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Abstract In the present article we obtain classification results and topological obstructions
for the existence of translating solitons of the mean curvature flow in euclidean space.
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1 Introduction

An oriented smooth hypersurface f : Mm → R
m+1 is called translating soliton (or a

translator for short) of the mean curvature flow if its mean curvature vector field H satisfies

H = v⊥, (1.1)

where v ∈ R
m+1 is a fixed unit length vector and v⊥ stands for the orthogonal projection

of v onto the normal bundle of the immersion f . Translating solitons are important in the
singularity theory of the mean curvature flow since they often occur as Type-II singularities.
On the other hand they also form interesting examples of precise solutions of the flow since
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the smooth family of immersions F : Mm × R → R
m+1, F(x, t) := f (x) + tv, evolves,

up to some tangential diffeomorphisms, by its mean curvature. If one chooses a smooth unit
length normal vector field ξ along f , then Eq. (1.1) may be expressed in terms of scalar
quantities. More precisely, Eq. (1.1) is equivalent to

H := −〈H, ξ 〉 = −〈v, ξ 〉, (1.2)

where here H is the scalar mean curvature of f . Since Eq. (1.1) is invariant under isometries
one may, without loss of generality, always assume that the velocity vector v is given by
v = em+1, where {e1, . . . , em+1} denotes the standard orthonormal basis of Rm+1.

Translating solitons of the euclidean space R
m+1 are closely related to minimal hyper-

surfaces. In fact, translators can be regarded as minimal hypersurfaces of (Rm+1,G) where
G is a Riemannian metric conformal to the usual inner product of Rm+1 (for example see
Sect. 2.2b). However, at present there is no general method to construct examples of translat-
ing solitons. Even in the 2-dimensional case there is no useful Weierstraß type representation
known to exist for translators, like there is for minimal surfaces in R

3. Moreover, although it
is believed that there exists an abundance of translators, there are only a very few available
examples of complete translating solitons in the euclidean space R

m+1. For instance, any
minimal hypersurface of Rm+1 tangent to the translating direction v is a translating soliton
(however, in this case H ≡ 0 implies that the translator actually does not move at all). The
euclidean productΓ ×R

m−1, where Γ is the grim reaper inR2 represented by the immersion
f : (−π/2, π/2) → R

2 given by

f (x) = (x, 1 − log cos x),

gives rise again to a translating soliton in the direction of em+1. More generally, any translator
in the direction of em+1 which is a Riemannian product of a planar curve and an euclidean
space Rm−1 can be obtained from this example by a suitable combination of a rotation and
a dilation. Each of these translators will be called a grim hyperplane (see Fig. 1 below).

Another way to construct complete translators is by rotating special curves around the
translating axis. From this procedure one gets the rotational symmetric translating paraboloid
(see Fig. 1) and the translating catenoids (see Fig. 3) which are unique up to rigid motions
(see the examples in Sect. 2.2e). We would like to point out that it is not known if there are
examples of complete translating solitons with finite non-zero genus.

Our goal is to classify, under suitable conditions, translating solitons and to obtain topo-
logical obstructions for the existence of translating solitons with finite non-zero genus in
R
3. Using the Alexandrov’s reflection principle we prove a uniqueness theorem for com-

plete embedded translating solitons with a single end that are asymptotic to a translating
paraboloid. More precisely we show the following.

Fig. 1 A grim hyperplane and a translating paraboloid
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Theorem A Let f : Mm → R
m+1 be a complete embedded translating soliton of the

mean curvature flow with a single end that is smoothly vertically asymptotic to a translating
paraboloid. Then the hypersurface M := f (Mm) is a translating paraboloid.

Remark 1.1 By being vertically asymptotic to the translating paraboloid we mean that M
can be expressed outside a ball as the graph over the hyperplane which is perpendicular to
the translating direction v of a function g with expansion

g(x) = |x |2
2(m − 1)

− 1

2
log |x |2 + O

(
1

|x |
)

(
compare also with the example (e) of Sect. 2.2

)
.

We give the following characterization of the grim hyperplanes.

Theorem B Let f : Mm → R
m+1 be a translating soliton which is not a minimal hypersur-

face. Then f (Mm) is a grim hyperplane if and only if the function |A|2H−2 attains a local
maximum on the open set Mm − {H = 0}.

As an immediate consequence of the above theoremweprove that a translating solitonwith
zero scalar curvature either coincides with a grim hyperplane or with a minimal hypersurface
tangential to the translating direction.

The rest of the paper is devoted to translators inR3.We focus on the study of the distribution
of the Gauß map of a complete translating soliton. In particular we investigate how the Gauß
image affects the genus of a complete translating soliton in R

3. For instance, we would like
to mention that it is perhaps true that any complete translating soliton in R

3 whose Gauß
map omits the north pole must have genus zero. In the next theorem we give a partial answer
to this question.

Theorem C Let {p1, . . . , pk} be k distinct points on a compact Riemann surface Σg. Sup-
pose that f : M := Σg− {p1, . . . , pk} → R

3 is a complete translating soliton that satisfies
the following two conditions:

(a) Each end is either bounded from above or from below in the following sense: If p j ∈
{p1, . . . , pk} is any of the puntures, then there exists a constant C j such that either
lim supx→p j

u(x) ≤ C j or lim inf x→p j u(x) ≥ C j , where u denotes the height function
with respect to the translating direction.

(b) The scalar mean curvature satisfies H > −1 everywhere and there exists a compact
subset C ⊂ M and a positive real number ε such that H2 < 1 − ε on M − C.

Then the genus g of M satisfies g ≤ 1. If f is an embedding, then g = 0 and thus M is a
planar domain.

Remark 1.2 From Eq. (1.2) the scalar mean curvature H of a translator always satisfies the
inequality

−1 ≤ H = −〈v, ξ 〉 ≤ 1.

Hence, the assumption H > −1 means that the Gauß map ξ is omitting the north pole of S2.
Moreover, there are plenty of examples of complete embedded surfaces with genus g ≥ 1 in
R
3 whose Gauß map is not onto.

We prove that within the class of translating solitons for which the Gauß map omits the
north pole (or more generally the direction of translation) it holds that a translator is mean
convex, if it is mean convex outside a compact subset.More precisely, we show the following.
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Theorem D Let f : M2 → R
3 be a translating soliton whose mean curvature satisfies

H > −1. Suppose that H ≥ 0 outside a compact subset of M. Then either M = f (M2) is
part of a flat plane or H > 0 on all of M2. If, in addition, M is complete and embedded,
then it is a graph and so it has genus zero.

The paper is organized as follows. In Sect. 2, after setting up the notation and computing the
basic equations that translators satisfy, we prove Theorem B. In Sect. 3 we prove Theorem A
and in the last Sect. 4 we prove Theorems C and D.

2 Translating solitons

2.1 Local formulas

In this subsection we will derive and summarize the most relevant equations related to trans-
lators. Let f : Mm → R

m+1 be an immersion and g = f ∗〈·, ·〉 the induced metric. Denote
by D the Levi-Civita connection of Rm+1 and by ∇ the Levi-Civita connection of g. The
second fundamental form A of f is

A(v,w) := Dd f (v)d f (w) − d f
(∇vw

)
,

where v,w are tangent vectors on M . The mean curvature vector field H of f is defined by

H := traceg A.

Let now ξ be a local unit vector field normal along f . The symmetric bilinear form A given
by

A(v,w) := −〈A(v,w), ξ 〉,
where v,w ∈ T Mm , is called the scalar second fundamental from of f . The scalar mean
curvature H is defined as the trace of A with respect to g. Suppose now that f is a translating
soliton, that is

H = v⊥

where v = (0, . . . , 0, 1) ∈ R
m+1 and where v⊥ is the orthogonal projection of v onto the

normal bundle of f . The orthogonal projection of v onto the tangent bundle of f will be
denoted by v. Let us introduce the height function u : Mm → R, given by

u := 〈 f, v〉. (2.1)

In the next lemma we give some important relations between the mean curvature H and the
height function u.

Lemma 2.1 The following equations hold on any translating hypersurface in R
m+1.

