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Abstract We present a proof of qualitative stochastic homogenization for a nonconvex
Hamilton–Jacobi equations. The new idea is to introduce a family of “sub-equations” and to
control solutions of the original equation by the maximal subsolutions of the latter, which
have deterministic limits by the subadditive ergodic theorem and maximality.
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1 Introduction

1.1 Motivation and overview

We study the Hamilton–Jacobi equation

uε
t +

(∣∣Duε
∣∣2 − 1

)2 − V
( x

ε

)
= 0 in R

d × (0,∞), d ≥ 1. (1.1)

The potential V is assumed to be a bounded, stationary–ergodic random potential. We prove
that, in the limit as the length scale ε > 0 of the correlations tends to zero, the solution
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Fig. 1 A cross section of the graph of H , illustrated in the case inf V = 0 and sup V = 2
5 . The difference

h(0) − (H(0) − inf V ) is precisely max{1, sup V }. The regions Ki are defined below in (2.30). While H is
even, it is not radial, in general, unless for example the law of V is invariant under rotations

uε of (1.1), subject to an appropriate initial condition, converges to the solution u of the
effective, deterministic equation

ut + H(Du) = 0 in R
d × (0,∞). (1.2)

The effective Hamiltonian H is, in general, a non-radial, nonconvex function whose graph
inherits the basic “mexican hat” shape of that of the spatially independent Hamiltonian
p �→ (|p|2 − 1)2. As we will show, it typically has two “flat spots” (regions in which it is
constant), with one a neighborhood of the origin and at which H attains a local maximum
and the other a neighborhood of {|p| = 1} and at which H attains its global minimum. See
Fig. 1.

Qualitative stochastic homogenization results for convexHamilton–Jacobi equationswere
first obtained independently by Rezakhanlou and Tarver [21] and Souganidis [23] and sub-
sequent qualitative results were obtained by Lions and Souganidis [15–17], Kosygina, Reza-
khanlou and Varadhan [12], Kosygina and Varadhan [13], Schwab [22], Armstrong and
Souganidis [2,3] and Armstrong and Tran [4]. Quantitative homogenization results were
proved in Armstrong et al. [1] (see also Matic and Nolen [19]).

In contrast to the periodic setting, in which nonconvex Hamiltonians are not more dif-
ficult to handle than convex Hamiltonians (c.f. [9,14]), extending the results of [21,23] to
the nonconvex case has remained, until now, completely open (except for the quite modest
extension to level-set convex Hamiltonians [3] and the forthcoming work [6], which consid-
ers a first-order motion with a sign-changing velocity). The issue of whether convexity is
necessary for homogenization in the random setting is mentioned prominently as an open
problem for example in [11,16,17]. As far as we know, in this paper we present the first
stochastic homogenization result for a genuinely non-convex Hamilton–Jacobi equation.

A new proof of qualitative homogenization for convex Hamilton–Jacobi equations in ran-
dom environments was introduced in [3], based on comparison arguments which demonstrate
thatmaximal subsolutions of the equation (also called solutions of themetric problem) control
solutions of the approximate cell problem. This new argument is applicable tomerely level-set
convex Hamiltonians and lead to the quantitative results of [3], among other developments.
Several of the comparison arguments we make in the proofs of Lemmas 3.2–3.6, below,
which are at the core of the argument for our main result, rely on some of the ideas intro-
duced in [3]. The metric problem was also used to obtain dynamical information in Davini
and Siconolfi [7,8] and as the basis of numerical schemes for computing H in Oberman et
al. [20] and Luo et al. [18].
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Homogenization of a nonconvex Hamilton–Jacobi equation 1509

The proof of our main result is based on comparison arguments, in which we control the
solution vδ of the approximate cell problem

δvδ +
(∣∣p + Dvδ

∣∣2 − 1
)2 − V (y) = 0 in R

d (1.3)

by the maximal subsolutions of the following family of “sub-equations”

|Du|2 = 1 + σ
√

μ + V (y), (1.4)

where the real parameters μ and σ range over − inf V ≤ μ < ∞ and σ ∈ [−1, 1]. Notice
that (1.4) for σ = ±1 can be formally derived from the metric problem associated to (1.1),
which is roughly (|Du|2 − 1

)2 − V (y) = μ, (1.5)

by taking the square root of (1.5). As it turns out that we must consider (1.4) also for
−1 < σ < 1, in order to “connect” the branches of the square root function. The key
insight is that, while the solutions of both (1.4) and (1.5) have a subadditive structure and
thus deterministic limits by the ergodic theorem, there is more information contained in the
former than the latter. Indeed, as we show, there is just enough information in (1.4) to allow
us to deduce that (1.1) homogenizes.

1.2 Precise statement of the main result

The random potential is modeled by a probability measure on the set of all potentials. To
make this precise, we take

� := BUC(Rd)

to be the space of real-valued, bounded and uniformly continuous functions on R
d . We

define F to be the σ -algebra on � generated by pointwise evaluations, that is

F := σ − −algebra generated by the family of maps
{
V �→ V (x) : x ∈ R

d
}

.

The translation group action of Rd on � is denoted by {Ty}y∈Rd , that is, Ty : � → � is
defined by

(
TyV

)
(x) := V (x + y) .

