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Abstract In this paper, we investigate the global regularity to 3-D inhomogeneous incom-
pressible Navier–Stokes system with axisymmetric initial data which does not have swirl
component for the initial velocity. We first prove that the L∞ norm to the quotient of the

inhomogeneity by r, namely a/r
def= (1/ρ − 1)/r, controls the regularity of the solutions.

Then we prove the global regularity of such solutions provided that the L∞ norm of a0/r is
sufficiently small. Finally, with additional assumption that the initial velocity belongs to L p

for some p ∈ [1, 2), we prove that the velocity field decays to zero with exactly the same
rate as the classical Navier–Stokes system.

Mathematics Subject Classification 35Q30 · 76D03

1 Introduction

In this paper, we consider the global existence of smooth solutions to the following 3-D inho-
mogeneous incompressible Navier–Stokes equations with axisymmetric initial data which
does not have swirl component for the initial velocity:
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⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + div(ρu) = 0, (t, x) ∈ R
+ ×R

3,

∂t (ρu) + div(ρu ⊗ u) − �u + ∇� = 0,
divu = 0,
(ρ, u)|t=0 = (ρ0, u0).

(1.1)

where ρ, u = (u1, u2, uz) stand for the density and velocity of the fluid respectively, and
� is a scalar pressure function. Such system describes a fluid that is incompressible but has
non-constant density. Basic examples are mixture of incompressible and non reactant flows,
flows with complex structure (e.g. blood flow or model of rivers), fluids containing a melted
substance, etc.

A lot of recent works have been dedicated to the mathematical study of the above system.
Global weak solutions with finite energy have been constructed by Simon in [22] (see also
the book by Lions [18] for the variable viscosity case). In the case of smooth data with no
vacuum, the existence of strong unique solutions goes back to the work of Ladyzhenskaya
and Solonnikov in [16]. More precisely, they considered the system (1.1) in a bounded
domain � with homogeneous Dirichlet boundary condition for u. Under the assumption that

u0 ∈ W 2− 2
p ,p

(�) (p > d) is divergence free and vanishes on ∂� and that ρ0 ∈ C1(�) is
bounded away from zero, then they [16] proved

• Global well-posedness in dimension d = 2;
• Local well-posedness in dimension d = 3. If in addition u0 is small inW 2− 2

p ,p
(�), then

global well-posedness holds true.

Lately, Danchin and Mucha [9] established the well-posedness of (1.1) in the whole space
R
d in the so-called critical functional framework for small perturbations of some positive

constant density. The basic idea are to use functional spaces (or norms) that is scaling invariant
under the following transformation:

(ρ, u,�)(t, x) �−→ (ρ, λu, λ2�)(λ2t, λx), (ρ0, u0)(x) �−→ (ρ0, λu0)(λx). (1.2)

One may check [5,10] and the references therein for the recent progresses along this line.
On the other hand, we recall that except the initial data have some special structure, it is

still not knownwhether or not the System (1.1) has a unique global smooth solutionwith large
smooth initial data, even for the classical Navier–Stokes system (NS), which corresponds
to ρ = 1 in (1.1). For instance, Ukhovskii and Yudovich [23], and independently Ladyzhen-
skaya [15] proved the global existence of generalized solution along with its uniqueness and
regularity for (NS) with initial data which is axisymmetric and without swirl. Leonardi et
al. [17] gave a refined proof of the same result in [15,23]. The first author [1] improved the

regularity of the initial data to be u0 ∈ H
1
2 . In general, the global wellposedness of (NS)

with axisymmetric initial data is still open (see [7,24] for instance).
Let x = (x1, x2, z) ∈ R

3, we denote the cylindrical coordinates of x by (r, θ, z), i. e.,

r(x1, x2)
def=

√

x21 + x22 , θ(x1, x2)
def= tan−1 x2

x1
with r ∈ [0,∞), θ ∈ [0, 2π] and z ∈ R,

and

er
def= (cos θ, sin θ, 0), eθ

def= (− sin θ, cos θ, 0), ez
def= (0, 0, 1).

We are concerned here with the global existence of axisymmetric smooth solutions to (1.1)
which does not have the swirl component for the velocity field. This means solution of the
form:
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ρ(t, x1, x2, z) = ρ(t, r, z), �(t, x1, x2, z) = �(t, r, z),

u(t, x1, x2, z) = ur (t, r, z)er + uz(t, r, z)ez . (1.3)

By virtue of (1.1) and (1.3), we find that (ρ, u,�) verifies
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ + ur∂rρ + uz∂zρ = 0,

ρ∂t ur + ρur∂r ur + ρuz∂zur + ∂r� −
(
1
r ∂r (r∂r u

r ) + ∂2z u
r − ur

r2

)
= 0,

ρ∂t uz + ρur∂r uz + ρuz∂zuz + ∂z� − ( 1
r ∂r (r∂r u

z) + ∂2z u
z
) = 0,

∂r ur + ur
r + ∂zuz = 0,

ρ|t=0 = ρ0 and (ur , uz)|t=0 = (ur0, u
z
0).

(1.4)

Equation of vorticity ω
def= ∂zur − ∂r uz : we get, by taking ∂z(1.4)2 − ∂r (1.4)3, that

∂tω+ur∂rω+uz∂zω−1

r
urω+∂z

(
∂r�

ρ

)

−∂r

(
∂z�

ρ

)

−∂z

(
∂zω

ρ

)

−∂r

(
∂rω + ω/r

ρ

)

= 0.

(1.5)

Equation of �
def= ω

r : in view of (1.5), one has

∂t�+ur∂r�+uz∂z�+ 1

r
∂z

(
∂r�

ρ

)

− 1

r
∂r

(
∂z�

ρ

)

−∂z

(
∂z�

ρ

)

− 1

r
∂r

(
r∂r� + 2�

ρ

)

= 0.

(1.6)
As for the classical Navier–Stokes system (NS) in [15,23], the quantity � will play a

crucial role to prove the global well-posedness of (1.4). The main result of this paper states
as follows:

Theorem 1.1 Let a0
def= 1

ρ0
−1 ∈ L2∩L∞ with a0

r ∈ L∞, and there exist positive constants
m, M so that

0 < m ≤ ρ0 ≤ M. (1.7)

Let u0 = ur0er + uz0ez ∈ H1 be a solenoidal vector filed with
ur0
r and �0

def= ω0
r belonging to

L2. Then

(1) there exists a positive time T ∗ so that (1.4) has a unique solution (ρ, u) on [0, T ∗)which
satisfies for any T < T ∗

ρ ∈ L∞((0, T ) × R
3), u ∈ C([0, T ]; H1(R3)) with ∇u ∈ L2((0, T ); H1(R3))

sup
t∈(0,T ]

(

t〈t〉
(
‖ut (t)‖2L2 + ‖u(t)‖2

Ḣ2 + ‖∇�(t)‖2L2

)
+

∫ t

0
t ′〈t ′〉‖∇ut (t

′)‖2L2 dt
′
)

<∞.

(1.8)

If T ∗ < ∞, there holds

lim
t→T ∗

∥
∥
∥
∥
a(t)

r

∥
∥
∥
∥
L∞

= ∞. (1.9)

(2) If we assume moreover that
∥
∥
∥
a0
r

∥
∥
∥
L∞ ≤ ε0 (1.10)
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3254 H. Abidi, P. Zhang

for some sufficiently small positive constant ε0, we have T ∗ = ∞, and

‖u‖2L∞(R+;H1)
+

∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L∞(R+;L2)

+ ‖∇u‖2L2(R+;H1)
+ ‖∂t u‖2L2(R+;L2)

+ ‖∇�‖2L2(R+;L2)
≤ CG0 + 1 with

G0
def= exp

(
C‖u0‖2L2

(
1 + ‖u0‖6L2

))
(

‖u0‖2H1 +
∥
∥
∥
∥
ur0
r

∥
∥
∥
∥

2

L2
+ 2‖�0‖2L2

)

,

(1.11)

and
∥
∥
∥
a

r

∥
∥
∥
L∞(R+;L∞)

≤ C
∥
∥
∥
a0
r

∥
∥
∥
L∞ . (1.12)

(3) Besides (1.10), if u0 ∈ L p for some p ∈ [1, 2), let β(p)
def= 3

4

(
2
p − 1

)
, one has

‖u(t)‖2L2 ≤ C〈t〉−2β(p), ‖∇u(t)‖2L2 ≤ C〈t〉−1−2β(p),
(1.13)

‖ut (t)‖2L2 + ‖u(t)‖2
Ḣ2 + ‖∇�(t)‖2L2 ≤ Ct−1〈t〉−1−2β(p).

Remark 1.1 (1) Let us recall that the reason why one can prove the global well-posedness
of classical 3-D Navier–Stokes system with axisymmetric data and without swirl is that

�
def= ω

r satisfies

∂t� + ur∂r� + uz∂z� − ∂2r � − ∂2z � − 3

r
∂r� = 0,

which implies for all p ∈ [1,∞] that
‖�(t)‖L p ≤ ‖�0‖L p .

Nevertheless in the case of inhomogeneous Navier–Stokes system, � verifies (1.6). Then
to get a global in time estimate for ‖�(t)‖L2 ,we need the smallness condition (1.10). We
remark that in order to prove the global regularity for the axisymmetric Navier–Stokes–
Boussinesq system without swirl, the authors [3] require the support of the initial density
ρ0 does not intersect the axis (Oz) and the projection of suppρ0 on the axis is a compact
set, which seems stronger than (1.10) near the axis (Oz). Finally since we shall not use
the vorticity equation (1.5), here we do not require the initial density to be close enough
to some positive constant.

(2) We remark that the decay estimates (1.13) is in fact proved for general global smooth
solutions of (1.1), which does not use the axisymmetric structure of the solutions, when-
ever u0 ∈ L p for some p ∈ [1, 2). In particular, we get rid of the technical assumption in
[4] that (1.13) holds for p ∈ (1, 6/5) and moreover the proof here is more concise than
that in [4].

