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Abstract In this paper we consider the isoperimetric profile of convex cylinders K × R
q ,

where K is an m-dimensional convex body, and of cylindrically bounded convex sets, i.e,
those with a relatively compact orthogonal projection over some hyperplane ofRn+1, asymp-
totic to a right convex cylinder of the form K × R, with K ⊂ R

n . Results concerning the
concavity of the isoperimetric profile, existence of isoperimetric regions, and geometric
descriptions of isoperimetric regions for small and large volumes are obtained.

Mathematics Subject Classification 49Q10 · 49Q20 · 52B60

1 Introduction

In these notes we consider the isoperimetric problem of minimizing perimeter under a given
volume constraint inside a cylindrically bounded convex body, an unbounded closed convex
set C ⊂ R

n+1 with interior points and relatively compact projection onto the hyperplane
xn+1 = 0. The perimeter considered here will be the one relative to the interior of C . A way
to deal with this isoperimetric problem is to consider the isoperimetric profile of C , i.e., the
function assigning to each v > 0 the infimum of the perimeter of the sets inside C of volume
v. If this infimum is achieved for some set, this will be called an isoperimetric region. The
isoperimetric profile can be understood as an optimal isoperimetric inequality on C .
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644 M. Ritoré, E. Vernadakis

A cylindrically bounded convex set is always included and asymptotic, in a sense to be
precised later, to a convex right cylinder, a set of the form K ×R, where K ⊂ R

n is a convex
body. Here we have identified R

n with the hyperplane xn+1 = 0 of Rn+1. In this work we
first consider the more general convex cylinders of the form C = K ×R

q , where K ⊂ R
m is

an arbitrary convex body with interior points, and R
m ×R

q = R
n+1, and prove a number of

results for their isoperimetric profiles. No assumption on the regularity of ∂C will be made.
Existence of isoperimetric regions is obtained in Proposition 3.2 following the scheme of
proof by Galli and Ritoré [4], which essentially needs a uniform local relative isoperimet-
ric inequality [17], a doubling property on K × R

q given in Lemma 3.1, an upper bound
for the isoperimetric profile of C given in (2.6), and a well-known deformation controlling
the perimeter in terms of the volume. A proof of existence of isoperimetric regions in Rie-
mannian manifolds with compact quotient under their isometry groups was previously given
byMorgan [13]. Regularity results in the interior follow fromGonzalez et al. [5] andMorgan
[12], but no boundary regularity result is known for general convex bodies. We also prove
in Proposition 3.5 that the isoperimetric profile I of a convex cylinder, as well as its power
I (n+1)/n , are concave functions of the volume, a strong result that implies the connectedness
of isoperimetric regions. Further assuming C2,α regularity of the boundary of C , we prove
in Theorem 3.6 that, for an isoperimetric region E ⊂ C , either the closure of ∂E ∩ int(C)

is connected, or E ⊂ K × R is a slab. This follows from the connectedness of isoperimetric
regions and from the results by Stredulinsky and Ziemer [21]. Next we consider small and
large volumes. For small volumes, following Ritoré and Vernadakis [17], we show in Theo-
rem 3.7 that the isoperimetric profile of a convex cylinder for small volumes is asymptotic
to the one of its narrowest tangent cone. As a consequence, we completely characterize the
isoperimetric regions of small volumes in a convex prism, i.e, a cylinder P × R

q based on
a convex polytope P ⊂ R

m . Indeed, we show in Theorem 3.8 that the only isoperimetric
regions of sufficiently small volume inside a convex prism are geodesic balls centered at
the vertices with tangent cone of the smallest possible solid angle. For large volumes, we
shall assume that C is a right convex cylinder, i.e., q = 1. Adapting an argument by Duzaar
and Stephen [2] to the case when ∂K is not smooth, we prove in Theorem 3.9 that for large
volumes the only isoperimetric regions in K × R are the slabs K × I , where I ⊂ R is a
compact interval. The case K × R

q , with q > 1, is more involved and will be treated in
a different paper (see [18] for a proof for the Riemannian product M × R

k , where M is a
compact Riemannian manifold without boundary).