(a) ∇u = v,

(b) |∇u|2 = 1 − H2,

(c) ∇2u = H A,

(d) Δu + |∇u|2 − 1 = 0,
(e) 〈∇H, · 〉 = −A(∇u, · ),
(f) ΔH + H |A|2 + 〈∇H,∇u〉 = 0,
(g) Ric(∇u,∇u) = −|∇H |2 − H〈∇H,∇u〉,
(h) Δ|A|2 − 2|∇A|2 + 〈∇|A|2,∇u〉 + 2|A|4 = 0.
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Proof Let {e1, . . . , em} be an orthonormal frame defined on an open neighborhood of Mm .

(a) Differentiating u with respect to ei we get

ei u = 〈d f (ei ), v〉.
Therefore,

∇u = v.

(b) Since v has unit length, we obtain the crucial identity

1 = |v|2 = |v⊥|2 + |v|2 = H2 + |∇u|2.
(c) Differentiating ∇u once more, we deduce that

∇2u(ei , e j ) = ei e j u − 〈∇u,∇ei e j 〉
= ei 〈d f (e j ), v〉 − 〈d f (∇ei e j ), v〉
= 〈A(ei , e j ), v〉
= H A(ei , e j ).

(d) From the last formula giving the Hessian of u, we see that

Δu = H2 = 1 − |∇u|2.
(e) Differentiating H with respect to the direction ei , we get

〈∇H, ei 〉 = −ei 〈v, ξ 〉 = −〈v, dξ(ei )〉 = −〈v, dξ(ei )〉
= −A(∇u, ei ).

(f) Differentiating ∇H and using the Codazzi equation, we have

∇2H(ei , e j ) = −
m∑

k=1

(∇ek A)(ei , e j )eku

−
m∑

k=1

A(ek, e j )∇2u(ei , ek)

= −
m∑

k=1

(∇ek A)(ei , e j )eku

−H
m∑

k=1

A(ek, e j )A(ei , ek).

Therefore,

ΔH = −
m∑

k=1

(ek H)(eku) − H |A|2 = −〈∇H,∇u〉 − H |A|2.

(g) From the relation (e), we get

|∇H |2 = A[2](∇u,∇u)

where A[2] is the symmetric 2-tensor given by

A[2](v,w) =
m∑
i=1

A(v, ei )A(ei , w),
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for any v,w ∈ T Mm . Again from the relation (e), we have

H〈∇H,∇u〉 = −H A(∇u,∇u).

Consequently, (
H A − A[2])(∇u,∇u) = −|∇H |2 − H〈∇H,∇u〉.

By Gauß’ equation, the left hand side of the above equation equals the Ricci curvature
of the induced metric applied to ∇u. Therefore,

Ric(∇u,∇u) = −|∇H |2 − H〈∇H,∇u〉.
(h) From Simons’ formula [24], we have that

1

2
Δ|A|2 = |∇A|2 − |A|4 +

m∑
i, j=1

A(ei , e j )∇2H(ei , e j )

+ H
m∑

i, j,k=1

A(ei , e j )A(e j , ek)A(ek, ei ).

Bearing inmind the formulawhich relates∇2H with A and u, we get the desired formula.
This completes the proof of the lemma.

��
Remark 2.1 From Lemma 2.1 (d) it follows that the height function u does not admit any
local maxima. In particular the manifold Mm cannot be compact, a fact that intuitively is
clear. Moreover, Lemma 2.1 (b) and (e) imply that the critical sets Crit(H), Crit(u) of the
mean curvature and the height function on a translating soliton satisfy

Crit(u) = {x ∈ M : H2(x) = 1}
Crit(u) ⊂ Crit(H),

Crit(H)−Crit(u) ⊂ Mreg ∩ {x ∈ M : det A = 0},
where Mreg := Mm−Crit(u) denotes the regular part of Mm .

2.2 Examples

We will expose here some examples of translators in the euclidean space.

(a) All solutions f : (−π/2, π/2) → R
2 of (1.1) in the plane R

2 are of the form f (x) =
(x, c−log cos x),where c is a real constant. The curve f is known as the grim reaper (see
Fig 2). A grim hyperplane inRm+1 (see Fig. 3) consists of a suitable rotation and dilation
of the orthogonal product of the grim reaper with an euclidean factorRm−1. These exam-
ples are mean convex. In fact, these examples have only one non-zero principal curvature.

(b) Due to a result of Ilmanen [13], a translating soliton can be viewed as a minimal hyper-
surface of Rm+1 equipped the Riemannian metric

Gp := e
2
m 〈p,v〉〈· , ·〉.

Smoczyk [26] obtained a one to one correspondence between conformal solitons of the
mean curvature flow in an ambient space N and minimal submanifolds in a warped prod-
uct N × R. Existence and stability results for rotating solitons were also obtained by
Hungerbühler and Smoczyk [12].
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Fig. 2 Grim reaper

Fig. 3 A plane tangential to v, a grim plane, a translating paraboloid and a translating catenoid

(c) Suppose that f is a translator which is also minimal. Then v must be tangential to the
translator. Consequently, the only minimal translating surfaces in R

3 are the flat planes
which are tangential to the vector v.

(d) Altschuler and Wu [2] evolved graphs by mean curvature flow defined over compact
convex domains Ω in R

2 with prescribed contact angle to the boundary ∂Ω . They were
able to prove that solutions converge to translating solitons that are neither convex nor
rotationally symmetric. Moreover, they showed the existence of complete, rotationally
symmetric translators.

(e) If one assumes rotational symmetry around the v axis, then the equation describing the
translators reduces to an ODE. It was shown by Altschuler and Wu [2] and Clutterbuck
et al. [3] that there does exist an entire rotationally symmetric, strictly convex graph-
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ical translator, u : R
m → R, m ≥ 2, having the following asymptotic expansion at

infinity

u(x) = |x |2
2(m − 1)

− 1

2
log |x |2 + O

(
1

|x |
)

,

see for example [3, Lemma 2.2, p. 286]. This solution is called translating paraboloid or
bowl soliton. As was shown by Clutterbuck et al. [3], a complete rotationally symmet-
ric translating soliton coincides (up to translations) either with the rotational symmetric
translating paraboloid or with a rotationally symmetric translating catenoid which can
be seen as the desingularization of two paraboloids connected by a small neck of some
given radius.

(f) Halldorsson [8] proved the existence of helicoidal type translators. Nguyen [18,19] desin-
gularized the intersection of a grim reaper and a plane by a Scherk’s minimal surface
in R

3, and obtained a complete embedded translator of infinite genus. Independently,
Davila et al. [4] and Smith [25] posted preprints with examples of complete embedded
translators with finite non-trivial topology.

(g) Wang [27] studied graphical translators in R
m+1. He proved that for any dimension m

there exist complete convex graphical translating solitons, defined in strip regions, which
are not rotationally symmetric. For m ≥ 3, Wang proved that there are entire convex
graphical translating solitons. On the other hand, Wang proved that any entire convex
graphical translating soliton inR3 must be rotationally symmetric in an appropriate coor-
dinate system. It is still an open problem, if any entire graphical translating soliton in
R
3 (not necessarily convex) is rotationally symmetric.

Remark 2.2 Wewould like to mention that Shahriyari [22,23] proved non-existence of com-
plete translating graphs over bounded domains of the euclidean space R2.

2.3 The tangency principle

A basic tool employed in the proof of one of the main theorems is the tangency principle.
According to this principle two different translating solitons cannot “touch” each other at
one interior or boundary point. More precisely,

Theorem 2.1 Let Σ1 and Σ2 be m-dimensional embedded translating solitons with bound-
aries ∂Σ1 and ∂Σ2 in the euclidean space Rm+1.

(a) (Interior principle) Suppose that there exists a common point x in the interior of Σ1

and Σ2 where the corresponding tangent spaces coincide and that Σ1 lies at one side of
Σ2. Then Σ1 ≡ Σ2.

(b) (Boundary principle) Suppose now that ∂Σ1 and ∂Σ2 lie on the same hyperplane Π of
R
m+1 and the intersection of Σ1,Σ2 with Π is transversal. Assume that Σ1 lies at one

side of Σ2 and that there exists a common point of ∂Σ1 and ∂Σ2 where Σ1 and Σ2 have
the same tangent space. Then Σ1 ≡ Σ2.

Proof Recall that translating solitons are minimal hypersurfaces in the conformally changed
Riemannian metric

Gp := e
2
m 〈p,v〉〈· , ·〉

on R
m+1. Therefore, translators are real analytic hypersurfaces. Hence, if two translators

coincide in an open neighborhood they should coincide everywhere. The theorem follows
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now from the interior and boundary tangency principle for embedded minimal hypersurfaces
in a Riemannian manifold. For a nice exposition of these principles we recommend the
beautiful paper of Eschenburg [5, Theorem 1 and Theorem 1a]. ��
2.4 Global characterizations

We shall conclude this section with some characterizations of translators.