Let us complete this section with the notations we are going to use in this context.

Notations: Ḣ s (resp. Hs) denotes the homogeneous (resp. inhomogeneous) Sobolev space

with norm given by ‖ f ‖Ḣ s
def= (∫

R
3 |ξ |2s | f̂ (ξ)|2 dξ

) 1
2 (resp. ‖ f ‖Hs

def= (∫

R
3(1 + |ξ |2)s | f̂

(ξ)|2 dξ
) 1
2 ). For X a Banach space and I an interval of R, we denote by C(I ; X) the set of

continuous functions on I with values in X. For q ∈ [1,+∞], the notation Lq(I ; X) stands
for the set of measurable functions on I with values in X, such that t �−→ ‖ f (t)‖X belongs
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to Lq(I ). Let R2+ = (0,∞) × R, we denote ‖ f ‖L̃q
def= (

∫

R
2+ | f |q dr dz) 1

q . For a � b, we
mean that there is a uniform constant C, which may be different on different lines, such that
a ≤ Cb. We shall denote by (a|b) (or ∫

R
3 a|b dx) the L2(R3) inner product of a and b, and

finally ∇̃ def= (∂r , ∂z).

2 The global H1 estimate

In this section, we shall prove the a priori globally in time H1 estimate for the velocity of
(1.1) provided that there holds (1.10). Before proceeding, let us first rewrite the momentum
equation of (1.4).

Due to ∂r ur + ur
r + ∂zuz = 0 and curl u = ωeθ with ω

def= ∂zur − ∂r uz, we have

1

r
∂r (r∂r u

r ) + ∂2z u
r − ur

r2
= −1

r
∂r (r∂zu

z + ur ) + ∂2z u
r − ur

r2

= −1

r

(

r∂z∂r u
z − ur

r

)

+ ∂2z u
r − ur

r2

= ∂z(∂zu
r − ∂r u

z) = ∂zω.

Similarly, one has

1

r
∂r (r∂r u

z) + ∂2z u
z = ∂2r u

z + ∂r uz

r
− ∂z

(

∂r u
r + ur

r

)

= −∂r (∂zu
r − ∂r u

z) − 1

r
(∂zu

r − ∂r u
z)

= −∂rω − 1

r
ω.

So that we can reformulate the momentum equation of (1.4) as
{

ρ∂t ur + ρur∂r ur + ρuz∂zur + ∂r� − ∂zω = 0,

ρ∂t uz + ρur∂r uz + ρuz∂zuz + ∂z� + ∂rω + 1
r ω = 0.

(2.1)

2.1 Local in time H1 estimate

The purpose of this subsection is to present the estimate of ‖u‖L∞
T (H1) with T going to ∞

when ε0 in (1.10) tending to zero.
• L2 energy estimate

We first deduce from the transport equation of (1.4) and (1.7) that

m ≤ ρ(t, r, z) ≤ M. (2.2)

While by first multiplying the ur equation of (1.4) by ur and then integrating the resulting
equation over R2+ with respect to the measure r dr dz, we write

1

2

d

dt

∫

R
2+

ρ(ur )2 rdr dz −
∫

R
2+

(
r∂tρ + ∂r (ρu

rr) + ∂z(ρu
zr)

)
(ur )2 dr dz

−
∫

R
2+

�∂r (u
rr) dr dz +

∫

R
2+

(

(∂r u
r )2 + (∂zu

r )2 + (ur )2

r2

)

r dr dz = 0.
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Whereas using the transport equation and ∂r (urr) + ∂z(uzr) = 0 of (1.4), we find

r∂tρ + ∂r (ρu
rr) + ∂z(ρu

zr) = r
(
∂tρ + ur∂rρ + uz∂zu

r ) + ρ
(
∂r (u

rr) + ∂z(u
zr)

) = 0,

so that we obtain

1

2

d

dt

∫

R
2+

ρ(ur )2 rdr dz +
∫

R
2+

(

(∂r u
r )2 + (∂zu

r )2 + (ur )2

r2

)

r dr dz

=
∫

R
2+

�∂r (u
rr) dr dz.

Along the same line, we have

1

2

d

dt

∫

R
2+

ρ(uz)2 rdr dz +
∫

R
2+

(
(∂r u

z)2 + (∂zu
z)2

)
r dr dz

=
∫

R
2+

�∂z(u
zr) dr dz.

Hence due to ∂r (rur ) + ∂z(ruz) = 0, we achieve

1

2

d

dt

∫

R
2+

ρ
(
(ur )2 + (uz)2

)
r dr dz +

∫

R
2+

(

|∇̃ur |2 + |∇̃uz |2 + (ur )2

r2

)

r dr dz = 0.

Integrating the above inequality over [0, t] and using (2.2) gives rise to

‖u‖2L∞
t (L2)

+ ‖∇̃u‖2
L2
t (L2)

+
∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L2
t (L2)

≤ C‖u0‖2L2 . (2.3)

• Ḣ1 energy estimate

By taking L2(R2+, r dr dz) inner product of the ur equation of (1.4) with ∂t ur and using
integration by parts, we have

1

2

d

dt

∫

R
2+

(

(∂r u
r )2 + (∂zu

r )2 + (ur )2

r2

)

r dr dz +
∫

R
2+

ρ(∂t u
r )2r dr dz

= −
∫

R
2+

ρ
(
ur∂r u

r + uz∂zu
r ) ∂t u

r r dr dz +
∫

R
2+

�∂r (∂t u
r r) dr dz.

Similarly we have

1

2

d

dt

∫

R
2+

(
(∂r u

z)2 + (∂zu
z)2

)
r dr dz +

∫

R
2+

ρ(∂t u
z)2r dr dz

= −
∫

R
2+

ρ
(
ur∂r u

z + uz∂zu
z) ∂t u

zr dr dz +
∫

R
2+

�∂z(∂t u
zr) dr dz,

which together ∂r (rur ) + ∂z(ruz) = 0 gives rise to

1

2

d

dt

∫

R
2+

(

|∇̃ur |2 + |∇̃uz |2 + (ur )2

r2

)

r dr dz +
∫

R
2+

ρ
(
(∂t u

r )2 + (∂t u
z)2

)
r dr dz

= −
∫

R
2+

ρ
(
ur∂r u

r + uz∂zu
r ) ∂t u

r r dr dz −
∫

R
2+

ρ
(
ur∂r u

z + uz∂zu
z) ∂t u

zr dr dz

≤ C
(‖√ρur∂r u

r‖2L2 + ‖√ρuz∂zu
r‖2L2 + ‖√ρur∂r u

z‖2L2 + ‖√ρuz∂zu
z)‖2L2

)

+1

2

(‖√ρ∂t u
r‖2L2 + ‖√ρ∂t u

z‖2L2

)
,
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which along with (2.2) implies

d

dt

∫

R
2+

(

|∇̃ur |2 + |∇̃uz |2 + (ur )2

r2

)

r dr dz + ‖∂t ur‖2L2 + ‖∂t uz‖2L2

≤ C
(‖ur∂r ur‖2L2 + ‖uz∂zur‖2L2 + ‖ur∂r uz‖2L2 + ‖√ρuz∂zu

z‖2L2

)
. (2.4)

• The second derivative estimate of the velocity

By taking L2(R2+; r dr dz) inner product of the ur equation of (2.1) with ∂zω and using
integration by parts, one has

∫

R
2+
(∂zω)2r dr dz = −

∫

R
2+

∂z∂r� | ωr dr dz

−
∫

R
2+

(
ρ∂t u

r + ρur∂r u
r + ρuz∂zu

r ) | ∂zωr dr dz.

Similarly taking L2(R2+; r dr dz) inner product of the uz equation of (2.1) with ∂r (rω)r−1

leads to
∫

R
2+
(∂r (rω))2r−1 dr dz =

∫

R
2+

∂z∂r� | ωr dr dz

−
∫

R
2+

(
ρ∂t u

z + ρur∂r u
z + ρuz∂zu

z) |∂r (ωr) dr dz.

Yet notice that
∫

R
2+
(∂r (rω))2r−1 dr dz =

∫

R
2+

(
ω2

r
+ 2ω∂rω + (∂rω)2r

)

dr dz

=
∫

R
2+

(
ω2

r2
+ (∂rω)2

)

r dr dz.

As a consequence, for � given by (1.6), we obtain
∫

R
2+

(
(∂rω)2 + (∂zω)2 + �2) r dr dz ≤ C

(‖urt ‖2L2 + ‖uzt ‖2L2 + ‖ur∂r ur‖2L2

+‖uz∂zur‖2L2 + ‖ur∂r uz‖2L2 + ‖uz∂zuz)‖2L2

)
.

