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Abstract We study the polyharmonic problem �mu = ±eu in R
2m , with m ≥ 2. In par-

ticular, we prove that for any V > 0, there exist radial solutions of �mu = −eu such
that ∫

R2m
eudx = V .

It implies that form odd, given any Q0 > 0 and arbitrary volumeV > 0, there exist conformal
metrics g onR2m with constant Q-curvature equal to Q0 and vol(g) = V . This answers some
open questions in Martinazzi’s work (Ann IHP Analyse non linéaire 30:969–982, 2013).

Mathematics Subject Classification 35J30 · 53A30 · 35J91

1 Introduction

In R
2m , if the conformal metric gu = e2u |dx |2 satisfies (−�)mu = Q(x)e2mu , it is well

known that (see for instance [1]) Q(x) is just the Q-curvature of the metric gu . Here |dx |2
is the Euclidean metric.

One interesting question in conformal geometry is to understand the metrics with constant
Q-curvature, i.e. to understand solutions of (−�)mu = Qe2mu in R

2m with Q ∈ R. Consid-
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ering v = u − ln λ with λ > 0, (−�)mu = Qe2mu is equivalent to (−�)mv = λ2mQe2mv .
Therefore the precise value of Q is not important andwe can reduce the study to Q ∈ {0,±1}.

For Q > 0 case, let (S2m, gS2m ) be the standard unit sphere in R
2m+1 and π :

S
2m\{(0, . . . , 0, 1)}→ R

2m be the stereographic projection.Weknow thatQg
S2m

= (2m−1)!
and

(π−1)∗gS2m = 4|dx |2
(1 + |x |2)2 =: gπ .

Consequently Q(gπ ) = (2m − 1)!. By scaling and translation, for any x0 ∈ R
2m , λ > 0,

ux0,λ = ln
2λ

1 + λ|x − x0|2 (1.1)

satisfies

Q
(
gux0,λ

) = (2m − 1)! and vol
(
gux0,λ

) =
∫
R2m

e2mux0,λdx = vol(S2m).

For m = 1, Chen and Li [3] proved that any solution to

−�u = e2u in R
2, vol(gu) =

∫
R2

e2udx < ∞ (1.2)

is given by the formula (1.1), hence vol(gu) = vol(S2), i.e. any conformal metric g in R
2

with positive constant Gauss curvature and finite volume is provided by the stereographic
projection of S2 into R

2, up to translation and dilation.
Remark that without the assumption of finite volume, Liouville [10] showed that there are

many other entire solutions to −�u = e2u in R
2.

The situation is very different for m > 1. Consider the problem

(−�)mu = (2m − 1)!e2mu in R
2m, vol(gu) =

∫
R2m

e2mudx < ∞. (1.3)

Chang & Chen [2] proved the existence of non-spherical solutions: When m > 1, for any
0 < V < vol(S2m), there exists a solution to (1.3) such that vol(gu) = V .

The condition vol(gu) < vol(S2m) was not only suggested by technical reasons, but it
is also necessary when m = 2. Indeed, let m = 2, Lin showed in [9] that any solution to
(1.3) verifies vol(gu) ≤ vol(S4), and the equality holds if and only if the solution is spherical
(i.e. given by (1.1)). Moreover, when m = 2, Wei and Ye [14] proved the existence of
solution with any asymptotic behavior at infinity predicted by Lin. In particular, it means that
for m = 2 and any volume V less than vol(S4), there exists a very rich family of non radial
solutions of (1.3) with vol(gu) = V . Thus the situation in R

4 is somehow well understood
for Q > 0.

Recently, Martinazzi [12] found striking and new phenomena for m ≥ 3: The solutions
to (1.3) can have volume larger than vol(S2m). More precisely,

(i) for m = 3, there exists V ∗ > 0 such that for any V ≥ V ∗, we have a solution u of (1.3)
in R

6 such that vol(gu) = V ;
(ii) for any m ≥ 3 odd, there exists Vm > vol(S2m) such that for every V ∈ (0, Vm], there

is a solution u of (1.3) satisfying vol(gu) = V .

However, he could not rule out that V3 < V ∗ in (i)–(ii) (when m = 3) and he asked if a gap
phenomenon is possible, that is, could it be a volume V in (V3, V ∗) such that the problem
(1.3) has no solution verifying vol(gu) = V ? He asked also if the result in (i) could be
generalized for m ≥ 5 odd.
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In this work, we generalize completely (i)–(ii) by proving that for m ≥ 3 odd, there exist
solutions to (1.3) with arbitrary volume.