Theorem B Let f : Mm → R
m+1 be a translating soliton which is not a minimal hypersur-

face. Then f (Mm) is a grim hyperplane if and only if the function |A|2H−2 attains a local
maximum on Mm − {H = 0}.
Proof Inspired by ideas developed by Huisken [11], consider the smooth function h : U →
R, U := M − {H = 0}, given by h = |A|2H−2. Notice at first that

∇h = ∇|A|2
H2 − 2h

∇H

H
,

provided H �= 0. Let us now relate the Laplacian of the function h with the quantities H , A
and u. We have,

Δh = H−2Δ|A|2 + |A|2ΔH−2 + 2〈∇|A|2,∇H−2〉
= H−2Δ|A|2 − 2H−3|A|2ΔH

+ 6H−4|A|2|∇H |2 − 4H−3〈∇|A|2,∇H〉.
By virtue of Lemma 2.1, we get

Δh + H−1〈∇h, H∇u + 2∇H〉 − 2H−4Q2 = 0,

where

Q2 : = H2|∇A|2 + |A|2|∇H |2 − H〈∇H,∇|A|2〉
= ∣∣H∇A − ∇H ⊗ A

∣∣2.
Since h attains a local maximum, by the strong maximum principle we obtain now that h

is constant and Q2 is identically zero. Thus, for any triple of indices i, j, k, it holds

H(∇ei A)(e j , ek) − ei (H)A(e j , ek) = 0, (2.2)

where here {e1, . . . , em} is a local orthonormal frame in the tangent bundle of the hypersur-
face. From the last identity and the Codazzi equation we see that

ei (H)A(e j , ek) − e j (H)A(ei , ek) = 0. (2.3)

for any triple of indices i, j, k.

Case 1.Assume at first that H is constant. Since by assumption f is notminimal, this constant
is non-zero. Then, from Eq. (2.2) it follows that |∇A| = 0. Then, all the principal curvatures
of the immersion f are constant. Due to a theorem of Lawson [14, Theorem 4], it follows
that f (Mm) is locally isometric to a round sphere or to a product of a round sphere with
a euclidean factor. However, none of these examples are translators and consequently this
situation cannot happen.

Case 2. Assume now that there is a simply connected neighborhood V where |∇H | is not
zero. In the neighborhood V , choose the frame{

e1 := ∇H/|∇H |, e2, . . . , em
}
.
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Then, from Eq. (2.3), we obtain A(e j , ek) = 0, for any k ≥ 1 and j ≥ 2. Therefore, f has
only one non-zero principal curvature. Denote now by D : V → TV ,

D(x) := {v ∈ TxV : A(v, · ) = 0},
the nullity distribution and by D⊥ := span{e1} its orthogonal complement. It is well known
that the distribution D is smooth and integrable. Moreover, D is an autoparallel distribution,
that is for any X, Y ∈ D it follows that∇XY ∈ D . The integral submanifolds ofD are totally
geodesic in V and their images via the immersion f are totally geodesic submanifolds of
R
m+1. Furthermore, the Gauß map of the immersion f is constant along the leaves of D . A

classical reference for the proofs of these facts is the paper of Ferus [6, Lemma 2, p. 311].
We claim now that D⊥ is also autoparallel and its integral curves are geodesics of M . Let

B : T Mm → T Mm be the Weingarten operator associated to A. Note that B(e1) = He1
and B(e j ) = 0 for any j ≥ 2. From the Eq. (2.2), we obtain that

H(∇e1B)v = e1(H)B(v),

for any v in TV . Hence, taking v = e1, we deduce that

(∇e1B)e1 = e1(H)e1,

or, equivalently,

e1(H)e1 = ∇e1(He1) + B(∇e1e1)

= H∇e1e1 + e1(H)e1 +
n∑
j=2

〈∇e1e1, e j 〉B(e j ).

Because H is not constant zero, from the last equation it follows that

∇e1e1 = 0.

Thus the integral curves of e1 are geodesics and the orthogonal complement D⊥ of D is
autoparallel in TV .

Observe now that

TV = D ⊕ D⊥.

We claim now that both the above distributions are parallel. Indeed, let X, Y ∈ D and
Z ∈ D⊥. Then,

0 = X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇X Z〉.
Hence, for any X ∈ TV and Z ∈ D⊥ we have that ∇X Z ∈ D⊥. This means that the
distribution D⊥ is actually parallel. Similarly, one can show that the nullity distribution D
is parallel. Hence, from the de Rham decomposition theorem, the image f (V) splits as the
Cartesian product of a plane curve Γ with a euclidean factor Rm−1. Obviously, this planar
curve Γ must be a grim reaper.

From the above facts, it follows that the image f (Mm) contains an open neighborhood
that is part of a grim hyperplane. Since f (Mm) can be regarded as a minimal hypersurface of
themanifold (Rm+1,Gp), from the tangency principle (Theorem 2.1) we deduce that f (Mm)

should coincide everywhere with a grim hyperplane. This completes the proof. ��
Corollary 2.1 Let f : Mm → R

m+1 be a translating soliton with zero scalar curvature.
Then either f (Mm) is a grim hyperplane or f (Mm) is a totally geodesic hyperplane tangent
to v.
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Proof Note that under our assumptions,

|A|2 = H2 − scal = H2.

Hence, if H is identically zero then |A|2 is identically zero and f (Mm) must be a totally
geodesic hypersurface tangent to v. Suppose now that there is a point where H is not zero.
In this case, there is an open neighborhood where the function |A|2H−2 is well-defined
and equals 1. Consequently, the above theorem implies that f (Mm) coincides with a grim
hyperplane. ��
Similarly we can prove the following:

Corollary 2.2 Let f : Mm → R
m+1 be a translating soliton with H > 0 and scal ≥ 0.

Then either f (Mm) is a grim hyperplane or scal > 0 everywhere.

Theorem 2.2 Let f : Mm → R
m+1 be a weakly-convex translator. If there is a point

where the Gauß-Kronecker curvature vanishes, then the Gauß-Kronecker curvature vanishes
everywhere.

Proof We have that

ΔA + 〈∇A,∇u〉 + |A|2A = 0.

By the assumptions A is a non-negative symmetric 2-tensor. If there is a point where the
smallest principal curvature vanishes, from the strong elliptic maximum principle for tensors
(see for example [9] or [20, Section 2]), we get that the smallest principal curvature of f
vanishes everywhere. ��

3 Uniqueness of the translating paraboloid

The aim of this section is to show that a complete embedded translating soliton of the
mean curvature flow with a single end which is asymptotic to the rotationally symmetric
translating paraboloid, must be a translating paraboloid. The proof exploits the method of
moving planes which was first introduced by Alexandrov [1] for the investigation of compact
hypersurfaces with constant mean curvature in a euclidean space. However, our approach
follows ideas developed by Schoen [21] where he applied the method of moving planes to
minimal hypersurfaces of the euclidean space.

3.1 A uniqueness theorem

Before stating and proving the main result of this section we have to introduce some notation
and definitions. Denote by p : Rm+1 → Π the orthogonal projection to the plane

Π := {(x1, . . . , xm+1) ∈ R
m+1 : x1 = 0},

that is

p(x1, . . . , xm+1) := (0, x2, . . . , xm+1).

Definition 3.1 Let M1 and M2 be two arbitrary subsets of Rm+1. We say that the set M1 is
on the right hand side of M2 and write M1 ≥ M2 if and only if for every point x ∈ Π for
which

p−1(x) ∩ M1 �= ∅ and p−1(x) ∩ M2 �= ∅,
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we have that
inf

[
x1

{
p−1(x) ∩ M1

}] ≥ sup
[
x1

{
p−1(x) ∩ M2

}]
,

where here x1{P} denotes the x1-component of the point P ∈ R
m+1.

Note that “≥” is not a well ordered relation since there are subsets of Rm+1 that cannot be
related to each other. However, the relation “≥” is an order for graphs over Π .

Consider now the family of planes {Π(t)}t≥0 given by

Π(t) := {(x1, . . . , xm+1) ∈ R
m+1 : x1 = t}.

