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Abstract We study O(d)-equivariant biharmonic maps in the critical dimension. A major
consequence of our study concerns the corresponding heat flow. More precisely, we prove
that blowup occurs in the biharmonicmap heat flow from B4(0, 1) into S4. To our knowledge,
this was the first example of blowup for the biharmonic map heat flow. Such results have
been hard to prove, due to the inapplicability of the maximum principle in the biharmonic
case. Furthermore, we classify the possible O(4)-equivariant biharmonic maps fromR4 into
S4, and we show that there exists, in contrast to the harmonic map analogue, equivariant
biharmonic maps from B4(0, 1) into S4 that wind around S4 as many times as we wish. We
believe that the ideas developed herein could be useful in the study of other higher-order
parabolic equations.

Mathematics Subject Classification 35J40 · 35J55 · 35J60 · 35J65 · 58E20 · 35K35 ·
35K55 · 35B40 · 34C11 · 34C30

1 Introduction

In this work we study (extrinsic) biharmonic maps in the critical dimension. Some of our
results have applications to the corresponding heat flow. Therefore, we first describe the
biharmonic maps and their corresponding heat flow.

Let Ω ⊂ Rd be open and bounded, and N a smooth compact Riemannian manifold
without boundary which is isometrically embedded in Rκ for some κ ∈ N. Consider the
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bi-energy

E2(u;Ω) =
∫

Ω

|�u|2 dx for u ∈ H2(Ω;N ), (1)

where

Hm(Ω;N ) = {u ∈ Hm(Ω;Rκ ) : u(x) ∈ N for a.e. x ∈ Ω},
for m ∈ N0.

Critical points of this bi-energy are called biharmonic maps. The Euler-Lagrange equation
associated to (1) is {

�2u(x) ⊥ Tu(x)N on Ω,

Dαu = Dαg on ∂Ω for |α| ≤ 1,
(2)

where g is boundary data, and the above is interpreted in the distributional sense for u ∈
H2(Ω;N ).

The L2-gradient flow, or heat flow, of (1) is
{

∂t u(t, x) + �2u(t, x) ⊥ Tu(t,x)N on R+ × Ω,

Dαu = Dαg on Γ (R+ × Ω) for |α| ≤ 1,
(3)

where g is initial-boundary data, and Γ (U ) denotes the parabolic boundary of U ⊂ R1+d .
We may replace Ω with a Riemannian manifold M. However, for concreteness, and since
our study does not need this generality, our presentation will only consider flat domains.

The bi-energy (1) is a higher-order analogue of the Dirichlet energy

E1(u;Ω) =
∫

Ω

|Du|2 dx,

for u ∈ H1(Ω;N ), where Du is the Jacobian of u. Therefore, one can view biharmonic
maps as a higher-order analogue of harmonic maps. Different higher-order energies have
been proposed. For example, the intrinsic bi-energy

H2(u;Ω) =
∫

Ω

|(�u(x))T |2 dx, (4)

where (�u(x))T is the orthogonal projection of �u(x) onto Tu(x)N . The intrinsic energy
does not depend on the embedding ofN into Euclidean space, whereas the extrinsic energy,
that is, the energy given by (1), does. This makes the intrinsic energy more natural from
a geometric perspective. However, the intrinsic energy lacks coercivity, in contrast to the
extrinsic energy, which makes it difficult to work with from an analytic perspective. In this
work we focus solely on the extrinsic energy.

Before we state our main results we need to introduce the notion of O(d)-equivariance
that we use. Throughout this paper O(d) refers to the standard group of orthogonal transfor-
mations acting on Rd . We suppose that u : Ω → Sd , where Ω ⊂ Rd is invariant under the
action of O(d), and Sd is embeddeded in Rd+1:

Sd = {x ∈ Rd+1 : |x | = 1}.
For x ∈ Rd and R ∈ O(d), we let Rx denote the standard group action of O(d) on Rd . For
y = (ỹ, yd+1) ∈ Rd+1, we set R • y = (Rỹ, yd+1). We say that u is O(d)-equivariant, or
simply equivariant, if R • u(x) = u(Rx), for all R ∈ O(d) and x ∈ Ω .
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Critical O(d)-equivariant biharmonic maps 2897

We will prove in Lemma 3 that, if u ∈ C∞(Bd ; Sd) is equivariant then there exists a
k ∈ N such that there exists a unique ψ ∈ C∞([0, 1];R), called the longitudinal distance,
where ψ(0) = kπ and

u(x) = Υ (ψ)(x) =
{(

x
|x | sinψ(|x |), cosψ(|x |)

)
for x ∈ Bd(0, 1) \ {0},

±k êd+1 if x = 0,
(5)

where

±k =
{

+ if k is even,

− if k is odd.

Remark 1 The condition ψ(0) = kπ ensures continuity of u at the origin, if ψ is itself
continuous at zero.

Remark 2 From (5) it is clear that, if we set ψ0(r) = ψ(r) + 2πl, for r ∈ [0, 1] and
l ∈ Z, then Υ (ψ0) = Υ (ψ). Therefore, without loss of generality, we may assume that
ψ(0) ∈ {0, π}.
Remark 3 Suppose that ψ(0) = π and u = Υ (ψ). If we set ψ0(r) = π − ψ(r) and
u0 = Υ (ψ0) then u0(x) = Ru(x), whereR is the reflection through the {xd+1 = 0} ⊂ Rd+1

hyperplane.

In this paper we globally assume that ψ(0) = 0. This is without loss of any generality,
because of remarks 2 and 3. For clarity, we will occasionally remind the reader that we are
assuming ψ(0) = 0.

Next, we describe our primary result. For an equivariant map from B4(0, 1) into S4, if the
normal derivative at the boundary vanishes then there is a limit on the number of times an
equivariant biharmonic map from B4(0, 1) into S4 satisfying the same boundary condition
can wind around S4.

Theorem 1 There exists a K > 0 such that if

u = Υ (ψ) ∈ C∞ (
B4(0, 1); S4

)
,

with ψ(0) = 0, |ψ(1)| ≥ K, and ∂rψ(1) = 0, then u cannot be a biharmonic map.

This implies that the critical equivariant biharmonicmapheat flowstarting fromsuch initial
data must blowup in finite time or at infinity, since it cannot sub-converge to a biharmonic
map. To our knowledge, this was the first blowup result for the biharmonic map heat flow.

Recently in [6], an example of finite-time blowup for the harmonic map heat flow due to
topological reasons was given. Their argument is based on a no-neck theorem, and builds
upon earlier observations in [28]. In [22], Liu andYin prove a no-neck theorem for the blowup
of a sequence of extrinsic and intrinsic biharmonic maps with bounded energy. Motivated by
the arguments in [6], Liu and Yin [23], have used their no-neck theorem to show finite-time
blowup for the biharmonic map heat flow in the critical dimension. More precisely, they
prove the following:

Theorem 2 [23, Theorem 1.1] Suppose thatN ′ is any closed manifold of dimension n′ > 4
with nontrivial π4(N ′), and let N = N ′ # T n′

be the connected sum ofN ′ with the torus of
the same dimension. For any Riemannian metric g onN , there exists (infinitely many) initial
maps u0 : S4 → N such that the biharmonic map heat flow starting from u0 develops a
singularity in finite time.
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2898 M. K. Cooper

It must be emphasized that the question of finite-time blowup for the biharmonic, and
other higher-order polyharmonic, heat flows into spheres is still open. It is in this latter case
that we expect symmetric/equivariant solutions to play an important role.

With our second result we show that non-constant equivariant biharmonic maps from
R4 into S4 are unique, modulo dilation, reflection through the origin in the domain, and
reflection through the plane {x5 = 0} in the codomain (see Remark 3). More precisely, these
transformations are, respectively, u 
→ (x 
→ u(λx)), for λ ∈ R+, u 
→ (x 
→ u(−x)), and
u 
→ (x 
→ Ru(x)), where R is the reflection through the plane {x5 = 0}.
Theorem 3 If u = Υ (ψ) ∈ C∞(R4; S4) is a non-constant equivariant biharmonic map
with ψ(0) = 0 then, up to dilation, ψ(r) = ±2 arctan r .

This is interesting, because in an upcoming paper the author shows that in the critical
equivariant biharmonic map heat flow blowup coincides with a bubble separating at the
origin. Furthermore, this bubble is a non-constant equivariant biharmonic map from R4 into
S4, hence Theorem 3 gives a complete description of these bubbles. By computing the energy
of this bubble, we know that if our equivariant initial data has bi-energy less than or equal
to 12 vol(S3) then the resulting flow exists globally in time and sub-converges to a smooth
equivariant biharmonic map from B4(0, 1) into S4.

With our final result we show that, in contrast to the harmonic case, there are equivariant
biharmonic maps from B4(0, 1) into S4 that wind around S4 as many times as we wish.

Theorem 4 Let a ∈ R. Then there exists a biharmonic map

u = Υ (ψ) ∈ C∞ (
B4(0, 1); S4

)
,

such that ψ(0) = 0 and ψ(1) = a.

There is a growing volume of literature concerning biharmonic maps, and more generally
higher-order polyharmonic maps, and their heat flows. We will not attempt to survey this
literature here, but the reader could start with [1,5,7,10–13,15,17,19–21,23–26,30,32–38,
40], and the references therein.

Symmetric and equivariant biharmonic maps have already been studied in [12,24,38,40].
In [38], Wang, Ou, and Yang study rotationally symmetric intrinsic biharmonic maps from
S2 into S2. Similar to this work, they compute the corresponding symmetry reduction, and
classify their class of symmetric intrinsic biharmonic maps. In [24], Montaldo and Ratto
examine a more general class of equivariant intrinsic biharmonic maps. They consider maps
that are equivariant with respect to Riemannian submersions. They setup machinery to com-
pute the corresponding symmetry reductions, and use this to explicitly compute the symmetry
reduction in some concrete cases. As applications they prove the stability of specific proper,
that is, non-harmonic, intrinsic biharmonic maps from T 2 into S2 among a certain class of
equivariant maps. Moreover, they construct a counter-example to a generalization to intrinsic
biharmonic maps of Sampson’s maximum principle for harmonic maps, see [31]. In [40],
Zorn studies G-equivariant biharmonic maps, where G is a compact Lie group. Among other
results, he proves thatG-minimizers of the bi-energy are stationary biharmonic, and improves
estimates on the Hausdorff dimension of the singular sets of appropriateG-equivariant bihar-
monic maps.