Theorem 1.1 For every m ≥ 3 odd, and every V ∈ (0,+∞), there exists a conformal metric
in R

2m satisfying Qg ≡ (2m − 1)! and vol(g) = V .

The result for m even is less complete, but still suggests that no gap phenomenon exists
for (1.3).

Theorem 1.2 For every m ≥ 2 even, let

V =
{∫

R2m
e2mudx, with radial function u satisfying (1.3)

}
.

Then V is an interval.

Our approach is to study respectively entire radial solutions of the following polyharmonic
equations (m ≥ 2):

�mu = −eu in R
2m (1.4)

and
�mu = eu in R

2m . (1.5)

The main results are

Theorem 1.3 Let m ≥ 2. Then for any V ∈ (0,+∞), there exists a radial solution u to
(1.4) such that ∫

R2m
eudx = V .

Theorem 1.4 Let m ≥ 2. If there exists an entire radial solution u0 to (1.5), then for any
0 < V < ‖eu0‖L1(R2m ), there exists a radial solution u of (1.5) such that

∫
R2m

eudx = V .

Notice that given a solution u to (1.4) or (1.5), the function v := 1
2m [u − ln(2m)!] solves

(−�)mv = ±(−1)m+1(2m − 1)!e2mv in R
2m,

∫
R2m

e2mvdx = 1

(2m)!
∫
R2m

eudx .

Hence,Theorems1.1 and1.2 are just direct consequenceofTheorems1.3 and1.4 respectively.
So we need just to prove Theorems 1.3 and 1.4.

Furthermore, for the negative constantQ-curvature case, i.e.whenQ < 0, there is no entire
solution to �u = e2u in R

N for m = 1 and any dimension N ≥ 1 (see for example Theorem
1 in [13]). Here again, we find a completely different situation form > 1. Recently, Hyder &
Martinazzi showed that for anym ≥ 2,V > 0, and any polynomial P(x) of degree≤ (2m−2)
verifying lim‖x‖→∞ x ·∇P(x) = ∞, there exists u such that (−�)mu = −(2m − 1)!e2mu in
R
2m and∫

R2m
e2mudx = V, u(x) = −P(x) + 2V

vol(S2m)
ln ‖x‖ + C + o(1) as ‖x‖ → ∞.

The above result is a direct consequence of Theorem 1.2 in [7] combined with Theorem C
there, which was previously proved in [11].
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2 Proof of Theorem 1.3

2.1 Preliminaries

Consider the following initial value problem in R
N for general dimensions N ≥ 3.⎧⎪⎨

⎪⎩
�mu = −eu,

u(2i+1)(0) = 0, ∀ 0 ≤ i ≤ m − 1,

�i u(0) = ai , ∀ 0 ≤ i ≤ m − 1.

(2.1)

Here u(x) = u(r) is a radial function, the Laplacian � is seen as �u = r1−N
(
r N−1u′)′

and
ai are constants in R. We will denote u(ai ) the radial solution to (2.1).

Clearly, there exist suitable constants αi such that �α(r) = ∑
0≤ j≤m−1 α j r2 j verifies

�i�α(0) = ai , ∀ 0 ≤ i ≤ m − 1.

As �m(u(ai ) − �α) = −eu(ai ) < 0, it’s easy to check that u(ai )(r) ≤ �α(r) whenever
u(ai ) exists. Therefore −eu(ai ) is locally bounded whenever u(ai ) exists. Applying standard
ODE theory (for example as the proof of Proposition A3 in [5]), we can claim that for any
(ai ) ∈ R

m , the unique radial solution of (2.1) is defined globally in R+, in other words, an
entire radial solution to �mu = −eu exists in R

N for any (ai ).

Remark 2.1 For N 
= 2m, if u is a solution to (2.1) with eu ∈ L1(RN ), we can get solution
with arbitrary L1 norm by the scaling uλ(x) = u(λx) + 2m ln λ, since

�muλ = −euλ ,

∫
RN

euλdx = λ2m−N
∫
RN

eudx .

So our main concern here is only relevant for N = 2m. We should mention that Farina &
Ferrero provide recently in [4] many precise studies for radial solutions of �mu = ±eu in
R
N with general m, N ∈ N

∗.

