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Abstract In this paper, we investigate the global regularity to 3-D inhomogeneous incom-
pressible Navier—Stokes system with axisymmetric initial data which does not have swirl
component for the initial velocity. We first prove that the L° norm to the quotient of the

inhomogeneity by r, namely a/r dgf (1/p — 1)/r, controls the regularity of the solutions.
Then we prove the global regularity of such solutions provided that the L°° norm of ag/r is
sufficiently small. Finally, with additional assumption that the initial velocity belongs to L?
for some p € [1,2), we prove that the velocity field decays to zero with exactly the same
rate as the classical Navier—Stokes system.

Mathematics Subject Classification 35Q30 - 76D03

1 Introduction

In this paper, we consider the global existence of smooth solutions to the following 3-D inho-
mogeneous incompressible Navier—Stokes equations with axisymmetric initial data which
does not have swirl component for the initial velocity:
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ap +divipu) =0,  (t,x) € Rt xR?,
0 (pu) +div(pu @ u) — Au + VII =0,
divu = 0,

(0, wWli=0 = (po, uo).

(1.1)

where p,u = (ul, u?, u*) stand for the density and velocity of the fluid respectively, and
IT is a scalar pressure function. Such system describes a fluid that is incompressible but has
non-constant density. Basic examples are mixture of incompressible and non reactant flows,
flows with complex structure (e.g. blood flow or model of rivers), fluids containing a melted
substance, etc.

A lot of recent works have been dedicated to the mathematical study of the above system.
Global weak solutions with finite energy have been constructed by Simon in [22] (see also
the book by Lions [18] for the variable viscosity case). In the case of smooth data with no
vacuum, the existence of strong unique solutions goes back to the work of Ladyzhenskaya
and Solonnikov in [16]. More precisely, they considered the system (1.1) in a bounded
domain © with homogeneous Dirichlet boundary condition for . Under the assumption that

2
ug € WZfE’p(Q) (p > d) is divergence free and vanishes on 92 and that py € C'() is
bounded away from zero, then they [16] proved

e Global well-posedness in dimension d = 2;

2
e Local well-posedness in dimension d = 3. If in addition u is small in w2 nP (€2), then
global well-posedness holds true.

Lately, Danchin and Mucha [9] established the well-posedness of (1.1) in the whole space
R¢ in the so-called critical functional framework for small perturbations of some positive
constant density. The basic idea are to use functional spaces (or norms) thatis scaling invariant
under the following transformation:

(o, u, T, x) —> (p, A, AT OP1, Ax), (o, o) (x) —> (po, Aug)(Ax).  (1.2)

One may check [5,10] and the references therein for the recent progresses along this line.

On the other hand, we recall that except the initial data have some special structure, it is
still not known whether or not the System (1.1) has a unique global smooth solution with large
smooth initial data, even for the classical Navier—Stokes system (N S), which corresponds
to p = 1 in (1.1). For instance, Ukhovskii and Yudovich [23], and independently Ladyzhen-
skaya [15] proved the global existence of generalized solution along with its uniqueness and
regularity for (NVS) with initial data which is axisymmetric and without swirl. Leonardi et
al. [17] gave a refined proof of the same result in [15,23]. The first author [1] improved the
regularity of the initial data to be up € H > In general, the global wellposedness of (NS)
with axisymmetric initial data is still open (see [7,24] for instance).

Let x = (x1,x2,2) € R3, we denote the cylindrical coordinates of x by (r, 6, z), i. e.,

r(xi, x2) dgf,/xl2 —I—x%, 0(x1, x2) dgf tan~! % withr € [0, 00), 8 € [0,27] and z € R,

and

er 98 (cos 0, sin0,0), ey I (—sing, cos0,0), . € (0,0, 1).

We are concerned here with the global existence of axisymmetric smooth solutions to (1.1)

which does not have the swirl component for the velocity field. This means solution of the
form:
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p(t, x1,x2,2) = p(t,r,2), T, x1,x2,2) =T11(t, 1, 2),
u(t,x1,x2,z) =u' (t,r,2)e, +u*(t,r, 2)e;. (1.3)

By virtue of (1.1) and (1.3), we find that (p, u, IT) verifies

op+u"0,p+u‘d;p=0,

pou” 4+ pu"9,u” + putou” + 0,11 — (%8r(r8ru’) + 822 r— ‘r‘—;) =0,

pou* + pu" 9 u* + putou* + 9,11 — (%8,(1’3,#) + 83uz) =0, (1.4)
du" + %+ d.u° =0,

pli=o=po and (", u®)|;=0 = (ug, ug).

Equation of vorticity o dgf o,u” — d,u*: we get, by taking 9,(1.4), — 9,(1.4)3, that

1 o, I1 d;I1 0; )
dwtu" drwt+u*d,w——u" w+o, ( z )—8, ( < )—aZ ( “w)_ar (M) —0.
r p P p P

Equation of " dgf %: in view of (1.5), one has

1 (,M\ 1. (0.1 9T\ 1. (rd,T +2r
8,F+ur8rl"+uzazl"+78z( ’ )—73, (Z—)—aZ (Z—)—far (%) —0.
r\Up ) "o p ) v P

(1.6)

As for the classical Navier—Stokes system (NS) in [15,23], the quantity I" will play a

crucial role to prove the global well-posedness of (1.4). The main result of this paper states
as follows:

de, . . .
Theorem 1.1 Letag :f plT) —1 e L>N L with “70 € L, and there exist positive constants
m, M so that

O<m<py <M. 1.7
e z 1 i 7 4o d_ef [20) i
Letug = uger +uge; € H* be a solenoidal vector filed with ! and T'g = =P belonging to
L2, Then

(1) there exists a positive time T* so that (1.4) has a unique solution (p, u) on [0, T*) which
satisfies forany T < T*

p € L0, T) xRY, wuecqo,T]; H'®Y) with Vu e L*((0, T); H' (R?))

t
sup (z<r> (s O + @1, + 1012, ) + /0 z’<t’>||w,(z’)||izdr’)<oo.