We consider a probability measure P on (�,F) satisfying the following properties: there
exists K0 > 0 such that

P

[
sup
x∈Rd

|V (x)| ≤ K0

]
= 1 (uniform boundedness), (1.6)

for every E ∈ F and y ∈ R
d ,

P [E] = P
[
Ty E

]
(stationarity) (1.7)

and
P
[ ∩z∈Rd Tz E

] ∈ {0, 1} (ergodicity). (1.8)

We now present the main result. Recall that, for each ε > 0 and g ∈ BUC(Rd), there exists
a unique solution uε(·, g) ∈ C(Rd × [0,∞)) of (1.1) in R

d × (0,∞), subject to the initial
condition uε(x, 0, g) = g(x). All differential equations and inequalities in this paper are to
be interpreted in the viscosity sense (see [10]).
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1510 S. N. Armstrong et al.

Theorem 1.1 Assume P is a probability measure on (�,F) satisfying (1.6), (1.7) and (1.8).
Then there exists H ∈ C(Rd) satisfying

H(p) → +∞ as |p| → ∞ (1.9)

such that, if we denote, for each g ∈ BUC(Rd), the unique solution of (1.2) subject to the
initial condition u(x, 0) = g(x) by u(x, t, g), then

P

[
∀g ∈ BUC(Rd), ∀k > 0, lim sup

ε→0
sup

(x,t)∈Bk×[0,k]

∣∣uε(x, t, g) − u(x, t, g)
∣∣ = 0

]
= 1.

Some qualitative properties of H , including the confirmation that its basic shape resembles
that of Fig. 1, are presented in Sect. 2.2.

1.3 Outline of the paper

In Sect. 2.1, we introduce the maximal subsolutions of (1.4), study their relationship to (1.5)
and show that they homogenize. We construct H in Sect. 2.2 and study some of its qualitative
features. The proof of Theorem 1.1 is the focus of Sect. 3, where we compare the maximal
subsolutions of (1.4) to the solutions of (1.3).

2 Identification of the effective Hamiltonian

Following themetric problem approach to homogenization introduced in [3], one ismotivated
to consider, for μ ∈ R, maximal subsolutions of the equation

(|Du|2 − 1
)2 − V (y) = μ in R

d . (2.1)

Unfortunately, unlike the convex setting, it turns out (as is well-known) that the maximal
subsolutions of (2.1) do not encode enough information to identify H , much less prove
homogenization. This is not surprising since, by the subadditive nature of the maximal sub-
solutions, if they could identify H then the latter would necessarily be convex. Instead, we
consider maximal subsolutions of the “sub-equation”

|Du|2 = 1 + σ
√

μ + V (y) in R
d , (2.2)

with we take the parameters μ ≥ − inf
Rd V and σ ∈ [−1, 1]. The idea is that we can control

solutions of (1.1) by the maximal subsolutions of (2.2), varying the parameters μ and σ in
an appropriate way. Observe that we may formally derive (2.2) with σ = ±1 from (2.1) by
taking the square root of the equation.

2.1 The maximal subsolutions of (2.2)

We define the maximal subsolutions of (2.2) and review their deterministic properties.
Throughout this subsection we suppose for convenience that

inf
Rd

V = 0. (2.3)

For every μ ≥ 0, −1 ≤ σ ≤ 1 and z ∈ R
d , we define

mμ,σ (y, z) := sup
{
u(y) − u(z) : u ∈ USC(Rd) is a subsolution of (2.2)

}
. (2.4)

123



Homogenization of a nonconvex Hamilton–Jacobi equation 1511

Clearly this definition is void if (2.2) possesses no subsolutions, which occurs if and only if
the right-hand side is not nonnegative, that is, if and only if

σ

(
μ + sup

Rd
V

)1/2

< −1.

In this case, we simply take mμ,σ ≡ −∞. Otherwise, we note that mμ,σ ≥ 0.
In the next proposition, we summarize some basic properties of mμ,σ and relate it to the

equation (|Dw|2 − 1
)2 = σ 2 (μ + V (y)) . (2.5)

Note that (2.5) is the same as (2.1) in the case that σ ∈ {−1, 1}.
Proposition 2.1 Fix V ∈ � satisfying (2.3), μ ≥ 0 and σ ∈ [−1, 1] such that

σ

(
μ + sup

Rd
V

)1/2

≥ −1. (2.6)

For every y, z ∈ R
d ,

mμ,σ (y, z) = mμ,σ (z, y). (2.7)

For every x, y, z ∈ R
d ,

mμ,σ (y, z) ≤ mμ,σ (y, x) + mμ,σ (x, z). (2.8)

For every z ∈ R
d , mμ(·, z) ∈ C0,1(Rd) and

− mμ,σ (·, z) is a subsolution of (2.5) in R
d \ {z}, (2.9)

mμ,σ (·, z) is a supersolution of (2.5) in R
d \ {z} (2.10)

and, moreover,

if σ ≤ 0, then mμ,σ (·, z) is a supersolution of (2.5) in R
d . (2.11)

Proof Since (2.2) is a convex equation, a function u ∈ USC(Rd) is a subsolution of (2.2) if
and only if u ∈ C0,1

loc (Rd) (and thus u is differentiable almost everywhere) and u satisfies (2.2)
at almost every point of Rd . See e.g. [5] or [3, Lemma 2.1]. Since V is uniformly bounded,
a subsolution must in fact be globally Lipschitz, i.e., u ∈ C0,1(Rd). Thus, for each z ∈ R

d ,
mμ,σ (·, z) is the supremum of a family of equi-Lipschitz functions on R

d and hence belongs
to C0,1(Rd). As u is the supremum of a family of subsolutions of (2.2), we have

mμ,σ (·, z) is a subsolution of 2.2 in R
d . (2.12)