(2.5)

Along the same line, we have

‖∇̃�‖2L2 ≤ C
(‖urt ‖2L2 + ‖uzt ‖2L2 + ‖ur∂r ur‖2L2

+‖uz∂zur‖2L2 + ‖ur∂r uz‖2L2 + ‖uz∂zuz‖2L2

)
. (2.6)

• The combined estimate
Let δ > 0 be a small positive constant, which will be chosen hereafter. By summing up

(2.4) with δ × ((2.5) + (2.6)) leads to

d

dt

∫

R
2+

(

|∇̃ur |2 + |∇̃uz |2 + (ur )2

r2

)

r dr dz + (1 − 2Cδ)
(‖∂t ur‖2L2 + ‖∂t uz‖2L2

)

+δ

(∫

R
2+

(|∇̃ω|2 + �2) r dr dz + ‖∇̃�‖2L2

)

≤ C
(‖ur∂r ur‖2L2 + ‖uz∂zur‖2L2 + ‖ur∂r uz‖2L2 + ‖uz∂zuz‖2L2

)
.
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Taking δ = 1
4C in the above inequality yields

d

dt

∫

R
2+

(

|∇̃ur |2 + |∇̃uz |2 + (ur )2

r2

)

r dr dz + ‖∂t ur‖2L2 + ‖∂t uz‖2L2

+
∫

R
2+

(|∇̃ω|2 + �2) r dr dz + ‖∇̃�‖2L2

≤ C
(‖ur∂r ur‖2L2 + ‖uz∂zur‖2L2 + ‖ur∂r uz‖2L2 + ‖uz∂zuz‖2L2

)
. (2.7)

In order to cope with the right hand side terms in (2.7), we take cut-off functions ϕ ∈
C∞
0 [0,∞) and ψ ∈ C∞[0,∞) with

ϕ(r) =
{
1 r ∈ [0, 1/2],
0 r ∈ [1,∞),

and ψ(r) =
{
1 r ∈ [1/2,∞),

0 r ∈ [0, 1/4), (2.8)

and present the lemma as follows:

Lemma 2.1 Let f (r, z) be a smooth enough function which decays sufficiently fast at infinity.
Then for ϕ(r) given by (2.8), one has

∫

R
2+
f 4ϕ(r)r3 dr dz ≤ C‖ f ‖2L2

(‖ f ‖L2 + ‖∂r f ‖L2
) ‖∂z f ‖L2 . (2.9)

Proof It is easy to observe that

r2 f 2ϕ(r) ≤
∫ ∞

0
|∂r (r2 f 2ϕ(r))| dr

≤ C
∫ ∞

0
| f |(| f | + |∂r f |)r dr,

and

r f 2 ≤
∫

R

|∂z f 2|r dz = 2
∫

R

| f ||∂z f |r dz,

from which, we infer
∫

R
2+
f 4ϕ(r)r3 dr dz ≤ C

∫

R
2+

∫ ∞

0
| f |(| f | + |∂r f |)r dr

∫

R

| f ||∂z f |r dz dr dz

≤ C
∫

R
2+

| f |(| f | + |∂r f |)r dr dz
∫

R
2+

| f ||∂z f |r dr dz.

Applying Hölder inequality gives rise to (2.9). ��
Now let us turn to the estimate of the nonlinear terms in (2.7). We first get, by applying

Hölder’s inequality and the 2-D interpolation inequality,

‖ f ‖L4(R2) � ‖ f ‖
1
2

L2(R2)
‖∇ f ‖

1
2

L2(R2)
, (2.10)

that

‖ur∂r u‖2L2 ≤ ‖∂r u‖2
L̃4‖

√
rur‖2

L̃4

≤ C

(∫

R
3
ω4r−1 dx

) 1
2 ‖√rur‖L̃2‖∇̃(

√
rur )‖L̃2 ,
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where we used Biot–Sarvart’s law

u(t, x) = 1

4π

∫

R
3

(y − x) ∧ eθω(t, y)

|y − x |3 dy

and the fact that r−1 is in Ap class (see [11] for instance) so that

‖∂r u‖L̃4 =
(∫

R
3
|∂r u|4r−1 dx

) 1
4 ≤ C

(∫

R
3
ω4r−1 dx

) 1
4

.

Then by virtue of (2.9) and (2.10), we infer

(∫

R
3
ω4r−1 dx

) 1
4 ≤

(∫

R
2+

�4r4ϕ(r) dr dz

) 1
4

+
(∫

R
2+

ω4(1 − ϕ(r)) dr dz

) 1
4

�
(∫

R
2+

�4r3ϕ(r) dr dz

) 1
4

+ ‖ωψ‖L̃4

� ‖�‖
1
2
L2

(

‖�‖
1
2
L2 + ‖∇̃�‖

1
2
L2

)

+ ‖ωψ‖
1
2

L̃2‖∇̃(ωψ)‖
1
2

L̃2

� ‖�‖
1
2
L2

(

‖�‖
1
2
L2 + ‖∇̃�‖

1
2
L2

)

+ ‖ω‖
1
2
L2

(

‖ω‖
1
2
L2 + ‖∇̃ω‖

1
2
L2

)

.

Moreover, note that

‖∇̃(
√
rur )‖L̃2 ≤ C

(

‖∇̃ur‖L2 +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L2

)

,

for any δ > 0, we write

‖ur∂r u‖2L2 ≤ C
(‖�‖L2

(‖�‖L2 + ‖∇̃�‖L2
) + ‖ω‖L2

(‖ω‖L2 + ‖∇̃ω‖L2
))

× ‖ur‖L2

(

‖∇̃ur‖L2 +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L2

)

≤ Cδ‖ur‖2L2

(

‖∇̃ur‖2L2 +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L2

)
(‖ω‖2L2 + ‖�‖2L2

)

+ δ
(‖ω‖2L2 + ‖∇̃ω‖2L2 + ‖�‖2L2 + ‖∇̃�‖2L2

)
. (2.11)

To deal with ‖uz∂zu‖L2 , we split
∫

R
2+(uz∂zu)2r dr dz as

∫

R
2+
(uz∂zu)2r dr dz =

∫

R
2+
(uz∂zu)2ϕ(r)r dr dz +

∫

R
2+
(uz∂zu)2(1 − ϕ(r))r dr dz.

(2.12)

By applying (2.10) and convexity inequality, we get for any δ > 0
∫

R
2+
(uz∂zu)2(1 − ϕ(r))r dr dz

�
∫

R
2+
(uz∂zuψ(r)r

1
2 )2 dr dz

�
∥
∥
∥uzψ(r)r

1
4

∥
∥
∥
2

L̃4

∥
∥
∥∂zuψ(r)r

1
4

∥
∥
∥
2

L̃4
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�
∥
∥
∥uzψ(r)r

1
4

∥
∥
∥
L̃2

∥
∥
∥∇̃(uzψ(r)r

1
4 )

∥
∥
∥
L̃2

∥
∥
∥∂zuψr

1
4

∥
∥
∥
L̃2

∥
∥
∥∇̃(∂zuψr

1
4 )

∥
∥
∥
L̃2

≤ Cδ‖uz‖2L2

(‖uz‖2L2 + ‖∇̃uz‖2L2

) ‖∂zu‖2L2 + δ
(‖∂zu‖2L2 + ‖∇̃∂zu‖2L2

)
. (2.13)

Before proceeding, let us recall from (2.22) of [19] that

ur

r
= ∂z�

−1� − 2
∂r

r
�−1∂z�

−1�, (2.14)

and from (21) of [13] that

∂r

r
�−1W = x22

r2
R11W + x21

r2
R22W − 2

x1x2
r2

R12W (2.15)

for every axisymmetric smooth function W, and where Ri j
def= ∂i∂ j�

−1.

By virtue of (2.9), we infer
∫

R
2+
(uz∂zu

r )2ϕ(r)r dr dz =
∫

R
2+
(uz)2r

3
2 ϕ

1
2 (r)

(

∂z
ur

r

)2

r
3
2 ϕ

1
2 (r) dr dz

≤
(∫

R
2+
(uz)4r3ϕ(r) dr dz

) 1
2
(∫

R
2+

(

∂z
ur

r

)4

r3ϕ(r) dr dz

) 1
2

� ‖uz‖L2

(

‖uz‖
1
2
L2 + ‖∂r uz‖

1
2
L2

)

‖∂zuz‖
1
2
L2

∥
∥
∥
∥∂z

ur

r

∥
∥
∥
∥
L2

×
(∥

∥
∥
∥∂z

ur

r

∥
∥
∥
∥

1
2

L2
+

∥
∥
∥
∥∂z∂r

ur

r

∥
∥
∥
∥

1
2

L2

) ∥
∥
∥
∥∂2z

ur

r

∥
∥
∥
∥

1
2

L2
.

Yet it follows from (2.14) and (2.15) that
∥
∥
∥
∥∂z

ur

r

∥
∥
∥
∥
L2

� ‖�‖L2 ,

∥
∥
∥
∥∂2z

ur

r

∥
∥
∥
∥
L2

� ‖∂z�‖L2 and

∥
∥
∥
∥∂z∂r

ur

r

∥
∥
∥
∥
L2

� ‖∇̃�‖L2 .

Therefore, for any δ > 0, we have
∫

R
2+
(uz∂zu

r )2ϕ(r)r dr dz ≤ C‖uz‖2L2

(
1 + ‖uz‖4L2

) ‖∇̃uz‖2L2‖�‖2L2

+ δ
(‖�‖2L2 + ‖∇̃�‖2L2

)
. (2.16)

While since ∂r (rur ) + ∂z(ruz) = 0, we have
∫

R
2+
(uz∂zu

z)2ϕ(r)r dr dz =
∫

R
2+

(

uz
(

∂r u
r + ur

r

))2

ϕ(r)r dr dz. (2.17)

Due to (2.14) and (2.15), we have

∫

R
2+

(
uzur

r

)2

ϕ(r)r dr dz ≤
(∫

R
2+
(uz)3ϕ2(r)r dr dz

) 2
3 ∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L6

≤
(∫

R
3

(uz)3

r
3
2

dx

) 2
3 ∥
∥∂z�

−1�
∥
∥2
L6

≤ C‖∇uz‖2L2‖�‖2L2 .

123



Axisymmetric solutions of 3-D inhomogeneous Navier–Stokes system 3261

where we used Sobolev–Hardy inequality from [6] that

∫

R
N

|u|q∗(s)

|x ′|s dx ≤ C(s, q, N , k)

(∫

R
N

|∇u|q dx
) N−s

N−q

, (2.18)

where x = (x ′, z) ∈ RN = Rk ×R
N−k with 2 ≤ k ≤ N , 1 < q < N , 0 ≤ s ≤ q and s < k,

q∗
def= q(N−s)

N−q , so that there holds

(∫

R
3

(uz)3

r
3
2

dx

) 1
3

≤ C‖∇uz‖L2 .