1€(0.T]
(1.8)
If T* < o0, there holds
lim @ = (1.9
t—T%* r Lo
(2) If we assume moreover that
L (1.10)
r llpoo
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for some sufficiently small positive constant €y, we have T* = 0o, and

2
u 2 2
”u”zoc +.y1 T F VUl 2t 1y + 10Ul 72 0t 12
LooR*; HY) P P L2(RT;HY) L2(RT;L2)
+HVHHUW+U)<C00+1 with (1.11)

.
"o

def 2
Go = exp (Clluol2> (1+ lluol®,)) (nuoni,l + i +2||Fo||iz),
L

and

a
Il |7, 112
LOO(R+ LOO) L>©

(3) Besides (1.10), ifug € LP for some p € [1, 2), let B(p) f3 (p l) , one has

a7, < C@O)" PP || Vu@)|7, < C(t)"' W), s
s 1172 + 1@, + VI3, < Cr )7 720,

Remark 1.1 (1) Let us recall that the reason why one can prove the global well-posedness

2

of classical 3-D Navier—Stokes system with axisymmetric data and without swirl is that

r dgf % satisfies

3
T +u" 8,0 +u*d.I — 82T —3’I — =, =0,
r
which implies for all p € [1, co] that

IC@lie < IITollLe.

Nevertheless in the case of inhomogeneous Navier—Stokes system, I" verifies (1.6). Then
to get a global in time estimate for ||I"(¢)||;2, we need the smallness condition (1.10). We
remark that in order to prove the global regularity for the axisymmetric Navier—Stokes—
Boussinesq system without swirl, the authors [3] require the support of the initial density
po does not intersect the axis (Oz) and the projection of supppg on the axis is a compact
set, which seems stronger than (1.10) near the axis (Oz). Finally since we shall not use
the vorticity equation (1.5), here we do not require the initial density to be close enough
to some positive constant.

We remark that the decay estimates (1.13) is in fact proved for general global smooth
solutions of (1.1), which does not use the axisymmetric structure of the solutions, when-
everug € L? for some p € [1, 2). In particular, we get rid of the technical assumption in
[4] that (1.13) holds for p € (1, 6/5) and moreover the proof here is more concise than
that in [4].

Let us complete this section with the notations we are going to use in this context.

Notations: H* (resp. H*) denotes the homogeneous (resp. inhomogeneous) Sobolev space

with norm given by 1l S (foo 16121 F @) dg)? esp. 1 £lls & (foa 1 + 16271 7

&2 dé) ). For X a Banach space and / an interval of R, we denote by C(I; X) the set of
continuous functions on / with values in X. For ¢ € [1, +00], the notation L9 (/; X) stands
for the set of measurable functions on / with values in X, such that t — || f ()| x belongs
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1
to L9(I). Let RZ = (0, c0) x R, we denote Il fllzq dgf (f]Rz+ |f14drdz)e. Fora < b, we

mean that there is a uniform constant C, which may be different on different lines, such that
a < Cb. We shall denote by (a|b) (or ng albdx) the L2(R?) inner product of a and b, and

finatly ¥ 9F 5, 5.).

2 The global H! estimate

In this section, we shall prove the a priori globally in time H' estimate for the velocity of
(1.1) provided that there holds (1.10). Before proceeding, let us first rewrite the momentum
equation of (1.4).

Due to 0, u” + ”r—r + d;u® = 0 and curl u = wey with w dgf d;u" — d,u*, we have

1 r 2.r u 1 b4 r 2.r u”
=0 (rdyu”) + 0;u" — = = =0, (rd.u’ +u") + 0;u" — —
r r r r
1 u” 2 u”
= (raz"””z B 7) T =5

= 9,(0,u" — 9,u°) = 3,w.
Similarly, one has

1 oyu r
S0, (rdpud) + 02uF = 2% + T — (a,u’ + ”—)
r r r

1
= —0,(0,u" — 3,u*) — —(0,u" — 8,u®)
r
= —0,w — —w.
r

So that we can reformulate the momentum equation of (1.4) as

@2.1)

pou” + pu"d,u” + putou” 4+ 9,11 — 9, = 0,
pou* + pu” 9 u* + putou* + 9,11 + d,w + %w =0.

2.1 Local in time H! estimate

The purpose of this subsection is to present the estimate of ||u|| LPHY) with T going to oo
when &g in (1.10) tending to zero.
e L energy estimate

We first deduce from the transport equation of (1.4) and (1.7) that

m=<p,rz) <M. (2.2)

While by first multiplying the u” equation of (1.4) by u” and then integrating the resulting
equation over R%_ with respect to the measure r dr dz, we write

1d
377 | oW rdrdz — /2 (rocp + 8- (pu'r) + 8, (pur)) (u")? dr dz
t RZ R
r r\2 r\2 (ur)Z
— 1o, (u"r)drdz + @ru" ) + (0u" ) + rdrdz =0.
RZ RZ r?
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Whereas using the transport equation and 9, (u"r) + 9, (u*r) = 0 of (1.4), we find
roip + 0, (ou"r) 4+ 0, (pur) = r (8;p + u" 8, p 4+ u*0.u”) + p (3, (u"r) + 3. (u’r)) =0,
so that we obtain

1d

) 5 (ur)Z
a1 | ((8rur) + (Q.u")” + ) rdrdz
]R+

r2

,O(M ) rdrdz +/
R
+

= / 110, (u"r)dr dz.
R
Along the same line, we have
1d

_ 7)2 2y2 232
2di Jee p(u) rdrdz+/2 (@ru®)* + (0u*)*) rdrdz

R+
:/ 10, (u*r) dr dz.
R
Hence due to 9, (ru”) + 9, (ru®) = 0, we achieve
1d
2 J

")?
r2

o (W"* + W) rdrdz +/ (ﬁuﬂz + Vit ? + ) rdrdz =0.
R

2
F

Integrating the above inequality over [0, 7] and using (2.2) gives rise to

r2

2 S2 u-
”u”L?O(LZ) + ”VMHL[Z(LZ) + ‘

; < Clluol)3.. (2.3)

L2(L?)

o H! energy estimate

By taking LZ(RZ%, r dr dz) inner product of the u” equation of (1.4) with ;4" and using
integration by parts, we have

1d
2dt R%_

-}

Similarly we have
1d
2dt Ri

r\2
((a,u’)z + (0.u")? + (u 2) ) rdrdz + /2 0(Bu")?rdrdz
r ]R+

0 (ufa,u’ + uzazur) ou'rdrdz + /2 119, (3,u"r)dr dz.

