) =0.
X|— 00
This is due to the fact that this condition implies by regularity
u(x)

lim —— =0

[x]—00 X
a)sjrv—l Xl
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and therefore

ux) <mPy(x) Vx st |x|>1,

u(x)

where m = maxjyj=1 ;= -
sy x|

Using the inversion x +> s we obtain that the estimate

u < m¥, holds RV, and we conclude by Theorem 5.1.

Remark We conjecture that the rigidity result holds under the mere condition

lim [x| P u(x) =0, (5.10)

|x|—o00

were f§ is the (positive) exponent corresponding to the regular spherical p-harmonic function
under the form

~ 2~ X
U= [xf (), (5.10)
|x]

see [12,14]. Note that,f? = 1when p=N.

Appendix B: Estimates on g,

When N =2 and | < p <2, itis proved in [9] that
_3—p+2Jp*—5p+7
3(p—1 '

Up to now no estimate is known when N > 2 except in the cases p = 2 where . = N — 1
and p = N where B, = 1, besides the classical one

B (6.1)

N —
B> T 6.2)
p—1
valid when p < N. In this section we prove the following result
Theorem 6.1 Assume 1 < p < N. Then the following estimates hold:
N -1
l<p<2=— B> T (6.3)
N—p N -1
2<p<N=—max{l, —— < B < . (6.4)
p—1 p—1
Remark 1t is worth noticing that when p = 2 or p = N, there holds B, = %

Proof of Theorem 6.1 We consider the following set of spherical coordinates in R_’X with
x=(X1,...,XN)

X1 =rsinfy_jsinfy_p...sin6; sin O

Xp =rsinOy_qsinfOy_s...sin0d cos b

XN_1 =rsinfy_jcosOy_»
XN =rcosfy_g (6.5)
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with 0; € [0,27] and 6, € [0, 7] fork =2,...,N —2 and On_; € [O, %]. Under this
representation, a solution w of (3.2) verifies

p—2
1 v
 N=2 2.2 2 2
— =3 |sin" TON_1 | Bio" t oy, + —5— Voo @gy_
sinV—2 On_1 * On-1 sin? On_1 Nt
ON—-1
1 p=2
2
— zidlvé/ SinN_2 GN_] 30)2 =+ a)gN—l =+ 3, |Vg/a)|2 VQ/(K)
sin“ Oy _1 sin“ Oy _1
| P2
2
= Bulg, | sinV 20y ( ot o, |V9/a)|2) ® (6.6)
sin“ Oy _1

where Vg and di vé, denotes respectively the spherical gradient the divergence in variables

0 = (6,...,0y_2) parameterizing SN-2 and Apg, is defined in Introduction. If w is the
unique positive solution of (3.2) (up to homothety), it depends only on 65 _; and is C*°. For
simplicity we set Oy_1 = 6 € [0, %] and w = w () satisfies
_ 1 sinN_Ze( 2w2+w2)";2 — B.A V=29 (8202 n 5
) o G wp | = BsxAp, |sin ( WOMEE a)g) w
sin 0 0
T
. 0. 7)
in ( >
b4
® (5) — 0, wp(0) = 0. 6.7)

Step 1: the eigenvalue identity Equation (6.7) can also be written under the form

B2w + wee

—wpyg — (N —2)cotO wy — -2
00 — ( ) 9 — (p ),8$a)2+w§

g = Belp,. (6.8)
By multiplying (6.8) by cos @ sin¥ =2 @ and then integrating over (0, 7) we obtain

% L N=2 % . N-=-2
—/ (wgg + (N — 2) cot 6 wy) cos O sin 0d0 = (N — 1)/ w cos 6 sin 0do.
0 0

Noticing that
N-—-1
Bilhp, +1=N=(p—1) 'B*_F Bx+ 1)
we derive
LapY)
2
2-p ngw cos 0 sinV "2 0do
0 B’ + w
N-—1 7
=(p-1 (,8* — 71) (B« + 1)/ wcosOsin¥ 2 0do. (6.9)
p— 0

Step 2: elliptic coordinates and reduction Writing o (0) = w(0) + ab? + 0(62), wp(9) =
2a60 + 0(0) and wge (0) = 2a + o(1), then —Na = B4 Ag, . This implies that w is decreasing
near 0. It is immediate that it cannot have a local minimum in (0, %), therefore it remains
decreasing in the whole interval. We parameterize the ellipse

Er={(X,y):x>O,y<0, x2+’3*_2y2=r2}
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by setting
w=rcos¢ and —wy = Byrsing with ¢ = ¢(0) and r = r ().