Whereas it follows from (2.14) that

∂r u
r = ∂z�

−1� + r∂z∂r�
−1� − 2∂2r �−1∂z�

−1�.

Applying Hardy’s inequality (2.18) once again yields

∫

R
2+
(uz)2

(
∂z�

−1�
)2

ϕ(r)r dr dz ≤
(∫

R
2+

|uz |3ϕ 3
2 (r)r dr dz

) 2
3

‖∂z�−1�‖2L6

≤
(∫

R
3

|uz |3
r

3
2

dx

) 2
3

‖�‖2L2

� ‖∇uz‖2L2‖�‖2L2 .

Similarly, by applying Lemma 2.2, one has
∫

R
2+
(uz)2

(
r∂z∂r�

−1�
)2

ϕ(r)r dr dz

≤
(∫

R
2+
(uz)4ϕ(r)r3 dr dz

) 1
2
(∫

R
2+

|∂z∂r�−1�|4ϕ(r)r3 dr dz

) 1
2

≤ C‖uz‖L2

(

‖uz‖
1
2
L2 + ‖∂r uz‖

1
2
L2

)

‖∂zuz‖
1
2
L2‖�‖L2

(

‖�‖
1
2
L2 + ‖∇̃�‖

1
2
L2

)

‖∂z�‖
1
2
L2

≤ Cδ‖uz‖2L2

(
1 + ‖uz‖4L2

) ‖∇̃uz‖2L2‖�‖2L2 + δ
(‖�‖2L2 + ‖∇̃�‖2L2

)
. (2.19)

Let W
def= ∂z�

−1�. Then by virtue of (2.14), we find

∂2r �−1W = ∂r

(
x22
r
R11W + x21

r
R22W − 2

x1x2
r

R12W

)

= sin2 θR11W + cos2 θR22W − 2 sin θ cos θR12W

+ r
(
sin2 θ∂rR11W + cos2 θ∂rR22W − 2 sin θ cos θ∂rR12W

)
.

It is easy to observe that
∫

R
2+
(uz)2

(
sin2 θR11W + cos2 θR22W − 2 sin θ cos θR12W

)2
ϕ(r)r dr dz

�
(∫

R
3
|uz |3r− 3

2 dx

) 2
3 ‖∂z�−1�‖2L6 � ‖∇uz‖2L2‖�‖2L2 ,
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and it follows from a similar derivation of (2.19) that
∫

R
2+
(uz)2

(
sin2 θ∂rR11W + cos2 θ∂rR22W − 2 sin θ cos θ∂rR12W

)2
ϕ(r)r3 dr dz

≤
(∫

R
2+

|uz |4ϕ(r)r3 dr dz

) 1
2

×
(∫

R2+

(
sin2 θ∂rR11W + cos2 θ∂rR22W − 2 sin θ cos θ∂rR12W

)4
ϕ(r)r3 dr dz

) 1
2

≤ Cδ‖uz‖2L2

(
1 + ‖uz‖4L2

) ‖∇̃uz‖2L2‖�‖2L2 + δ
(‖�‖2L2 + ‖∇̃�‖2L2

)
.

By resuming the above estimates into (2.17), we obtain
∫

R
2+
(uz∂zu

z)2ϕ(r)r dr dz ≤ Cδ

(
1 + ‖uz‖6L2

) ‖∇̃uz‖2L2‖�‖2L2 + δ
(‖�‖2L2 + ‖∇̃�‖2L2

)
.

(2.20)

Therefore, by substituting the Estimates (2.13), (2.16) and (2.20) into (2.12), we obtain

‖uz∂zu‖2L2 ≤ Cδ

((
1 + ‖uz‖6L2

) ‖∇̃uz‖2L2

(‖∇̃u‖2L2 + ‖�‖2L2

)

+(1 + ‖uz‖4L2)‖∂zu‖2L2

) + δ
(‖�‖2L2 + ‖∇̃∂zu‖2L2 + ‖∇̃�‖2L2

)
. (2.21)

Note that for the axisymmetric flow, we have for 1 < q < ∞
(i) ‖ω‖Lq ≈ ‖∇u‖Lq and

(ii) ‖∇ω‖Lq +
∥
∥
∥
ω

r

∥
∥
∥
Lq

≈ ‖∇2u‖Lq . (2.22)

Thanks to (2.22), by resuming the Estimates (2.11) and (2.21) into (2.7) and taking δ to be
sufficiently small, we obtain

d

dt

(

‖∇̃u(t)‖2L2 +
∥
∥
∥
∥
ur (t)

r

∥
∥
∥
∥
L2

)

+ ‖∂t u‖2L2 + ‖u‖2
Ḣ2 + ‖�‖2L2 + ‖∇̃�‖2L2

≤ Cδ

(

(1 + ‖u‖6L2)

(

‖∇̃u‖2L2 +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L2

)
(‖∇̃u‖2L2 + ‖�‖2L2

)

+(1 + ‖uz‖4L2)‖∇̃u‖2L2

)

+ δ‖∇̃�‖2L2 . (2.23)

By applying Gronwall’s inequality to (2.23), we write

‖∇u‖2L∞
t (L2)

+
∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L∞
t (L2)

+ ‖∂t u‖2
L2
t (L2)

+ ‖u‖2
L2
t (Ḣ2)

+ ‖�‖2
L2
t (L2)

+ ‖∇�‖2
L2
t (L2)

≤ C exp

(

C
(
1 + ‖u‖6L∞

t (L2)

)
(

‖∇u‖2
L2
t (L2)

+
∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L2
t (L2)

))

×
(

‖∇u0‖2L2 +
∥
∥
∥
∥
ur0
r

∥
∥
∥
∥

2

L2
+

(
1+‖uz‖4L∞

t (L2)

)
‖∇̃u‖2

L2
t (L2)

+‖�‖2L∞
t (L2)

+‖∇̃�‖2
L2
t (L2)

)

,
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from which and (2.3), we infer

‖∇u‖2L∞
t (L2)

+
∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L∞
t (L2)

+ ‖∂t u‖2
L2
t (L2)

+ ‖u‖2
L2
t (Ḣ2)

+ ‖�‖2
L2
t (L2)

+ ‖∇�‖2
L2
t (L2)

≤ C exp
(
C‖u0‖2L2

(
1 + ‖u0‖6L2

))
(

‖u0‖2H1 +
∥
∥
∥
∥
ur0
r

∥
∥
∥
∥

2

L2
+ ‖�‖2L∞

t (L2)
+ ‖∇�‖2

L2
t (L2)

)

.

(2.24)

• The estimate of �

Let a
def= 1/ρ − 1. Then we get, by taking L2 inner product of (1.6) with � and using

integrating by parts, that

1

2

d

dt
‖�(t)‖2L2 +

∫

R
2+

1

ρ
|∇̃�|2r dr dz − 2

∫

R
2+

∂r

(
�

ρ

)

� dr dz

=
∫

R
2+
a (∂r�∂z� − ∂z�∂r�) dr dz

≤
∥
∥
∥
a

r

∥
∥
∥
L∞ ‖∇̃�‖L2‖∇̃�‖L2 .

Note that a(t, 0, z) = 0, by using integration by parts, one has

−2
∫

R
2+

∂r

(
�

ρ

)

� dr dz = −2
∫

R
2+

∂r�� dr dz − 2
∫

R
2+

∂r (a�)� dr dz

=
∫

R

�2(t, 0, z) dz + 2
∫

R
2+
a�∂r� dr dz

≥ −C
∥
∥
∥
a

r

∥
∥
∥
2

L∞ ‖�‖2L2 − 1

4

∥
∥
∥
∥
∂r�√

ρ

∥
∥
∥
∥

2

L2

.

Therefore due to (2.2), we infer

d

dt
‖�(t)‖2L2 + 1

m
‖∇̃�‖2L2 ≤ C

∥
∥
∥
a

r

∥
∥
∥
2

L∞
(‖∇̃�‖2L2 + ‖�‖2L2

)
. (2.25)

On the other hand, it follows from the transport equation of (1.4) that

∂t a + ur∂r a + uz∂za = 0 and

∂t
a

r
+ ur∂r

a

r
+ uz∂z

a

r
+ ur

r

a

r
= 0,

which yields

∥
∥
∥
a

r
(t)

∥
∥
∥
L∞ ≤

∥
∥
∥
a0
r

∥
∥
∥
L∞ exp

(∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L1
t (L∞)

)

. (2.26)

While note from [2,8] that
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L1
t (L∞)

� ‖�‖L1
t (L3,1) � t

3
4 ‖�‖

1
2
L∞
t (L2)

‖∇�‖
1
2

L2
t (L2)

.
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So that by integrating (2.25) over [0, t], we obtain
‖�‖2L∞

t (L2)
+ ‖∇�‖2

L2
t (L2)

≤ ‖�0‖2L2

+C
∥
∥
∥
a0
r

∥
∥
∥
2

L∞ exp

(

Ct
3
4 ‖�‖

1
2
L∞
t (L2)

‖∇�‖
1
2

L2
t (L2)

) (
‖∇�‖2

L2
t (L2)

+ ‖�‖2
L2
t (L2)

)
.

Resuming the Estimate (2.24) into the above inequality leads to

‖�‖2L∞
t (L2)

+ ‖∇�‖2
L2
t (L2)

≤ ‖�0‖2L2 + C
∥
∥
∥
a0
r

∥
∥
∥
2

L∞ exp

(

Ct
3
4 ‖�‖

1
2
L∞
t (L2)

‖∇�‖
1
2

L2
t (L2)

)

× exp
(
C‖u0‖2L2

(
1 + ‖u0‖6L2

))
(

‖u0‖2H1 +
∥
∥
∥
∥
ur0
r

∥
∥
∥
∥

2

L2
+ ‖�‖2L∞

t (L2)
+ ‖∇�‖2

L2
t (L2)

)

.