In the second part of this paper we apply the previous results for right convex cylinders
to obtain properties of the isoperimetric profile of cylindrically bounded convex bodies.
In Theorem 4.1 we show that the isoperimetric profile of a cylindrically bounded convex
body C approaches, when the volume grows, that of its asymptotic half-cylinder. We also
show the continuity of the isoperimetric profile in Proposition 4.4. Further assuming C2,α

regularity of both the cylindrically bounded convex body C and of its asymptotic cylinder,
we prove the concavity of I (n+1)/n

C and existence of isoperimetric regions of large volume
in Proposition 4.5. Our final result, Theorem 4.13, implies that translations of isoperimetric
regions of unbounded volume converge in Hausdorff distance to a half-slab in the asymptotic
half-cylinder. The same convergence result holds for their free boundaries, that converge in
Hausdorff distance to a flat K × {t}, t ∈ R

+. Theorem 4.13 is obtained from a clearing-
out result for isoperimetric regions of large volume proven in Theorem 4.9 and its main
consequence, lower density estimates for isoperimetric regions of large volume given in
Proposition 4.10. Such lower density bounds provide an alternative proof of Theorem 3.9,
given in Corollary 4.12.
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Isoperimetric inequalities in convex cylinders and cylindrically bounded convex bodies 645

We have organized this paper into four sections. The next one contains basic preliminaries,
whileSect. 3 and4 cover the alreadymentioned results for cylinders and cylindrically bounded
sets, respectively.

2 Preliminaries

A convex body is a compact convex set with non-empty interior. If compact is replaced by
closed and unbounded,we get an unbounded convex body.We refer to Schneider’smonograph
[19] for background on convex sets.

The s-dimensional Hausdorff measure in R
n+1 will be denoted by Hs , for any s ∈ N.

For E ⊂ C , the relative boundary of E in the interior of C is ∂C E = ∂E ∩ intC . The
(n + 1)-dimensional Hausdorff measure of E, Hn+1(E) will be denoted by |E | and referred
to as the volume of E . Moreover, for every x ∈ C and r > 0 we shall define the intrinsic
open ball BC (x, r) = B(x, r) ∩ intC , where B(x, r) denotes the open Euclidean geodesic
ball centered at x of radius r . The closure of a set E ⊂ R

n+1 will be denoted by cl(E).
We also define the relative perimeter of E in the interior of C by

PC (E) = sup

{∫
E
div ξ dHn+1, ξ ∈ �0(C), |ξ | ≤ 1

}
,

where�0(C) is the set of smooth vector fields with compact support in intC . Observe that we
are only computing the Hn-measure of ∂E inside the interior of C . We shall say that E has
finite perimeter in the interior ofC , or simply that E ⊂ C has finite perimeter, if PC (E) < ∞.
We refer the reader to Maggi’s monograph [10] for background on finite perimeter sets.

If C,C ′ ⊂ R
n+1 are convex bodies (possible unbounded) and f : C → C ′ is a Lipschitz

map, then, for every s > 0 and E ⊂ C , we get Hs( f (E)) ≤ Lip( f )s Hs(E). Furthermore,
f (∂C E) = ∂ f (C)( f (E)). Thus we obtain

Lemma 2.1 Let C,C ′ ⊂ R
n+1 be (possibly unbounded) convex bodies, and f : C → C ′ a

bilipschitz map. Then we have

Lip
(
f −1)−n

PC (E) ≤ Pf (C)( f (E)) ≤ Lip( f )n PC (E)

Lip
(
f −1)−(n+1) |E | ≤ | f (E)| ≤ Lip( f )n+1 |E |. (2.1)

Remark 2.2 If Mi , i = 1, 2, 3 are metric spaces and fi : Mi → Mi+1, i = 1, 2 are lipschitz
maps, then Lip( f2 ◦ f1) ≤ Lip( f1)Lip( f2). Consequently if g : M1 → M2 is a bilipschitz
map, then 1 ≤ Lip(g)Lip

(
g−1

)
.