Given a subset M of Rm+1 let us also define the following subsets:

δt (M) : = {(x1, . . . , xm+1) ∈ M : x1 = t} = M ∩ Π(t),

M+(t) : = {(x1, . . . , xm+1) ∈ M : x1 ≥ t},
M−(t) : = {(x1, . . . , xm+1) ∈ M : x1 ≤ t},
M∗+(t) : = {(2t − x1, . . . , xm+1) ∈ R

m+1 : (x1, . . . , xm+1) ∈ M+(t)},
M∗−(t) : = {(2t − x1, . . . , xm+1) ∈ R

m+1 : (x1, . . . , xm+1) ∈ M−(t)},
Zt : = {(x1, . . . , xm+1) ∈ R

m+1 : xm+1 > t}.
Note that M+(t) are elements of M that are on the right hand side of the plane Π(t) and
M−(t) are those elements of M that belong to the left hand side ofΠ(t). The subset M∗+(t) is
the reflection of M+(t) with respect to the plane Π(t) while M∗−(t) stands for the reflection
of M−(t) with respect to Π(t) (see Fig. 4 below).

Theorem A Let f : Mm → R
m+1 be a complete embedded translating soliton of the

mean curvature flow with a single end that is smoothly vertically asymptotic to a translating
paraboloid. Then the hypersurface M = f (Mm) is a translating paraboloid.

Proof For the sake of intuition we will present the proof for m = 2. The arguments for the
general case are analog. From our assumptions it follows that there exists a positive real
number r such that M − B(0, r) can be written as the graph of a function

g(x1, x2) = 1

2

(
x21 + x22

) − 1

2
log

(
x21 + x22

) + O

⎛
⎝ 1√

x21 + x22

⎞
⎠, (3.1)

where here B(0, r) stands for the open euclidean ball of R3 which is centered at the origin
and has radius r . Consider now the vectors

vϑ := (cosϑ, sin ϑ, 0),

Fig. 4 Reflection with respect to
Π(t0)
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where here ϑ ∈ [0, 2π). Our goal is to show that for any angle ϑ the translator M is
symmetric with respect to the plane perpendicular to vϑ passing through the origin of R3.
Since the rotations around the x3-axis preserve the property of being a translating soliton, we
deduce that it suffices to prove the symmetry only along the plane Π . To this end, consider
the set

A := {
t ∈ [0,+∞) : M+(t) is a graph over Π and M∗+(t) ≥ M−(t)

}
.

The proof will be finished if we can show that 0 is contained in the set A. This will be
achieved by proving that A is a non-empty open and closed subset of the interval [0,+∞).
The proof of this fact will be concluded by several claims.

Claim 1 The set A is not empty. Moreover if s ∈ A, then [s,∞) ⊂ A.

We will exploit the asymptotic behavior of the end of the translator to prove the existence
of t1. Indeed, choose the radius r sufficiently large. In fact, one can choose r so large such
that the part of the translator M ∩ Zr is a graph over the x1x2-plane. We conclude the proof
of the claim in three steps.

Step 1:Because M has a single end which is asymptotic to a translating paraboloid it follows
thatM+(t) has only one unbounded component. Indeed, if there were an compact component
then from the tangency principle in the interior we would get that M is flat, which contradicts
our assumptions. Hence, for any positive number t the set M+(t) is connected.

Step 2: Since by assumption the end of M is smoothly asymptotic to a translating paraboloid
we deduce that there exists a number t ′ > r , large enough, such that ∂g

∂x1
(x1, x2) > 0 for

any x1 > t ′. Consequently 〈ξ, e1〉 > 0 for any point of M+(t ′), where ξ : M → S
2 stands

for the Gauss map of M . Taking into account that M is embedded, M+(t ′) is connected and
M+(t ′) ∪ p(M+(t ′)) bounds a domain of R3, it follows that M+(t ′) is a graph over Π .

Step 3: For fixed t > t ′ we can represent M∗+(t) ∩ Zr as the graph over the x1x2-plane of
the function gt given by the expression

gt (x1, x2) = 1

2

{
(2t − x1)

2 + x22
}

−1

2
log

{
(2t − x1)

2 + x22
} + O

⎛
⎝ 1√

(2t − x1)2 + x22

⎞
⎠.

Comparing the functions gt and g we get that

gt (x1, x2) − g(x1, x2)

= 2t (t − x1) − 1

2
log

{
4t (t − x1)

x21 + x22
+ 1

}

+ O

⎛
⎝ 1√

(2t − x1)2 + x22

⎞
⎠ − O

⎛
⎝ 1√

x21 + x22

⎞
⎠

≥ 2t (t − x1) − 1

2
log

{
4t (t − x1)

x21 + x22
+ 1

}

− C√
(2t − x1)2 + x22

− C√
x21 + x22

,
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where C is a positive constant. Recall now that the above relation holds for x21 + x22 > r2

and x1 ≤ t . Moreover, note that

log

{
4t (t − x1)

x21 + x22
+ 1

}
≤ 4t (t − x1)

x21 + x22
,

and

(2t − x1)
2 + x22 = (t + t − x1)

2 + x22
> t2 + (t − x1)

2 + x22
> r2.

Therefore,

gt (x1, x2) − g(x1, x2) >
2t (t − x1)(x21 + x22 − 1)

x21 + x22
− 2C

r

>
2r(t − x1)(r2 − 1) − 2rC

r2
.

Our aim is to compare M∗+(t) with M−(t) following the definition given in relation (3.1).
Choose a positive constant a, not depending on r . Then, for t − x1 > a and r large enough
we have

gt (x1, x2) − g(x1, x2) >
2ra(r2 − 1) − 2rC

r2
> 0. (3.2)

Then from inequality (3.2) we have that[
M∗+(t ′ + a) ∩ {

(x1, x2, x3) ∈ R
3 : x1 ≤ t ′

}]

≥
[
M−(t ′ + a) ∩ {

(x1, x2, x3) ∈ R
3 : x1 ≤ t ′

}]
.

Moreover, from the fact that M+(t ′) is a graph over Π we deduce that[
M∗+(t ′ + a) ∩ {

(x1, x2, x3) ∈ R
3 : t ′ ≤ x1 ≤ t ′ + a

}]

≥
[
M−(t ′ + a) ∩ {

(x1, x2, x3) ∈ R
3 : t ′ ≤ x1 ≤ t ′ + a

}]
.

Hence, [t ′ + a,+∞) ⊂ A. It is straightforward to check that if s ∈ A then [s,+∞) ⊂ A.
This concludes the proof of the claim.

Claim 2 The set A is a closed subset of the interval [0,+∞).

Suppose that {tn}n∈N is a sequence of points inA converging to t0.We have to prove that t0
is contained inA. Indeed, at first notice that according to Claim 1we have that (t0,+∞) ⊂ A.
Our goal is to prove that M+(t0) can be written as the graph of the coordinate function x1 and
that M∗+(t0) ≥ M−(t0). Let us suppose at first that the graphical condition is violated. That is
there are points P = (p1, p2, p3) and Q = (q1, p2, p3) in M+(t0) such that q1 > p1. Then
we must have p1 = t0 since s ∈ A for any s > t0 (see Fig. 5 below). We will show that this
situation cannot occur.

Indeed, take

t = q1 + 3t0
4

> t0.
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Fig. 5 Reflection with respect to
the plane Π(t)

But then it follows that M∗+(t) is not in the right hand side of M−(t), which contradicts the
fact that t ∈ A. Consequently, the set M+(t0) can be represented as a graph over the plane
Π . Moreover, because of the continuity and the graphical condition we get

M∗+(t0) ≥ M−(t0).

Hence, t0 ∈ A and this completes the proof of the claim.

Claim 3 The minimum of the set A is 0. In particular, A = [0,+∞).

We argue again in this proof by contradiction. Suppose to the contrary that s0 := minA >

0. Then we will show that there exists a positive number ε such that s0 − ε ∈ A, which will
be the contradiction.

Step 1:Wewill show at first that there exists a positive constant ε1 < s0 such thatM+(s0−ε1)

is a graph. Indeed, as in the proof of Step 1 of Claim 1, we deduce that there exists a positive
number α which is sufficiently bigger than r and such that

distR3

[
ξ
{
M+(s0) ∩ Zα

}
,Π

]
> 0. (3.3)

From (3.3) it follows that there is ε0 > 0 such that M+(s0 − ε0) ∩ Zα can be represented as
a graph over the plane Π and furthermore

M∗+(s0 − ε0) ∩ Zα ≥ M−(s0 − ε0) ∩ Zα. (3.4)

Consider now the compact set

K := M ∩ {(x1, x2, x3) ∈ R
3 : x3 ≤ α}.