2
+ Ry

(@) + (B.u®)?) rdrdz + /2 pBu®)?r dr dz
R+

= _/2 p (u” 0pu® 4+ u*d.u®) 8,uzrdrdz+/2 M9, (0;u’r) dr dz,
R R:

+ +

which together o, (ru”) + 9, (ru®) = 0 gives rise to

1d N (T > 2
—— |Vu"|> + Vi > + —— rdrdz—i—/ o (Qu")* + (Bu*)*) rdrdz
2 dt Ri r 2

R+
= —/2 0 (urarur + uzazu’) ou'rdrdz — /2 0 (uraruz + uZBZuZ) outrdrdz
R2 R%
< C(IVpu"dru" |75 + I/pudu" 17, + /o d:ufll72 + | /putdu)l7 )
1
+5 (VP32 + /3 I72)
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which along with (2.2) implies

_ _ u” 2
£ (|wr|2+|w|2+( ) )rdrdz+||a,uf||iz+||atu1||22
dt R2 r
< C (Il du" 55 + llu0u” 1172 + w0117 + /puulll7) . 24

e The second derivative estimate of the velocity

By taking L?(R2 ; r dr dz) inner product of the u” equation of (2.1) with 3, and using
integration by parts, one has

/2 (0,w)*rdrdz = —/2 3,0,T1 | wrdr dz
R+

R+
- /2 (Patur + pu"du" + ,Ouzazur) | 0,cor dr dz.
R+
Similarly taking L2(RZ%; r dr dz) inner product of the u* equation of (2.1) with 9, (ro)r~!
leads to

/ @ (ro))*r "V drdz = / 0,0, T1 | wr drdz
RZ R2

+

_/2 (pB,uZ + pu" 8, u* +puZBZuZ) |0, (wr) dr dz.
R

T

Yet notice that

2
/ O, re)rtdrdz = / (a)— + 2wd,0 + (8rw)2r) drdz
R% R2

-
2
= / (w—2 + (B,w)z) rdrdz.
R \7

As a consequence, for I' given by (1.6), we obtain

/ L (@) + @:0) + T?) rdrdz < C (172 + 72 + " 80”117

R+
112, + " 8012, + N du))12,) -
(2.5)
Along the same line, we have
VT2, < € (luf 1122 + 122 + llu” 80”12,
112, + " 8012, + Nucdut)|2,) . (2.6)

e The combined estimate

Let 6 > 0 be a small positive constant, which will be chosen hereafter. By summing up
(2.4) with 6 x ((2.5) + (2.6)) leads to

u")?
2

| (ﬁu’ﬁ + |Vt + )rdr dz + (1= 2C8) (I3 |72 + 1971 72)
R+

+38 (/2 (Vo> +T?) rdrdz + Wnniz)
R

2
2 2 2 z 2
< C (" 8pu" 12 + Nl " I 5 + N 0pull7 + Bt 175) -
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3258 H. Abidi, P. Zhang

Taking § = % in the above inequality yields

d = 2 S 2 (ur)Z r2 2
di |Vu | +|vu2| +72 VdrdZ+||8[M ||L2+”atuz”L2
t Ri r
+/]R{2 (IVol* + T?)rdrdz +||VII|7,
2
< C (I 3w 1172 + N du" 13, + llu"8pu® 13, + Nudul3,) . 2.7)

In order to cope with the right hand side terms in (2.7), we take cut-off functions ¢ €
Cg°l0, 00) and ¥ € C*°[0, oo) with

1 relo,1/2], 1 rell/2, 00),

"’(r)=[o rell,oo), M 1/’(r)=[0 re0,1/4), 8)

and present the lemma as follows:

Lemma 2.1 Let f(r, z) be a smooth enough function which decays sufficiently fast at infinity.
Then for ¢(r) given by (2.8), one has

[, 70 drdz < CUFIE: (1112 + 10-£112) 1012 29)
2
Proof 1t is easy to observe that
o0
r2 () < /0 10, (r* f2(r))| dr

- c/o FIF] + 10, £ Dr dr,
and
er5/ |3zf2|VdZ=2/|f||3zf|rdz,
R R

from which, we infer

/ f4<ﬂ(r)r3drdz§C/ / |f|(|f|+|8rf|)rdr/|f||8zf|rdzdrdz
RZ R JO R

< [ 1A+ fDrdrde [ £ f1rdr dz
RZ R?
Applying Holder inequality gives rise to (2.9). O

Now let us turn to the estimate of the nonlinear terms in (2.7). We first get, by applying
Holder’s inequality and the 2-D interpolation inequality,

1 1
1 sy S 112 g, 1V F (2.10)
that

2 2 2
N B2 < 18,ull IN/rul 112,

1
2 ~
<C (/ w'r! dx) IVru" I 721V /ruD)liz2,
-

@ Springer



Axisymmetric solutions of 3-D inhomogeneous Navier—Stokes system 3259

where we used Biot—Sarvart’s law

u(t, x) = b Oy —x) Negw(t,y)
A Je T Iy P

and the fact that r—! is in A? class (see [11] for instance) so that

1 1
i 7
||a,u||z4=(/ |a,u|4r—1dx) §C(/ a)4r_]dx) .
R3 R3

Then by virtue of (2.9) and (2.10), we infer

1

1 i e
(/R} wtr! dx)4 < (/R2 Irtor) drdz) +(/Rz (1 —(p(r))drdz)

i
1

1
< ( / D) drdz) + lloy s
R:

+

1 1 ~ 1 Lo 1
ST, (III’IIZQ + IIVFIIEZ) + lloy 12,1V (@)l 7

1 1 ~ 1 1 1 ~ 1
<IN, (nrn; + ||vr||zz) +llwl2s (||w||22 + ||VCU||ZZ)-

LZ) ’

" drull3> < C (TN 22 (TN 22 + VTN 22) + el 2 (lell 2 + Vel 2))

)

2
)(nwniz +1IT117,)

+8 (lol2, + IVl + T3, + IVT)12,) . (2.11)

Moreover, note that

r

~ ~ u
IV(/ruHllz2 < € (IIVurIILz + ‘

r

for any § > 0, we write

r

~ u
x lu" 12 (IIVM’IIL2 + ‘ -

r

2 S 2 u
< Csllurlle(IIVu’IILz + ’ .

L2

To deal with ||u®d,ul| 2, we split fR%r (u?d.u)?r dr dz as

/ (uzazu)zrdrdz=/ (uzazu)z(p(r)rdrdz—i—/ W o.u)>(1 — (r))r dr dz.
R2 R? R?
+ + +
(2.12)

By applying (2.10) and convexity inequality, we get for any § > 0

/ U o.u)>(1 — (r))rdrdz
R}
</ Wy (ryr)2 drd
~ Z Z
R}

et |2 o et

|
= .