Biharmonicmaps are related to interesting problems in four dimensional conformal geom-
etry, for example see [4,39]. A further motivation for the study of biharmonic maps and their
heat flows is that they are good model equations for other interesting higher-order elliptic
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Critical O(d)-equivariant biharmonic maps 2899

and parabolic PDE. Therefore, one would hope that the insights generated for biharmonic
maps and their heat flows to be useful elsewhere. As an example of the parallels between the
biharmonic map, and more generally polyharmonic map, heat flow and other higher-order
parabolic equations, one may compare the work on the Willmore flow by Kuwert and Schät-
zle, see [18], and the work on the polyharmonic map heat flow and biharmonic map heat flow
respectively by Gastel, see [10], and Wang, see [36].

In [3] Chang, Ding, and Ye showed that finite-time blowup was possible for the critical
harmonic map heat flow. Chang, Ding, and Ye worked with the equivariant ansatz (5). More
precisely, Chang, Ding, and Ye’s result says that if ψ(0, 0) = 0 and |ψ(0, 1)| > π then the
corresponding solution to the critical harmonic map heat flow blows up in finite time. Prior
to this, Chang and Ding [2], show that if ψ(0, 0) = 0 and supr∈[0,1] |ψ(0, r)| ≤ π then the
corresponding local in time classical solution to the critical harmonic map heat flow is in
fact global in time. Only when |ψ(0, 1)| < π do we have sub-convergence to a harmonic
map, see [16] for further details. These proofs rely heavily on the comparison/maximum
principle.

Our main motivation for this study is to try to extend the work in [2,3] to the biharmonic
case. The inapplicability of the maximum principle in the biharmonic case makes this task
difficult. Looking to the future the following ideas may be useful. In [8] Galaktionov and
Pohozaev use the technique of majorizing operators in order to obtain a comparison principle
for the bi-heat equation. These ideasmay allowus to construct barriers in order to prove global
existence in a similar way as in [2]. However, this will not allow a proof of finite-time blowup
using barriers. In [29] Raphaël and Schweyer look at finite-time blowup of the 1-corotational
critical harmonic map heat flow while avoiding the maximum principle. Instead they rely on
energy methods and modulation theory.

Recently in [12] Gastel and Zorn studied a fourth-order ODE very similar to our symmetry
reduction for the equivariant biharmonic map equation (10) (with ∂tψ = 0). Their ODE
arises when trying to construct biharmonic maps of cohomonogeneity one between spheres
using joins of two harmonic eigenmaps. In contrast to this work, they use purely variational
methods. Their stated reason for this choice being that purely ODE methods would cause
difficulties due to their ODE being fourth-order and having ill-posed boundary conditions.
Although the questions studied in [12] are quite different than the ones studied here, we
have found success in using ODE methods to study our similar fourth-order ODE. To us,
this demonstrates that ODE methods can be useful in exploring such questions. It may be
of interest in future work to see if a synthesis of the ideas in [12] and here can yield deeper
insights.

We will now outline the structure of the rest of this paper. In Sect. 2, we first prove that
the smooth flow of (3) preserves O(d)-equivariance. In [2, Lemma 2.2], the authors study
the harmonic map heat flow using the equivariant ansatz (5), and they prove the analogue of
this result in their situation using the maximum principle, see also [14, Lemma 4.2] where a
similar argument using the maximum principle is used for the axially symmetric harmonic
map heat flow. Unfortunately, the maximum principle is not available in the biharmonic map
heat flow. Therefore, in our setting a different method which avoids the maximum principle
must be used. Next, we show the equivalence of maps which are O(d)-equivariant and those
which satisfy (5). After this, we present Mathematica code for computing our symmetry
reduction of the biharmonic map heat flow. This is then used to explicitly compute our
symmetry reduction in the critical dimension.

In Sect. 3, we prepare for, and outline our approach to, our deeper study of equivariant
biharmonic maps in the critical dimension. This study is carried out in Sects. 4 and 5, and
it is here that the theorems mentioned above are proven. The paper ends with an appendix
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which contains a couple of technical proofs which, in the author’s opinion, do not yield much
conceptual insight.

Notation. Throughout this paperC denotes a positive universal constant. Two different occur-
rences of C are liable to be different. If our constant depends on some parameter, say ε, then
we denote this by writing C(ε).

2 The equivariant ansatz

In this section we show that O(d)-equivariance is preserved by the smooth biharmonic
map heat flow, and O(d)-equivariance is equivalent to the ansatz given by (5). After this,
Mathematica code for computing the symmetry reduction is presented, and then used to
explicitly compute the symmetry reduction for the biharmonic map heat flow in the critical
dimension.

First we show that O(d)-equivariance is preserved by the smooth biharmonic map heat
flow.

Lemma 1 Suppose that d ∈ N≥2, T > 0, Q = [0, T ] × Bd(0, 1), and u ∈ C∞(Q; Sd) is a
solution to (3) with g as O(d)-equivariant initial-boundary data. Then, for each t ∈ [0, T ],
u(t, ·) is O(d)-equivariant.

Proof We let R ∈ O(d) be arbitrary, and set

vR(t, x) = R • u(t, R−1x) for (t, x) ∈ Q.

From (3), we have

∂t u = −�2u + (�2u · u)u,

hence

∂tvR(t, x) = −�2vR(t, r) + (�2vR(t, r) · vR(t, r))vR(t, r),

where we have used properties of orthogonal matrices. Since g is O(d)-equivariant, we have
DαvR = Dαg on Γ Q for |α| ≤ 1. Therefore, vR solves (3) with the same initial-boundary
data. Since we are working in the smooth category, uniqueness of solutions is standard, hence
vR ≡ u and u(t, x) = R • u(t, R−1x) for all (t, x) ∈ Q and R ∈ O(d). �
Remark 4 With the obvious modifications the above proof works for polyharmonic maps of
any order.

Next, we have two lemmas that demonstrate the equivalence between O(d)-equivariance
and the ansatz given by (5).

Lemma 2 Suppose that k ∈ Z, d ∈ N≥2, u ∈ C(Bd(0, 1); Sd) satisfies (5). Then u is
O(d)-equivariant.

Proof We let R ∈ O(d) be arbitrary. Using (5), we compute that

R • u(R−1x) = u(x) for x �= 0.

For x = 0, we have

R • u(R−10) = R • u(0) = R • (±k êd+1) = ±k êd+1 = u(0).

�
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Critical O(d)-equivariant biharmonic maps 2901

Finally, we show that if a map is O(d)-equivariant at each time then it satisfies (5) at each
time.

Lemma 3 Let d ∈ N≥2, k ∈ Z, and T > 0. Suppose that u ∈ C∞([0, T ] × Bd(0, 1); Sd),
u(t, ·) is O(d)-equivariant and u(t, 0) = ±k êd+1 for each t ∈ [0, T ]. Then there exists a
unique ψ ∈ C∞([0, T ] × [0, 1]) such that ψ(t, 0) = kπ and u(t, ·) = Υ (ψ(t, ·)) for each
t ∈ [0, T ].
Proof Let R0 ∈ O(d) be the reflection through the ê1 axis, that is,

R0êi =
{
ê1 if i = 1,

−êi otherwise.
(6)

For r ∈ [0, 1], we have
u(t, r ê1) = R0 • u(t, R−1

0 r ê1) = R0 • u(t, r ê1). (7)

Therefore, ui (t, r ê1) = 0 for i ∈ {2, 3, . . . , d}, and
(u1(t, r ê1), u

d+1(t, r ê1)) ∈ S1.

Since u ∈ C∞([0, T ] × Bd(0, 1); Sd) and u(t, 0) = ±k êd+1, there exists a unique ψ ∈
C∞([0, T ] × [0, 1]) such that ψ(t, 0) = kπ and

u1(t, r ê1) = sinψ(t, r), ud+1(t, r ê1) = cosψ(t, r). (8)

Next, we work in spherical coordinates. We fix an x̂ ∈ Sd−1, and let Rx̂ ∈ O(d) be a map
such that Rx̂ ê1 = x̂ . Then for r > 0 we calculate, keeping in mind (7) and (8),

u(t, r x̂) = Rx̂ • u(t, r R−1
x̂ x̂)

= Rx̂ • u(t, r ê1)

= Rx̂ • (sinψ(t, r) ê1 + cosψ(t, r) êd+1)

= Υ (ψ(t, ·))(r x̂).
Since x̂ was arbitrary, we are done. �
Next, we compute the symmetry reduction. For a function f : Rd → R such that f (x) =
f (|x |) = f (r), we have

� f (x) = ∂2r f (r) + d − 1

r
∂r f (r) =: (L1 f )(r) for x �= 0.

We also compute:

�

(
x

|x | f (x)
)

= x

|x |
(

∂2r f (r) + d − 1

r
∂r f (r) − d − 1

r2
f (r)

)
=: x

|x | (L0 f )(r).

For appropriate g0, g1 : [0, 1] → R, we write

{g0, g1}x̂ (t, x) = (x̂ g0(t, |x |), g1(t, |x |)). (9)

We observe that, for x �= 0,

�{g0, g1}x̂ = {L0g0, L1g1}x̂ ,
∂t {g0, g1}x̂ = {∂t g0, ∂t g1}x̂ , and

{g0, g1}x̂ · {h0, h1}x̂ = g0h0 + g1h1.
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For N a unit sphere, (3) can be written as

|∂t u + �2u − (
�2u · u)

u|2 = 0.