The following Lemma is inspired by [4]. It’s a simple but important fact for our proof.

Lemma 2.2 Let m ≥ 3 and u be a radial solution to (2.1), if am−2 = �m−2u(0) = 0. Then
limr→+∞ �m−1u(r) < 0.

Proof Let v = �m−1u. As �v = −eu < 0, v(r) is decreasing in R+, so limr→+∞ v(r) =
� ∈ R ∪ {−∞} exists. Assume that � ≥ 0, then v(r) > 0 in R+ and �m−2u(r) is increasing
in r , which implies limr→+∞ �m−2u(r) = �1 > 0, since �m−2u(0) = 0. By iterations, we
conclude that

lim
r→+∞ �ku(r) = ∞, ∀ 0 ≤ k ≤ m − 3.

Therefore limr→+∞ �v(r) = −∞. Again, by integrations, we get limr→+∞ v(r) = −∞,
which contradicts � ≥ 0, hence there holds � < 0. ��

A useful consequence of Lemma 2.2 is the following continuity result.

Proposition 2.3 Let m ≥ 3 and �0 := R
m−2 × {0} × R. Then for any (ai )0≤i≤m−1 ∈ �0,

i.e. am−2 = 0, the radial solution u(ai ) to Eq. (2.1) satisfies

V (ai ) :=
∫
RN

eu(ai )dx < ∞.

Moreover, the function V is continuous in �0.
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Proof Given (ai ) ∈ �0, limr→+∞ �m−1u(ai )(r) < 0 by Lemma 2.2, hence there is R > 0
large such that �m−1u(ai )(R) < 0.

By ODE theory, the radial solution u(ai ) to equation (2.1) is continuous with respect to
(ai ) in Ck

loc(R
N ) for any k ∈ N. Consequently, there exists δ > 0 small such that for any

|(a′
i ) − (ai )| ≤ δ, there holds

∥∥∥u(a′
i )

− u(ai )

∥∥∥
C2m (BR)

≤ 1 and �m−1u(a′
i )
(R) ≤ �m−1u(ai )(R)

2
=: −M < 0.

As�m−1u is decreasing in r for any radial solution to�mu = −eu , we have�m−1u(a′
i )
(r) ≤

−M if r ≥ R and |(a′
i ) − (ai )| ≤ δ. Therefore, for r ≥ R and |(a′

i ) − (ai )| ≤ δ,

�m−2u(a′
i )
(r) = �m−2u(a′

i )
(R)

+
∫ r

R

1

ρN−1

[
RN−1

(
�m−2u(a′

i )

)′
(R) +

∫ ρ

R
sN−1�m−1u(a′

i )
(s)ds

]
dρ

≤ C1 +
∫ r

R

(
−M

N
ρ + C2ρ

1−N
)
dρ

≤ −Mr2

2N
+ MR2

2N
+ C1 + C2R2−N

N − 2
= −Mr2

2N
+ C3.

Here Ci are some constants independent of (a′
i ) verifying |(a′

i ) − (ai )| ≤ δ. We get then
M ′ > 0 and R′ ≥ R such that

�m−2u(a′
i )
(r) ≤ −M ′ < 0, for all r ≥ R′, |(a′

i ) − (ai )| ≤ δ.

By iterations, we can conclude that there exist M0 > 0 and R0 large such that

u(a′
i )
(r) ≤ −M0r

2m−4, for all r ≥ R0, |(a′
i ) − (ai )| ≤ δ.

Clearly V (ai ) < ∞ by the above estimate. It’s not difficult to deduce the continuity of V in
(ai ) using the continuity of u(ai ) in C

0
loc(R

N ) with respect to (ai ), and the uniform estimate
out of a compact set, we omit the details. ��

If m = 2, we consider radial solutions to the following biharmonic equation
⎧⎪⎨
⎪⎩

�2u = −eu

u′(0) = u′′′(0) = 0,

�u(0) = a, u(0) = −b.

(2.2)

Corresponding to Lemma 2.2 for m ≥ 3, we have

Lemma 2.4 For any a, b ∈ R, the radial solution to (2.2) satisfies limr→+∞ �u(r) < 0.