2
4
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3260
1 = 1 1 = 1
< |uwert] | |Sasverh| fowwrt| | |Sowrt)|
< Csllu? |17 (11172 + 1Vufl32) N0zull7 2 + 8 (19:ull, + [Voul7) . (2.13)
Before proceeding, let us recall from (2.22) of [19] that
u” -1 O 1 -1
— =9, AT T —2—A"9,A" T, (2.14)
r r
and from (21) of [13] that
o x% xl2 X1X2
— AT W=—=R W+ —=RpW-2—R;p,W (2.15)
r }"2 r2 r2
for every axisymmetric smooth function W, and where R;; def 0;0; AL

By virtue of (2.9), we infer

r

2
/ (uzazur)zgo(r)rdrdzz/ W)2r3 o2 (r) (azi) r3o?(r)drdz
R% RZ r

1 1

2 4 2

< (/ (MZ)4r3¢(r) dr dz) (/ (azi) r3<p(") dr dz)
R% R% r

ur
0, —
ro|2

1 1 1
< 2 (uuzu 2+ gyl zz) A

d )

Yet it follows from (2.14) and (2.15) that
S 0:Tlz2 and

D=

ur
3.0, —
p

1
u" ||z
0, —

r 12

zu’
82— .
ST

+

u” ~
0,0, — 5 ||VF||L2.
r L2

r

u
92—
p

4

ur
0, —
r

ISRIN V2N

L2

L2

Therefore, for any § > 0, we have
/R L2y drdz < Clut |, (1+ 1ell72) 1 VeI 171172
2
+8 (ITI2, + IVII2,) . (2.16)

While since 9, (ru”) + 9, (ru*) = 0, we have

r 2
/2 U2 .u®)o(r)rdrdz = /2 (uZ (aru’ + MT)) o(r)rdrdz. (2.17)
R R2

Due to (2.14) and (2.15), we have

uu’ : 33,2
/ o(r)rdrdz < / ()’ ¢=(r)rdrdz
R2 r R2

wl
2

(u1)3 3 B 5

< ([ ) Iamr

2 2
< CIVUslIZ TN -

r2

r

L6
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where we used Sobolev—Hardy inequality from [6] that

|u |2 x:}
dx <C(s,q,N,k) [Vul? dx , (2.18)
rY X RN

wherex = (x',z) € RN = REx RV % with2 <k <N,1<g <N,0<s <gands <k,

g« dgf %, so that there holds

1
73 3
( z—(ug) dx) < CIVu 2.
-

rz

Whereas it follows from (2.14) that
du" =8, AT'T 478,80, A7'T —202A" 19, AT
Applying Hardy’s inequality (2.18) once again yields

2
3

)’ (9.A7'T) p(r)r dr dz < (/2 P03 (r)r dr dz) EYNN
RZ B2

2
3 3
[u?] ’ 2
5(/ —dx) ITI2,
R r2

112 2
S IVEE L IT I,

Similarly, by applying Lemma 2.2, one has

/2 W) (.0, AT (r)r dr dz
R+

1
2 2
< (/ W *or)r’ drdz) (/ |8z8rA_1F|4<p(r)r3drdz)
R} R}
1 1 1 1 ~ 1 1
< Cllu®|| 2 (nuz 12, + 13-u® ||22) 112, 11Tl .2 (nrnzz + ||Vr||zz) 1911 %,
< Csllu® (172 (1+ 1w 172) IVuE 12200032 + 8 (IT 172 + IVTN17,) - (2.19)

Let W 9 9. A=1T. Then by virtue of (2.14), we find

20 —1 x% x12 X1X2
AT W =00 ZRuW+ —RnW -2—RpW
r r r

= sin? ORI W + cos? OR»W —2sin6 cosOR 12 W
+ 7 (sin* 08, R11 W + cos® 03, Rox W — 25sin cos 03, R12 W) .

It is easy to observe that

/R2 ()? (sin* OR11 W + cos® #R2 W — 25sin 6 cos enlzw)z @(r)rdrdz
2
3
_3 _
S (/w|u1|3r de) 19 A7 TlGs < IVU g2 TN,
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and it follows from a similar derivation of (2.19) that

L ) (sin> 63, R11 W + cos® 03, Roa W — 25in 6 cos 00, R1W)” p(r)r dr dz
R+

2
< (/ |uz|4(p(r)r3 dr dz)
R2

2
1
4 2
x (/2 (sin? 09, R11 W + cos 08, Ry W — 25sin 6 cos 08, R12 W) @(r)r dr dz)
R+
< Csllu® 12, (14 16?11 5:) IV 12,0013, + 8 (IT 12, + IVTI3,) -

By resuming the above estimates into (2.17), we obtain

/Rz W0 p(ryrdrdz < Cs (14 [u]92) 1V I 70172 + 8 (IT172 + IVEI) -
1
(2.20)
Therefore, by substituting the Estimates (2.13), (2.16) and (2.20) into (2.12), we obtain

lufdull?, < Cs ((1+ 1*15,) IVufI3, (1Vul3> + IT11%,)
H(U+ WD N0:ul72) + 8 (IT172 + 1Vo-ull7, + IVD3,) . (2.21)
Note that for the axisymmetric flow, we have for 1 < g < oo

@) el ~ [IVulze and

. w
) Vol + 2]~ 1Vl 222)
riLe

Thanks to (2.22), by resuming the Estimates (2.11) and (2.21) into (2.7) and taking § to be
sufficiently small, we obtain

d(~ 5 Ju@ ) > 2 S
- (1Vuo1g: + + 10ul72 + el + IT172 + VI,
t r L2
~ u” 2 ~
<G ((1 - ||u||i2>(||w||iz - ‘ — ) (IVull?> + 1IT1132)
L
z14 <, 12 o 2
+(1+ [lu ||L2)||W||L2)+6||VF||L2. (2.23)

By applying Gronwall’s inequality to (2.23), we write

2

r

2

2 2 2
22y Tl + Tl + IVIT]|

2
”VMHL;XJ(LZ) + + ”alu” L,2(H2) LIZ(LZ) L[Z(LZ)

L®(LY)

< Cexp(C (1 + IIMIIZOC(Lz)) (||Vu||irz(Lz) +

x (IIVMollinr‘

r

r

2
L2(L?)

r

,
“o

2
4 S o2 2 S
O (1 e g 2) ||w||L;(L2)+||r||L?o(Lz)+||vr||Lg(L2)),

L2
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from which and (2.3), we infer

2
2
IVl o 12 + ‘ . + ||atu||Lz T ||u||L2 T ||F||Lz T ||VH||L2 )
t
< Cexp (Clluol?s (1+ Nuol®)) | ol + |’ + T2 +Ivr?
= p uo L2 up L2 uo H! - L,OO(LZ) L,2(L2) .