When u is O(d)-equivariant this reduces to a PDE for ψ .
The followingMathematica code computes this symmetry reduction in the critical dimen-

sion.

1 (∗ Functions to calculate the Laplacian ∗)
2 L1[expr_] := D[expr, {r, 2}] + (d−1)/r D[expr, r]
3 L0[expr_] := L1[expr] − (d−1)/r^2 expr
4 Lapl[expr_] := {L0[expr[[1]]], L1[expr[[2]]]}
5

6 (∗ Calculate the symmetry reduction in the critical dimension ∗)
7 CriticalSymmReduction =
8 FullSimplify[
9 ReplaceAll[

10 With[{u = {Sin[\[Psi][t, r]], Cos[\[Psi][t,r]]}},
11 With[{v = Nest[Lapl, u, 2]},
12 With[{expr = D[u, t] + v − (v . u) u},
13 expr . expr == 0] ]],
14 d −> 4]]

Exporting the result of this computation to LaTEX, and rearranging, we obtain

∂tψ = −∂4r ψ − 6
r ∂

3
r ψ + 6(∂rψ)2∂2r ψ + 3

r2
cos(2ψ)∂2r ψ + 6

r (∂rψ)3

− 3
r2

sin(2ψ)(∂rψ)2 + 3
r3

(cos(2ψ) + 2) ∂rψ − 9
2r4

sin(2ψ). (10)

Of course, we could have calculated (10) by hand, but we prefer to delegate repetitive and
elementary calculations to the computer.

Recall that we are assuming ψ(0) = 0, and hence u(0) = êd+1, see Remarks 2 and 3.
Due to the boundary conditions in (3), we have

∂ irψ(t, 1) = ai ,

for t ∈ [0, T ] and i ∈ {0, 1}, where ai ∈ R.
Due to symmetry, ψ must satisfy conditions at the origin. Let R0 be the same as in (6).

Arguing similarly as in Lemma 3, we see that there exists a ξ ∈ C∞([0, T ] × [−1, 1];R)

such that ξ(t, 0) = 0 and

u(t, x1ê1) = ê1 sin ξ(t, x1) + êd+1 cos ξ(t, x1),

for x1 ∈ [−1, 1]. We also have

u(t, x1ê1) = (−R0) • u(t,−x1ê1).

This implies that

(sin(ξ(t, x1)), cos(ξ(t, x1))) = (sin(−ξ(t,−x1)), cos(−ξ(t,−x1))),

hence ξ(t, ·) is odd.
Observe that if u ∈ Ck([0, T ] × Bd(0, 1); Sd) then ξ ∈ Ck([0, T ] × [−1, 1];R). In this

case, we have ∂2ix1ξ(t, 0) = 0 whenever 2i ≤ k. Since ψ = ξ |x∈[0,1], ψ ∈ Ck([0, T ] ×
[0, 1];R) and ∂2ir ψ(t, 0) = 0 whenever 2i ≤ k.
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3 Critical equivariant biharmonic maps

Now we start to delve deeper into O(d)-equivariant biharmonic maps in the critical dimen-
sion.

After setting ∂tψ = 0 in (10) and making the change of variables ψ(r) = φ(s(r)), where
s(r) = log r , (10) becomes the the fourth-order autonomous ODE

∂4s φ = −9

2
sin(2φ) + (7 + 3 cos(2φ))∂2s φ + 3(∂sφ)2(2∂2s φ − sin(2φ)). (11)

Recall that we assume ψ(0) = 0. This boundary condition becomes

lim
s→−∞ φ(s) = 0. (12)

We rewrite this as a first-order system by setting Φi = ∂ i−1
s φ for i ∈ {1, 2, 3, 4}:

∂sΦ =

⎛
⎜⎜⎝

Φ2

Φ3

Φ4

F1(Φ1, Φ3) + Φ2
2 F2(Φ1, Φ3)

⎞
⎟⎟⎠ , (13)

where

F1(Φ1, Φ3) = −9

2
sin(2Φ1) + (7 + 3 cos(2Φ1))Φ3, and

F2(Φ1, Φ3) = 3(2Φ3 − sin(2Φ1)).

The boundary condition (12) becomes

lim
s→−∞ Φ1(s) = 0. (14)

Observe that (13) and (14) are invariant under the transformation Φ 
→ −Φ.
An s0 ∈ R and initial data Φ0(s0) ∈ R4 generate a unique solution to (13), denoted by

Φ0 : [s0, smax) → R4, where either smax = ∞ or lims↗smax |Φ0(s)| = ∞. The next lemma
shows the equivalence between a solution of (13) satisfying (14) and it being an orbit in the
unstable manifold of the origin of (13), denoted from now on by Wu(0).

Lemma 4 Suppose that Φ0 : (−∞, smax) → R4 solves (13). Then the following are equiv-
alent:

1. lim
s→−∞ Φ0

1 (s) = 0;

2. lim
s→−∞ Φ0(s) = 0.

For the proof see the Appendix.
Observe that y(s) = 2 arctan(es) is a heteroclinic orbit of (11), and Υ (2 arctan(·)), for

d ≥ 2, is the inverse of the stereographic projection of Sd−1 \ {−êd} onto Rd−1. We set
Yi = ∂ i−1

s y for i ∈ {1, 2, 3, 4}.
The first result we will focus on concerning (13) states that this heteroclinic orbit gives

rise to the only non-constant equivariant biharmonic map from R4 into S4 modulo dilation,
reflection through the origin in the domain, and reflection through the plane {x5 = 0} in the
codomain (see Remark 3).

Theorem 5 Suppose that Φ0 : (−∞, smax) → R4 is a non-trivial orbit in Wu(0). Then the
following dichotomy holds:
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1. up to s-translation Φ0(s) = Y (s) or Φ0(s) = −Y (s), hence smax = ∞; or
2. Φ0 blows up in finite time, that is, smax < ∞ and

lim
s↗smax

|Φ0(s)| = ∞.

Theorem 3 is a corollary of this. Next, we outline our strategy for the study of (13).

Strategy Our arguments are in part motivated by the harmonic map case. The analogue of
(11) in the critical harmonic map case is

∂2s φh = 1

2
sin(2φh) = −∂φh

(
1

2
cos2 φh

)
, (15)

lim
s→−∞ φh(s) = 0.

This ODE is a pendulum equation. One can think of it as describing the dynamics of a ball
rolling without friction in coordinate space on the potential energy surface V (q) = 1

2 cos
2 q .

After some consideration it is clear that if lims→−∞ φh(s) = 0 and φh is non-constant
then up to s-translation there are only two possibilities for φh . These possibilities being
the heteroclinic orbits between (φh, ∂sφh) = (0, 0) and (φh, ∂sφh) = (π, 0), and between
(φh, ∂sφh) = (0, 0) and (φh, ∂sφh) = (−π, 0). These orbits happen to be, up to s-translation,
±y(s).

We see that if φh is an s-translation of ±y(s) then |φh | < π . Therefore, if we have
equivariant initial data u0 = Υ (ψ0) for the harmonic map heat flow from B2(0, 1) into S2

such that ψ0(0) = 0 and |ψ0(1)| ≥ π then the flow must blowup either in finite time or at
infinity, because it cannot sub-converge to a harmonic map. Theorem 1 is the analogue of
this observation for the biharmonic map case.

Our situation is more complicated than the one encountered when studying (15), because
instead of a one-dimensional coordinate space we now have a two-dimensional coordinate
space. This adds complexity to the possible dynamics. Moreover, unlike (15), the dynamics
of (11) seem not to be related to a simple dynamical system fromwhich we can gain intuition.
In spite of this, the author found it fruitful to consider (11) as the following coupled system
of second-order ODE:{

∂2s Φ1 = Φ3

∂2s Φ3 = F1(Φ1, Φ3) + (∂sΦ1)
2F2(Φ1, Φ3),

and to think about the ‘forces’ acting on the system in the coordinate space (Φ1, Φ3), see
Fig. 1.

Our arguments are also inspired by the ideas in [9]. There the shooting method along with
a pendulum equation interpretation was used to show the existence of singularities of the first
kind in the harmonic map and Yang-Mills heat flows.

Much of our analysis revolves around finding positive invariant sets on which we approx-
imate (13) by systems of simpler ordinary differential inequalities that still give us enough
control over the orbits in Wu(0). We found it convenient to divide the life of each orbit in
Wu(0) into three stages:

Early life This is when the orbit is still close to the origin and its dynamics are well
approximated by the linearization of (13) at the origin.

Mid life This is the most delicate stage to analyze, because when |Φ3| is not so large we
must deal with difficulties caused by the variation of the “forces” acting on Φ with respect
to Φ1, see Fig. 1.
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Φ3 = 1

Φ3 = −1

Φ1

Φ3

Φ3

(π, 0)

Some orbits in Wu(0) F1(Φ1, Φ3) = 0
(Y1, Y3) (Φ3, F1(Φ1, Φ3))

Fig. 1 This represents the portion of the coordinate space that is of interest for mid life orbits in Wu(0). We
do not display thewhole left half of the region, because this can be deduced, via symmetry, from the right half.
Note that there is an additional force acting in the vertical direction with a magnitude of (∂sΦ1)

2F2(Φ1, Φ3).
This force acts to repulse solutions away from the graph ofΦ3 = 1

2 sin(2Φ1) in the coordinate space. Observe

that Y3 = 1
2 sin(2Y1)

Late life This is when |Φ3| ≥ 1. In this case the variation of the “forces” with respect to
Φ1 can be ignored. This simplifies the situation, and one can prove finite-time blowup of an
orbit in Wu(0) once it reaches late life.

4 Finite-time blowup or heteroclinic orbit

The aim of this section is to prove Theorem 5, and to collect some facts along the way which
will be used in our later arguments. We let

W+ = {x ∈ R4 : (x1, x3), (x2, x4) ∈ Λ+} and
W− = {x ∈ R4 : (x1, x3), (x2, x4) ∈ Λ−},

where

Λ+ = {x ∈ R2 : x1 ≥ 0, x2 ≥ 2x1} and
Λ− = {x ∈ R2 : x1 ≤ 0, x2 ≤ 2x1}.