Proof Let v = �u, as�v = −eu < 0, v is decreasing in r ∈ (0,+∞). So limr→+∞ v(r) =
� exists. If � ≥ 0, we have v(r) > 0 in R+, then u is increasing in r and �v = −eu ≤
−eu(0) = −e−b in R

N . Then limr→+∞ v(r) = −∞ since

v(r) − a =
∫ r

0

1

ωN−1ρN−1

∫
Bρ

�vdxdρ ≤ −e−b r2

2N
.

This contradicts the assumption � ≥ 0. So � < 0. ��
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Here and after, ωN−1 denotes the volume of the standard sphere SN−1 ⊂ R
N . Denote ua,b

the radial solution to (2.2) and

Ṽ (a, b) :=
∫
RN

eua,bdx .

Using Lemma 2.4, we can prove the continuity of Ṽ very similarly as for Proposition 2.3, so
we omit the proof.

Proposition 2.5 For any (a, b) ∈ R
2, Ṽ (a, b) < ∞. Moreover, Ṽ is continuous in R

2.

2.2 Solutions with large volume for (1.4)

Here we prove the existence of radial solutions to (1.4) with any large volume. As mentioned
in Remark 2.1, the problem is relevant only in the conformal dimension. From now on, we
fix N = 2m, even though similar result holds true for any N ≥ 3. The crucial point is to
consider some special initial conditions.

More precisely, for m ≥ 3 and N = 2m, let

c0 := 4m−1 ×
m−1∏
k=1

[
k(m − 1 + k)

]
(2.3)

and consider (2.1) with (ai ) = (−b, 0, . . . 0, c0) ∈ �0 = R
m−2 × {0} × R.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�mu = −eu,

u(2i+1)(0) = �ku(0) = 0, ∀ i = 0 . . .m − 1; k = 1, . . .m − 2,

�m−1u(0) = c0,

u(0) = −b < 0.

(2.4)

Theorem 2.6 Let m ≥ 3, denote by ub the radial solution to equation (2.4). Then

lim
b→+∞

∫
R2m

eubdx = +∞. (2.5)

Similarly, let a = 8 in (2.2) for m = 2, there holds

lim
b→+∞ Ṽ (8, b) = +∞. (2.6)

Proof We handle the casesm ≥ 3 andm = 2 together. For simplicity and without confusion,
we denote by u the solution to (2.4) or the solution to (2.2) with a = 8.

For any m ≥ 2, let �(x) = �(r) = r2m−2 − b. Hence �m� = 0 in R
2m and �i�(0) =

�i u(0) for any 0 ≤ i ≤ m − 1. Set w = u − �, then �mw = �mu = −eu < 0 and
�iw(0) = 0 for 0 ≤ i ≤ m − 1. By iterations, we deduce easily that �iw ≤ 0 in R

2m for
0 ≤ i ≤ m − 1. In particular, w ≤ 0 in R

2m , i.e. u ≤ � in R
2m .

Let R0 := b
1

2m−2 , the unique zero of � in (0,∞). To prove (2.5) or (2.6), we proceed by
three steps.

Step 1. Estimate of �m−1w(R0).
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As �mw = −eu , we have, for any r > 0,

�m−1w(r) = −
∫ r

0

1

ρ2m−1

∫ ρ

0
eu(s)s2m−1dsdρ

≥ −
∫ r

0
ρ1−2m

∫ ρ

0
e�(s)s2m−1dsdρ

= −
∫ r

0
es

2m−2−bs2m−1ds
∫ r

s
ρ1−2mdρ

= − 1

2m − 2

∫ r

0
es

2m−2−bs

[
1 −

( s
r

)2m−2
]
ds

≥ −
∫ r

0
es

2m−2−b
(
1 − s

r

)
sds

= −r2

2

∫ 1

0
er

2m−2tm−1−b(1 − √
t
)
dt.

For the second inequality, we used the convexity of the function h(x) = x2m−2 in R+ and
we applied the change of variable t = r−2s2 for the last line. Therefore,

�m−1w(R0) ≥ − R2
0

2

∫ 1

0
eb(t

m−1−1)(1 − √
t
)
dt =: ξ(b).

Moreover, there exists λ > 0 depending onm such that λ(1−t) ≤ 1−tm−1 for any t ∈ [0, 1].
So we get

∫ 1

0
eb(t

m−1−1)(1 − √
t)dt ≤

∫ 1

0
eλb(t−1)(1 − t)dt

= 1

λ2b2
−

(
1

λb
+ 1

λ2b2

)
e−λb = O

(
1

b2

)
as b → ∞.