(2.24)

o The estimate of '

Leta dgf 1/p — 1. Then we get, by taking L? inner product of (1.6) with I" and using

integrating by parts, that

d 1 ~ r
——T I3 +/ — VT2 dr dz —2/ 3, (7) Tdrdz
2dt R_%_ 0 R%_ P

= /2 a (0,119, I"' — 9,119,I") dr dz
R

+

a ~ ~
= |%) 1o,
r e

Note that a(z, 0, z) = 0, by using integration by parts, one has

r
—2/ 0y (—) Idrdz = —2/ o,I'T"drdz — / o (al)l'drdz
R% p R3 R?

+ +

:/Fz(t,O,z)dz+2/ all'd,T dr dz
R R2

3
a2 1ar|?
=—c|2| iriz -5 %=
rllpee 4ol
Therefore due to (2.2), we infer
d 2
P17, + ||Vr||Lz scH H (19T, + IT112,) . (2.25)

On the other hand, it follows from the transport equation of (1.4) that

8,a+ur8a+uZ8a:0 and

I/t a
a +u 0y —+uza —+—— 0,
ror
which yields
a 0 u”
20 H < |2  exp . (2.26)
r Lo° r lhpee r L}(Loo)
While note from [2,8] that
r
STy s <t4||I*I| 012 IIVFII 2
s L3 ~ L¥(L2) L3212y
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So that by integrating (2.25) over [0, ¢], we obtain

IT 100 z2) + IVT 72,2 < IT0l72

|2 ew (Cr4 ITH e 19T ) (1912, ) + 0125 )

Resuming the Estimate (2.24) into the above inequality leads to

3 1
I gy + 19T s, < W00 +€ |27 exp (€M 02 19T )

u” 2
x exp (Clluol2, (1+ lluol®,)) (uuon%,l - ’ -

+ ”r”LOO(LZ) + ”VFHLZ(LZ))

(2.27)

L?

Proposition 2.1 Let (p, u, VII) be a smooth enough solution of (1.4) on [0, T*), which
satisfies (2.2). Let Go be given by (1.11) and

4
1 T 2 3
o % m( 0”2“ . (2.28)
2C1Toll2 N\ 2¢ 4. G

Then under the assumption of (1.10), one has T* > t| and there holds

2 2 2
IIFIIL?IC(Lz) + IIVl"IILtzI w2 = 2ol (2.29)

2

2 “
”VMHL?IO(LZ) + ‘ r

) +||8l‘u||L2 L2)+”M”L2 HZ) + ”VH”LZ LZ)_CQO' (230)
L3(L?)

Proof Indeed if || “70 |l Lo is sufficiently small, we deduce from (2.27) and (2.28) that

IPI o, + IVTI2, o < 21Tl
LEP(L?) L3 (L2 = 3 Ollp2-
Substituting the above estimate into (2.24) gives rise to (2.30). (2.30) together with the

blow-up criteria in [14] implies that 7* > ;. O

2.2 The global in time H! estimate

The goal of this subsection is to present the global in time H! estimate for the velocity field.
Toward this, we first prove such a estimate for small solutions of (1.1), which does not use
the axisymmetric structure of the solutions.

Lemma 2.2 Let (p, u, VII) be a smooth enough solution of (1.1) on [0, T*), which satisfies

(2.2). Then there exist positive constants 11 and 12, which depend only on ||ug||;2, so that
there holds

t
IVu@®)|2, + / (mldu) 72 +n2 (IV2uE) 132 + IVIIE)13,)) di’ < [[Vuto) |7
0]

(2.31)
provided that |Vu(ty) |2 < n1.
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Proof We first get, by taking the L? inner product of the momentum equations of (1.1) with
d;u and using integration by parts, that

1d
IV/Pdu®)3, + anmniz = — (pu-Vu | du) ;>
< IPlreellull 3 11Vull g6l /DBeull 12
1
< Cllull 21 Vull 2 1V2ul7 2 + Zn\/ﬁatuniz,

A

which gives

1d 3
5 2 IVl + Z1VP3u @I, < Cllull 2 I Vull 2 V2 ull .

On the other hand, it follows from the classical estimates on linear Stokes operator and

[ —Au + VIl = pdu — pu - Vu, (2.32)

divu =0,
that
IV2ull7, + IVIT7, < € (1pdull7s + lpu - Vull7,)
< C (IVpdul72 + llpllzeelull? s Vul7s)
< C (IV/pdull7> + llull 21 Vull 2V 7ull3 )

so that we obtain for any 7, > 0

1d 2 3m 2
527 1Ve®IZ + (7 - an) EXI
+ (m2 = Clluoll 21Vl 2) (V]3> + IVIT|2,) < 0. (2.33)

‘We denote

o sup (1 e 10, T | IVu@) 1,2 < 2m ). (2.34)

We claim that t* = T provided that 7 is sufficiently small. Indeed if t* < T, taking
m = g&and ng < w’iﬁ, we deduce from (2.33) that
L

d
Enwmniz +ml|dpul?s +n2 (IV2ull3, + IVIT|7,) <0 forall ¢ € [to, T),

which implies

*

IVu@)|?,+ / (mll 3@ 13 +n2(IV2uE) 13+ IVITE)3 ) di’ < [IVuto)ll3. < n7.

fo

This contradict with (2.34), and thus 7* = T*. This concludes the proof of the lemma. O

Proposition 2.2 Let (p, u, VII) be the local unique smooth solution of (1.4) on [0, T™),
which satisfies (2.2). Then T* = oo and there holds (1.11) provided that &y in (1.10) is
sufficiently small.