The following sets will also be useful:

W ∗+ = W+ ∩ {x ∈ R4 : x3 �= 0} and
W ∗− = W− ∩ {x ∈ R4 : x3 �= 0}.

Now we consider the different life stages of orbits in Wu(0).
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Early life The next lemma gives sufficient control over the orbits in Wu(0) early in their life
when their dynamics are still well approximated by the linearization of (13) at the origin.

Lemma 5 Suppose that Φ0 : (−∞, smax) is a non-trivial orbit in Wu(0) and σ > 0. Then
there exists an s0 ∈ (−∞, smax) and an s-translation of Y , denoted by Y 0, such that either:

1.

⎧⎪⎪⎨
⎪⎪⎩

Φ0
1 (s0) = Y 0

1 (s0),

Φ0(s0) − Y 0(s0) ∈ W ∗+ ∪ W ∗−, and

|Φ0
3 (s0) − Y 0

3 (s0)| < σ ;

2.

⎧⎪⎪⎨
⎪⎪⎩

− Φ0
1 (s0) = Y 0

1 (s0),

− Φ0(s0) − Y 0(s0) ∈ W ∗+ ∪ W ∗−, and

|Φ0
3 (s0) + Y 0

3 (s0)| < σ ;
3. Φ0(s0) = Y 0(s0); or
4. Φ0(s0) = −Y 0(s0).

Proof Via the Stable Manifold theorem, see [27, Sect. 2.7] for a proof, Wu(0) is a smooth
2-manifold embedded in R4.

The linearization of (13) at Φ = 0 is

∂sΦlin =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−9 0 10 0

⎞
⎟⎟⎠Φlin =: AΦlin. (16)

The eigenvalues of A are −3,−1, 1, and 3 with the corresponding eigenvectors
⎛
⎜⎜⎝

1
−3
9

−27

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
−1
1

−1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ , and

⎛
⎜⎜⎝

1
3
9
27

⎞
⎟⎟⎠ .

Therefore, the tangent plane ofWu(0) at the origin coincideswith the linear subspace spanned
by (1, 1, 1, 1)T and (1, 3, 9, 27)T , hence Wu(0) may be locally written as a graph over the
Φ1-Φ3 plane:

⎧⎪⎨
⎪⎩

Φ2(Φ1, Φ3) = 3

4
Φ1 + 1

4
Φ3 + G2(Φ1, Φ3),

Φ4(Φ1, Φ3) = −9

4
Φ1 + 13

4
Φ3 + G4(Φ1, Φ3),

(17)

where

∂(G2,G4)

∂(Φ1, Φ3)
(0, 0) = 0.

Observe that, since Φ0 is not the trivial orbit, the dynamics of (13) give, for any s0 ∈
(−∞, smax), an s ∈ (−∞, s0] such thatΦ0

1 (s) �= 0. Therefore, wemay find an s0 sufficiently
negative so that Φ0

1 (s0) �= 0 and |Φ0(s0)| is as small as we wish.
Next, we assume that Φ0

1 (s0) > 0 and s0 is sufficiently negative. We take Y 0 to be an
s-translation of the heteroclinic orbit Y such that Y 0

1 (s0) = Φ0
1 (s0). Note that Y

0 is also an
orbit inWu(0) and may be parameterized by Φ1. If Φ0

3 (s0) = Y 0
3 (s0) then Φ0(s0) = Y 0(s0),

123
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since locally around the originWu(0) is a graph over the Φ1 −Φ3 plane. This is Case 3 from
the statement of this lemma.

From (17), we have
⎧⎪⎨
⎪⎩

∂Φ3Φ2(Φ1, Φ3) = 1

4
+ o(Φ1,Φ3)→0(1),

∂Φ3Φ4(Φ1, Φ3) = 13

4
+ o(Φ1,Φ3)→0(1).

(18)

If Φ0
3 (s0) > Y 0

3 (s0) then Φ0(s0) − Y 0(s0) ∈ W ∗+. On the other hand, if Φ0
3 (s0) < Y 0

3 (s0)
then Φ0(s0) − Y 0(s0) ∈ W ∗−.

Since we can choose s0 sufficiently negative so that |Φ0
3 (s0)| and |Y 0(s0)| are as small as

we like, we can arrange for |Φ0
3 (s0)−Y 0

3 (s0)| < σ . This is Case 1 from the statement of this
lemma.

Recall that (13) is invariant under the transformationΦ 
→ −Φ. Therefore, ifΦ0
1 (s0) < 0

then we may argue the same as above but with −Φ0 instead of Φ0. This leads to cases 2
and 4 from the statement of this lemma. There are no more cases to consider. �

Due to symmetry, it suffices to only consider the cases 1 and 3 of Lemma 5.

Mid life. Now that we have Φ0 − Y 0 ∈ W+ ∪ W−, we can approximate (13) by a system of
simpler ordinary differential inequalities.

Let Φ0 : (−∞, smax) → R4, Y 0, and s0 be the same as in Lemma 5 with Φ0 − Y 0 ∈
W+ ∪ W−. We set X (s) = Φ0(s) − Y 0(s) for s ∈ [s0, smax). Note that ∂s Xi = Xi+1 for
i ∈ {1, 2, 3}.

Before we prove our next result, we need an estimate.

Lemma 6 Let

f (y) = 1

2
sin(2y)(3 cos(2y) − 2)

and

Q(x; f (y)) = 2 f (y) + 9 sin(2x)

14 + 6 cos(2x)
,

for x, y ∈ R. Then there exists a c0 ∈ (0, 1) such that ∂x Q(x; f (y)) ≤ c0 for all x, y ∈ R.

For the proof see the Appendix.

Lemma 7 If X ∈ W+ then ∂s X4 ≥ 4(X3 − c0X1), and if X ∈ W− then ∂s X4 ≤ 4(X3 −
c0X1), where c0 ∈ (0, 1) is taken from Lemma 6.

Proof Recall that Y3 = 1
2 sin(2Y1). We have

∂s X4 = F1(Y
0
1 + X1, Y

0
3 + X3) − F1(Y

0
1 , Y 0

3 )

+ (X2 + Y 0
2 )2F2(Y

0
1 + X1, Y

0
3 + X3),

since F2(Y 0
1 , Y 0

3 ) = 0.
If X ∈ W+ then F2(Y 0

1 + X1, Y 0
3 + X3) ≥ 0, hence

∂s X4 ≥ F1(Y
0
1 + X1, Y

0
3 + X3) − F1(Y

0
1 , Y 0

3 ).
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On the other hand, if X ∈ W− then F2(Y 0
1 + X1, Y 0

3 + X3) ≤ 0, hence

∂s X4 ≤ F1(Y
0
1 + X1, Y

0
3 + X3) − F1(Y

0
1 , Y 0

3 ).

Next, we study F1(Y 0
1 + X1, Y 0

3 + X3) − F1(Y 0
1 , Y 0

3 ). Note that

F1(Y
0
1 , Y 0

3 ) = F1

(
Y 0
1 ,

1

2
sin(2Y 0

1 )

)
= F1(Y

0
1 ).

We are interested in the curve in the Φ1-Φ3 plane such that F1(Φ1, Φ3) = F1(Y 0
1 ) for given

values of Y 0
1 ∈ (0, π).

This curve can be written as a graph over Φ1, namely:

Q(Φ1; F1(Y 0
1 )) = 2F1(Y 0

1 ) + 9 sin(2Φ1)

14 + 6 cos(2Φ1)
.

Therefore,

F1(Y
0
1 + X1, Y

0
3 + X3) − F1(Y

0
1 , Y 0

3 )

= F1(Y
0
1 + X1, Y

0
3 + X3) − F1(Y

0
1 + X1, Q(Y 0

1 + X1; F1(Y 0
1 ))).

Lemma 6 yields ∂Φ1Q(Φ1; F1(Y1)) ≤ c0. Therefore, if X ∈ W+ then

Q(Y 0
1 + X1; F1(Y 0

1 )) ≤ Y 0
3 + c0X1,

and if X ∈ W− then

Q(Y 0
1 + X1; F1(Y 0

1 )) ≥ Y 0
3 + c0X1.

Therefore, for X ∈ W+:

∂s X4 ≥ F1(Y
0
1 + X1, Y

0
3 + X3) − F1(Y

0
1 + X1, Y

0
3 + c0X1)

=
∫ Y 0

3 +X3

Y 0
3 +c0X1

∂Φ3F1(Y
0
1 + X1, Φ3) dΦ3

≥ 4(X3 − c0X1),

and for X ∈ W−:

∂s X4 ≤ F1(Y
0
1 + X1, Y

0
3 + X3) − F1(Y

0
1 + X1, Y

0
3 + c0X1)

=
∫ Y 0

3 +c0X1

Y 0
3 +X3

−∂Φ3F1(Y
0
1 + X1, Φ3) dΦ3

≤ 4(X3 − c0X1).

�
The following lemma tells us that W ∗+ and W ∗− are positive invariant sets for X .

Lemma 8 If X (s0) ∈ W ∗+ (resp. X (s0) ∈ W ∗−) then X (s) ∈ W ∗+ (resp. X (s) ∈ W ∗−) for
s ≥ s0 while X exists.

Proof This follows easily from Taylor’s theorem, (13), and Lemma 7. �
We now show that the non-trivial orbits in Wu(0) that are not s-translations of ±Y must

exit the region |Φ3| < 1 in finite time.
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Lemma 9 Suppose that:

(i) Φ0 : [s0, smax) → R4 solves (13);
(ii) Φ0(s0) − Y 0(s0) ∈ W ∗+ (resp. Φ0(s0) − Y 0(s0) ∈ W ∗−), where Y 0 is an s-translation

of Y ; and
(iii) |Φ0

3 (s0)| < 1.

Then there exists an s1 ∈ (s0, smax) such that Φ0
3 (s1) = 1 (resp. Φ0

3 (s1) = −1).