Taking into account that s0 ∈ A, we deduce that K+(s0) is a graph over the plane Π . At first
notice that there is no point in K+(s0) with normal vector included in the plane Π . Indeed,
if this was true then from the tangency principle at the boundary we would get that M is
symmetric around a plane parallel to Π which contradicts the assumption on the end of M .
Consequently,

ξ
{K+(s0)

} ∩ Π = ∅.

Because the set K+(s0) is compact, there exists ε1 ∈ (0, ε0] small enough such that, for all
t ∈ [s0 − ε1, s0],

ξ
{K+(t)

} ∩ Π = ∅,
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Because of this fact and because of the compactness we deduce that the set K+(t) can be
represented as graph Π for every t ∈ [s0 − ε1, s0]. Consequently, M+(t) is a graph over the
plane Π , for all t ≥ s0 − ε1. Hence, the first step of the plan is finished.

Step 2:Nowwe will conclude the plan by proving that there exist a positive constant ε2 < ε1
such that M∗+(s0 − ε2) ≥ M−(s0 − ε2). First notice that(

M∗+(t) ∩ M−(t) ∩ K) − δt (M) ⊂ K−(s0 − ε1), (3.5)

for all t ≥ s0 − ε1. Next, because M∗+(s0) ≥ M−(s0), we have that

M∗+(s0) ∩ M−(s0) = δs0(M).

We will show now that there exists a positive number ε2 ∈ (0, ε1] such that
M∗+(t) ∩ M−(t) ∩ K = δt (M) ∩ K,

for all t ≥ s0 − ε2. Arguing indirectly, suppose that this is not true. Then, there exists an
increasing sequence {tn}n∈N converging to s0 such that(

M∗+(tn) ∩ M−(tn) ∩ K) − δtn (M) �= ∅.

For each natural n denote by Pn = (pn1 , p
n
2 , p

n
3 ) a point in the above set. From (3.5) we

deduce that for each natural number n it holds that

pn1 ≤ s0 − ε1.

By the compactness of K, without loss of generality, we may assume that the sequence
{Pn}n∈N converges to a point P0 = (p01, p

0
2, p

0
3) ∈ K. By continuity we have that p01 ≤

s0 − ε1. But

P0 ∈ M∗+(s0) ∩ M−(s0) ∩ K = δs0(M) ∩ K,

which is absurd. Thus, combining the above results for the parts of M above and below
{x3 = α}, we get that for given t ∈ (s0 − ε2, s0] it holds

M∗+(t) ∩ M−(t) = δt (M).

Then, for any fixed t ≥ s0 − ε2 a continuity argument gives that

M∗+(t) ≥ M−(t),

and the second and final step of the plan is completed.
Hence, there exists a positive constant ε < s0 such that s0 − ε ∈ A. This contradicts the

assumption that s0 is a minimum. Consequently, s0 = 0 and the proof is finished.
From Claim 3 we get that M∗+(0) ≥ M−(0). A symmetric argument yields that M∗−(0) ≤

M+(0). Therefore, M−(0) ≥ M∗+(0) and so M∗+(0) = M−(0) and so M is symmetric with
respect to the plane Π . This completes the proof of the theorem.

Remark 3.1 Using similar ideas to those applied in Theorem A we can deduce some results
about the asymptotic behavior of entire graphical translating solitons in R

m+1.

(a) Let M an entire graphical translating soliton satisfying the growth condition

|u(x)| ≤ C |x |α,

for all x ∈ R
m − B(0, r). Then α ≥ 2. In order to prove this fact, we proceed again by

contradiction. Suppose to the contrary that there exists an entire graphical translator in
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the euclidean space R
m+1 satisfying the above growth condition with α < 2. Let X be

the translating paraboloid of Example 2.2 (d) and translate it vertically until the surfaces
X and M do not intersect. Note that this is possible because we are assuming α < 2
and X has the asymptotic behavior described in (3.1). Then, the paraboloid X will move
vertically downwards until there is a first point of contact with the surface M . This first
contact can not occur at infinity, because we are assuming α < 2. Then, the tangency
principle implies that M should coincide with a translated copy of X . But this is absurd,
because X is asymptotic to the graph over

g(x) = 1

2
|x |2 − log |x | + O

(|x |−1)
at infinity.

(b) Exchanging the role of M and X in the above argument, then we can prove that: Suppose
that M is an entire graphical translator satisfying the following growth condition

|u(x)| ≥ C |x |α,

for all x ∈ R
m − B(0, r). Then, α ≤ 2.

(c) Using again the tangency maximum principle we can show that there are no complete
and embedded translators that are contained in the solid half-cylinder

C := {(x1, . . . , xm+1) ∈ R
m+1 : x21 + · · · + x2m ≤ r2, xm+1 > 0}.

(d) The reason that the mean curvature flow of compact hypersurfaces in R
m+1 form singu-

larities is the following comparison principle: Suppose that M1 and M2 are two compact
Riemannian manifolds of dimension m and let f : M1 → R

m+1, g : M2 → R
m+1

disjoint isometric immersions. Then also the solutions ft and gt of the mean curvature
flow remains disjoint. Wewould like to point out that the compactness assumption cannot
be relaxed with that of completeness. Indeed, take as f : M1 → R

3 be the unit euclidean
sphere and as g : M2 → R

3 a complete minimal surface lying inside the unit ball. Such
examples were first constructed by Nadirashvili [17]. Obviously f and g do not have
intersection points. However, under the mean curvature flow, f shrinks to a point in finite
time while g remains stationary.

4 The two-dimensional case

In this section we will investigate 2-dimensional translating solitons lying in the two
dimensional case.Wewill study the Gauß image of such surfaces andwill obtain several clas-
sification results as well as topological obstructions for the existence of translating solitons
of the mean curvature flow in the euclidean space R3.

4.1 Gauß image of punctured Riemann surfaces

It is a well known fact that any smooth oriented compact surface is diffeomorphic either to
a sphere or to a torus with g holes. The Euler characteristic of such compact surface Σg

depends only on the genus g and is given by the formula

X (Σg) = 2 − 2g.

This classification can be extended also to compact surfaces Σ with boundary. Note that
from compactness, the boundary ∂Σ has a finite number k of components. Moreover, each

123



2870 F. Martín et al.

boundary component ofΣ is a connected compact 1-manifold, that is a circle. Now, if we take
k closed discs and glue the boundary of the i-th disc to the i-th component of the boundary of
Σ , we obtain a smooth compact surface which we will denote with the letter Σ∗. It turns out
that the topological type of a compact surface with boundary Σ depends only on the number
k of its boundary components and the topological type of the surface Σ∗. More precisely, Σ
is diffeomorphic to Σg,k , where

Σg,k = Σg−{p1, . . . , pk}
is a punctured Riemann surface given by a closed Riemann surface Σg of genus g with
k points p1, . . . , pk ∈ Σg removed. The Euler characteristic of a compact surface with
boundary is defined exactly in the same way as in the case of a compact surface without
boundary. It follows that,

X (Σg,k) = X (Σ) = X (Σg) − k = 2 − 2g − k.

The genus of a compact surface Σ with boundary is defined to be the genus of the compact
surface Σg = Σ∗.

From now we will focus on Riemann surfaces of the form

Σg,k := Σg−{p1, . . . , pk},
where Σg is a compact Riemann surface of genus g and p1, . . . , pk ∈ Σg are k distinct
punctures. Recall that an end of the surface Σg,k is a diffeomorphism ϕ̃ j : D → Σg of the
closed unit disc D to Σg such that ϕ̃ j (0) = p j for one index j ∈ {1, . . . , k} and

ϕ̃ j (D) ∩ {p1, . . . , pk} = {p j }.
We will denote by ϕ j : D∗ → Σg,k the maps

ϕ j := (
ϕ̃ j

)
|D∗ ,

where

D
∗ := {x ∈ R

2 : 0 < |x | ≤ 1}
denotes the punctured unit disc. The surface Σg,k will be called a planar domain, if g = 0
and k ≥ 1, that is if Σg,k is a punctured sphere.

In the following lemma we present a result which will allow in the rest of the paper a
surgery argument for cylindrical ends.