(2.27)

Proposition 2.1 Let (ρ, u,∇�) be a smooth enough solution of (1.4) on [0, T ∗), which
satisfies (2.2). Let G0 be given by (1.11) and

t1
def=

(
1

2C‖�0‖L2
ln

( ‖�0‖2L2

2C
∥
∥ a0

r

∥
∥2
L∞ G0

)) 4
3

. (2.28)

Then under the assumption of (1.10), one has T ∗ ≥ t1 and there holds

‖�‖2L∞
t1

(L2)
+ ‖∇�‖2

L2
t1

(L2)
≤ 2‖�0‖2L2 , (2.29)

‖∇u‖2L∞
t1

(L2)
+

∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L∞
t1

(L2)

+‖∂t u‖2
L2
t1

(L2)
+‖u‖2

L2
t1

(Ḣ2)
+ ‖∇�‖2

L2
t (L2)

≤CG0. (2.30)

Proof Indeed if ‖ a0
r ‖L∞ is sufficiently small, we deduce from (2.27) and (2.28) that

‖�‖2L∞
t1

(L2)
+ ‖∇�‖2

L2
t1

(L2)
≤ 3

2
‖�0‖2L2 .

Substituting the above estimate into (2.24) gives rise to (2.30). (2.30) together with the
blow-up criteria in [14] implies that T ∗ ≥ t1. ��
2.2 The global in time H1 estimate

The goal of this subsection is to present the global in time H1 estimate for the velocity field.
Toward this, we first prove such a estimate for small solutions of (1.1), which does not use
the axisymmetric structure of the solutions.

Lemma 2.2 Let (ρ, u,∇�) be a smooth enough solution of (1.1) on [0, T ∗),which satisfies
(2.2). Then there exist positive constants η1 and η2, which depend only on ‖u0‖L2 , so that
there holds

‖∇u(t)‖2L2 +
∫ t

t0

(
m‖∂t u(t ′)‖2L2 + η2

(‖∇2u(t ′)‖2L2 + ‖∇�(t ′)‖2L2

))
dt ′ ≤ ‖∇u(t0)‖2L2

(2.31)
provided that ‖∇u(t0)‖L2 ≤ η1.
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Proof We first get, by taking the L2 inner product of the momentum equations of (1.1) with
∂t u and using integration by parts, that

‖√ρ∂t u(t)‖2L2 + 1

2

d

dt
‖∇u(t)‖2L2 = − (ρu · ∇u | ∂t u)L2

≤ ‖√ρ‖L∞‖u‖L3‖∇u‖L6‖√ρ∂t u‖L2

≤ C‖u‖L2‖∇u‖L2‖∇2u‖2L2 + 1

4
‖√ρ∂t u‖2L2 ,

which gives

1

2

d

dt
‖∇u(t)‖2L2 + 3

4
‖√ρ∂t u(t)‖2L2 ≤ C‖u‖L2‖∇u‖L2‖∇2u‖2L2 .

On the other hand, it follows from the classical estimates on linear Stokes operator and
{−�u + ∇� = ρ∂t u − ρu · ∇u,

div u = 0,
(2.32)

that

‖∇2u‖2L2 + ‖∇�‖2L2 ≤ C
(‖ρ∂t u‖2L2 + ‖ρu · ∇u‖2L2

)

≤ C
(‖√ρ∂t u‖2L2 + ‖ρ‖L∞‖u‖2L3‖∇u‖2L6

)

≤ C
(‖√ρ∂t u‖2L2 + ‖u‖L2‖∇u‖L2‖∇2u‖2L2

)
,

so that we obtain for any η2 > 0

1

2

d

dt
‖∇u(t)‖2L2 +

(
3m

4
− Cη2

)

‖∂t u‖2L2

+ (
η2 − C‖u0‖L2‖∇u‖L2

) (‖∇2u‖2L2 + ‖∇�‖2L2

) ≤ 0. (2.33)

We denote

τ ∗ def= sup
{
t ∈ [t0, T ∗)

∣
∣ ‖∇u(t)‖L2 ≤ 2η1

}
. (2.34)

We claim that τ ∗ = T ∗ provided that η1 is sufficiently small. Indeed if τ ∗ < T ∗, taking
η2 = m

4C and η1 ≤ η2
2C‖u0‖L2 , we deduce from (2.33) that

d

dt
‖∇u(t)‖2L2 + m‖∂t u‖2L2 + η2

(‖∇2u‖2L2 + ‖∇�‖2L2

) ≤ 0 for all t ∈ [t0, τ ∗),

which implies

‖∇u(t)‖2L2 +
∫ τ∗

t0

(
m‖∂t u(t ′)‖2L2 +η2(‖∇2u(t ′)‖2L2 +‖∇�(t ′)‖2L2)

)
dt ′ ≤ ‖∇u(t0)‖2L2 ≤ η21.

This contradict with (2.34), and thus τ ∗ = T ∗. This concludes the proof of the lemma. ��
Proposition 2.2 Let (ρ, u,∇�) be the local unique smooth solution of (1.4) on [0, T ∗),
which satisfies (2.2). Then T ∗ = ∞ and there holds (1.11) provided that ε0 in (1.10) is
sufficiently small.

Proof It follows from the derivation of (2.3) that

1

2
‖√ρu(t)‖2L2 +

∫ t

0
‖∇u(t ′)‖2L2 dt

′ = 1

2
‖√ρ0u0‖2L2 , (2.35)
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which ensures that for any positive integer N , there holds

N−1∑

k=0

∫ k+1

k
‖∇u(t ′)‖2L2 dt

′ ≤ 1

2
‖√ρ0u0‖2L2 .

Thus there exists 0 ≤ k0 ≤ N − 1 and some t0 ∈ (k0, k0 + 1) such that
∫ k0+1

k0
‖∇u‖2L2 dτ ≤ 1

2N
‖√ρ0u0‖2L2 and ‖∇u(t0)‖2L2 ≤ 1

2N
‖√ρ0u0‖2L2 .

For η1 given by Lemma 2.2, taking N so large that

‖∇u(t0)‖2L2 ≤ 1

2N
‖√ρ0u0‖2L2 ≤ η21.

Then we deduce from Lemma 2.2 that there holds (2.31).
On the other hand, in view of (2.28), we can take ‖ a0

r ‖L∞ to be so small that t1 ≥ t0. Thus
by summing up (2.30) and (2.31), we obtain for any t < T ∗,

‖∇u‖2L∞
t (L2)

+ ‖∂t u‖2
L2
t (L2)

+ ‖∇2u‖2
L2
t (L2)

+ ‖∇�‖2
L2
t (L2)

≤ ‖∇u‖2L∞(0,t0;L2)
+ ‖∂t u‖2L2(0,t0;L2)

+ ‖∇2u‖2L2(0,t0;L2)
+ ‖∇�‖2L2(0,t0;L2)

+ ‖∇u‖2L∞(t0,t;L2)
+ ‖∂t u‖2L2(t0,t;L2)

+ ‖∇2u‖2L2(t0,t;L2)
+ ‖∇�‖2L2(t0,t;L2)

≤ CG0 + η1, (2.36)

for G0 given by (1.11) and η1 being determined by Lemma 2.2. Then thanks to (2.36) and
the blow-up criteria in [14], we conclude that T ∗ = ∞. Moreover, by summing up (2.3) and
(2.36), we achieve (1.11). This finishes the proof of Proposition 2.2. ��

3 Decay estimates of the global solutions of (1.1)

The purpose of this section is to present the decay estimates (1.13) for any global smooth
solutions of (1.1), which does not use the particular axisymmetric structure of the solutions.

Lemma 3.1 Let (ρ, u,∇�) be a smooth enough solution of (1.1) on [0, T ∗),which satisfies
(2.2). Then for t < T ∗, one has

d

dt
‖∇u(t)‖2L2 + ‖√ρut (t)‖2L2 + ‖u(t)‖2

Ḣ2 + ‖∇�(t)‖2L2 ≤ C‖∇u(t)‖2H1‖∇u(t)‖2L2 ,

(3.1)

and
d

dt
‖√ρut (t)‖2L2 + ‖∇ut (t)‖2L2

≤ C
(
‖∇u(t)‖2H1 + ‖u(t)‖4

Ḣ1

) (‖√ρut (t)‖2L2 + ‖∇u(t)‖4L2

)
. (3.2)

Proof We first get, by a similar derivation of (2.33), that

d

dt
‖∇u(t)‖2L2 +

(
‖√ρut‖2L2 + ‖u‖2

Ḣ2 + ‖∇�‖2L2

)
≤ C‖√ρu · ∇u‖2L2

≤ CM‖u‖2L6‖∇u‖2L3

≤ CM‖∇u‖2
Ḣ

1
2
‖∇u‖2L2 ,

which gives (3.1).
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On the other hand, by taking ∂t to the momentum equation of (1.1), we write

ρ (∂t ut + u · ∇ut ) − �ut + ∇�t = −ρt ut − (ρu)t · ∇u.

Taking L2 inner product of the above equation with ut and using the transport equation of
(1.1), we obtain

1

2

d

dt
‖√ρut (t)‖2L2 + ‖∇ut‖2L2 = −

∫

R
3
ρt |ut |2 dx −

∫

R
3
ρt u · ∇u | ut dx

−
∫

R
3
ρut · ∇u | ut dx . (3.3)

By using the transport equation of (1.1) and integration by parts, one has
∣
∣
∣
∣

∫

R
3
ρt |ut |2 dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R
3
div(ρu)|ut |2 dx

∣
∣
∣
∣

= 2

∣
∣
∣
∣

∫

R
3
ρu · ∇ut | ut dx

∣
∣
∣
∣

≤ 2
√
M‖u‖L∞‖√ρut‖L2‖∇ut‖L2 ,

which together with the 3-D interpolation inequality that

‖u‖L∞ ≤ C‖u‖
1
2

Ḣ1‖u‖
1
2

Ḣ2 , (3.4)

implies
∣
∣
∣
∣

∫

R
3
ρt |ut |2 dx

∣
∣
∣
∣ ≤ CM‖u‖Ḣ1‖u‖Ḣ2‖√ρut‖2L2 + 1

6
‖∇ut‖2L2 .