Given a (possibly unbounded) convex body, we define the isoperimetric profile of C by

IC (v) = inf {PC (E) : E ⊂ C, |E | = v} . (2.2)

We shall say that E ⊂ C is an isoperimetric region if PC (E) = IC (|E |). The renormalized
isoperimetric profile of C is given by

I (n+1)/n
C . (2.3)

Lower semicontinuity of perimeter and standard compactness results for finite perimeter sets
imply that isoperimetric regions exist in a fixed bounded subset of Euclidean space.

The known results on the regularity of isoperimetric regions are summarized in the fol-
lowing Lemma. One can always assume that a representative of an isoperimetric region is
chosen so that it is closed, includes its points of density one and does not contain the points
of density zero.
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646 M. Ritoré, E. Vernadakis

Lemma 2.3 ([5,6], [20, Thm. 2.1]) Let C ⊂ R
n+1 be a (possible unbounded) convex body

and E ⊂ C an isoperimetric region. Then ∂C E = S0 ∪ S, where S0 ∩ S = ∅ and

(i) S is an embedded C∞ hypersurface of constant mean curvature.
(ii) S0 is closed and Hs(S0) = 0 for any s > n − 7.

Moreover, if the boundary of C is of class C2,α then cl(∂E ∩ int(C)) = S ∪ S0, where
(iii) S is an embedded C2,α hypersurface of constant mean curvature.
(iv) S0 is closed and Hs(S0) = 0 for any s > n − 7.
(v) At points of S ∩ ∂C, S meets ∂C orthogonally.

The concavity of IC and I (n+1)/n)
C for a convex body, [7], [11, Cor. 6.11], [17, Cor. 4.2],

imply

Lemma 2.4 ([17, Lemma 4.9]) Let C ⊂ R
n+1 be a convex body and 0 < v0 < |C |. Then

IC (v) ≥ IC (v0)

v0
v and IC (v) ≥ IC (v0)

v
n/(n+1)
0

vn/(n+1), (2.4)

for all 0 ≤ v ≤ v0.

We also have the following uniform relative isoperimetric inequality and bounds on the
volume of relative balls in convex cylinders.

Proposition 2.5 Let C = K ×R
q , where K is an m-dimensional convex body. Given r0 > 0,

there exist positive constants M, �1, only depending on r0 and C, and a universal positive
constant �2 so that

PBC (x,r)(v) ≥ M min{v, |BC (x, r)| − v}n/(n+1)
, (2.5)

for all x ∈ C, 0 < r ≤ r0, and 0 < v < |B(x, r)|, and
�1r

n+1 ≤ |BC (x, r)| ≤ �2r
n+1, (2.6)

for any x ∈ C, 0 < r ≤ r0.

Proof Since the quotient of C by its isometry group is compact, the proof is reduced to that
of [17, Thm. 4.12]. �

Let K ⊂ R
n+1 be a closed convex conewith vertex p . Letα(K ) = Hn(∂B(p, 1)∩int(K ))

be the solid angle of K . It is known that intrinsic geodesic balls (Euclidean balls intersected
with K ) centered at the vertex are isoperimetric regions in K , [9,16], and that they are the
only ones [3] for general convex cones, without any regularity assumption on the boundary.
The isoperimetric profile of K is given by

IK (v) = α(K )1/(n+1) (n + 1)n/(n+1)vn/(n+1). (2.7)

Consequently the isoperimetric profile of a convex cone is completely determinated by its
solid angle.

We define the tangent cone Cp of a convex body C at a given boundary point p ∈ ∂C as
the closure of the set ⋃

λ>0

h p,λ(C),

where h p,λ is the dilation of center p and factor λ. Since the quotient of the cylinder C =
K ×R

q by its isometry group is compact, then adapting [17, Lemma 6.1] we get the existence
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Isoperimetric inequalities in convex cylinders and cylindrically bounded convex bodies 647

of points in ∂C whose tangent cones are minima of the solid angle function. By (2.7), the
isoperimetric profiles of tangent cones which are minima of the solid angle function coincide.
The common profile will be denoted by ICmin .