Lemma 4.1 (Spherical cap lemma) Let αt : S
1 → R

2, t ∈ [0, 1], be a smooth family
of closed embedded curves and let d0 denote the diameter of α0. Define the cylinder Θ :
S
1 × [0, 1] → R

3 given by

Θ(s, t) := (αt (s), t).

Then for any σ > 0 there exists an ε ∈ (0, σ ) and a smooth embedding C : D → R
3 of the

closed unit disc D such that:

(a) For all x ∈ D with |x | ∈ [1 − ε, 1], it holds
C(x) = Θ(x/|x |, 1 − |x |).

(b) The height function u given by u = 〈C, e3〉 satisfies 0 ≤ u ≤ σ . Moreover u(0) = σ and
the critical set of u is Crit(u) = {0}.
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(c) The diameter dC of the embedded disc satisfies

dC ≤ 2σ + d0.

(d) The Gauß curvature K at C(0) is positive.

Proof At first let us state some basic facts that will be used in the proof of the lemma.

Fact 1. Let p ∈ R
2 be an arbitrary point in the interior of the curve α0 such that

|α0(s) − p| ≤ d0
2

for all s ∈ S
1. For σ > 0 we can find an ε̃ ∈ (0,min{1, σ }) such that for all t ∈ [0, ε̃] it

holds

|αt (s) − p| ≤ σ + d0
2

.

Fact 2.According to awell-known theoremofGrayson [7], the curve shorteningflowprovides
a smooth isotopy of a closed embedded curve γ0 to a single point q ∈ R

2 in the interior of
γ0 by smooth embedded curves. Moreover, all evolved curves satisfy the inequality

max
S1

|γτ − q| ≤ max
S1

|γ0 − q|.

Furthermore, the above inequality is still valid, if one blows up the solutions homothetically
around q by a time dependent factor so that the length of the evolving curve is fixed. Under
this rescaling the curves become circular in the limit.

Starting with the curve γ0 := αε̃/2, from Fact 1 and Fact 2 we see that there exists a
smooth isotopy βt : S1 → R, t ∈ [0, 1], such that:
• βt = αt for t ∈ [0, ε̃/2],
• βt (s) = p + (1 − t)eis , for (s, t) ∈ S

1 × [1 − ε̃/2, 1],
• βt : S1 → R

2 is a closed embedded curve for all t ∈ [0, 1) with
max
S1

|βt − p| ≤ σ + d0/2

for all t ∈ [0, 1].
Choose a smooth function φ : [0, 1] → R (Fig. 6) with the following properties

• φ(t) = t for t ∈ [0, ε̃/2],
• φ(t) = √

σ 2 − (1 − t)2 for t ∈ [1 − ε̃/2, 1],
• φ′(t) > 0 for t ∈ [0, 1).

Fig. 6 Adding a spherical cap to
a cylinder
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Fig. 7 Smoothing function

Let us now define the map C : D → R
2 (Fig. 7) by

C(x) = (
β1−|x |(x/|x |), φ(1 − |x |)).

If we set ε := ε̃/2, then for any x ∈ D with |x | ∈ [1 − ε, 1] we get
C(x) = (

β1−|x |(x/|x |), φ(1 − |x |))
= (

α1−|x |(x/|x |), 1 − |x |)
= Θ

(
x/|x |, 1 − |x |).

The last equality proves assertion (a) of the Lemma. Since the height function is given by

u(x) = 〈C(x), e3〉 = φ(1 − |x |),
from the properties of φ we immediately get (b). Finally, from the construction of the curves
βt , we obtain that C is contained in the ball of radius σ + d0/2 with center at p. Thus the
diameter dC of the cap is bounded by 2σ + d0, which implies assertion (c) of the lemma.
That the Gauß curvature at the top is strictly positive, follows from the fact that C coincides
with the portion of a round sphere close to the top. This proves assertion (d) and completes
the proof of the lemma.

In the following theorem we present a general theorem concerning the Gauß image of a
complete surface of the euclidean space R3.

Theorem 4.1 Let f : Σg,k = Σg −{p1, . . . , pk} → R
3 be a complete immersion of a

punctured Riemann surface. Suppose v ∈ S
2 is a fixed unit vector and let u := 〈 f, v〉 denote

the height function of the surface with respect to the direction v. Suppose that for each
puncture p j , 1 ≤ j ≤ k, the following two conditions holds:

(a) There exists a constant ε > 0 such that lim infx→p j |∇u(x)| ≥ ε.

(b) The interval
(
lim infx→p j u(x), lim supx→p j

u(x)
)
does not coincide with the real line.

Then either the image of the Gauß map ξ : Σg,k → S
2 contains the pair {v,− v} or the

genus satisfies g ≤ 1. If in addition f is an embedding, then either the image of ξ contains
{v,− v} or g = 0 and thus Σg,k is a planar domain. Moreover, in all cases we have

lim sup
x→p j

|u(x)| = +∞

for all punctures p j .
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Fig. 8 Possible types of level sets

Proof The idea of the proof is to glue spherical caps along each end and to apply degree
theory to obtain informations about the image of the Gauß map. We divide the proof into
several steps:

Step 1. To do the surgery, at first we need some information about the nature and the behavior
of u along the ends.

Claim For each puncture p ∈ {p1, . . . , pk}ofΣg,k there exists ε > 0 anda closed embedded
curve α ⊂ Σg,k such that:

(i) The coordinate function u is constant along the curve α,
(ii) The closure of one of the connected components V ofΣg,k−α withinΣg is diffeomorphic

to the closed unit disc D ⊂ R
2 such that V ∩ {p1, . . . , pk} = {p} and infV |∇u| ≥ ε.

Indeed, from the assumption (a) of the theorem it is clear that (ii) can be fulfilled. That
is, there exists an open set U ∈ Σg,k such that:

• U is diffeomorphic to D,
• U ∩ {p1, . . . , pk} = {p},
• infU |∇u| ≥ ε for a positive constant ε > 0.

Hence it suffices to prove that U contains a closed level set curve of u which encloses p
in its interior, i.e. a curve like α1 in Fig. 8. Let us denote by γ0 the boundary of U , that is
γ0 := ∂U , and set

u+
0 := max

x∈γ0
u(x), u−

0 := min
x∈γ0

u(x), δ0 := u+
0 − u−

0 .

Let x be a point in U and

dx := dist(x, γ0)

its distance from the boundary curve γ0. Denote by βx the gradient flow line of∇u/|∇u|with
βx (0) = x . Since the vector field∇u/|∇u| is well defined inU and because dist(x, γ0) = dx ,
the flow line can at least be parametrized over the interval [0, dx ] until it reaches the boundary
curve γ0 (if it reaches the boundary curve γ0 at all). We compute

|u(βx (dx )) − u(x)| =
∣∣∣∣
∫ dx

0

d

dt
(u(βx (t))dt

∣∣∣∣
=

∣∣∣∣
∫ dx

0
〈∇u ◦ βx (t),

d

dt
βx (t)〉dt

∣∣∣∣
=

∣∣∣∣
∫ dx

0
|∇u ◦ βx (t)|dt

∣∣∣∣
=

∫ dx

0
|∇u ◦ βx (t)|dt

≥ εdx .
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Fig. 9 The level set α cannot tend to the puncture p, if it contains a point q that is too far away from γ0

Since the surfaceΣg,k is complete, the Hopf-Rinow Theorem implies that there exists a point
q ∈ U such that dx is arbitrarily large. So, the last inequality shows

lim sup
x→p

|u(x)| = +∞.

In particular, if we choose x ∈ U such that dx > δ0/ε, then we see that there must exist
another point q ∈ U with u(q) /∈ [u−

0 , u+
0 ]. Let α be the connected component of the level

set u−1(u(q)) ∩ (U ∪ γ0). Since ∇u �= 0 on U ∪ γ0, α must be an embedded regular curve.
Thus, one of the following cases holds (cf. Fig. 8).

(C1) α ⊂ U and p lies in the interior of α.
(C2) α ⊂ U and p lies in the exterior of α.
(C3) α ∩ γ0 �= ∅.
(C4) Both ends of α connect to p.