We also obtain from the above characterization of subsolution of (2.2) that u ∈ USC(Rd) is
a subsolution of (2.2) if and only if −u is also a subsolution of (2.2). This together with the
definition of mμ,σ yields (2.7) as well as that

− mμ,σ (·, z) is a subsolution of (2.2) in R
d . (2.13)

Finally, by the maximality of mμ,σ (·, z), the Perron method yields that

mμ,σ (·, z) is a supersolution of (2.2) in R
d \ {z}. (2.14)

A proof of (2.14) can also be found in [3, Proposition 3.2].
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1512 S. N. Armstrong et al.

The subadditivity (2.8) ofmμ,σ is immediate frommaximality. Indeed, sincemμ,σ (·, z)−
mμ,σ (x, z) is a subsolution of (2.2) in R

d , we may use it as an admissible function in the
definition of mμ,σ (y, x). This yields (2.8).

Proceeding with the demonstration of (2.9), (2.10) and (2.11), we select a smooth test
function φ ∈ C∞(Rd) and x0 ∈ R

d such that

y �→ mμ,σ (y, z) − φ(y) has a local minimum at y = y0 (2.15)

which is equivalent to

y �→ −mμ,σ (y, z) − (−φ(y)) has a local maximum at y = y0. (2.16)

According to (2.13) and (2.16),

|Dφ(y0)|2 ≤ 1 + σ
√

μ + V (y0). (2.17)

If σ ≤ 0, then (2.17) implies that

(|Dφ(y0)|2 − 1
)2 ≥ σ 2 (μ + V (y0)) .

This completes the proof of (2.11). If y0 �= z, then (2.14) and (2.15) yield

|Dφ(y0)|2 ≥ 1 + σ
√

μ + V (y0)

which, together with (2.17), gives

|Dφ(y0)|2 = 1 + σ
√

μ + V (y0).

Rearranging the equation and squaring the previous line, we get

(|Dφ(y0)|2 − 1
)2 = σ 2 (μ + V (y0)) . (2.18)

In view of the fact that (2.15) and (2.16) are equivalent, and that (2.18) is symmetric in φ

and −φ, we have proved both (2.9) and (2.10). �
2.2 Limiting shapes of mμ,σ and identification of H

Since mμ,σ is defined to be maximal , the subadditive ergodic theorem implies that mμ,σ is
deterministic in the rescaled macroscopic limit. The precise statement we need is summa-
rized in Proposition 2.5. Before presenting it, we first observe that inf

Rd V and sup
Rd V are

deterministic quantities, thanks to the ergodicity hypothesis.

Lemma 2.2 There exist v, v ∈ R such that

P

[
sup
Rd

V = v

]
= P

[
inf
Rd

V = v

]
= 1.

Proof For each t ∈ R, the events
{
V ∈ � : inf

Rd V < t
}
and

{
V ∈ � : sup

Rd V > t
}
are

invariant under translations and therefore have probability either 0 or 1 by (1.8). We take v

to be the largest value of t for which P
[
sup

Rd V > t
] = 1 and v to be the smallest value

of t for which P
[
inf

Rd V < t
] = 1. In view of (1.6), we have −K0 ≤ v ≤ v ≤ K0. The

statement of the lemma follows.
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Homogenization of a nonconvex Hamilton–Jacobi equation 1513

We assume throughout the rest of the paper that v = 0. Note that we may, without loss
of generality, subtract any constant we like from the random potential V without altering the
statement of Theorem 1.1.

The value of v prescribes, almost surely, the set of parameters (μ, σ ) for which mμ,σ is
finite, i.e., for which (2.6) holds. We denote this by

A := {
(μ, σ ) ∈ [0,∞) × [−1, 1] : σ(μ + v)1/2 ≥ −1

}
. (2.19)

It is convenient to set
κ := 1 − v. (2.20)

Note that if κ ≥ 0, then (κ,−1) ∈ A and κ is the largest value of μ for which (μ,−1) ∈ A.
If on the other hand κ < 0, then (μ,−1) /∈ A for every μ ≥ 0.

We also define the following subset A′ of A, which consists of those parameters which
play a role in the proof of Theorem 1.1:

A′ := {
(μ, σ ) ∈ A : μ = 0 or σ ∈ {−1, 1}} (2.21)

Observe that there exists a unique element (μ∗, σ∗) ∈ A′ for which

σ∗ (μ∗ + v)1/2 = −1.

In fact, with κ as above, we have

(μ∗, σ∗) =
{

(κ,−1) if κ ≥ 0,

(0,−v −1/2) otherwise.
(2.22)

We next establish some simple bounds on the growth of mμ,σ .