Remark 5 Observe that s1 < smax, because while |Φ0
3 | ≤ 1 we can control the growth of

|Φ0|.
Proof We set X = Φ0 − Y 0. Firstly, assume that X (s0) ∈ W ∗+. Lemmas 7 and 8 give
∂2s X3 ≥ 2X3(s0), hence

Φ0
3 (s0 + s) ≥ Y 0

3 (s0 + s) + X3(s0)s
2 ≥ −1

2
+ X3(s0)s

2.

Therefore, there exists such an s1 ∈
(
s0, s0 +

(
3

2X3(s0)

) 1
2
]
.

The argument for X (s0) ∈ W ∗− is exactly the same. �

Late life. The next lemma shows that once an orbitΦ0 : (−∞, smax) inWu(0) has exited the
region |Φ3| < 1 then it blows up in finite time, and in the process |Φ0

1 | diverges to infinity.

Lemma 10 Suppose that Φ0 ∈ R4 such that Φ0;3 ≥ 1 and Φ0;4 ≥ 0. Let Φ0 : [0, smax) →
R4 be the solution to (13) such that Φ0(0) = Φ0. Then Φ0 blows up in finite time, that is,
smax < ∞ and

lim
s↗smax

|Φ0(s)| = ∞.

Moreover, Φ0
1 (s) → ∞ as s ↗ smax.

Proof Let σ > 0 be arbitrary. First we consider the case where Φ0
2 (0) ≥ σ .

Observe that the set

S1 = {Φ ∈ R4 : Φ2 ≥ σ,Φ3 ≥ 1, Φ4 ≥ 0} (19)

is positive invariant under the flow described by (13). For Φ0 ∈ S1, we have

∂sΦ
0
4 = F(Φ0)

(
Φ0

2

)2
Φ0

3 , (20)

where F(Φ) ∈ [c0, c1] ⊂ (0,∞), c0 = c0(σ ), and c1 = c1(σ ).
Observe that in (20)Φ0

1 does not play a significant role. Nowwe consider rescaled versions
of Φ0

2 and Φ0
3 :

z1 = Φ0
2

(Φ0
4 )

1
3

and z2 = Φ0
3

(Φ0
4 )

2
3

.

We differentiate: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂s z1 = (
Φ0

4

) 1
3 z2

(
1 − F(Φ0)

3
z31

)
and

∂s z2 = (
Φ0

4

) 1
3

(
1 − 2F(Φ0)

3
z21z

2
2

)
.

(21)
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Now (20) becomes

∂sΦ
0
4 = F(Φ0)z21z2

(
Φ0

4

) 4
3 .

Problems arise with z1(0) and z2(0), if Φ0
4 (0) = 0. In this case we would like to examine

z1(s) and z2(s) for 0 < s � 1. We have Φ0(0) ∈ S1, hence Φ0
4 (s) > 0 for all s ∈ (0, smax).

Therefore, z1 and z2 are well defined for s ∈ (0, smax), and z1(s), z2(s) → ∞ as s ↘ 0. On
the other hand, if Φ0

4 (0) > 0 then z1(0), z2(0) > 0.
Therefore, there exists an s̃ ∈ [0, smax) such that Φ0 (̃s) ∈ S1, Φ0

4 (̃s) > 0, and
z1(̃s), z2 (̃s) > 0. We s-translate so that s̃ = 0, and set

Z = [z1;a, z1;b] × [z2;a, z2;b] ⊂ (0,∞) × (0,∞),

where

z1;a = min

{
z1(0),

1

2

(
3

c1

) 1
3
}

, z1;b = max

{
z1(0), 2

(
3

c0

) 1
3
}

,

and

z2;a = min

{
z2(0),

1

2

(
3

2c1

) 1
2

z−1
1;b

}
, z2;b = max

{
z2(0), 2

(
3

2c0

) 1
2

z−1
1;a

}
.

Observe that Z is a positive invariant set for (21), and (z1(0), z2(0)) ∈ Z . Therefore, for
s ∈ [0, smax), we have

c0z
2
1;az2;a

(
Φ0

4

) 4
3 ≤ ∂sΦ

0
4 ≤ c1z

2
1;bz2;b

(
Φ0

4

) 4
3 ,

z1;a
(
Φ0

4

) 1
3 ≤ Φ0

2 ≤ z1;b
(
Φ0

4

) 1
3 , and

z2;a
(
Φ0

4

) 2
3 ≤ Φ0

3 ≤ z2;b
(
Φ0

4

) 2
3 .

Therefore, Φ0
4 controls |Φ0|. We have ∂sΦ

0
4 ≥ C

(
Φ0

4

) 4
3 and Φ0

4 (0) > 0, hence Φ0
4 diverges

to infinity in finite time, that is, Φ0 blows up in finite time.
Next, we turn our attention to showing that Φ0

1 → ∞ as s ↗ smax. We let i0 ∈ N be such
that 2i0 > Φ0

4 (0). For i ∈ N0, we let si be defined via Φ0
4 (si ) = 2i0+i . Since Φ4

0 is monotone

increasing and diverges to infinity, these times are well-defined. Because ∂sΦ
0
4 ≤ C(Φ0

4 )
4
3 ,

we have that si+1 − si ≥ C2− 1
3 (i0+i). For s ∈ [si , si+1], we have ∂sΦ

0
1 (s) ≥ C2

1
3 (i0+i).

Therefore, Φ0
1 (si+1) ≥ Φ0

1 (si ) + C which implies Φ0
1 (s) → ∞ as s ↗ smax, since Φ0

1 is
monotone increasing.

Finally, we consider the case in which Φ2(0) ≤ 0. Observe that the set

S2 = {Φ ∈ R4 : Φ3 ≥ 1, Φ4 ≥ 0} (22)

is positive invariant under the flow described by (13). Therefore, while Φ0
2 ≤ 0 we have

|Φ0
2 | ≤ −Φ0

2 (0) and

|∂sΦ0
4 | ≤ CΦ0

3 (1 + |Φ0
2 (0)|2).

Therefore, there exists an s̃ ∈ (0, smax) such that Φ0
2 (̃s) > 0. Now by autonomy we may

s-translate, and then apply the previous argument to the new initial data Φ0 (̃s). �
Now we are ready to prove Theorem 5.
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Proof (Theorem 5) If Φ0 = Y 0 or −Φ0 = Y 0 where Y 0 is an s-translation of Y then we are
done. Otherwise Lemma 5 tells us that at some s0 ∈ (−∞, smax) we have Φ0(s0)−Y0(s0) ∈
W ∗+ ∪W ∗− or−Φ0(s0)−Y 0(s0) ∈ W ∗+ ∪W ∗−. Since (13) is invariant under the transformation
Φ 
→ −Φ, it suffices to only consider the case where Φ0(s0) − Y 0(s0) ∈ W ∗+ ∪ W ∗−. Now
Lemma 9 shows that there exists an s1 ∈ (−∞, smax) such that |Φ0

3 (s1)| = 1. Again due to
the invariance of (13) under Φ 
→ −Φ, we may assume that Φ0

3 (s1) = 1. Finally, Lemma
10 shows that Φ0 must blowup in finite time. �

5 Further properties of the unstable manifold

In this section we continue our study ofWu(0). This leads to the proofs of theorems 1 and 4.
Our first result concerns non-trivial orbits Φ0 in Wu(0) which are not s-translations of

±Y . We know that these orbits must exit the region |Φ3| < 1 in finite time. The next lemma
tells us that (Φ0

1 , Φ
0
2 ) stays within a bounded region of R2 up until and including this exit

time.

Lemma 11 Let Φ0 : (−∞, smax) → R4 be an orbit in Wu(0) such that |Φ0
3 (̃s)| = 1 for

some s̃ ∈ (−∞, smax). Moreover, let s̃ be the first such time in which |Φ0
3 (̃s)| = 1. Then

|(Φ0
1 (s),Φ

0
2 (s))| ≤ C for all s ∈ (−∞, s̃].

Proof Since Φ0 is non-trivial and not an s-translation of ±Y , we are in either Case 1 or
Case 2 of Lemma 5.

For now we assume that we are in Case 1. This means we have an s0 ∈ (−∞, smax), a
Y 0 which is an s-translation of Y , and an X = Φ0 − Y 0 such that X (s0) ∈ W ∗+ ∪ W ∗− and
X3(s0) �= 0 is as small as we like, in particular |X3(s0)| ≤ 1

4 . Due to autonomy we may
assume that s0 = 0. Observe that (18) gives

|X2(0)| ≤ C |X3(0)| and |X4(0)| ≤ C |X3(0)|. (23)

On intervals on which we have uniform control of X3 we also have uniform control of
Φ3. Therefore, blowup may not happen on such intervals. In what follows we study X3 for
|X3| ≤ 2.

We let i0 be the largest integer such that 2−i0+1 > |X3(0)|. We set s0 = 0 and |X3(si )| =
2−i0+i for i ∈ N. For s ∈ [si , si+1], we have ∂s |X4| ≥ 2−i0+i , hence |X3(s)| ≥ |X3(si )| +
2−i0+i−1(si+1 − si )2 which implies that si+1 − si ≤ C .

For s ∈ [si , si+1], we have ∂s |X2| ≤ 2−i0+i+1, hence

|X2(s)| ≤ |X2(0)| + C
i−1∑
j=0

2−i0+ j+1 ≤ C
(
|X3(0)| + 2−i0+i+1

)
for s ∈ [s0, si ],

wherewe have used (23). Observe that s̃ ∈ [0, si0+1], hence |X2(s)| ≤ C for all s ∈ (−∞, s̃].
This implies that, for all s ∈ (−∞, s̃], |Φ0

2 (s)| ≤ C . Moreover, since X (s) ∈ W+ ∪ W−, we
have |Φ0

1 (s)| ≤ C .
Finally, we look at what happens if we are in Case 2. Because of the invariance of (13)

under the transformation Φ 
→ −Φ, we may use the above argument on −Φ0 yielding the
same conclusion of |(Φ0

1 (s),Φ
0
2 (s))| ≤ C for all s ∈ (−∞, s̃]. �

Using this result, we show that, for an equivariant map from B4(0, 1) into S4, if the
normal derivative at the boundary vanishes then there is a limit on the number of times an
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equivariant biharmonic map from B4(0, 1) into S4 satisfying the same boundary condition
can wind around S4.