Along the same line, we have
∫

R
3
ρt u · ∇u | ut dx = −

∫

R
3
div(ρu)u · ∇u | ut dx

=
3∑

i, j,k=1

(∫

R
3
ρui∂i u

j∂ j u
kukt dx +

∫

R
3
ρuiu j∂i∂ j u

kukt dx +
∫

R
3
ρuiu j∂ j u

k∂i u
k
t dx

)

.

Applying Hölder’s inequality gives

3∑

i, j,k=1

∣
∣
∣
∣

∫

R
3
ρui∂i u

j∂ j u
kukt dx

∣
∣
∣
∣ ≤ √

M‖u‖L∞‖∇u‖L3‖∇u‖L6‖√ρut‖L2

≤ C

(

‖u‖2L∞‖u‖2
Ḣ2 + ‖∇u‖2

Ḣ
1
2
‖√ρut‖2L2

)

,

and

3∑

i, j,k=1

∣
∣
∣
∣

∫

R
3
ρuiu j∂i∂ j u

kukt dx

∣
∣
∣
∣ ≤ √

M‖u‖2L∞‖∇2u‖L2‖√ρut‖L2

≤ C‖u‖2L∞
(
‖u‖2

Ḣ2 + ‖√ρut‖2L2

)
,
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and

3∑

i, j,k=1

∣
∣
∣
∣

∫

R
3
ρuiu j∂ j u

k∂i u
k
t dx

∣
∣
∣
∣ ≤ M‖u‖2L6‖∇u‖L6‖∇ut‖L2

≤ C‖∇u‖4L2‖u‖2
Ḣ2 + 1

6
‖∇ut‖2L2 .

This yields
∣
∣
∣
∣

∫

R
3
ρt u · ∇u | ut dx

∣
∣
∣
∣ ≤ C

(

‖u‖2L∞ + ‖∇u‖2
Ḣ

1
2

+ ‖∇u‖4L2

) (
‖u‖2

Ḣ2 + ‖√ρut‖2L2

)

+ 1

6
‖∇ut‖2L2 .

Finally it is easy to observe that
∣
∣
∣
∣

∫

R
3
ρut · ∇u | ut dx

∣
∣
∣
∣ ≤ √

M‖ut‖L6‖∇u‖L3‖√ρut‖L2

≤ C‖∇u‖2
Ḣ

1
2
‖√ρut‖2L2 + 1

6
‖∇ut‖2L2 .

Resuming the above estimates into (3.3) and using (3.4) results in

d

dt
‖√ρut (t)‖2L2 + ‖∇ut (t)‖2L2

≤ C
(
‖∇u(t)‖2H1 + ‖u(t)‖4

Ḣ1

) (
‖u(t)‖2

Ḣ2 + ‖√ρut (t)‖2L2

)
. (3.5)

Whereas it follows from the classical estimates on linear Stokes operator and (2.32) that

‖u‖Ḣ2 + ‖∇�‖L2 ≤ C
(‖ρut‖L2 + ‖ρu · ∇u‖L2

)

≤ C
(√

M‖√ρut‖L2 + M‖u‖L6‖∇u‖L3

)

≤ C
(‖√ρut‖L2 + ‖∇u‖2L2

) + 1

2
‖u‖Ḣ2 ,

which yields

‖u‖Ḣ2 + ‖∇�‖L2 ≤ C
(‖√ρut‖L2 + ‖∇u‖2L2

)
. (3.6)

Substituting (3.6) into (3.5) leads to (3.2). This finishes the proof of the Lemma. ��

Corollary 3.1 Under the assumptions of Lemma 3.1 and that

‖u‖2L∞(0,T ∗;H1)
+ ‖∇u‖2L2(0,T ∗;H1)

≤ C0, (3.7)

one has for any t < T ∗,

〈t〉‖∇u(t)‖2L2 +
∫ t

0
〈t ′〉

(
‖ut (t ′)‖2L2 + ‖u(t ′)‖2

Ḣ2 + ‖∇�(t ′)‖2L2

)
dt ′

≤ C exp(CC0)‖u0‖2H1

def= C1, (3.8)
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and

t〈t〉
(
‖ut (t)‖2L2 + ‖u(t)‖2

Ḣ2 + ‖∇�(t)‖2L2

)
+

∫ t

0
t ′〈t ′〉‖∇ut (t

′)‖2L2 dt
′

≤ CC1(1 + C1) exp (CC0(1 + C0))
def= C2. (3.9)

Proof We first get, by multiplying (3.1) by 〈t〉, that
d

dt

(〈t〉‖∇u(t)‖2L2

) + 〈t〉
(
‖√ρut (t)‖2L2 + ‖u(t)‖2

Ḣ2 + ‖∇�(t)‖2L2

)

≤ ‖∇u(t)‖2L2 + C‖∇u(t)‖2H1〈t〉‖∇u(t)‖2L2 .

Applying Gronwall’s inequality and using (2.35), (3.7) gives rise to (3.8).
While multiplying (3.2) by t〈t〉 results in

d

dt

(
t〈t〉‖√ρut (t)‖2L2

) + t〈t〉‖∇ut (t)‖2L2 ≤ 2〈t〉‖√ρut (t)‖2L2

+C
(
‖∇u(t)‖2H1 + ‖u(t)‖4

Ḣ1

)
t〈t〉 (‖√ρut (t)‖2L2 + ‖∇u(t)‖4L2

)
.

Applying Gronwall’s inequality leads to

t〈t〉‖√ρut (t)‖2L2 +
∫ t

0
t ′〈t ′〉‖∇ut (t

′)‖2L2 dt
′

≤ C exp
(
C

(
‖∇u‖2

L2
t (H1)

+ ‖u‖2
L∞
t (Ḣ1)

‖u‖2
L2
t (Ḣ1)

))(∫ t

0
〈t ′〉‖√ρut (t

′)‖2L2 dt
′

+ ∥
∥〈t ′〉‖∇u(t ′)‖2L2

∥
∥2
L∞
t

(
‖∇u‖2

L2
t (H1)

+ ‖u‖2
L∞
t (Ḣ1)

‖u‖2
L2
t (Ḣ1)

))
,

from which, (3.6–3.8), we conclude the proof of (3.9). ��

Proposition 3.1 Let p ∈ [1, 2) and β(p)
def= 3

4 (
2
p − 1). Then under the assumptions of

Corollary 3.1, if we assume further that a0
def= 1

ρ0
− 1 ∈ L2(R3) and u0 ∈ L p(R3), there

holds

‖u(t)‖L2 ≤
{
C〈t〉−β(p) if 1 < p < 2,

C〈t〉−
(
3
4

)

− if p = 1,
(3.10)

for any t < T ∗, where the constant C depends on ‖a0‖L2 , C0,C1 and C2 given by Corol-
lary 3.1.

Proof Motivated by [4], in order to use Schonbek’s strategy in [21], we split the phase-space
R
3 into two time-dependent regions so that

‖∇u(t)‖2L2 =
∫

S(t)
|ξ |2|û(t, ξ)|2 dξ +

∫

S(t)c
|ξ |2|û(t, ξ)|2dξ,

where S(t)
def= {ξ : |ξ | ≤

√
M
2 g(t)} and g(t) satisfies g(t) ∼ 〈t〉− 1

2 , which will be chosen
later on. Then due to the energy law (2.35) of (1.1), one has

d

dt
‖√ρu(t)‖2L2 + g2(t)‖√ρ u(t)‖2L2 ≤ Mg2(t)

∫

S(t)
|û(t, ξ)|2 dξ (3.11)
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To deal with the low frequency part of u on the right-hand side of (3.11), we rewrite the
momentum equations of (1.1) as

u(t) = et�u0 +
∫ t

0
e(t−t ′)�

P (−∇ · (u ⊗ u) + a(�u − ∇�)) (t ′) dt ′.

where a
def= 1

ρ
− 1 and P

def= I d − ∇�−1div denotes the Leray projection operator. Taking
Fourier transform with respect to x variables leads to

|û(t, ξ)| � e−t |ξ |2 |̂u0(ξ)| +
∫ t

0
e−(t−t ′)|ξ |2 (|ξ ||Fx (u ⊗ u)| + |Fx (a(�u − ∇�))|) (t ′) dt ′,

which implies that
∫

S(t)
|û(t, ξ)|2dξ �

∫

S(t)
e−2t |ξ |2 |̂u0(ξ)|2dξ + g5(t)

(∫ t

0
‖Fx (u ⊗ u)(t ′)‖L∞

ξ
dt ′

)2

+g3(t)

(∫ t

0
‖Fx (a(�u − ∇�))(t ′)‖L∞

ξ
dt ′

)2

. (3.12)

Thanks to (3.9), we have
(∫ t

0
‖Fx (a(�u − ∇�))(t ′)‖L∞

ξ
dt ′

)2

≤ ‖a‖2L∞
t (L2)

(∫ t

0
‖(�u − ∇�)(t ′)‖L2 dt ′

)2

� ‖a0‖2L2

(∫ t

0
(t ′)−

1
2 〈t ′〉− 1

2 dt ′
)2

� ln2〈t〉.
(3.13)

While it is easy to observe that
(∫ t

0
‖Fx (u ⊗ u)(t ′)‖L∞

ξ
dt ′

)2

≤
(∫ t

0
‖u(t ′)‖2L2 dt

′
)2

� t2‖u0‖2L2 .