Lemma 2.3 Assume (μ, σ ) ∈ A and V ∈ � satisfies inf
Rd V = 0 and sup

Rd V = v. Then,
for every y, z ∈ R

d , we have the following: in the case that σ ≤ 0,

(
1 + σ(μ + v)1/2

)1/2 |y − z| ≤ mμ,σ (y, z) ≤ (
1 + σμ1/2)1/2 |y − z| (2.23)

and, in the case that σ ≥ 0,

(
1 + σμ1/2)1/2 |y − z| ≤ mμ,σ (y, z) ≤ (

1 + σ(μ + v)1/2
)1/2 |y − z|. (2.24)

Proof The arguments for (2.23) and (2.24) are almost the same, so we only give the proof
of (2.23). The lower bound is immediate from the definition of mμ,σ (·, z) and the fact that
the left side of (2.23), as a function of y, is a subsolution of (2.2) in R

d . To get the upper
bound, we observe that any subsolution u ∈ USC(Rd) of (2.2) satisfies

|Du|2 ≤ (
1 + σμ1/2) in R

d . (2.25)

In particular, by the characterization of subsolutions mentioned in the first paragraph of
the proof of Proposition 2.1, we deduce that (2.25) holds at almost every point of Rd . This

implies that u is Lipschitz with constant
(
1 + σμ1/2

)1/2
. This argument applies tomμ,σ (·, z)

by (2.12). Since mμ,σ (z, z) = 0, we obtain the upper bound of (2.23). �

We next prove some continuity and monotonicity properties for the function (μ, σ ) �→
mμ,σ (y, z) on A.

123



1514 S. N. Armstrong et al.

Lemma 2.4 Fix V ∈ � for which inf
Rd V = 0 and sup

Rd V = v and suppose that (μ, σ ) ∈
A is such that σ(μ + v)1/2 > −1. Then

lim
A�(ν,τ )→(μ,σ )

sup
y,z∈Rd , y �=z

∣∣mμ,σ (y, z) − mν,τ (y, z)
∣∣

|y − z| = 0. (2.26)

For every pair (μ, σ ), (ν, τ ) ∈ A and y, z ∈ R
d , we have

mμ,σ (y, z) ≤ mν,τ (y, z) provided that

⎧⎨
⎩

μ = ν and σ ≤ τ,

or
σ = τ and σμ ≤ σν.

(2.27)

Moreover, for every (μ, σ ), (ν, τ ) ∈ A with σμ < τν, there exists c > 0 such that, for all
y, z ∈ R

d ,
mμ,σ (y, z) ≤ mν,τ (y, z) − c|y − z|. (2.28)

Proof Let 0 < ε < 1, and observe that, by (2.12), for λ := 1 − ε, the function w :=
λmμ,σ (·, z) is a subsolution of the equation

|Dw|2 ≤ λ2
(
1 + σ

√
μ + V (y)

)
in R

d .

Observe that the infimum overRd of the term in parentheses on the right-hand side is positive
by assumption. Thus if (ν, τ ) is sufficiently close to (μ, σ ), we have that for all y ∈ R

d ,

λ2
(
1 + σ

√
μ + V (y)

)
< 1 + τ

√
ν + V (y).

By maximality, we deduce that w ≤ mν,τ (·, z) for all (ν, τ ) sufficiently close to (μ, σ ),
depending on ε. According to the bounds in Lemma 2.3, we obtain, for a constant C > 0
depending only on (μ, σ, v), the estimate

mμ,σ (y, z) ≤ mν,τ (y, z) + Cε|y − z|
Reversing the roles of (μ, σ ) and (ν, τ ), using that τ(ν + v) > −1 for (ν, τ ) close to (μ, σ ),
and arguing similarly, we get, for all (ν, τ ) sufficiently close to (μ, σ ), that

mν,τ (y, z) ≤ mμ,σ (y, z) + Cε|y − z|.
This completes the proof of (2.26).

Themonotonicity property (2.27) is immediate from the definition (2.4) since the condition
on the right of (2.27) implies that the right side of (2.2) is larger for (ν, τ ) than for (μ, σ ),
and hence the admissible class of subsolutions in (2.4) is larger.

The strict monotonicity property in the last statement of the lemma follows from the fact,
which is easy to check from the characterization of subsolutions mentioned in the proof of
Proposition 2.1, that y �→ mμ,σ (y, z) + c|y − z| is a subsolution of

|Dw|2 ≤ 1 + σ
√

ν + V (y) in R
d ,

provided c > 0 is sufficiently small, depending on a lower bound for σ(ν − μ). �
The following proposition is a special case of, for example, [3, Proposition 4.1] or [4,

Proposition 2.5]), and so we do not present the proof. The argument is an application of the
subadditive ergodic theorem, using the subadditivity of mμ,σ , (2.8).
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Homogenization of a nonconvex Hamilton–Jacobi equation 1515

Proposition 2.5 For each (μ, σ ) ∈ A, there exists a convex, positively homogeneous func-
tion mμ,σ ∈ C(Rd) such that

P

[
∀(μ, σ ) ∈ A, ∀R > 0, lim sup

t→∞
sup

y,z∈BR

∣∣∣∣
mμ,σ (t y, t z)

t
− mμ,σ (y − z)

∣∣∣∣ = 0

]
= 1.

We are now ready to construct H . We continue by introducing two functions

H
− : Rd → {−∞} ∪ [0,∞) and H

+ : Rd → [0,∞).

defined by

H
−
(p) := sup

{
μ ≥ 0 : ∀y ∈ R

d , mμ,−1(y) ≥ p · y
}

,

H
+
(p) := inf

{
μ ≥ 0 : ∀y ∈ R

d , mμ,+1(y) ≥ p · y
}

.