Lemma 12 Let Φ ∈ Wu(0). Then there exists a K > 0 such that if Φ2 = 0 then |Φ1| ≤ K.

Proof Let Φ0 : (−∞, smax) → R4 be an orbit in Wu(0). If Φ0 is trivial or an s-translation
of ±Y then |Φ0

1 (s)| < π for all s ∈ (−∞, smax), hence if we take K > π then these cases
cause us no issues.

Otherwise, we find ourselves in Case 1 or Case 2 of Lemma 5. In these cases Lemma 9
gives a time s̃ ∈ (−∞, smax) such that |Φ0

3 (̃s)| = 1. We may assume that s̃ is the first such
time. Lemma 11 shows that |(Φ0

1 (s),Φ
0
2 (s))| ≤ C for all s ∈ (−∞, s̃].

Let us assume that Φ0
3 (̃s) = 1. If Φ0

2 (̃s) > 0 then it will be positive for all s ∈ [̃s, smax),
since S1 from (19) is a positive invariant set. Therefore, if Φ0

2 (s) = 0 then s < s̃ and
|Φ0

1 (s)| ≤ C . On the other hand, ifΦ0
2 (̃s) ≤ 0 then ∂sΦ

0
2 (s) ≥ 1 for all s ∈ [̃s, smax), since S2

from (22) is a positive invariant set. Therefore, while Φ0
2 (s) ≤ 0 we have |Φ0

2 (s)| ≤ |Φ0
2 (̃s)|

for s ∈ [̃s, smax). If Φ0
2 (s) < 0 for all s ∈ [̃s, smax) then there is nothing more to consider.

On the other hand, there is a unique s0 ∈ [̃s, smax) such that Φ0
2 (s0) = 0. Observe that

s0 − s̃ ≤ |Φ0
2 (̃s)| ≤ C , hence

|Φ0
1 (s0)| ≤ |Φ0

1 (̃s)| + (s0 − s̃)|Φ0
2 (̃s)| ≤ C. (24)

Therefore, if we take K > 0 sufficiently large, these cases also do not cause us any problems.
Finally, we consider the case in which Φ0

3 (̃s) = −1. Due to the invariance of (13) under
the transformation Φ 
→ −Φ, we may apply the above argument to −Φ0. �

Theorem 1 is a corollary of this.
Next, we show the existence of smooth equivariant biharmonic maps from B4(0, 1) into

S4 that can wind around S4 as many times as we wish. Before we do this we need some
preparatory lemmas. Our arguments are influenced by the ideas in [12]. Recall that given
an orbit Φ0 : (−∞, 0] → R4 in Wu(0), ψ(r) = Φ0

1 (log r) solves (10) (with ∂tψ = 0) on
(0, 1]. Note that ψ(0) = 0. We first wish to verify that given such a ψ , u = Υ (ψ) is weakly
biharmonic.

The next lemma obtains estimates on the derivatives of our solutions ψ and the corre-
sponding equivariant maps.

Lemma 13 Let ψ ∈ C([0, 1];R) ∩ C∞((0, 1];R), with ψ(0) = 0, be a solution to (10)
(with ∂tψ = 0) and

u = Υ (ψ) ∈ C(B4(0, 1); S4) ∩ C∞(B4(0, 1) \ {0}; S4).
Then, for r > 0,

|ψ(r)| ≤ Cr, |∂rψ(r)| ≤ C, and |∂2r ψ(r)| ≤ Cr.

Furthermore, Du ∈ L∞(B4(0, 1)) and |D2u(x)| ≤ C |x |−1 for x ∈ B4(0, 1) \ {0}. In the
above inequalities C = C(ψ).

Proof We set φ(s) = ψ(es) and Φ0
i = ∂ i−1

s φ for i ∈ {1, 2, 3, 4}. Recall that Φ0 solves (13).
We rewrite (13) as

∂sΦ
0 = AΦ0 + G(Φ0), (25)
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Critical O(d)-equivariant biharmonic maps 2913

where A is the same as in (16) and |G(Φ0)| ≤ C |Φ0|3 for sufficiently small Φ0. We set

V 0(s) =

⎛
⎜⎜⎝
1 1 1 1
1 3 −1 −3
1 9 1 9
1 27 −1 −27

⎞
⎟⎟⎠

−1

Φ0(−s) =: P−1Φ0(−s). (26)

We substitute this into (25):

∂sV
0 =

⎛
⎜⎜⎝

−1 0 0 0
0 −3 0 0
0 0 1 0
0 0 0 3

⎞
⎟⎟⎠ V 0 − P−1G(PV 0) =: DV 0 + G̃(V 0), (27)

where |G̃(V )| ≤ C |V |3 for sufficiently small V . Since we reversed s in (26), we are now
interested in the stable manifold at the origin of (27). This manifold is tangent to the V1 – V2
plane at the origin, and can be locally written as a graph over this plane with V3 = V3(V1, V2)
and V4 = V4(V1, V3) such that

∂(V3, V4)

∂(V1, V2)
(0, 0) = 0.

Our first aim is to show that

|(V3(V1, V2), V4(V1, V2))| ≤ C |(V1, V2)|3, (28)

for sufficiently small |(V1, V2)|.
We let ε > 0, and (V1, V2) ∈ R2 such that |(V1, V2)| ≤ ε. We setup the iteration:

∂sV
1 = DV 1 with V 1(0) = (V1, V2, 0, 0),

and for i ∈ N: {
∂sV

i+1 = DV i+1 + G̃(V i ),

V i+1(0) = (V1, V2, V3;i+1, V4;i+1),

where ⎧⎪⎪⎨
⎪⎪⎩
V3;i+1 = −

∫ ∞

0
e−s G̃3(V

i (s)) ds, and

V4;i+1 = −
∫ ∞

0
e−3s G̃4(V

i (s)) ds.

(29)

This iteration is used in [27, Sect. 2.7] as part of the proof of the Stable Manifold theorem.
In this proof it is shown that, for sufficiently small ε,

V3(V1, V2) = lim
i→∞ V3;i and V4(V1, V2) = lim

i→∞ V4;i .

Furthermore, it is shown that

|V i (s)| ≤ C |(V1, V2)|e−αs, (30)

for any −α > −1, as long as ε is sufficiently small. We substitute (30) into (29), and take
the limit i → ∞ to obtain (28).
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If Φ0 is an orbit in Wu(0) then V 0 is an orbit in the stable manifold of the origin of (27).
For sufficiently large s, (27) and (28) give

|V 0
1 (s)| ≤ Ce−s, |V 0

2 (s)| ≤ Ce−3s, |V 0
3 (s)| ≤ Ce−3s, and |V 0

4 (s)| ≤ Ce−3s . (31)

For r > 0, we have

∂rψ(r) = Φ0
2 (log r)

r
, and ∂2r ψ(r) = Φ0

3 (log r) − Φ0
2 (log r)

r2
.

Using this, along with (26) and (31), gives us

|ψ(r)| ≤ C(ψ)r, |∂rψ(r)| ≤ C(ψ), and |∂2r ψ(r)| ≤ C(ψ)r. (32)

Next, we turn our attention towards the estimates on u. First we focus on |Du|. Recalling the
notation from (9), for x �= 0, we have

D({ f0, f1}x̂ ) : D({g0, g1}x̂ ) = ∂r f0 ∂r g0 + ∂r f1 ∂r g1 + d − 1

r2
f0 g0.

This, (32), and u = Υ (ψ) yield Du ∈ L∞(B4(0, 1)). For d = 4, we have

|D2{ f0, f1}x̂ |2 = 1

r4

(
9 f 20 − 18r f0∂r f0 + r2

(
9(∂r f0)

2 + 3(∂r f1)
2

+ r2
(
(∂2r f0)

2 + (∂2r f1)
2) ))

.

This, (32), and u = Υ (ψ) yield |D2u| ≤ C(ψ)|x |−1. �
Now we wish to show that our solutions ψ to (10) (with ∂tψ = 0), with ψ(0) = 0, give

rise to equivariant maps u ∈ H2.

Lemma 14 Let ψ ∈ C([0, 1];R) ∩ C∞((0, 1];R), with ψ(0) = 0, be a solution to (10)
(with ∂tψ = 0) and

u = Υ (ψ) ∈ C(B4(0, 1); S4) ∩ C∞(B4(0, 1) \ {0}; S4).
Then u ∈ H2(B4(0, 1); S4).
Proof Using the growth estimates fromLemma13, it canbe shown thatu hasweakderivatives
in L2 up to order two which are equal a.e. to their respective classical derivatives. �

Next, we show that our solutions ψ give rise to weakly biharmonic maps. See [12] for a
different approach in a slightly different situation.

Lemma 15 Let ψ ∈ C([0, 1];R) ∩ C∞((0, 1];R), with ψ(0) = 0, be a solution to (10)
(with ∂tψ = 0) and

u = Υ (ψ) ∈ C(B4(0, 1); S4) ∩ C∞(B4(0, 1) \ {0}; S4).
Then u is weakly biharmonic.

Proof We let η ∈ C∞
c (B4(0, 1);R5) be arbitrary. We wish to show that

∂t |t=0E2(Π(u + tη)) = 0,

where Π(x) = x
|x | is defined on R

5\{0}.
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Critical O(d)-equivariant biharmonic maps 2915

From [32, (2.1) and (2.2)], we have

∂t |t=0E2(Π(u + tη)) = 2
∫
B4(0,1)

⎛
⎝�u · �η −

5∑
γ=1

�uγ �
(
uγ u · η

)
⎞
⎠ dx .