Proof 1t follows from the derivation of (2.3) that

1 ! 1
S IVou@Ig: + /0 V(). di’ = S I/powoll 7 (2.35)
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which ensures that for any positive integer N, there holds

N-1 k41 ) 1 )
>[I ar < J1vaul
k=0 7k

Thus there exists 0 < kg < N — 1 and some ty € (kg, ko + 1) such that

ko+1 1 1
Vul?,dt < — uol?, and ||Vu(tp)|?, < — uol|%,.
/ko IVully.dz < N I/ pouolly 2 Vu(o)lly. < 2N||\/,00 olly2

For n; given by Lemma 2.2, taking N so large that

1
Va0l < 5 lIW/pouollgs < i

Then we deduce from Lemma 2.2 that there holds (2.31).
On the other hand, in view of (2.28), we can take || “70 || Lo to be so small that #; > fg. Thus
by summing up (2.30) and (2.31), we obtain for any ¢t < T*,

+IV2ul?,, 4 VD)2

2 2
”VMHL?O(LZ) + ”alu”L? L[Z(LZ) L[Z(LZ)

(L

< NVl oo opper2) T 1900320 1012y + IV T200 10 12) F IV 2001012,
NVl sy riz2) + 10000 20 02y + 1V2Ul 20 o2y F IV G20 102

< CGo+m. (2.36)

for Gy given by (1.11) and 7, being determined by Lemma 2.2. Then thanks to (2.36) and
the blow-up criteria in [14], we conclude that 7* = co. Moreover, by summing up (2.3) and
(2.36), we achieve (1.11). This finishes the proof of Proposition 2.2. ]

3 Decay estimates of the global solutions of (1.1)

The purpose of this section is to present the decay estimates (1.13) for any global smooth
solutions of (1.1), which does not use the particular axisymmetric structure of the solutions.

Lemma 3.1 Let (p, u, VII) be a smooth enough solution of (1.1) on [0, T*), which satisfies
(2.2). Then fort < T*, one has

d
Enwmn; + IVPu 72 + @5 + IVII@[122 < CIVu@) 13 1 Va2,
3.1

and
%||ﬁu,(r)||iz + IV, (012,
<C (||w<r)||§,1 + ||u(r)||‘;-,,) (I/pus D172 + Vu®)72) - (3.2)
Proof We first get, by a similar derivation of (2.33), that
%nwmniz + (||w7ut||iz + llull?, + ||vn||§2) < Clly/pu - Vul3,

< CM|ull76llVull7s
< CM|Vul? , [Vul?,.
H2

which gives (3.1).
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On the other hand, by taking 9d; to the momentum equation of (1.1), we write
P By +u - Vuy) — Auy + VI, = —pruy — (pu); - Vu.

Taking L? inner product of the above equation with #; and using the transport equation of
(1.1), we obtain

1d
3 B O + 1V = = [ g dx = [ pu-Vulusdx
—/ puy - Vu | uydx. 3.3)
]R3

By using the transport equation of (1.1) and integration by parts, one has

[ o as
R&

= ‘/ div(pu)|u|> dx
]R3

/%pu'Vu,lu,dx
R‘

=2V M|lullzee I/ puell2 [ Vuell 2,

=2

which together with the 3-D interpolation inequality that

R
lullzee < Cllull g lull 7, (34

implies

1
< CM|\ull g llull g2 ll /ol > + guwzniz.

‘/; Pt|ut|2dx
R3

Along the same line, we have

/R;,otl,rVu|u,dx=—/R%div(pu)u'Vu|u,dx

3

= Z (/% puiaiujajukuf dx —i—/3 puiuj8,~8jukuf dx +/; pu"ujajuka,'uf dx) .
ikl VR R R

Applying Holder’s inequality gives

3

>

< VMullLeIVull 3 Vull gsll/oull 2

/ puiaiujajukuf dx
R3

i,j.k=1
2 2 2 2
<cC (nunmnunm +11vul? | Ilﬁutlle) :
and
3
i J k. k 2 2

> /3pulufa,~aju uj dx| < VMlull7o I V2ull 2] /pugll 2

L R

i,j,k=1

= Cllul (i + 1v/ouil?2)
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and
3
> / pu'wl 9ukdpuf dx| < M2l Vull o Vuell 2
ijk=11"R
1
< ClIVallzallulGys + Vil
This yields

/3 puat - Vu |y dx| = C (nuniw FIvul )+ ||Vu||iz) (1l + /i 1)
R
1 2
+6”vuf”L2'

Finally it is easy to observe that

/3 pur - Vu L updx| < N Mllullgs I Vullps l1/pull 2
R

1
< cnwniﬁ I/puell?, + gnwtniz.

Resuming the above estimates into (3.3) and using (3.4) results in

%nﬁu,mniz + IV )12
= (Va1 + @14, ) (11 + 1Vpu0132) (3.5)
Whereas it follows from the classical estimates on linear Stokes operator and (2.32) that
lull 2 + IVl 2 < C (llpueli g2 + llpu - V| 2)
< C (VI 2 + Mllull sVl )
< C (Ivpurll 2 + 1ul22) + 5l .
2
which yields
lull g2 + VIl 2 < C (II/puell 2 + [ Vul7,) - (3.6)
Substituting (3.6) into (3.5) leads to (3.2). This finishes the proof of the Lemma. O
Corollary 3.1 Under the assumptions of Lemma 3.1 and that
166117 oo 0. 7 111y + IV 03 20 7011, < Cos 3.7)
one has foranyt < T*,

t
OIVu@®|72 + /0 (t') (||ut<t/)||iz + w3, + ||vn<r/>||iz) dr’

de
< Cexp(CColluol X ¢y, (3.8)

@ Springer



Axisymmetric solutions of 3-D inhomogeneous Navier—Stokes system 3269

and
t
1(t) (||u,(r)||iz + w13, + ||vn(r)||iz) + /0 VIV ()13, dt’

= CCi(I + Cpexp(CCo(1 + Co)) dZefC'z- (3.9

Proof We first get, by multiplying (3.1) by (¢), that

d
- (@IVu@I3) + () (||Jﬁu,(r>||2;2 + a3, + ||vn(t)||12)
< VU7 + ClIVu@ I3, () IVu@®)|13,.