We take H
−
(p) := −∞ if the admissible set in its definition is empty. Since μ �→ mμ,−1(·)

is decreasing, we see that H
−
(p) = −∞ if and only if there exists y ∈ R

d such that
m0,−1(y) < p · y. We define the effective Hamiltonian to be the maximum of these:

H(p) := max
{
H

−
(p), H

+
(p)

}
.

Observe that since, for all μ, ν ≥ 0,

mμ,−1 ≤ mν,1,

we have that
{
p ∈ R

d : H
+
(p) > 0

}
⊆

{
p ∈ R

d : H
−
(p) = −∞

}
.

Therefore we can also write

H(p) =
{
H

−
(p) if H

−
(p) �= −∞,

H
+
(p) otherwise.

We next check that H is coercive, i.e., that (1.9) holds.

Lemma 2.6 For every p ∈ R
d ,

(|p|2 − 1
)2 − v ≤ H(p) ≤ (|p|2 − 1

)2
. (2.29)

Proof According to Proposition 2.5 and Lemmas 2.2 and 2.3, for every μ ≥ 0,
(
1 − (μ + v)1/2

) |y| ≤ mμ,−1(y) ≤ (
1 − μ1/2) |y|,

provided that (μ,−1) ∈ A, and
(
1 + μ1/2) |y| ≤ mμ,+1(y) ≤ (

1 + (μ + v)1/2
) |y|.

In view of the definition of H , this yields the estimate (2.29). �
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1516 S. N. Armstrong et al.

In order to describe H further, we partition R
d into four regions, generally corresponding

to the following features in the graph of H : the flat hilltop, the flat valley, the slope between
the latter two, and the unbounded region outside the flat valley (see Fig. 1). We define
{
K1 :=⋂

(μ,σ )∈A′\{(μ∗,σ∗)} ∂mμ,σ (0), K2 := v
⋃

(μ,−1)∈A′, 0<μ<μ∗ ∂mμ,−1(∂B1),

K3 :=⋃
(0,σ )∈A′\{(μ∗,σ∗)} ∂m0,σ (∂B1), K4 :=⋃

μ>0 ∂mμ,1(∂B1).
(2.30)

Here ∂φ(x0) denotes the subdifferential of a convex function φ : Rd → R at x0 ∈ R
d ,

∂φ(x0) :=
{
q ∈ R

d : φ(y) ≥ φ(x0) + q · (y − x0)
}

,

and we write ∂φ(E) := ∪ {∂φ(x) : x ∈ E} for E ⊆ R
d .

We remark that 0 ∈ K1 by the nonnegativity of mμ,σ and K2 = ∅ if and only if μ∗ = 0.
Since mμ,0(y, 0) = mμ,0(y) = |y| for every μ ≥ 0, we see that ∂B1 ⊆ K3. Finally, we note
that K4 is unbounded, while K1 ∪ K2 ∪ K3 is bounded.

The following proposition gives us a representation of H which is convenient for the
proof of Theorem 1.1. It also confirms that the basic features of H are portrayed accurately
in Fig. 1.

Proposition 2.7 For each p ∈ R
d \ K1, there exists a unique μ ≥ 0 such that, for some

(μ, σ ) ∈ A′, we have p ∈ ∂mμ,σ (∂B1). In particular, {K1, K2, K3, K4} is a disjoint partition
of Rd . Moreover, with μ∗ as defined in (2.22), we have

H(p) =
{

μ∗ for p ∈ K1,

μ for p ∈ ∂mμ,σ (∂B1), (μ, σ ) ∈ A′.
(2.31)

Proof We move along the path A′ starting at (μ∗, σ∗). If μ∗ > 0 and hence σ∗ = −1, then
we move in straight line segments from (μ∗,−1) to (0,−1) to (0, 1) to (∞, 1); otherwise,
if μ∗ = 0, then we move first from (0, σ∗) to (0, 1) and then to (∞, 1).

By Lemma 2.4, the graph of the positively homogeneous, convex functionmμ,σ is contin-
uous and increasing as we move along the path. Therefore, given p ∈ R

d \ K1, we can stop
at the first point (μ, σ ) ∈ A′ \ {(μ∗, σ∗)} in the path at which the graph of mμ,σ is tangent
to that of the plane y �→ p · y. Indeed, p /∈ K1 ensures that the plane p · y is not below the
graph ofmμ,σ for every (μ, σ ) ∈ A′ \ {(μ∗, σ∗)}, and this point must be reached at or before
((|p|2 − 1)2, 1), by the estimate (2.24). The uniqueness of μ follows from the last statement
of Lemma 2.4. This completes the proof of the first statement. The formula (2.31) is then
immediate from the definition of H and Lemma 2.4. �

3 Proof of homogenization

We consider, for each p ∈ R
d and δ > 0, the approximate cell problem

δvδ +
(∣∣p + Dvδ

∣∣2 − 1
)2 − V (y) = 0 in R

d . (3.1)

It is classical that, for every p ∈ R
d and δ > 0, there exists a unique viscosity solution vδ =

vδ(·, p) ∈ C(Rd) of (3.1) subject to the growth condition

lim sup
|y|→∞

vδ(y)

|y| = 0.
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In fact, by comparing vδ(·, p) to constant functions we immediately obtain that vδ(·, p) is
bounded and

− 1

δ

(
(|p|2 − 1)2 − inf

Rd
V (y)

)
≤ vδ(·, p) ≤ −1

δ

(
(|p|2 − 1)2 − sup

Rd
V (y)

)
. (3.2)

It follows from (3.2) and the coercivity of the equation that vδ is Lipschitz and, for C > 0
depending only on an upper bound for |p| and sup

Rd V , we have

sup
Rd

∣∣Dvδ(·, p)∣∣ ≤ C (3.3)

Using (3.3) and comparing vδ(·, p) to vδ(·, q) ± Cδ−1|p − q|, we obtain, for a constant
C > 0 depending only on an upper bound for max{|p|, |q|} and sup

Rd V , the estimate

sup
Rd

∣∣δvδ(·, p) − δvδ(·, q)
∣∣ ≤ C |p − q|. (3.4)

By the perturbed test function method, Theorem 1.1 can be reduced to the following
proposition.