Proposition 2.6 ([17, Proposition 6.2]) Let C ⊂ R
n+1 be a convex body (possibly

unbounded), p ∈ C and let H ⊂ R
n+1 denote the closed half-space, then

IC (v) ≤ ICp (v) ≤ IH (v), (2.8)

for all 0 ≤ v ≤ |C |. Moreover IC ≤ ICmin .

Remark 2.7 Proposition 2.6 implies that E∩∂C �= ∅when E ⊂ C is an isoperimetric region
since, in case E ∩ ∂C is empty, then E is an Euclidean ball.

Let C ⊂ R
n+1 be a closed unbounded convex set. Assume there exists a hyperplane �

such that the orthogonal projection π : Rn+1 → � takes C to a bounded set, and let K be
the bounded convex body defined as the closure of π(C). Then C is contained in the right
convex cylinder cyl(K ) of base K . Since C is unbounded, it contains a half-line which is
necessarily parallel to the axis of cyl(K ). If C contains a complete line, then C = cyl(K )

is a cylinder [19, Lemma 1.4.2]. This implies that C is either a cylinder, or is contained in a
half-cylinder. We shall say that the unbounded convex body C is cylindrically bounded if it
is contained in a convex cylinder of bounded base, and it is not a cylinder itself.

3 Isoperimetric regions in cylinders

In this Section we consider the isoperimetric problem when the ambient space is a convex
cylinder K × R

q , where K ⊂ R
m is a convex body. We shall assume that m + q = n + 1.

Existence of isoperimetric regions in K × R
q can be obtained following the strategy of

Galli and Ritoré for contact sub-Riemannian manifolds [4] with compact quotient under
their contact isometry group. One of the basic ingredients in this strategy is the relative
isoperimetric inequality in Proposition 2.5. A second one is the property that any unbounded
convex body C is a doubling metric space.

Lemma 3.1 Let C ⊂ R
n+1 be an unbounded convex body. Then

|BC (x, 2r)| ≤ (2n+1 + 1)|BC (x, r)|, (3.1)

for any x ∈ C and any r > 0.

Proof Let x ∈ C, r > 0 and let K denote the closed cone with vertex x subtended by the
closure of ∂BC (x, r). Then

|BC (x, 2r)| = |BC (x, 2r) \ BC (x, r)| + |BC (x, r)|
≤ |BK (x, 2r) \ BK (x, r)| + |BC (x, r)|
≤ |BK (x, 2r)| + |BC (x, r)|
= n+1|BK (x, r)| + |BC (x, r)|
≤ (2n+1 + 1)|BC (x, r)|,

as we claimed. Inequality |BC (x, 2r) \ BC (x, r)| ≤ |BK (x, 2r) \ BK (x, r)| follows since,
by convexity and the definition of K , BC (x, 2r) \ BC (x, r) ⊂ BK (x, 2r) \ BK (x, r). �
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648 M. Ritoré, E. Vernadakis

Using Lemma 3.1 and Proposition 2.6 we can show

Proposition 3.2 Consider the convex cylinder C = K × R
q , where K ⊂ R

m is a convex
body. Then isoperimetric regions exist in K × R

q for all volumes and they are bounded.

Proof To follow the strategy of Galli and Ritoré [4] (see Morgan [13] for a slightly different
proof for smooth Riemannian manifolds), we only need a relative isoperimetric inequality
(4.16) for balls BC (x, r) of small radius with a uniform constant; the doubling property
(3.1); inequality (2.8) giving an upper bound of the isoperimetric profile; and a deformation
of isoperimetric sets E by finite perimeter sets Et satisfying

|Hn(∂Et ∩ int(C)) − Hn(∂E ∩ int(C))| ≤ M ||Et | − |E ||,
for small |t | and some constant M > 0 not depending in t , which can be obtained by
deforming the regular part of the boundary of E using the flow associated to a vector field
with compact support.