Applying Gronwall’s inequality and using (2.35), (3.7) gives rise to (3.8).
While multiplying (3.2) by #(¢) results in

d
b (HO I Pur O 2) + O IVur (D175 < 2(0) 1 /pur (D]l 2

+C (||Vu(t)||%11 - ||u(r>||‘,;.) t(t) (I/ou 72 + IVu®I}2) -

Applying Gronwall’s inequality leads to
t
{0 /B (1122 + / YV ()2
0

t
= Cexp (C (I g0, + 1B N5 1)) (/0 (/P ()12, di’

2
+ Va2 e (19012 0+ 112 e g 00022 ) )

from which, (3.6-3.8), we conclude the proof of (3.9). ]

d
Proposition 3.1 Let p € [1,2) and B(p) =ef %(% — 1). Then under the assumptions of

d
Corollary 3.1, if we assume further that agy :ef L _1 e L2R3) and ug € LP(R3), there

1
20
holds

ci)y PP if 1<p<2,

lu@ll 2 < [ (3.10)

coy Gy o,

foranyt < T*, where the constant C depends on ||ag| 2, Co, C1 and Cy given by Corol-
lary 3.1.

Proof Motivated by [4], in order to use Schonbek’s strategy in [21], we split the phase-space
R3 into two time-dependent regions so that

IVu@)3 =/ |s|2|ﬁ(t,5)|2ds+/ &7 lar, &)|7dE,
S(1) NOS

(t

where S(¢) dgf {&: 1€l < ,/% g(¢)} and g () satisfies g(t) ~ (t)_%, which will be chosen
later on. Then due to the energy law (2.35) of (1.1), one has

d
Ellﬁu(t)llb + 82 MIVP u®3, < Mg?(1) /S() la(r, €)% d& (3.11)
t
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To deal with the low frequency part of u on the right-hand side of (3.11), we rewrite the
momentum equations of (1.1) as

t
u(t) = eup +/ TOAP(—V . (u @ u) + a(Au — VID) () dt'.
0

where a dgf % —landP dgf Id — V A~ 'div denotes the Leray projection operator. Taking

Fourier transform with respect to x variables leads to
t
G, ) S e P @y &) + / e CER (|| F(u @ w)| + | Fi (a(Au — VID)]) (¢)) dt,
0

which implies that

t 2
/ (e, §)1d§ < / e*z"5'2|ﬁo<s>|2ds+g5(r)(/ ||fx<u®u>(r’>||Lgodt/)
S@) S@) 0

t 2
+g (1) (/0 7 (a(Au — VID) ()l g2 dt/) : (3.12)

Thanks to (3.9), we have
2

t 2 t
(/o | Fx(a(Au — VH))(t/)IILgo dt/) < IIallitoo(Lz) (/0 [(Au — VID) ("]l 2 df/)

; 2
< llaoll? ( /0 ()2 dﬂ) < Inr).

(3.13)
While it is easy to observe that
t 2 t 2
[Fe(u @ uw)(t)| o dt’) < lu@)3,dt") < 2 luoli?,.
0 £ 0 L L
3 1 def 4 2 1 1
Note that for ug € L?P(R”), let 7= 3B(p) = > 1 and »t o= 1, one has
1
q
/ e8P @ (&)2 dE < ( / o218l ds) ol ,
s S(0) L
S luoll?, (1) 2P, (3.14)

where we used the Hausdorff—Young inequality in the last line so that ||up|| v < ClluollLr.
Then since g(t) < (t)_%, we deduce from (3.12) that

1
it )2 280 4 -t < | 72 i 1=p <3,
t, dé <t + ()2 5 . 2 3.15
/Smm( £ ds < (1) (0 [<t>_2ﬁ(p) MESLAE ST

In the case when % < p < 2, by substituting (3.15) into (3.11), we obtain

d
S IVPROIL + & OIVP u®IT, S 200 P < (=20,

from which, we infer

b 20 ’ ! ' 20 ’ 1
RO )12, < I AouolZs + / el e (11 =1-28) gyt
0
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Taking o > 28(p) and g%(t) = a(t)~! in the above inequality leads to

t
I/ou)32(6)* <1+ /0 ("1 qp <4 ()PP,

which yields (3.10) for p € [3/2, 2).
In the case when 1 < p < % by substituting the Estimate (3.15) into (3.11), one has

1

d
S IVPROIL: + & OIVe u®IT S 007 S 1072,

[T

which implies
PN b 2 -3
gfog (") dt ||\/,5M(f)||iz < ||\//T0MO||§‘2 +/0 gfo g-(tdt (t/) 2dt.

Taking o > % and gz(t) dgf a(t)~! in the above inequality results in

Nl—

t
/AU 220 S 1+ /0 ()T dr S 1+ (1),

which gives
1

lul2 S ()73, (3.16)

Then by virtue of (3.16), we write

t 2 t 2 t . 2
(/0 ||fx(u®u)(f/)||L§°df/) S(/O ||u(t/)||i2dt/) 5(/0 (f/)ijdf/) < (1)

(3.17)
Resuming the Estimates (3.13), (3.14) and (3.17) into (3.12) results in
_(3 B P it 1< p<3,
/_ i@, £)1de < (1)7PP + (1) (3). S1-() ’ (3.18)
S() (ty \P-if p=1.

With (3.18), we can repeat the previous argument to prove (3.10) for the remaining case
when p € [1, 3/2). This completes the proof of the proposition. O

Proposition 3.2 Under the assumptions of Proposition 3.1, there holds (1.13) for any t <
T*.

Proof With Proposition 3.1, we shall use a similar argument for the classical Navier—Stokes

system to derive the decay estimates for the derivatives of the velocity (see [12] for instance).
In fact, for any s < t < T*, we deduce from the energy equality of (1.1) that

1 ! 1
Enﬁu(r)uiz + / IVu|3, dt’ = Enﬁu(s)niz. (3.19)
While multiplying (3.1) by (¢ — s) leads to

d
5 (@ =9IVu@I3) + @ =) (IVow Ol + IVl + IVITOI7)
< IVu@®)|72 + CIVu@ |13 (¢ — ) Vu®)|7..
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Applying Gronwall’s inequality and using (3.19) results in

t
(= )V =exp (CIVulZ, 1) / V()2 df’

CcC
_e"p( O JBu) .