We let ω ∈ C∞
c (B4(0, 1); [0, 1]) be such that ω ≡ 1 on B4

(
0, 1

2

)
. For R > 0, we set

ωR(x) = ω(x/R). We have

∂t |t=0E2(Π(u + tη)) = ∂t |t=0E2(Π(u + t (ωRη)))

+ ∂t |t=0E2(Π(u + t ((1 − ωR)η))).

Lemma 13, gives us

∂t |t=0E2(Π(u + t (ωRη))) = oR↘0(1).

Next, we turn our attention towards ∂t |t=0E2(Π(u + t ((1 − ωR)η))). Since the support of
(1−ωR)η is bounded away from the origin, and u is smooth and satisfies the Euler-Lagrange
equation (2) away from the origin, we have ∂t |t=0E2(Π(u+ t ((1−ωR)η))) = 0. Therefore,
∂t |t=0E2(Π(u+ tη)) = oR↘0(1)which gives the desired result after taking the limit R ↘ 0.

�
Finally, we prove Theorem 4.

Proof (Theorem 4) Due to the invariance of (13) under the transformation Φ 
→ −Φ, it
suffices to prove the result for a ≥ 0. The a = 0 case is taken care of by the trivial solution.

Therefore, we let a > 0 be arbitrary. There exists a non-trivial orbit

Φ0 : (−∞, smax) → R4

in Wu(0) which is not an s-translation of ±Y . Lemma 9 tells us that Φ0 must exit the region
|Φ3| < 1 in finite time. Due to the invariance of (13) under the transformationΦ 
→ −Φ, we
may assume that there exists some s0 ∈ (−∞, smax) such thatΦ0

3 (s0) = 1. Lemma 10 tells us
that Φ0

1 (s) → ∞ as s ↗ smax. Since Φ0 is an orbit inWu(0), we also know that Φ0
1 (s) → 0

as s → −∞. Therefore, we may s-translate Φ0 so that Φ0
1 (0) = a. This corresponds to

a solution of (11) with φ(0) = a, which after undoing the change of coordinates r = es ,
corresponds to a solution of (10) (with ∂tψ = 0) such that ψ(1) = a.

Lemmas 14 and 15, tell us that

u = Υ (ψ) ∈ C∞(B4(0, 1) \ {0}; S4) ∩ H2(B4(0, 1); S4),
is a weakly biharmonic map. Standard higher interior regularity arguments, see for example
[5], yield smoothness of u on all of B4(0, 1). �
Acknowledgments This work was undertaken while the author was a PhD student at The University of
Queensland, Australia under the supervision of Prof. Joseph Grotowski and Prof. Peter Adams. The author
owes much of his success to the advice, guidance, and support of his supervisors. The author would like to
thank Prof. Yihong Du, Prof. Dr. Andreas Gastel, Prof. Joseph Grotowski, and the anonymous referees for
comments and suggestions that have improved this paper.

6 Appendix

Proof (Lemma 4) (2) �⇒ (1): This direction is trivial.
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2916 M. K. Cooper

(1)�⇒ (2):We set Φ̃0
i (s) = (−1)i+1Φ0

i (−s) for i ∈ {1, 2, 3, 4}. Observe thatΦ0 solving
(13) is equivalent to Φ̃0 solving (13). Therefore, after relabeling Φ̃0 as Φ0 our statement is
equivalent to showing that if s0 ∈ R, Φ0 : [s0,∞) → R4 solves (13), and

lim
s→∞ Φ0

1 (s) = 0,

then

lim
s→∞ Φ0(s) = 0.

It is easy to show that if x ∈ C2([s0,∞);R), x(s) → 0 as s → ∞, and |∂2s x(s)| ≤ C for all
s ∈ [s0,∞) then ∂s x(s) → 0 as s → ∞. We use this fact, which we call (P1), repeatedly in
what follows.

First observe that there cannot exist an s1 ∈ [s0,∞) such that |Φ0
3 (s)| ≥ 1 for all

s ∈ [s1,∞). Indeed, if there were such an s1 then eventually Φ0
4 (s) would be the same sign

as Φ0
3 after which we could apply Lemma 10 and obtain a contradiction.

Therefore, if there is an s1 ∈ [s0,∞) such that |Φ0
3 (s1)| ≥ 1 then there must be an s2 > s1

such that |Φ0
3 (s)| < 1 for all s ∈ [s2,∞), or else we could apply Lemma 10 and obtain a

contradiction. Therefore, Φ0
3 is bounded on [s0,∞).

Now we proceed to show, one by one, that lims→∞ Φ0
i (s) = 0 for i ∈ {2, 3, 4}. First we

look at Φ0
2 . The fact that Φ

0
1 → 0 as s → ∞, the boundedness of Φ0

3 , and (P1) yield

lim
s→∞ Φ0

2 (s) = 0.

Next, we look atΦ0
3 . Hoping for a contradiction, we assume thatΦ0

3 (s) � 0 as s → ∞. From
(P1) we know that Φ0

4 is unbounded, that is, there exists a monotone increasing sequence
{si }i∈N ⊂ [s0,∞) diverging to infinity such that |Φ0

4 (si )| → ∞. From (13) and the fact that
|(Φ0

1 (s),Φ
0
2 (s),Φ

0
3 (s))| ≤ C on [s0,∞), we have that |∂sΦ0

4 (s)| ≤ C on [s0,∞). Therefore,
|Φ0

4 (s)| ≥ 1
2 |Φ0

4 (si )| for s ∈ [
si , si + 1

2C |Φ0
4 (si )|

]
. Observe that over this intervalΦ0

4 is non-
vanishing. Therefore, there exists an s ∈ [s0,∞) such that |Φ0

3 (s)| ≥ 1 and Φ0
3 (s) has the

same sign as Φ0
4 (s) �= 0. Lemma 10 then yields a contradiction, hence

lim
s→∞ Φ0

3 (s) = 0.

Finally, we look at Φ0
4 . Since

lim
s→∞(Φ0

1 (s),Φ
0
2 (s),Φ

0
3 (s)) = 0,

from (13), we have ∂sΦ
0
4 (s) → 0 as s → ∞. Now (P1) gives us

lim
s→∞ Φ0

4 (s) = 0.

�
Remark 6 Observe that in the above proof we make use of Lemma 10. Our argument would
be circular if Lemma 10 depended upon Lemma 4. By closely examining the proof of Lemma
10, it is clear that this is not the case.

Proof (Lemma 6) We prove this lemma for c0 = 99
100 . It is elementary to compute

min
x∈R f (x) = − 1

12

√
169 + 38

√
19.
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Since f is an odd function, we have

| f (y)| ≤ 1

12

√
169 + 38

√
19 ≤ 2 for all y ∈ R.

We differentiate:

∂x Q(x; f (y)) = 3(9 + 21 cos(2x) + 2 f (y) sin(2x))

(7 + 3 cos(2x))2
.

By periodicity, what we wish to prove is that ∂x Q(x; f (y)) ≤ c0 for all x ∈ (−π
2 , π

2

]
and

y ∈ R.
Firstly, ∂x Q

(
π
2 ; f (y)

)
< 0 which means we may restrict our attention to x ∈ (−π

2 , π
2

)
.

We use Weierstrass’ substitution:

sin(2x) 
→ 2t

1 + t2
and cos(2x) 
→ 1 − t2

1 + t2
for t ∈ R.

This transforms the problem into showing that

3(15 + 2( f̃ − 3t)t)
(
1 + t2

)
2

(
5 + 2t2

)2 ≤ c0,

for all t ∈ R and f̃ ∈ [−2, 2]. It suffices to show

− 45 + 50c0 + (−27 + 40c0)t
2 + (18 + 8c0)t

4 − 12(t + t3) ≥ 0, (33)

for all t ∈ R. Next we prove this.
We substitute c0 = 99

100 into (33) and let p be the polynomial on the left hand side of the
resulting expression, that is,

p(t) = 648

25
t4 − 12t3 + 63

5
t2 − 12t + 9

2
.

We calculate:

p′
(
2

5

)
< 0, p′

(
43

100

)
> 0, and p′′(t) > 0,

for t ∈ R. Therefore, p is convex with its unique global minimum occurring somewhere in[ 2
5 ,

43
100

]
. We use this to estimate:

min
t∈R p(t) ≥ 648

25

(
2

5

)4

− 12

(
43

100

)3

+ 63

5

(
2

5

)2

− 12

(
43

100

)
+ 9

2
> 0.

This is what we wished to show. �

References

1. Angelsberg, G.: A monotonicity formula for stationary biharmonic maps. Math. Z. 252(2), 287–293
(2006). doi:10.1007/s00209-005-0848-z

2. Chang, K.C., Ding, W.: A result on the global existence for heat flows of harmonic maps from D2 into
S2. In: Nematics (Orsay, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 332, pp. 37–47. Kluwer
Acad. Publ., Dordrecht (1991)

3. Chang, K.C., Ding, W., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from sur-
faces. J. Differential Geom. 36(2), pp. 507–515 (1992). http://projecteuclid.org/getRecord?id=euclid.
jdg/1214448751

123

http://dx.doi.org/10.1007/s00209-005-0848-z
http://projecteuclid.org/getRecord?id=euclid.jdg/1214448751
http://projecteuclid.org/getRecord?id=euclid.jdg/1214448751


2918 M. K. Cooper

4. Chang, S.Y.A., Gursky, M., Yang, P.: Regularity of a fourth order nonlinear PDE with critical expo-
nent. Amer. J. Math. 121(2), pp. 215–257 (1999). http://muse.jhu.edu/journals/american_journal_of_
mathematics/v121/121.2chang.pdf

5. Chang, S.Y.A., Wang, L., Yang, P.: A regularity theory of biharmonic maps. Comm. Pure Appl. Math.
52(9), 1113–1137 (1999). doi:10.1002/(SICI)1097-0312(199909)52:9&lt;1113:AID-CPA4&gt;3.0.CO;
2-7