The case (C2) cannot occur, because then the function u would admit a local extremum in
the interior of α which in particular implies ∇u = 0 there. Case (C3) is impossible since

u ◦ α ≡ u(q) /∈ [u−
0 , u+

0 ].
So we only need to exclude the last case (C4). Choose a closed curve γ1 ⊂ U such that
q ∈ γ1 and α−{q} ∈ int(γ1) (cf. Fig. 9). Similar as above define

u+
1 := max

x∈γ1
u(x), u−

1 := min
x∈γ1

u(x), δ1 := u+
1 − u−

1 .

Applying once more the Hopf–Rinow Theorem, we can find a point q̃ ∈ α with dist(q̃, γ1) >

δ1/ε. Computing as above we obtain for all points q ′ on the gradient flow line βq̃ of∇u/|∇u|
the estimate

|u(q ′) − u(q)| = |u(q ′) − u(q̃)| ≥ ε dist(q̃, γ1) > δ1.

From this estimate we deduce that the flow line βq̃ can never intersect the curve γ1. Thus
βq̃ ⊂ int(γ1) and since |∇u| ≥ ε this implies

lim inf
βq̃

u = −∞ and lim sup
βq̃

u = +∞
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which by assumption (b) is impossible. Hence α is a simple closed level curve enclosing p
and this proves the claim.

Step 2.We will use now the above mentioned results to proceed with the gluing of spherical
caps along the ends of our surface. For each puncture p j ∈ {p1, . . . , pk} choose a closed
level curve α j and an open set Vj as in Step 1. From Morse Theory (see for example [15]) it
follows that all level curves α̃ j contained in Vj are isotopic. Since for each puncture exactly
one of the conditions

lim sup
x→p j

u(x) = +∞ or lim inf
x→p j

u(x) = −∞

holds, we can without loss of generality assume that lim supx→p j
u(x) = ∞ for any index

j ∈ {1, . . . , l} and lim infx→p j u(x) = −∞ for any index j ∈ {l + 1, . . . , k}, where
l ∈ {0, . . . , k}, and that

⋃
1≤ j≤k

α j = |u|−1(L)

for a large positive constant L . Let E ⊂ R
3 be the 2-dimensional subspace perpendicular to

v and denote by

P±L := E ± L v

the affine planes parallel to E at distance L . Then
⋃

1≤ j≤l

α j ⊂ PL and
⋃

l+1≤ j≤k

α j ⊂ P−L . (4.1)

For each curve α1, . . . , αl let us define

a j := max
p∈α j

|p − L v |

and for the curves αl+1, . . . , αk we set

b j := max
p∈α j

|p + L v |.

It is then even possible to sort the curves in such a way that αl is the outermost and α1 the
innermost curve in PL , measured from the point L v, i.e. so that a1 ≤ · · · ≤ al . In the same
way one can sort the curves αl+1 ≤ · · · ≤ αk , so that bl+1 ≤ · · · ≤ bk . If f is an embedding,
the curves α j do not intersect each other. This implies that the interior of the curve α j cannot
contain any of the curves α j ′ for 1 ≤ j < j ′ ≤ l and for l + 1 ≤ j < j ′ ≤ k. Using Morse
Theory again we can replace (α j , Vj ) by the level curve (α̃ j , Ṽ j ) for the value L + j − 1,
j = 1, . . . , l and by the value −L − j + (l + 1) for l + 1 ≤ j ≤ k. By Lemma 4.1 we can
now do the following surgery. First we remove all ends, that is consider the set

M := f

⎛
⎝Σg,k−

⋃
1≤ j≤k

Ṽ j

⎞
⎠.

To each end in the upper half space, i.e. for 1 ≤ j ≤ l, we smoothly glue an upper spherical
cap to M as described in Lemma 4.1 with some σ > 0. To each end in the lower half space,
i.e. for l + 1 ≤ j ≤ k, we smoothly glue a lower spherical cap with the same σ . Choosing σ
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Fig. 10 Gluing spherical caps to truncated ends

sufficiently small we can guarantee that the result is still embedded, if that was the case for
f . We obtain a smooth immersion (resp. an embedding if f is one) F : Σg → R

3 such that

F|
(
Σg,k−⋃

1≤ j≤k Ṽ j

) = f.

Step 3. We use now degree theory to investigate the Gauß image. Suppose the Gauß map ξ

of f : Σg,k → R
3 does not contain v or − v. Without loss of generality we assume that v is

not attained, since the case that the Gauß map does not attain − v can be treated in the same
way (Fig. 10).

Denote by ξ̃ the Gauß map of F . Since ξ−1(v) = ∅ we see that the new Gauß map ξ̃ can
attain the value v only at the poles of the added caps. By Lemma 4.1 the Gauß curvature at
the poles is strictly positive so that v is a regular value of ξ̃ .
It is well known (see for example [10]) that the degree of the Gauß map ξ̃ of the compact
surface Σg is equal to

deg ξ̃ = 1 − g.

On the other hand

deg ξ̃ =
∑

p∈ξ̃−1(q)

sign det dξ̃ (p) =
∑

p∈ξ̃−1(q)

sign K (p),

where q is an arbitrary regular value of ξ̃ (see for example [16]). Take as q the value v of S2.
Note that ξ̃−1(v) consists of points at the poles of the spherical caps that we added. Thus

1 − g = {number of poles where ξ̃ = v}
≥ 0.

Thus, the first assertion of the theorem is true. Let us now investigate the case where f is an
embedding. Since in case of embedded surfaces the unit normal vector field ξ̃ can be chosen
to be outward pointing, we can move a plane perpendicular to v from infinity by parallel
transport until it touches the surface from above. So in this case there exists at least (and at
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most) one pole, where ξ̃ = v. Consequently,

1 − g = {number of poles where ξ̃ = v}
≥ 1,

which yields g = 0. This completes the proof of the theorem.

4.2 Translating surfaces

Suppose f : M2 → R
3 is an immersion of an oriented manifold M as a translating surface in

direction of v, where v shall denote the north pole of S2. Since the Gauß map ξ : M2 → S
2

satisfies

H = −〈ξ, v〉,
we have H ∈ [−1, 1] and we immediately observe that:

• The mean curvature H is strictly positive if and only if around each point of M2 the
hypersurface is a graph over a portion of the plane with normal vector v.

• Themean curvature H is strictly bigger than−1 if and only if the vector v is not contained
in the Gauß image of f .

Theorem C Let {p1, . . . , pk} be k distinct points on a compact Riemann surface Σg. Sup-
pose that f : M := Σg− {p1, . . . , pk} → R

3 is a complete translating soliton that satisfies
the following two conditions:

(a) Each end is either bounded from above or from below in the following sense: If p j ∈
{p1, . . . , pk} is any of the puntures, then there exists a constant C j such that either
lim supx→p j

u(x) ≤ C j or lim inf x→p j u(x) ≥ C j , where u denotes the height function
with respect to the translating direction.

(b) The scalar mean curvature satisfies H > −1 everywhere and there exists a compact
subset C ⊂ M and a positive real number ε such that H2 < 1 − ε on M − C.

Then the genus g of M satisfies g ≤ 1. If f is an embedding, then g = 0 and thus M is a
planar domain.

Proof By assumption the surface M2 is diffeomorphic to a Riemann surface Σg,k = Σg−
{p1, . . . , pk}. Moreover, from assumption (b) it follows that

lim sup
x→p j

H2(x) ≤ 1 − ε

for any of the punctures p j ∈ {p1, . . . , pk}. Recall that the height function u = 〈 f, v〉
satisfies the equation

|∇u|2 + H2 = 1.

Since the scalar mean curvature satisfies H > −1, we deduce that v does not belong to the
Gauß image of f . Hence the result follows as a corollary of Theorem 4.1.

Note that the grim hyperplane and the translating paraboloid are both mean convex, that
is they satisfy the above condition (a). Moreover, the translating catenoid satisfies condition
(b), that is its Gauß map omits the north pole. In the next theorem we prove that a translating
soliton for which the Gauß map omits the north pole must be even strictly mean convex, if it
is already mean convex outside some compact subset. Before, stating and proving this result,
let us give the following useful lemma.
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Lemma 4.2 Let C denote the class of translating solitons f : M2 → R
3 for which exists a

constant ε > 0 such that its Gauß curvature satisfies K ≥ ε on the set {x ∈ M2 : H(x) =
−1}. If f ∈ C satisfies H ≥ 0 outside a compact subset C of M2, then either H ≡ 0 and
M = f (M2) is isometric to a plane or H > 0 on all of M2.