Note that for u0 ∈ L p(R3), let 1
q
def= 4

3β(p) = 2
p − 1 and 1

p + 1
p′ = 1, one has

∫

S(t)
e−2t |ξ |2 |̂u0(ξ)|2 dξ �

(∫

S(t)
e−2qt |ξ |2 dξ

) 1
q ‖û0‖2L p′

� ‖u0‖2L p 〈t〉−2β(p), (3.14)

where we used the Hausdörff–Young inequality in the last line so that ‖û0‖L p′ ≤ C‖u0‖L p .

Then since g(t) � 〈t〉− 1
2 , we deduce from (3.12) that

∫

S(t)
|û(t, ξ)|2 dξ � 〈t〉−2β(p) + 〈t〉− 1

2 �
{

〈t〉− 1
2 if 1 ≤ p < 3

2 ,

〈t〉−2β(p) if 3
2 ≤ p < 2,

(3.15)

In the case when 3
2 ≤ p < 2, by substituting (3.15) into (3.11), we obtain

d

dt
‖√ρu(t)‖2L2 + g2(t)‖√ρ u(t)‖2L2 � g2(t)〈t〉−2β(p) � 〈t〉−1−2β(p),

from which, we infer

e
∫ t
0 g2(t ′) dt ′ ‖√ρu(t)‖2L2 � ‖√ρ0u0‖2L2 +

∫ t

0
e
∫ t ′
0 g2(t ′)dt ′ 〈t ′〉−1−2β(p) dt ′.
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Taking α > 2β(p) and g2(t) = α〈t〉−1 in the above inequality leads to

‖√ρu(t)‖2L2〈t〉α � 1 +
∫ t

0
〈t ′〉α−1−2β(p) dt ′ � 1 + 〈t〉α−2β(p),

which yields (3.10) for p ∈ [3/2, 2).
In the case when 1 ≤ p < 3

2 , by substituting the Estimate (3.15) into (3.11), one has

d

dt
‖√ρu(t)‖2L2 + g2(t)‖√ρ u(t)‖2L2 � g2(t)〈t〉− 1

2 � 〈t〉− 3
2 ,

which implies

e
∫ t
0 g2(t ′) dt ′ ‖√ρu(t)‖2L2 � ‖√ρ0u0‖2L2 +

∫ t

0
e
∫ t ′
0 g2(t ′)dt ′ 〈t ′〉− 3

2 dt ′.

Taking α > 1
2 and g2(t)

def= α〈t〉−1 in the above inequality results in

‖√ρu(t)‖2L2〈t〉α � 1 +
∫ t

0
〈t ′〉α− 3

2 dt ′ � 1 + 〈t〉α− 1
2 ,

which gives

‖u(t)‖L2 � 〈t〉− 1
4 . (3.16)

Then by virtue of (3.16), we write

(∫ t

0
‖Fx (u ⊗ u)(t ′)‖L∞

ξ
dt ′

)2

≤
(∫ t

0
‖u(t ′)‖2L2 dt

′
)2

�
(∫ t

0
〈t ′〉− 1

2 dt ′
)2

� 〈t〉.
(3.17)

Resuming the Estimates (3.13), (3.14) and (3.17) into (3.12) results in

∫

S̄(t)
|û(t, ξ)|2dξ � 〈t〉−2β(p) + 〈t〉−

(
3
2

)

− �
{ 〈t〉−2β(p) if 1 < p < 3

2 ,

〈t〉−
(
3
2

)

− if p = 1.
(3.18)

With (3.18), we can repeat the previous argument to prove (3.10) for the remaining case
when p ∈ [1, 3/2). This completes the proof of the proposition. ��
Proposition 3.2 Under the assumptions of Proposition 3.1, there holds (1.13) for any t <

T ∗.

Proof With Proposition 3.1, we shall use a similar argument for the classical Navier–Stokes
system to derive the decay estimates for the derivatives of the velocity (see [12] for instance).
In fact, for any s < t < T ∗, we deduce from the energy equality of (1.1) that

1

2
‖√ρu(t)‖2L2 +

∫ t

s
‖∇u(t ′)‖2L2 dt

′ = 1

2
‖√ρu(s)‖2L2 . (3.19)

While multiplying (3.1) by (t − s) leads to

d

dt

(
(t − s)‖∇u(t)‖2L2

) + (t − s)
(‖√ρut (t)‖2L2 + ‖∇2u(t)‖2L2 + ‖∇�(t)‖2L2

)

≤ ‖∇u(t)‖2L2 + C‖∇u(t)‖2H1(t − s)‖∇u(t)‖2L2 ,
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Applying Gronwall’s inequality and using (3.19) results in

(t − s)‖∇u(t)‖2L2 ≤ exp
(
C‖∇u‖2

L2
t (H1)

) ∫ t

s
‖∇u(t ′)‖2L2 dt

′

≤exp (CC0)

2
‖√ρu(s)‖2L2 .

In particular, taking s = t
2 gives

‖∇u(t)‖2L2 ≤ C〈t〉−1‖u(t/2)‖2L2 ,

from which and (3.10), we infer for any t < T ∗

‖∇u(t)‖2L2 ≤ C

{ 〈t〉−1−2β(p) if 1 < p < 2,

〈t〉−
(
5
2

)

− if p = 1,
(3.20)

Similarly by applying Gronwall’s lemma to (3.1) over [s, t], we write

‖∇u(t)‖2L2 +
∫ t

s

(‖√ρut (t
′)‖2L2 + ‖∇2u(t ′)‖2L2 + ‖∇�(t ′)‖2L2

)
dt ′

≤ exp
(
C‖∇u‖2

L2
t (H1)

)
‖∇u(s)‖2L2

≤ exp (CC0) ‖∇u(s)‖2L2 . (3.21)

Whereas by multiplying (3.2) by (t−s) and applying Gronwall’s lemma to resulting inequal-
ity, we get

(t − s)‖√ρut (t)‖2L2 ≤
(∫ t

s ‖√ρut (t ′)‖2L2 dt
′ + ‖∇u‖4

L∞(s,t;L2)

)

× exp
(
C

(
‖∇u‖2

L2
t (H1)

+ ‖u‖2
L∞
t (Ḣ1)

‖u‖2
L2
t (Ḣ1)

))

≤ exp (CC0(1 + C0))
(
‖∇u(s)‖2

L2 + ‖∇u‖4
L∞(s,t;L2)

)
.

Taking s = t
2 in the above inequality and using (3.20), we obtain

‖ut (t)‖2L2 ≤ C

{
t−1〈t〉−1−2β(p) if 1 < p < 2,

t−1〈t〉−
(
5
2

)

− if p = 1.

which together with (3.6) and (3.20) ensures that

‖ut (t)‖2L2 + ‖u(t)‖2
Ḣ2 + ‖∇�(t)‖2L2 ≤ C

{
Ct−1〈t〉−1−2β(p) if 1 < p < 2,

t−1〈t〉−
(
5
2

)

− if p = 1,
(3.22)

for any t < T ∗.
With (3.20) and (3.22), it remains to prove (1.13) for p = 1. As a matter of fact, we first

deduce from (3.22) that
(∫ t

0
‖Fx (a(�u − ∇�))(t ′)‖L∞

ξ
dt ′

)2

≤ ‖a‖2L∞
t (L2)

(∫ t

0
‖(�u − ∇�)(t ′)‖L2 dt ′

)2

� ‖a0‖2L2

(∫ t

0
(t ′)−

1
2 〈t ′〉−

(
5
4

)

− dt ′
)2

≤ C.
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With (3.13) being replaced by the above inequality, by repeating the proof of Proposition 3.1,
we can prove the first inequality of (1.13) for p = 1. Then repeating the proof of (3.22), we
conclude the proof of the remaining two inequalities in (1.13) for p = 1. This finishes the
proof of Proposition 3.2. ��

4 The proof of Theorem 1.1

The goal of this section is to complete the proof of Theorem 1.1. In order to do so, we first
prove the following globally in time Lipschitz estimate for the convection velocity field,
which will be used to prove the propagation of the size for ‖ a0

r ‖L∞ .

Lemma 4.1 Let (ρ, u,∇�) be a c smooth enough axisymmetric solution of (1.1) on [0, T ∗).
Then under the assumptions (1.7) and (1.10), we have T ∗ = ∞, and there holds

‖∇u‖L1(R+;L∞) ≤ C, (4.1)

for some positive constant depending on m, M and ‖u0‖H1 .

Proof Under the assumptions of (1.7) and (1.10), we deduce from Proposition 2.2 that
T ∗ = ∞ and moreover Corollary 3.1 ensures that

sup
t∈[0,∞)

〈t〉‖∇u(t)‖2L2 +
∫ ∞

0
〈t〉

(
‖ut (t)‖2L2 + ‖u(t)‖2

Ḣ2 + ‖∇�(t)‖2L2

)
dt ≤ C1,

sup
t∈[0,∞)

t〈t〉
(
‖ut (t)‖2L2 + ‖u(t)‖2

Ḣ2 + ‖∇�(t)‖2L2

)
+

∫ ∞

0
t〈t〉‖∇ut (t)‖2L2 dt ≤ C2,

(4.2)

where C1 and C2 given by (3.8) and (3.9) respectively. In particular, by using Sobolev
imbedding theorem, we obtain

∫ ∞

0
t〈t〉‖ut (t)‖2L6 dt ≤ C2. (4.3)

On the other hand, in view of (2.32), we deduce from the classical estimates of linear
Stokes operator that

‖∇2u(t)‖L6 + ‖∇�(t)‖L6 ≤ C
(‖ut (t)‖L6 + ‖u(t)‖L∞‖∇u(t)‖L6

)
,

which together with (3.4) yields
∫ ∞

0
t〈t〉 (‖∇2u(t)‖2L6 + ‖∇�(t)‖2L6

)
dt

≤ C

(∫ ∞

0
t〈t〉‖ut (t)‖2L6 dt +

∫ ∞

0
t〈t〉‖u(t)‖Ḣ1‖u(t)‖3

Ḣ2 dt

)

.