Proposition 3.1

P

[
∀R > 0, lim sup

δ→0
sup
p∈BR

sup
BR/δ

∣∣δvδ(·, p) + H(p)
∣∣ = 0

]
= 1. (3.5)

We omit the demonstration that Proposition 3.1 implies Theorem 1.1, since it is classical
and can also be obtained for example by applying [1, Lemma 7.1]. The argument for Propo-
sition 3.1 is broken into the following five lemmas. Recall that A is the set of admissible
parameters (μ, σ ) defined in (2.19).

Lemma 3.2

P

[
∀(μ, 1) ∈ A, ∀p ∈ ∂mμ,1(∂B1), lim inf

δ→0
−δvδ(0, p) ≥ μ

]
= 1.

Lemma 3.3

P

[
∀(μ,−1) ∈ A, ∀p ∈ ∂mμ,−1(0), lim inf

δ→0
−δvδ(0, p) ≥ μ

]
= 1.

Lemma 3.4

P

[
∀p ∈ R

d , lim inf
δ→0

−δvδ(0, p) ≥ 0

]
= 1.

Lemma 3.5

P

[
∀(μ, σ ) ∈ A, ∀p ∈ ∂mμ,σ (∂B1), lim sup

δ→0
−δvδ(0, p) ≤ μ

]
= 1.

Lemma 3.6

P

[
∀p ∈ B1, lim sup

δ→0
−δvδ(0, p) ≤ μ∗

]
= 1.

123



1518 S. N. Armstrong et al.

Postponing the proof of the lemmas, we show first that they imply Proposition 3.1.

Proof of Proposition 3.1 According to (3.4), using also Lemma 2.2 to control the constant
in (3.4) on an event of full probability, it suffices to prove that

P

[
∀p ∈ R

d , ∀R > 0, lim sup
δ→0

sup
BR/δ

∣∣δvδ(·, p) + H(p)
∣∣ = 0

]
= 1. (3.6)

By [3, Lemma 5.1], to obtain (3.6), it suffices to show that

P

[
∀p ∈ R

d , lim sup
δ→0

∣∣δvδ(0, p) + H(p)
∣∣ = 0

]
= 1. (3.7)

Indeed, while the Hamiltonian in [3] is assumed to be convex in p, the argument for [3,
Lemma 5.1] relies only on a P-almost sure, uniform Lipschitz bound on vδ(·, p) (which we
have in (3.3), using again Lemma 2.2 to control the constant), and therefore the lemma holds
in our situation notwithstanding the lack of convexity.

To obtain (3.7), we consider the partition {K1, K2, K3, K4} of Rd given by (2.30) and
Proposition 2.7 and check that, for each i ∈ {1, 2, 3, 4},

P

[
∀p ∈ Ki , lim sup

δ→0

∣∣δvδ(0, p) + H(p)
∣∣ = 0

]
= 1. (3.8)

In view of the formula (2.31), we see that:

• For i = 1, we consider two cases. If κ ≤ 0, then μ∗ = 0 and, in view of the fact that
K1 ⊆ B1, we obtain (3.8) for i = 1 from Lemmas 3.4 and 3.6. If κ > 0, thenμ∗ = κ > 0
and σ∗ = −1 and we have (μ,−1) ∈ A for all 0 ≤ μ < μ∗, and thus (3.8) for i = 1
follows from Lemmas 3.3 and 3.6.

• For i = 2, (3.8) is immediate from Lemmas 3.3 and 3.5.
• For i = 3, we get (3.8) immediately from Lemmas 3.4 and 3.5.
• For i = 4, the claim (3.8) is a consequence of Lemmas 3.2 and 3.5.

This completes the argument. �
We obtain each of the five auxiliary lemmas stated above by a comparison between the

functions mμ,σ and vδ , with the exception of Lemma 3.4, which is much simpler.

Proof of Lemma 3.2 Fix (μ, 1) ∈ A and p ∈ ∂mμ,1(∂B1). Select e ∈ ∂B1 such that
p ∈ ∂mμ,1(e). This implies that, for every y ∈ R

d ,

mμ,1(e) − p · e = 0 ≤ mμ,1(y) − p · y. (3.9)

Suppose that V ∈ � and δ > 0 are such that

θ := μ + δvδ(0, p) > 0. (3.10)

If c > 0 is sufficiently small, then the function

w(y) := vδ(y, p) − vδ(0, p) − cθ
((
1 + |y|2)1/2 − 1

)

satisfies (|p + Dw|2 − 1
)2 − V (y) ≤ −δvδ(y, p) + 1

4
θ in R

d . (3.11)

Due to (3.2), there exists s > 0, independent of δ, such that

U :=
{
y ∈ R

d : w(y) ≥ − θ

4δ

}
⊆ Bs/δ (3.12)
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and specializing (3.11) to the domain U yields, in view of the definition of θ , that

(|p + Dw|2 − 1
)2 − V (y) ≤ μ − θ

2
in U. (3.13)

We observe next that, due to (2.10) and (3.12), the function

m̃(y) := mμ,1 (y,−se/δ) − p · y
is a supersolution of the equation

(
|p + Dm̃|2 − 1

)2 − V (y) ≥ μ in U. (3.14)

In view of 0 ∈ U , (3.12), (3.13) and (3.14), the comparison principle yields

−m̃(0) = w(0) − m̃(0) ≤ max
∂U

(w − m̃) = − θ

4δ
+ max

∂U
(−m̃) .