6. Chen, J., Li, Y.: Homotopy classes of harmonic maps of the stratified 2-spheres and applications to
geometric flows. Adv. Math. 263, 357–388 (2014). doi:10.1016/j.aim.2014.07.001

7. Fan, J., Gao, H., Ogawa, T., Takahashi, F.: A regularity criterion to the biharmonic map heat flow inR4.
Math. Nachr. 285(16), 1963–1968 (2012). doi:10.1002/mana.201100243

8. Galaktionov, V., Pohozaev, S.: Existence and blow-up for higher-order semilinear parabolic equations:
majorizing order-preserving operators. Indiana Univ. Math. J. 51(6), 1321–1338 (2002). doi:10.1512/
iumj.2002.51.2131

9. Gastel, A.: Singularities of first kind in the harmonic map and Yang-Mills heat flows. Math. Z. 242(1),
47–62 (2002). doi:10.1007/s002090100306

10. Gastel, A.: The extrinsic polyharmonicmap heat flow in the critical dimension. Adv. Geom. 6(4), 501–521
(2006). doi:10.1515/ADVGEOM.2006.031

11. Gastel, A., Scheven, C.: Regularity of polyharmonic maps in the critical dimension. Comm. Anal. Geom.
17(2), 185–226 (2009)

12. Gastel, A., Zorn, F.: Biharmonic maps of cohomogeneity one between spheres. J. Math. Anal. Appl.
387(1), 384–399 (2012). doi:10.1016/j.jmaa.2011.09.002

13. Goldstein, P., Strzelecki, P., Zatorska-Goldstein, A.: On polyharmonic maps into spheres in the critical
dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(4), 1387–1405 (2009). doi:10.1016/j.anihpc.
2008.10.008

14. Grotowski, J.: Harmonic map heat flow for axially symmetric data. Manuscripta Math. 73(2), 207–228
(1991). doi:10.1007/BF02567639

15. Hineman, J., Huang, T., Wang, C.Y.: Regularity and uniqueness of a class of biharmonic map heat flows.
Calc. Var. Partial Differ Equ 50(3–4), 491–524 (2014). doi:10.1007/s00526-013-0644-2

16. Karcher, H., Wood, J.: Nonexistence results and growth properties for harmonic maps and forms. J. Reine
Angew. Math. 353, 165–180 (1984)

17. Ku, Y.: Interior and boundary regularity of intrinsic biharmonic maps to spheres. Pacific J. Math. 234(1),
43–67 (2008). doi:10.2140/pjm.2008.234.43

18. Kuwert, E., Schätzle, R.: TheWillmore flowwith small initial energy. J. Differ Geom. 57(3), pp. 409–441
(2001). http://projecteuclid.org/getRecord?id=euclid.jdg/1090348128

19. Lamm, T.: Heat flow for extrinsic biharmonic maps with small initial energy. Ann. Global Anal. Geom.
26(4), 369–384 (2004). doi:10.1023/B:AGAG.0000047526.21237.04

20. Lamm, T.: Biharmonic map heat flow into manifolds of nonpositive curvature. Calc. Var. Partial Differ
Equ 22(4), 421–445 (2005). doi:10.1007/s00526-004-0283-8

21. Lamm, T., Wang, C.Y.: Boundary regularity for polyharmonic maps in the critical dimension. Adv. Calc.
Var. 2(1), 1–16 (2009). doi:10.1515/ACV.2009.001

22. Liu, L., Yin, H.: Neck analysis for biharmonic maps. pre-print (2013). arXiv:1312.4600 [math.AP]
23. Liu, L., Yin, H.: On the finite time blow-up of biharmonic map flow in dimension four. pre-print (2014).

arXiv:1401.6274 [math.AP]
24. Montaldo, S., Ratto, A.: A general approach to equivariant biharmonic maps. Mediterr. J. Math. 10(2),

1127–1139 (2013). doi:10.1007/s00009-012-0207-3
25. Moser, R.: The blowup behavior of the biharmonic map heat flow in four dimensions. IMRP Int. Math.

Res. Pap. 7, 351–402 (2005)
26. Moser, R.: Weak solutions of a biharmonic map heat flow. Adv. Calc. Var. 2(1), 73–92 (2009). doi:10.

1515/ACV.2009.004
27. Perko, L.: Differential equations and dynamical systems, texts in applied mathematics, vol. 7. Springer-

Verlag, New York (1991). doi:10.1007/978-1-4684-0392-3
28. Qing, J., Tian, G.: Bubbling of the heat flows for harmonic maps from surfaces. Comm. Pure Appl. Math.

50(4), 295–310 (1997). doi:10.1002/(SICI)1097-0312(199704)50:4&lt;295:AID-CPA1&gt;3.0.CO;2-5
29. Raphaël, P., Schweyer, R.: Stable blowup dynamics for the 1-corotational energy critical harmonic heat

flow. Comm. Pure Appl. Math. 66(3), 414–480 (2013). doi:10.1002/cpa.21435
30. Rupflin, M.: Uniqueness for the heat flow for extrinsic polyharmonic maps in the critical dimension.

Comm. Partial Differ Equ 36(7), 1118–1144 (2011). doi:10.1080/03605302.2011.558552
31. Sampson, J.: Some properties and applications of harmonic mappings. Ann. Sci. École Norm. Sup. (4)

11(2), pp. 211–228 (1978). http://www.numdam.org/item?id=ASENS_1978_4_11_2_211_0

123

http://muse.jhu.edu/journals/american_journal_of_mathematics/v121/121.2chang.pdf
http://muse.jhu.edu/journals/american_journal_of_mathematics/v121/121.2chang.pdf
http://dx.doi.org/10.1002/(SICI)1097-0312(199909)52:9&lt;1113:AID-CPA4&gt;3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0312(199909)52:9&lt;1113:AID-CPA4&gt;3.0.CO;2-7
http://dx.doi.org/10.1016/j.aim.2014.07.001
http://dx.doi.org/10.1002/mana.201100243
http://dx.doi.org/10.1512/iumj.2002.51.2131
http://dx.doi.org/10.1512/iumj.2002.51.2131
http://dx.doi.org/10.1007/s002090100306
http://dx.doi.org/10.1515/ADVGEOM.2006.031
http://dx.doi.org/10.1016/j.jmaa.2011.09.002
http://dx.doi.org/10.1016/j.anihpc.2008.10.008
http://dx.doi.org/10.1016/j.anihpc.2008.10.008
http://dx.doi.org/10.1007/BF02567639
http://dx.doi.org/10.1007/s00526-013-0644-2
http://dx.doi.org/10.2140/pjm.2008.234.43
http://projecteuclid.org/getRecord?id=euclid.jdg/1090348128
http://dx.doi.org/10.1023/B:AGAG.0000047526.21237.04
http://dx.doi.org/10.1007/s00526-004-0283-8
http://dx.doi.org/10.1515/ACV.2009.001
http://arxiv.org/abs/1312.4600
http://arxiv.org/abs/1401.6274
http://dx.doi.org/10.1007/s00009-012-0207-3
http://dx.doi.org/10.1515/ACV.2009.004
http://dx.doi.org/10.1515/ACV.2009.004
http://dx.doi.org/10.1007/978-1-4684-0392-3
http://dx.doi.org/10.1002/(SICI)1097-0312(199704)50:4&lt;295:AID-CPA1&gt;3.0.CO;2-5
http://dx.doi.org/10.1002/cpa.21435
http://dx.doi.org/10.1080/03605302.2011.558552
http://www.numdam.org/item?id=ASENS_1978_4_11_2_211_0


Critical O(d)-equivariant biharmonic maps 2919

32. Strzelecki, P.: On biharmonic maps and their generalizations. Calc. Var. Partial Differ Equ 18(4), 401–432
(2003). doi:10.1007/s00526-003-0210-4

33. Wang, C.Y.: Biharmonic maps from R4 into a Riemannian manifold. Math. Z. 247(1), 65–87 (2004).
doi:10.1007/s00209-003-0620-1

34. Wang, C.Y.: Remarks on biharmonic maps into spheres. Calc. Var. Partial Differ Equ 21(3), 221–242
(2004). doi:10.1007/s00526-003-0252-7

35. Wang, C.Y.: Stationary biharmonic maps fromR
m into a Riemannian manifold. Comm. Pure Appl. Math.

57(4), 419–444 (2004). doi:10.1002/cpa.3045
36. Wang, C.Y.: Heat flow of biharmonic maps in dimensions four and its application. Pure Appl. Math. Q.

3(2, part 1), 595–613 (2007)
37. Wang, C.Y.: Well-posedness for the heat flow of biharmonic maps with rough initial data. J. Geom. Anal.

22(1), 223–243 (2012). doi:10.1007/s12220-010-9195-3
38. Wang, Z.P., Ou, Y.L., Yang, H.C.: Biharmonic maps from a 2-sphere. J. Geom. Phys. 77, 86–96 (2014).

doi:10.1016/j.geomphys.2013.12.005
39. Xu, X., Yang, P.: Conformal energy in four dimension. Math. Ann. 324(4), 731–742 (2002). doi:10.1007/

s00208-002-0357-x
40. Zorn, F.: Äquivariante biharmonische Abbildungen. Dissertation, Universität Duisburg-Essen (2013)

123

http://dx.doi.org/10.1007/s00526-003-0210-4
http://dx.doi.org/10.1007/s00209-003-0620-1
http://dx.doi.org/10.1007/s00526-003-0252-7
http://dx.doi.org/10.1002/cpa.3045
http://dx.doi.org/10.1007/s12220-010-9195-3
http://dx.doi.org/10.1016/j.geomphys.2013.12.005
http://dx.doi.org/10.1007/s00208-002-0357-x
http://dx.doi.org/10.1007/s00208-002-0357-x

	Critical O(d)-equivariant biharmonic maps
	Abstract
	1 Introduction
	2 The equivariant ansatz
	3 Critical equivariant biharmonic maps
	4 Finite-time blowup or heteroclinic orbit
	5 Further properties of the unstable manifold
	Acknowledgments
	6 Appendix
	References