In particular, taking s = % gives

IVu@|7, <€) Hu/2)|3.,
from which and (3.10), we infer for any t < T*
O~ 1P 1< p <2,
IVu@l3, < € () (3.20)
0 - if p=1,

Similarly by applying Gronwall’s lemma to (3.1) over [s, ¢], we write
2 ' 2 2 2 2
IVu()ll72 +/ (IWPu 72 + IVZu) 72 + IV ,) dif

< exp (CIVuIZ, ) VU2

< exp (CCo) [ Vu(s)[|7.. (3.21)
Whereas by multiplying (3.2) by (¢ —s) and applying Gronwall’s lemma to resulting inequal-
ity, we get

(=)A= (f7 /o2 de +1Vuld o)

xexp (€ (IVu12, 1)+ 112 o 1125 51, ))

< exp (CCo(1 + Co)) (IVu@)2, + IVl 1 2)) -

Taking s = % in the above inequality and using (3.20), we obtain
) TP 1< p <2,
lur N7 = C (s
L “L) G p=1.

which together with (3.6) and (3.20) ensures that

e 172 + U@ + IVAMIZ. < € () (3.22)

Cr ')y 1726W if 1 < p <2,
if p=1,

forany t < T*.
With (3.20) and (3.22), it remains to prove (1.13) for p = 1. As a matter of fact, we first
deduce from (3.22) that

t 2 ¢ 2
( / ||fx<a(Au—vn»(r’)nLgodz’) <l ( / ||<Au—vn>(r/>||der’)

2

< llaoll3 (/ ()3 (%) dt’) <C.
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With (3.13) being replaced by the above inequality, by repeating the proof of Proposition 3.1,
we can prove the first inequality of (1.13) for p = 1. Then repeating the proof of (3.22), we
conclude the proof of the remaining two inequalities in (1.13) for p = 1. This finishes the
proof of Proposition 3.2. O

4 The proof of Theorem 1.1

The goal of this section is to complete the proof of Theorem 1.1. In order to do so, we first
prove the following globally in time Lipschitz estimate for the convection velocity field,
which will be used to prove the propagation of the size for |||/

Lemma 4.1 Let (p, u, VIT) be a ¢ smooth enough axisymmetric solution of (1.1)on [0, T*).
Then under the assumptions (1.7) and (1.10), we have T* = oo, and there holds

IVullpi g, ;1) < C, “.D
Sfor some positive constant depending on m, M and ||ug| g1 .

Proof Under the assumptions of (1.7) and (1.10), we deduce from Proposition 2.2 that
T* = oo and moreover Corollary 3.1 ensures that

sup (1) [Vu()7 + /O (0) (I O + w1 + IVIOF) dr < .

tel0,00)
o0
sup (1) (||ut<r)||iz + w3, + ||vn<r>||iz) +/ HO IV, (012, dt < Ca,
t€[0,00) 0
4.2)

where C and C; given by (3.8) and (3.9) respectively. In particular, by using Sobolev
imbedding theorem, we obtain

/0 () lug (O di < Cs. (43)

On the other hand, in view of (2.32), we deduce from the classical estimates of linear
Stokes operator that

IV2u@lzs + VIOl s < C (lur (Ol o + lu@) Lo V@)l s) -
which together with (3.4) yields

/0 t(t) (IV2u)l36 + IVII(0)]136) dt

EC(/o O dr+ [ 10O g )1 ar).

Yet it follows from (4.2) that

1

3
2y tdr < €€ CF,

oo 3 oo
/0 O @l gl dr < cﬁc;/o

which together with (4.3) ensures that

|10 vl + 19T dr < cc (1+vE6) Lo @
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By virtue of (4.2) and (4.4), we infer
1

00 o0 1 1
/0 IVu@) |l e dt SC/O ||u(t)||22||V2u(t)llzf,dt

LB B 2 2 V4
<cey [Tt oIviuolR) dr

1 [o.¢]
<ccy (/ t
0

1
<CCyCy.

1

(1)~3 dt)1 (/ootmllvzu(t)llie df)4
0

This gives rise to (4.1). ]

SN

Now we are in a position to complete the proof of Theorem 1.1.
Proof of Theorem 1.1 The general strategy to prove the existence result to a nonlinear partial
differential equation is first to construct an appropriate approximate solutions, and then per-
form the uniform estimates to these approximate solution sequence, and finally the existence
result follows from a compactness argument. For simplicity, here we just present the a priori
estimates to smooth enough solutions of (1.4).

Given axisymmetric initial data (po, uo) with po satisfying (1.7) and a¢ € LN L%,
”7" € L™, uy € H', we deduce from (2.23) and (2.25) that there exists a maximal positive
time T* so that (1.4) has a solution on [0, 7*) which satisfies for any T < T*,

”u“L‘%O(H') + ”VMHL%_(HI) + ||8tu||L%_(L2) + ”VH”L%_(LZ) + ”F”L?rO(LZ) + ”VF”LZT(LZ) <C,

from which and Corollary 3.1, we deduce that there holds (1.8). And hence the uniqueness
part of Theorem 1.1 follows from the uniqueness result in [20].
Now if T* < oo and there holds

t
lim @ = Cy < 00.
t—T* r Lo
Let us take § so small that
1

Then we get, by summing up (2.23) and 2méd x (2.25), that
u' (1)
P

2

d -
dt(nwa)niz + ‘ i +2m6||r(z)||12)

L

1, ~ ~
1wl ga + lullfys + 5 (IVIUZ + ITIZ.) + SIVTI,

<G (<1+||u||iz) (n%nifr

Applying Gronwall’s inequality and using (2.3) leads to

)(Wuniﬁnrniz)m + ||uZ||iz)||azu||iz).

2
L2

ur
r

r2
<02 u 2 2 S2
||Vu||L°TO(L2) + ‘7 o2 + ”F”L%O(LZ) + ||8tu||L%.(L2) + ”VH”L%_(LZ)
L (L)
HFull?s oy T2 0+ IVTE, o < C,
L3.(H?) L3.(L?) L3.(L?)
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forany T < T*. Therefore we can extend the solution beyond the time 7*, which contradicts
with the maximality of 7*. Hence there holds (1.9).

Under the assumption of (1.10), we deduce from Proposition 2.2 that 7* = oo and there

holds (1.11). Moreover, Lemma 4.1 ensures that

”Vll ”LI(R+;L°O) < C,

which together with (2.26) and

ur

p < ”VMHLI(]R+;L°°)

LIR*;L%®)

gives rise to (1.12).

Finally with additional assumption that ug € L? for some p € [1,2), we deduce from

Proposition 3.2 that there holds the decay estimate (1.13). This finishes the proof of Theo-
rem 1.1.
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