Rearranging the previous inequality and using (3.12), we find that

sup
y∈Bs

(
p · y + δmμ,1

(
0,

−se

δ

)
− δmμ,1

(
y

δ
,
−se

δ

))
≥ 1

4
θ.

Notice that (3.9) and the positive homogeneity of mμ,1 implies that

p · y ≤ mμ,1(y + se) − mμ,1(se).

Combining the previous two lines, we obtain

sup
y∈Bs

(
−mμ,1(se) + δmμ,1

(
0,

−se

δ

))

+ sup
y∈Bs

(
mμ,1(y + se) − δmμ,1

(
y

δ
,
−se

δ

))
≥ 1

4
θ. (3.15)

We have shown that (3.10) implies (3.15). We therefore obtain the conclusion of the lemma
by applying Proposition 2.5. �
Proof of Lemma 3.3 The proof is similar to Lemma 3.2. The difference is that we use (2.11)
rather than (2.10), which means that we do not have to take the vertex ofmμ,σ to be far away
from the origin in the definition of the function m̃. The argument is therefore easier and the
statement of the lemma is stronger.

Fix (μ,−1) ∈ A and p ∈ ∂mμ,−1(0). This implies that, for every y ∈ R
d ,

mμ,−1(y) ≥ p · y. (3.16)

Suppose that V ∈ � and δ > 0 are such that

θ := μ + δvδ(0, p) > 0. (3.17)

If c > 0 is sufficiently small, then the function

w(y) := vδ(y, p) − vδ(0, p) − cθ
((
1 + |y|2)1/2 − 1

)

satisfies (|p + Dw|2 − 1
)2 − V (y) ≤ −δvδ(y, p) − 1

4
θ in R

d . (3.18)
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Due to (3.2), there exists s > 0, independent of δ, such that

U :=
{
y ∈ R

d : w(y) ≥ − θ

4δ

}
⊆ Bs/δ (3.19)

and restricting (3.18) to the domain U we obtain, in view of the definition of θ , that

(|p + Dw|2 − 1
)2 − V (y) ≤ μ − θ

2
in U. (3.20)

According to (2.10), the function

m̃(y) := mμ,−1 (y, 0) − p · y
is a supersolution of the equation

(
|p + Dm̃|2 − 1

)2 − V (y) ≥ μ in R
d . (3.21)

In view of 0 ∈ U , (3.19), (3.20) and (3.21), the comparison principle yields

0 = w(0) − m̃(0) ≤ max
∂U

(w − m̃) = − θ

4δ
+ max

∂U
(−m̃) .

Rearranging the previous inequality and using (3.19), we find that

sup
y∈Bs

(
p · y − δmμ,−1

( y

δ
, 0

))
≥ 1

4
θ.

Using (3.16), we get

sup
y∈Bs

(
mμ,−1(y) − δmμ,−1

( y

δ
, 0

))
≥ 1

4
θ. (3.22)

We have shown that (3.17) implies (3.22). We therefore obtain the conclusion of the lemma
from Proposition 2.5. �
Proof of Lemma 3.4 Fix p ∈ R

d , V ∈ � for which inf
Rd V = 0 and sup

Rd V = v and let
θ > 0. Select yθ ∈ R

d and a number r > 0 such that supBr (yθ ) V ≤ θ . Let ϕ be any smooth
function on Br (yθ ) such that ϕ(x) → +∞ as x → ∂Br (yθ ). Then vδ(·, p) − ϕ attains a
local maximum at some point y ∈ Br (yθ ). The equation (3.1) then gives

δvδ(y, p) ≤ δvδ(y, p) + (|p + Dϕ(y)|2 − 1
)2 ≤ V (y) ≤ θ. (3.23)

Letting r → 0, we obtain that

δvδ(yθ , p) ≤ θ.

In view of (3.3), we have

−δvδ(0, p) ≥ −θ − δ
∣∣vδ(yθ , p) − vδ(0, p)

∣∣ ≥ −θ − Cδ|yθ |
where C > 0 depends only on an upper bound for |p| and v. Sending first δ → 0 and then
θ → 0 yields

lim inf
δ→0

−δvδ(0, p) ≥ 0. (3.24)
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We have shown that inf
Rd V = 0 and sup

Rd V = v imply (3.24) for all p ∈ R
d . We therefore

obtain the conclusion of the lemma by an appeal to Lemma 2.2. �
Proof of Lemma 3.5 The argument is similar to that of Lemma 3.2. We fix (μ, σ ) ∈ A
and p ∈ ∂mμ(∂B1). Select e ∈ ∂B1 such that p ∈ ∂mμ,σ (e). Since mμ,σ is positively
homogeneous, this means that, for every y ∈ R

d ,

mμ,σ (e) − p · e = 0 ≤ mμ,σ (y) − p · y. (3.25)