Proof Let λ > 0 be a constant to be chosen later and define the function ρ : M2 → R given
by ρ := Heλu . A straightforward computation yields

∇ρ = eλu(∇H + λH∇u),

Δρ = eλu{ΔH + 2λ〈∇H,∇u〉 + λ2H |∇u|2 + λHΔu
}
.

Now let μ := infM2 g(x). We claim that μ ≥ 0. Suppose to the contrary that μ is negative.
Since C is compact and g is non-negative on M2− C , the infimum is attained at some point
x0 ∈ C . Thus, H(x0) < 0. Moreover at the point x0 we have ∇ρ = 0 and Δρ ≥ 0, that is

∇H = −λH∇u

and

0 ≤ ΔH + 2λ〈∇H,∇u〉 + λ2H |∇u|2 + λHΔu

= −H3 + 2HK − λ(2λ − 1)H |∇u|2 + λ2H |∇u|2 + λH3

= −(1 − λ)H3 + λ(1 − λ)H |∇u|2 + 2HK

= (1 − λ)H
{
λ|∇u|2 − H2} + 2HK . (4.2)

On the other hand, since always

K |∇u|2 = −|∇H |2 − H〈∇H,∇u〉,
we get that at the point x0 it holds

K |∇u|2 = −λ2H2|∇u|2 + λH2|∇u|2 = λ(1 − λ)H2|∇u|2.
We distinguish now two cases:

Case 1. Suppose that |∇u|(x0) > 0. Choose the parameter λ to take values in the interval
[1/2, 1). Then the Gauß curvature K must be positive at x0 and in particular

K = λ(1 − λ)H2.

Substituting the above expression of K into the inequality (4.2) we deduce that

0 ≤ (1 − λ)H(−H2 + λ|∇u|2) + 2HK

= (1 − λ)H
{
(2λ − 1)H2 + λ|∇u|2}

< 0

which leads to a contradiction. Consequently, μ ≥ 0 and thus H ≥ 0 on all of M . But then
the strong elliptic maximum principle applied to Lemma 2.1 (f) gives either H ≡ 0 or H > 0
on M .

Case 2. Suppose now that |∇u|(x0) = 0. Then, at the point x0 we have H = −1. From the
inequality (4.2) we obtain that at the point x0, the following inequality is valid.

λ − 1 + 2K ≤ 0.
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Using the fact that K ≥ ε at x0 we deduce that

λ − 1 + 2ε ≤ 0. (4.3)

On the other hand, notice that at x0 we have

ε ≤ K ≤ H2/4 = 1/4.

Therefore, for λ ∈ (1−2ε, 1) Eq. (4.3) leads to a contradiction. Thus H ≥ 0 everywhere and
again by the strong maximum principle it follows that either H ≡ 0 or H > 0 everywhere.

It is obvious now that it is possible to choose a parameter λ which works simultaneously
for both cases. In the case where M is complete and properly embedded it turns out that
it must be represented as a graph over a region of the plane E that is perpendicular to the
translating direction v. Consequently, in this case the genus of M is zero.

As an immediate consequence of the above lemma we get the following:

Theorem D Let f : M2 → R
3 be a translating soliton whose mean curvature satisfies

H > −1. Suppose that H ≥ 0 outside a compact subset of M2. Then either H ≡ 0 and
M = f (M2) is isometric to a plane or H > 0 on all of M2. If, additionally, M is complete
and embedded then it is a graph and so it has genus zero.

Following the same strategy as in the proof of Lemma 4.2 we can show the following:

Lemma 4.3 Let f : M2 → R
3 be a translating soliton of the mean curvature flow. Suppose

that

(a) there exists a positive constant ε such that the Gauß curvature of f satisfies K ≥ ε on
the set {x ∈ M2 : H(x) = −1},

(b) there exists a constant λ ∈ (1 − 2ε, 1) such that the function e2λu H2 is bounded.
(c) the sub-level sets Mc := {x ∈ M2 : u(x) ≤ c}, c ∈ R, are compact.

Then, H > 0 on all of M2.

Proof Choose a positive constant δ > 0 such that 2λ − δ > 2− 4ε. Because by assumption
the function H2e2λu is bounded, we deduce that there exists a positive constant C such that
the following estimate holds

H2e(2λ−δ)u ≤ Ce−δu .

Because the height u is unbounded from above we get that H2e(2λ−δ)u tends to 0 as u goes
to infinity. Consider the function ρ : M → R, ρ := He(λ−δ/2)u . Suppose that there exists a
point x ∈ M2 where H < 0. Proceeding as in the proof of Lemma 4.2 we get a contradiction.
Thus, either H ≡ 0 and f (M2) is a plane or H > 0. The first alternative is impossible because
of assumption (c). Hence, H must be positive everywhere.

We will conclude this section with some interesting formulas relating the Gauß curvature
K of a translating soliton in R

3 with its mean curvature H , to which we will refer in the
future as the (H, K )-formulas.

Lemma 4.4 On a translating soliton in R
3 the Gauß curvature K satisfies the following

equations.

K = Δ log
√
1 + H2 − 2

(1 + H2)2
|∇H |2 + H4

1 + H2 (4.4)

= H

1 + H2 ΔH − |∇H |2
1 + H2 + H4

1 + H2 (4.5)
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Moreover, at each point where H > 0 we have

K = H2

1 + H2 Δ log(euH) = H2

1 + H2

(
Δ log H + H2) . (4.6)

Proof From Lemma 2.1 (g), we have

K |∇u|2 = Ric(∇u,∇u) = −|∇H |2 − H〈∇H,∇u〉. (4.7)

Taking into account the formula for ΔH in Lemma 2.1 (f) we compute

Δ log
√
1 + H2 = H

1 + H2 ΔH + 1 − H2

(1 + H2)2
|∇H |2

= − H

1 + H2

(
H |h|2 + 〈∇H,∇u〉)

+ 1 − H2

(1 + H2)2
|∇H |2.

Combining the last equality with (4.7) and |h|2 = H2 − 2K we get

Δ log
√
1 + H2 = − H4

1 + H2 + 2K
H2

1 + H2

+ 1

1 + H2

(
K |∇u|2 + |∇H |2)

+ 1 − H2

(1 + H2)2
|∇H |2

= − H4

1 + H2 + K
2H2 + |∇u|2

1 + H2

+ 2

(1 + H2)2
|∇H |2

= − H4

1 + H2 + K + 2

(1 + H2)2
|∇H |2.

This completes the proof of (4.4). Then (4.5) is just a reformulation of (4.4). Finally, if H > 0,
then log H is well defined and (4.6) follows from Δu = H2 and (4.5).

Corollary 4.1 Outside of the critical set of u, the vector field

W := −∇H + H∇u

|∇u|2 = −∇(euH)

eu |∇u|2
is divergence free. Moreover,

K = 〈∇H,W 〉 = div(HW ).

Proof Recall from Lemma 2.1 that |∇u|2 = 1 − H2 and Δeu = eu . Moreover,

K |∇u|2 = −|∇H |2 − H〈∇H,∇u〉
and

ΔH = −H |A|2 − 〈∇H,∇u〉 = −H3 + 2K H − 〈∇H,∇u〉
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Having in mind these equations, we compute

div(W ) = 1

e2u |∇u|4 〈∇(eu |∇u|2),∇(euH)〉 − 1

eu |∇u|2 Δ(euH)

= 1

e2u |∇u|4 〈∇(eu(1 − H2)),∇(eu H)〉 − 1

eu |∇u|2 Δ(euH)

= 1

|∇u|4 〈(1 − H2)∇u − 2H∇H, H∇u + ∇H〉

− 1

|∇u|2
{
H + ΔH + 2〈∇u,∇H〉}

= 1

|∇u|2
{
H(1 − H2) + 〈∇u,∇H〉 − 2H2

|∇u|2 〈∇u,∇H〉 − 2H

|∇u|2 |∇H |2
}

− 1

|∇u|2
{
H − H3 + 2HK + 〈∇u,∇H〉}

= 1

|∇u|2
{
H(1 − H2) + 〈∇u,∇H〉 + 2K H

}

− 1

|∇u|2
{
H − H3 + 2HK + 〈∇u,∇H〉}

= 0.

Furthermore, because W is divergence free, by a direct computation we get that

div(HW ) = 〈∇H,W 〉 + H div(W ) = 〈∇H,W 〉 = K .

This completes the proof.

Remark 4.1 Note that for the grim hyperplane in R
3 with min u = 0 we have that euH = 1.
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