The functions  and ¢ are C2. Hence rg cos¢ — rsin gy = —PByr sin ¢, then ry cos¢p =
(g — By)rsing and rg = (¢g — Bs)r tan ¢. Plugging this into (6.8), we derive
—Qp—D%+¢Mm¢+w>anm@+Ammm:o, (6.10)
and finally
(p— D(¢g — Bs)tan g + (g — Ap,) cotep = (2 — N) cot 6. (6.11)

Step 3: estimates on ¢p We can write (6.11) under the equivalent form

cosf sin¢

(p— 1y — B tan* ¢ + g — Ag, = 2 — N) — (6.12)
cos ¢ sind
Since
. sing .. cos¢g
1 =1 _
Glino sin 6 921}) cos O ®o = ¢0(0),
Apy

we derive ¢g(0) — Apg, = (2 — N)¢py(0) and thus ¢y (0) = =5 . Similarly, the expansion of
¢ (0) near 6 = 7 yields to ¢4 (5) = Bs. Since p < N, Ag, /(N — 1) < Bi. We claim now
that

$o(0) < B. VO € (o, %) . 6.13)
If Ag, < B, then
(2= Nycotd = (p— 1)(¢s — B) tan g + (dy — Ap,) cot ¢
> ((p — 1) tan ¢ + cot ¢) (dg — Bs)

thus (6.13) holds.
Next we assume B, < Ag,.Itmeans 0 < (p —2)B4 — (N — p) and thus p > 2. We claim
that

N -2
B < —. (6.14)
p—2
We proceed by contradiction and assume
N-2
By > ——. (6.15)
p—2
Then
» N-—p N -2 N-=-2
(P—=2\ B — Bi — =(pP-2@B«+D|Bs———=)>0.
p—=2 p—=2 p—2
Equivalently
Bsx(Ap, — Bs) > N — 2.
Since
. . cosf . sin @ 1
lim cotftan¢ = lim = lim : = —
07 0—-% cosp 9% ¢psing Py
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and
(p— D(@p(0) — B tan’ ¢ = Ag, — ¢() + (2 — N) cos? sinp
cos ¢ sinf
1
= 5 (Bu(8p, = B +2= V) +o(D, (6.16)

thus, if (6.15) holds there exists € > 0 such that ¢y (0) > B, for any 6 € [% — €, %). Since
¢9(0) < Bs, there exists 8 € (0, 7) such that ¢y (0) = B, and ¢gg(0) > 0. We compute ¢gg
and get

(p — Do (o — Bi) sec’> ¢ + ((p — 1) tan ¢ + cot §) pgs — do(ds — Ap,) csc? ¢
=(N-2) csc? 6
Hence, at 0 = 0

d00(0) ((p — Dtan$(0) + cot () = B (Bx — Ap,) csc® $(8) + (N — 2) esc? 6
From (6.11),

to(0) N-2 o
CO! = —  CO

Therefore
A@) == ¢oo(0) ((p — 1) tan ¢ () + cot ¢ (0))

( N-2 )2 2 >
={1+{-—5) cot®0 ) Bs(Bsx — Ap,) + (N — 2)(1 + cot” 0)
Aﬁ*_lg*

a2
=ﬂ*(ﬁ*—Aﬂ*)+N—2—(% +2—N)c0t26’_
Bx T Px

=—(p—2(p +1)(/3 —N_z)— N=2
=—p * * b2 Ap, — P

<0, 6.17)

(B«(N — 1) — Ag,) cot? 0

using (6.15) and the fact that N > p. This is a contradiction, thus (6.14) holds.

Next, if B, < %, it follows from (6.16) that there exists € > 0 such that ¢y < P
in [ — €, 7). If (6.13) is not true, there exist 0 < 6 < 6, < 7 — € such that ¢y (61) =
D0 (62) = Bx, Poo(01) > 0, g (62) < 0. Using the equation satisfied by ¢pg, we obtain for
i=1,2,

N-2 N-=-2
AWO)=C2=p)B:+ 1D (ﬂ* . 2) (B«(N = 1) = Ap,) cot® ;. (6.18)

B A/S* - ,3*
On one hand A(6) <0 < A(0;), and on the other

N -2 2 2
A(02) — A(O) = m(ﬁ*(N — 1) — Ag,)(cot” 0 — cot” 62) > 0,

s

since cot is decreasing in (0, %), cot?6; > cot? 6y, a contradiction. Therefore g9 < B in
0, 3).
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Finally, if B, = %‘22 and the maximum of ¢y on [0, %) is larger than B, and achieved at
some 6 < % the exists 8; < 6 such that ¢ (8;) = B« and ¢gp (61) > 0. In that case
N -2

OSA(QI):—W
e Pk

(B«(N —1) — Aﬂ*)cot291 <0

which is again a contradictions.
Step 4: end of the proof Since r? = fa)z + wg, ro = r(¢o — Px) tan ¢, we have

rro = (B2w + weg) wo = r(dg — i) tan .
Since wy < 0 on (0, %), it follows from Step 3 that ﬂfa) + wpy > 0 and thus

pig
T
2 pyw + weg . N—
%wéa) cos6sin¥"20d6 > 0,
0 Bio~+ wj

since the integrand cannot be identically 0. The conclusion follows from (6.9). O

Remark wy(5) = —c% < 0, it follows w(0) = —wg(0) cot O + O(5 —0)as6 — 7, and
from the eigenfunction Eq. (6.8)

ﬂ§w+wee 2 2
= wp = (Biw + wgg) (1 + 0(1)).
B+l (B 960 ( )

Therefore
T
—(p — Dwpo = (BsAp, + (p — 2)/33 +2-Nw(l +o(l)) asd — 2
and since A'w 1= wgg + (N — 2) cot 0 wy

Ny PxBCPp=3)+p—-N)+(p—-2)(N -2
N = 1
p—

w(l +o(1)) as6 — %

Because w is C* we obtain finally
|A/w‘ < cw, (6.19)

for some ¢ > 0.
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