As �m−1w(r) is decreasing in r , there holds

�m−1w(r) ≥ �m−1w(R0) ≥ ξ(b) = O
(
b

1
m−1−2

)
for r ≤ R0. (2.7)

Step 2. Estimates of �i u(r), i = 0, ...,m − 1 for r > R0.
Define r0 = inf {r > 0, u(r) = 0} ∈ (R0,+∞]. We claim that

lim
b→+∞(r0 − R0) = 0. (2.8)

Remark that u ≤ 0 in [R0, r0], so �mw = −eu ≥ −1 if R0 ≤ r ≤ r0. Therefore, if
r ∈ [R0, r0],

�m−1w(r) ≥ �m−1w(R0) −
∫ r

R0

1

ω2m−1ρ2m−1

(∫
BR0

e�dx +
∫
Bρ\BR0

dx

)
dρ,

= �m−1w(R0) −
∫ r

R0

ρ1−2m
(∫ R0

0
es

2m−2−bs2m−1ds +
∫ ρ

R0

s2m−1ds

)
dρ.

When b → +∞, there holds

η(b) :=
∫ R0

0
es

2m−2−bs2m−1ds = R2m
0

∫ 1

0
e−b(1−t2m−2)t2m−1dt = O

(
R2m
0

b

)
.
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We obtain that for r ∈ [R0, r0],

�m−1w(r) ≥ �m−1w(R0) − η(b)R1−2m
0 (r − R0) − 1

2m

∫ r

R0

ρ

[
1 −

(
R0

ρ

)2m
]
dρ. (2.9)

On the other hand, by the convexity of h(x) = x2m in R+,

1

2m

∫ r

R0

ρ

[
1 −

(
R0

ρ

)2m
]
dρ ≤

∫ r

R0

ρ

(
1 − R0

ρ

)
dρ = (r − R0)

2

2
, ∀ r ≥ R0.

Denote r̃0 := min {r0, R0 + 1}. Combining (2.7) and (2.9), for r ∈ [R0, r̃0], we have (as
m ≥ 2)

�m−1w(r) ≥ O
(
b

1
m−1−2

)
− O

(
R0

b

)
(r − R0) − (r − R0)

2

2
≥ O(1). (2.10)

Using again (2.7), we obtain

�m−1w(r) ≥ O
(
b

1
m−1−2

)
+ O(1)χ[R0,r̃0], ∀ r ∈ [0, r̃0].

Here and in the following, χA denotes the characteristic function of a subset A and O(1)
denotes a quantity uniformly bounded for b sufficiently large.

By iterations, for 0 ≤ j ≤ m − 2 and r ∈ [0, r̃0], we get
� jw(r) ≥ O

(
b

1
m−1−2

)
r2(m−1− j) + O(1)χ[R0,r̃0]. (2.11)

In particular, let j = 0, there holds

u(r) ≥ �(r) + O
(
b

1
m−1−2

)
r2(m−1) + O(1)χ[R0,r̃0], ∀ r ∈ [0, r̃0].

Using the convexity of �, we have then

u(r) ≥ (2m − 2)R2m−3
0 (r − R0) + O

(
b

1
m−1−2

)
r2(m−1) + O(1) in [R0, r̃0].

Fix any ε ∈ (0, 1), suppose that r0 > R0 + ε. Then

0 > u(R0 + ε) ≥ (2m − 2)b
2m−3
2m−2 ε + O

(
b

1
m−1−1

)
+ O(1),

which is impossible for b large enough, since

2m − 3

2m − 2
− 1

m − 1
+ 1 = 4m − 7

2(m − 1)
> 0, ∀ m ≥ 2.

In other words, when b is sufficiently large, we have r0 ≤ R0+ε, so the claim (2.8) is proved.
An immediate consequence of (2.8) is

lim inf
b→+∞ �m−1u(r0) ≥ c0. (2.12)

Indeed, applying the first inequality in (2.10),

�m−1w(r0) ≥ O
(
b

1
m−1−2

)
− O

(
R0

b

)
(r0 − R0) − (r0 − R0)

2

2
,

we get lim infb→+∞ �m−1w(r0) ≥ 0 by (2.8), hence (2.12) holds true as �m−1� ≡ c0.
Step 3. The proof of (2.5) and (2.6).
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Consider first m ≥ 3. Recall that we denote by u, the radial solution of (2.4). Let

V (b) :=
∫
R2m

eudx = ω2m−1

∫ ∞

0
eu(s)s2m−1ds.