Yet it follows from (4.2) that
∫ ∞

0
t〈t〉‖u(t)‖Ḣ1‖u(t)‖3

Ḣ2 dt ≤ C
√
C1C

3
2
2

∫ ∞

0
t−

1
2 〈t〉−1 dt ≤ C

√
C1C

3
2
2 ,

which together with (4.3) ensures that
∫ ∞

0
t〈t〉 (‖∇2u(t)‖2L6 + ‖∇�(t)‖2L6

)
dt ≤ CC2

(
1 + √

C1C2

) def= C3. (4.4)
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By virtue of (4.2) and (4.4), we infer
∫ ∞

0
‖∇u(t)‖L∞ dt ≤ C

∫ ∞

0
‖u(t)‖

1
2

Ḣ2‖∇2u(t)‖
1
2
L6 dt

≤ CC
1
4
2

∫ ∞

0
t−

1
2 〈t〉− 1

2
(
t〈t〉‖∇2u(t)‖2L6

) 1
4 dt

≤ CC
1
4
2

(∫ ∞

0
t−

2
3 〈t〉− 2

3 dt

) 3
4
(∫ ∞

0
t〈t〉‖∇2u(t)‖2L6 dt

) 1
4

≤ CC
1
4
2 C

1
4
3 .

This gives rise to (4.1). ��
Now we are in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 The general strategy to prove the existence result to a nonlinear partial
differential equation is first to construct an appropriate approximate solutions, and then per-
form the uniform estimates to these approximate solution sequence, and finally the existence
result follows from a compactness argument. For simplicity, here we just present the a priori
estimates to smooth enough solutions of (1.4).

Given axisymmetric initial data (ρ0, u0) with ρ0 satisfying (1.7) and a0 ∈ L2 ∩ L∞,
a0
r ∈ L∞, u0 ∈ H1, we deduce from (2.23) and (2.25) that there exists a maximal positive
time T ∗ so that (1.4) has a solution on [0, T ∗) which satisfies for any T < T ∗,

‖u‖L∞
T (H1) + ‖∇u‖L2

T (H1) + ‖∂t u‖L2
T (L2) + ‖∇�‖L2

T (L2) + ‖�‖L∞
T (L2) + ‖∇�‖L2

T (L2) ≤ C,

from which and Corollary 3.1, we deduce that there holds (1.8). And hence the uniqueness
part of Theorem 1.1 follows from the uniqueness result in [20].

Now if T ∗ < ∞ and there holds

lim
t→T ∗

∥
∥
∥
∥
a(t)

r

∥
∥
∥
∥
L∞

= C∗ < ∞.

Let us take δ so small that

2mCC∗ ≤ 1

2
.

Then we get, by summing up (2.23) and 2mδ× (2.25), that

d

dt

(

‖∇̃u(t)‖2L2 +
∥
∥
∥
∥
ur (t)

r

∥
∥
∥
∥

2

L2
+ 2mδ‖�(t)‖2L2

)

+ ‖∂t u‖2L2 + ‖u‖2
Ḣ2 + 1

2

(‖∇̃�‖2L2 + ‖�‖2L2

) + δ‖∇̃�‖2L2

≤ Cδ

(

(1+‖u‖6L2)

(

‖∇̃u‖2L2 +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L2

)
(‖∇̃u‖2L2 +‖�‖2L2

)+(1 + ‖uz‖4L2)‖∂zu‖2L2

)

.

Applying Gronwall’s inequality and using (2.3) leads to

‖∇̃u‖2L∞
T (L2)

+
∥
∥
∥
∥
ur

r

∥
∥
∥
∥

2

L∞
T (L2)

+ ‖�‖2L∞
T (L2)

+ ‖∂t u‖2
L2
T (L2)

+ ‖∇̃�‖2
L2
T (L2)

+ ‖u‖2
L2
T (Ḣ2)

+ ‖�‖2
L2
T (L2)

+ ‖∇̃�‖2
L2
T (L2)

≤ C,
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for any T < T ∗.Therefore we can extend the solution beyond the time T ∗,which contradicts
with the maximality of T ∗. Hence there holds (1.9).

Under the assumption of (1.10), we deduce from Proposition 2.2 that T ∗ = ∞ and there
holds (1.11). Moreover, Lemma 4.1 ensures that

‖∇u‖L1(R+;L∞) ≤ C,

which together with (2.26) and
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L1(R+;L∞)

≤ ‖∇u‖L1(R+;L∞)

gives rise to (1.12).
Finally with additional assumption that u0 ∈ L p for some p ∈ [1, 2), we deduce from

Proposition 3.2 that there holds the decay estimate (1.13). This finishes the proof of Theo-
rem 1.1.

Acknowledgments Wewould like to thank Raphaël Danchin and Guilong Gui for profitable discussions on
this topic. Part of this work was done when we were visiting Morningside Center of Mathematics, CAS, in the
summer of 2014. We appreciate the hospitality and the financial support from the Center. P. Zhang is partially
supported by NSF of China under Grant 11371037, the fellowship from Chinese Academy of Sciences and
innovation grant from National Center for Mathematics and Interdisciplinary Sciences.

References

1. Abidi, H.: Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes. Bull.
Sci. Math. 132, 592–624 (2008)

2. Abidi, H., Hmidi, T., Keraani, S.: On the global well-posedness for the axisymmetric Euler equations.
Math. Ann. 347, 15–41 (2010)

3. Abidi, H., Hmidi, T., Keraani, S.: On the global regularity of axisymmetric Navier-Stokes-Boussinesq
system. Discrete Contin. Dyn. Syst. 29, 737–756 (2011)

4. Abidi, H., Gui, G., Zhang, P.: Stability to the global large solutions of the 3-D inhomogeneous Navier–
Stokes equations. Commun. Pure. Appl. Math. 64, 832–881 (2011)

5. Abidi, H., Gui, G., Zhang, P.:Well-posedness of 3-D inhomogeneousNavier–Stokes equationswith highly
oscillatory initial velocity field. J. Math. Pures Appl. (9) 100, 166–203 (2013)

6. Badiale, M., Tarantello, G.: A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation
arising in astrophysics. Arch. Ration. Mech. Anal. 163, 259–293 (2002)

7. Chae, D., Lee, J.: On the regularity of the axisymmetric solutions of the Navier–Stokes equations. Math.
Z. 239, 645–671 (2002)

8. Danchin, R.: Axisymmetric incompressible flows with bounded vorticity. Russ. Math. Survey 62, 73–94
(2007)

9. Danchin, R., Mucha, P.B.: A Lagrangian approach for the incompressible Navier–Stokes equations with
variable density. Commun. Pure. Appl. Math. 65, 1458–1480 (2012)

10. Danchin, R., Zhang, P.: Inhomogeneous Navier–Stokes equations in the half-space, with only bounded
density. J. Funct. Anal. 267, 2371–2436 (2014)

11. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education Inc, Upper Saddle River (2004)
12. He, C., Miyakawa, T.: On two-dimensional Navier–Stokes flows with rotational symmetries. Funkcial.

Ekvac. 49, 163–192 (2006)
13. Hmidi, T., Rousset, F.: Global well-posedness for the Euler–Boussinesq system with axisymmetric data.

J. Funct. Anal. 260, 745–796 (2011)
14. Kim, H.: A blow-up criterion for the nonhomogeneous incompressible Navier–Stokes equations. SIAM

J. Math. Anal. 37, 1417–1434 (2006)
15. Ladyz̆enskaja, O.A.: Unique global solvability of the three-dimensional Cauchy problem for the Navier-

Stokes equations in the presence of axial symmetry (Russian). Zap. Nauc̆n. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI) 7, 155–177 (1968)

16. Ladyzhenskaya, O., Solonnikov, V.: The unique solvability of an initial-boundary value problem for
viscous incompressible inhomogeneous fluids. J. Sov. Math. 9, 697–749 (1978)

123



3276 H. Abidi, P. Zhang

17. Leonardi, S., Málek, J., Nec̆as, J., Pokorny,M.: On axially symmetric flows inR3. Z. Anal. Anwendungen
18, 639–649 (1999)

18. Lions, P.L.: Mathematical topics in fluid mechanics, vol. 1. Incompressible models, Oxford Lecture
Series inMathematics and its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford
University Press, New York (1996)

19. Miao, C., Zheng, X.: On the global well-posedness for the Boussinesq system with horizontal dissipation.
Commun. Math. Phys. 321, 33–67 (2013)

20. Paicu, M., Zhang, P., Zhang, Z.: Global well-posedness of inhomogeneous Navier–Stokes equations with
bounded density. Commun. Partial Differ. Equ. 38, 1208–1234 (2013)

21. Schonbek, M.: Large time behavior of solutions to Navier–Stokes equations. Commun. Partial Differ.
Equ. 11, 733–763 (1986)

22. Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure.
SIAM J. Math. Anal. 21, 1093–1117 (1990)

23. Ukhovskii, M.R., Iudovich, V.I.: Axially symmetric flows of ideal and viscous fluids filling the whole
space. J. Appl. Math. Mech. 32, 52–61 (1968)

24. Zhang, P., Zhang, T.: Global axisymmetric solutions to three-dimensional Navier–Stokes system. Int.
Math. Res. Not., IMRN2014, no. 3, pp. 610–642

123


	Global smooth axisymmetric solutions of 3-D inhomogeneous incompressible Navier--Stokes system
	Abstract
	1 Introduction
	2 The global H1 estimate
	2.1 Local in time H1 estimate
	2.2 The global in time H1 estimate

	3 Decay estimates of the global solutions of (1.1)
	4 The proof of Theorem 1.1
	Acknowledgments
	References