We suppose that for fixed V ∈ � and δ > 0 we have

− θ := μ + δvδ(0, p) < 0. (3.26)

We define

w(y) := vδ(y, p) − vδ(0, p) + cθ
((
1 + |y|2)1/2 − 1

)
,

and notice that, for c > 0 sufficiently small, w satisfies

(|p + Dw|2 − 1
)2 − V (y) ≥ −δvδ(y, p) − 1

4
θ in R

d . (3.27)

By (3.2), there exists s > 0, which independent of δ, such that

U :=
{
y ∈ R

d : w(y) ≤ θ

4δ

}
⊆ Bs/δ. (3.28)

In view of (3.26), (3.27) and (3.28), we have

(|p + Dw|2 − 1
)2 − V (y) ≥ μ + θ

2
in U. (3.29)

We next employ (2.9), (3.28), and the fact that σ 2 ≤ 1 to deduce that the function

m̃(y) := −mμ,σ (y, se/δ) − p · y
is a subsolution of the equation

(|p + Dm̃|2 − 1
)2 − V (y) ≤ μ in U. (3.30)

The usual comparison hence implies

m̃(0) = m̃(0) − w(0) ≤ max
∂U

(m̃ − w)

Rearranging the above and using (3.28) to achieve that

sup
y∈Bs

(
−p · y − δmμ,σ

( y

δ
,
se

δ

)
+ δmμ,σ

(
0,

se

δ

))
≥ 1

4
θ. (3.31)

By the symmetric property (2.7) of mμ,σ and (3.25), we get

sup
y∈Bs

(
−

(
δmμ,σ

( se
δ

,
y

δ

)
− mμ,σ (se − y)

)
+

(
δmμ,σ

( se
δ

, 0
)

− mμ,σ (se)
))

≥ 1

4
θ.

(3.32)
We have shown that (3.26) implies (3.32). The conclusion of the lemma therefore follows
from Proposition 2.5. �
Proof of Lemma 3.6 Fix p ∈ B1 and V ∈ � for which sup

Rd V = v. Suppose θ, δ > 0 are
such that

δvδ(0, p) ≤ −μ∗ − θ. (3.33)
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Define

w(y) := vδ(y, p) − vδ(0, p) + cθ
((
1 + |y|2)1/2 − 1

)
,

and check that, if c > 0 is sufficiently small, then w satisfies

(|p + Dw|2 − 1
)2 − V (y) ≥ −δvδ(y, p) − 1

4
θ in R

d . (3.34)

By (3.2), there exists s > 0, which is independent of δ, such that

U :=
{
y ∈ R

d : w(y) ≤ θ

4δ

}
⊆ Bs/δ. (3.35)

In view of (3.33), (3.34) and (3.35), we have

(|p + Dw|2 − 1
)2 − V (y) ≥ μ∗ + 1

2
θ in U. (3.36)

Set η := 1
4 min{θ, 1}, select yθ ∈ R

d such that

V (yθ ) ≥ v − η = 1 − κ − η. (3.37)

According to (2.23) and (2.24), mμ,0(y, z) = |y − z| for every μ ≥ 0 and y, z ∈ R
d . Define

m̃(y) := −m0,0(y, yθ ) − p · y = −|y − yθ | − p · y.
We claim that m̃ is a subsolution of the equation

(|p + Dm̃|2 − 1
)2 − V (y) ≤ μ∗ + 1

4
θ in R

d . (3.38)

In view of (2.9), it suffices to check (3.38) at the vertex point yθ . We consider a smooth test
function φ such that

y �→ m̃(y) − φ(y) = −|y − yθ | − (φ(y) + p · y) has a local maximum at y = yθ .

It is evident that

|p + Dφ(yθ )|2 ≤ 1.

Thus
(|p + Dφ(yθ )|2 − 1

)2 ≤ 1 and so we deduce from (3.37) that

(|p + Dφ(yθ )|2 − 1
)2 − V (yθ ) ≤ 1 − V (yθ ) ≤ κ + η ≤ μ∗ + 1

4
θ.

This completes the proof of (3.38).
Applying the comparison principle, in view of 0 ∈ U , (3.36) and (3.38), we obtain

m̃(0) = m̃(0) − w(0) ≤ max
∂U

(m̃ − w)

Rearranging the above expression and using (3.35), we deduce that

sup
y∈Bs

(
−p · y − δ

∣∣∣ y
δ

− yθ
∣∣∣ + δ|yθ |

)
≥ 1

4
θ.

By the usual triangle inequality, this yields

sup
y∈Bs

(p · (−y) − |y|) ≥ 1

4
θ − 2δ|yθ |. (3.39)
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We have shown that (3.33) and sup
Rd V = v implies (3.39). As p ∈ B1, (3.39) is impossible

for δ < θ/(8|yθ |).
We have shown that sup

Rd V = v implies that, for every p ∈ B1 and θ > 0,

δvδ(0, p) ≥ −μ∗ − θ for all 0 < δ < θ/(8|yθ |).
Thus sup

Rd V = v implies

lim sup
δ→0

sup
|p|≤1

−δvδ(0, p) ≤ μ∗.

We therefore obtain the statement of the lemma after an appeal to Lemma 2.2. �
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