By equation �mu = −eu , we get

r2m−1(�m−1u)′(r) = −
∫ r

0
eu(s)s2m−1ds ≥ − V (b)

ω2m−1
.

For any r > r0, using the above inequality on [r0, r ], there holds

�m−1u(r0) ≤ �m−1u(r) + V (b)

ω2m−1

∫ r

r0
s1−2mds ≤ �m−1u(r) + V (b)

ω2m−1

∫ ∞

r0
s1−2mds

= �m−1u(r) + V (b)r2−2m
0

(2m − 2)ω2m−1
.

Tending r to +∞, we conclude by Lemma 2.2 that

V (b) > (2m − 2)ω2m−1r
2m−2
0 �m−1u(r0).

Hence limb→+∞ V (b) = +∞ by (2.12) and limb→+∞ r0 = +∞.
The proof of (2.6) is completely similar, so we omit it. ��

Remark 2.7 The formula (2.6) gives a positive answer to a question in [12], page 981.
Assume that u solves (2.2) with a = 8 in R

4. Let v(x) = u(λx) + 4 ln λ with λ = eb/4, then
�2v = −ev , v(0) = 0 and v′′(0) = eb/2u′′(0) = 2eb/2. Hence v′′(0) → +∞ is equivalent
to b → +∞.

2.3 Proof of Theorem 1.3 completed

Letm ≥ 3 and ũb be the radial solution to equation (2.1) with (ai ) = (−b, 0, ...0,−c0) ∈ �0.
As above, there holds ũb ≤ �(r) := −r2m−2 − b in R

2m . Hence

lim
b→+∞

∫
R2m

eũbdx ≤ lim
b→+∞

∫
R2m

e�dx = lim
b→+∞

∫
R2m

e−|x |2m−2−bdx = 0.

ByProposition 2.3, Theorem2.6 and the above estimate,we get readily thatV (�0) = (0,∞),
so we are done.

The argument for m = 2 is completely similar. Considering the radial solution ũb to (2.2)
with a = −8, we prove easily that infR2 Ṽ (a, b) = 0. Using (2.6) and Proposition 2.5, there
holds Ṽ (R2) = (0,∞). ��

3 Proof of Theorem 1.4

For (1.5), we use a different approach, which is based on the following well-known compar-
ison result (see for instance Proposition A.2 in [4])

Lemma 3.1 Let u, v ∈ C2m([0, R)) be two radial functions such that�mu−eu ≥ �mv−ev

in [0, R) and

�ku(0) ≥ �kv(0), (�ku)′(0) ≥ (�kv)′(0), ∀ 0 ≤ k ≤ m − 1. (3.1)

Then we have u ≥ v in [0, R).
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Let u0 be an entire radial solution of (1.5) with V0 := ‖eu0‖L1(R2m ) ∈ (0,∞], consider
uα the solution to the following initial value problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�mu = eu,

u(2i+1)(0) = 0, ∀ 0 ≤ i ≤ m − 1,

�i u(0) = �i u0(0), ∀ 0 ≤ i ≤ m − 2,

�m−1u(0) = �m−1u0(0) − α, α > 0.

(3.2)

For any α > 0, by Lemma 3.1, we have uα ≤ u0 whenever it exists. On the other hand,
we have uα ≥ �α = ∑

0≤ j≤m−1 α j r2 j with α j ∈ R verifying �i�α(0) = �i uα(0) for
i = 0, . . . ,m − 1. Then no blow-up will occur for uα in any compact set, which means that
uα is globally defined and α �→ uα is a decreasing family of functions in R

2m by Lemma
3.1. We claim that

lim
α→∞ uα(r) = −∞, for any r ≥ 0. (3.3)

Let vα = �m−1uα , as 0 ≤ �vα = euα ≤ eu0 and

vα(r) = �m−1u0(0) − α + 1

2m − 2

∫ r

0
�vα(s)s

[
1 −

( s
r

)2m−2
]
ds,

we get readily that vα tends uniformly to −∞ in any compact set of R+ as α → ∞. By
iterations, we obtain that�m−2uα, . . . �uα tend to−∞ uniformly in any compact set ofR+,
hence (3.3) is satisfied.

Moreover, byLemmas7.6 and7.8 in [4], for anyα > 0, there holds limr→∞ �m−1uα(r) <

0 hence uα(r) ≤ −Cαr2m−2 for r large enough with some Cα > 0. Therefore euα ∈
L1(R2m) for any α > 0, and α �→ ‖euα‖L1(R2m ) is continuous in (0,∞), combining with the
monotonicity w.r.t. α. Furthermore, the claim (3.3) implies then

lim
α→∞

∫
R2m

euαdx = 0.

As the monotonicity of uα gives also

lim
α→0+

∫
R2m

euαdx =
∫
R2m

eu0dx = V0,

the proof is completed. ��

4 Further remarks and open questions

By the proof of Proposition 2.3, for m ≥ 3 and (ai ) ∈ R
m , if the solution of (2.1) verifies

limr→+∞ �m−1u(ai )(r) < 0, then vol(gu) is finite and the function V with the initial data
as variables is continuous at the point (ai ). However we have no answer for the following
question.

Question 1 For any (ai ) ∈ R
m with m ≥ 3, let u be the solution of (2.1), is the total volume

vol(gu) finite? If the answer is yes, is the volume function V continuous in whole Rm?
Another natural question comes from Theorem 1.2. Our approach is to study radial solu-

tions of (1.5). By Hyder and Martinazzi’s result in [7] on the negative constant Q-curvature
situation, form ≥ 3 odd, the radial solutions of (1.5) can provide arbitrary volume. However,
this is not always true for m even, since when m = 2, V = (0, vol(S4)] by [2,9,14].
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Question 2 Let m be even and m ≥ 4, do we have V = (0,∞) for radial solutions of (1.5)?
Consider the radial solutions to (1.5) as a initial value problem with �ku(0) = βk ,

1 ≤ k ≤ m−1, β0 = 0. By Theorem 2.2 in [4], there exists a function� : Rm−2 → (−∞, 0)
such that the solution u is globally defined inR2m if and only if βm−1 ≤ �(β1, . . . βm−2). On
the other hand, for given β1, . . . βm−2, the solution u(βi ) is increasing w.r.t. βm−1 by Lemma
3.1, so

supV = sup

{∫
R2m

e2mudx, u = u(βi ) with βm−1 = �(β1, . . . βm−2)

}
.

Therefore, to answer the above question, we need just to understand the radial solutions
with (βi ) on the boundary hypersurface for the global existence. Unfortunately we have few
information for these borderline entire radial solutions. For instance, we don’t know the
asymptotic decay of such solutions as r → ∞, see Theorem 2.5 and Problem 2.1 (ii) in [4].

A last question concerns the infinite volume entire solutions. When m = 1, Liouville
proved that given a holomorphic function h in � ⊂ C, the function

u(z) := ln
2|h′(z)|

1 + |h(z)|2
satisfies −�u = e2u in �\{z ∈ �, h′(z) = 0}. The conformal metrics in R

2 with vol(gu) <

∞, i.e. the solutions to (1.2) correspond to h(z) = az + b with a, b ∈ C. So we can describe
many entire solutions of −�u = e2u in R

2 with infinite volume.
For m ≥ 2, of course we can use entire radial solutions v of (−�)mv = e2mv in R

N with
3 ≤ N ≤ 2m − 1 to construct constant Q-curvature conformal metrics in R

2m with infinite
volume, for example by considering u(x) := v(x1, . . . xN ). However, we wonder if other
examples exist.

Question 3 For m ≥ 2, are there entire solutions of (−�)mu = e2mu in R
2m such that u

does not allow any symmetry and e2mu /∈ L1(R2m)?
It is worthy to mention that similar problem was studied also in odd space dimensions,

with fractional Laplacian. Let n ≥ 3 be odd, consider

(−�)
n
2 u = (n − 1)!enu in R

n, V :=
∫
Rn

enudx < ∞. (4.4)

Recently, Jin et al. proved in [8] that for n = 3, (4.4) has a solution if and only if V ∈
(0, vol(S3)]. This is similar to Lin’s result in R

4 with m = 2 in (1.3). Moreover, for arbitrary
n ≥ 5 odd, Hyder proved in [6] the existence of solution to (4.4) with any V ∈ (0, vol(Sn)],
without excluding the possibility that V > vol(Sn). This would be an interesting problem to
understand if similar phenomenon to [12] or Theorem 1.1 here exists.

Question 4 For n ≥ 5 odd, are there solutions of (4.4) such that V > vol(Sn)?
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