Using all these ingredients, the proof of Theorem 6.1 in [4] applies to prove existence of
isoperimetric regions in K × R

q . �

Let us prove now the concavity of the isoperimetric profile of the cylinder and of its power
n+1
n . We start by proving its continuity.

Proposition 3.3 Let C = K × R
q , where K is an m-dimensional convex body. Then IC is

non-decreasing and continuous.

Proof Given t > 0, the smooth map ϕt : C → C defined by ϕt (x, y) = (x, t y), x ∈ K , y ∈
R
q , satisfies |ϕt (E)| = tq |E |. When t ≤ 1, we also have PC (ϕt (E)) ≤ tq−1 PC (E). This

implies that the isoperimetric profile is a non-decreasing function: let v1 < v2, and E ⊂ C
an isoperimetric region of volume v2. Let 0 < t < 1 so that |ϕt (E)| = v1. We have

IC (v1) ≤ P(ϕt (E)) ≤ P(E) = IC (v2).

This shows that IC is non-decreasing.
Let us prove now the right-continuity of IC at v. Consider an isoperimetric region E of

volume v.We can take a smooth vector field Z with support in the regular part of the boundary
of E such that

∫
E div Z �= 0. The flow {ϕt }t∈R of Z satisfies (d/dt)|t=0|ϕt (E)| �= 0. Using

the Inverse Function Theorem we obtain a smooth family {Ew}, forw near v, with |Ew| = w

and Ev = E . The function f (w) = P(Ew) satisfies f ≥ IC and IC (v) = f (v). This implies
that IC is right-continuous at v since, for vi ↓ v, we have

IC (v) = f (v) = lim
i→∞ f (vi ) ≥ lim

i→∞ IC (vi ) ≥ IC (v),

by the monotonicity of IC .
To prove the left-continuity of IC at v we take a sequence of isoperimetric regions Ei with

vi = |Ei | ↑ v and we consider balls Bi disjoint from Ei so that |Ei ∪ Bi | = |Ei | + |Bi |.
Then IC (v) ≤ P(Ei ∪ Bi ) = IC (vi ) + P(Bi ) ≤ IC (v) + P(Bi ) by the monotonicity of IC ,
and the left-continuity follows by taking limits since limi→∞ P(Bi ) = 0. �

Lemma 3.4 Let {Ki }i∈N be a sequence of m-dimensional convex bodies converging to a
convex body K in Hausdorff distance. Then {Ki × R

q}i∈N converges to K × R
q in lipschitz

distance.
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Proof By [17, Theorem 3.4], there exists a sequence of bilipschitz maps fi : Ki → K such

that Lip( fi ),Lip
(
f −1
i

)
→ 1 as i → ∞. For every i ∈ N, define Fi : Ki × R

q → K × R
q

by
Fi (x, y) = ( fi (x), y), (x, y) ∈ Ki × R

q . (3.2)

Take now (x1, y1), (x2, y2) ∈ Ki × R
q . We have

|Fi (x1, y1) − Fi (x2, y2)|2 = | fi (x1) − fi (x2)|2 + |y1 − y2|2
≤ max{Lip( fi )2, 1}

(|x1 − x2|2 + |y1 − y2|2
)

= max{Lip( fi )2, 1} |(x1, y1) − (x2, y2)|2 , (3.3)

where | · | is the Euclidean norm in the suitable Euclidean space. Hence we get

lim sup
i→∞

Lip(Fi ) ≤ 1

since limi→∞ Lip( fi ) = 1. In a similarwaywe find lim supi→∞ Lip
(
F−1
i

)
≤ 1. ByRemark

2.2, we get Lip
(
F−1
i

)
Lip(Fi ) ≥ 1 and the proof follows. �

Proposition 3.5 Let K ⊂ R
m be a convex body andC = K×R

q . Then I (n+1)/n
C is a concave

function. This implies that IC is concave and every isoperimetric set in C is connected.

Proof When the boundary of a convex cylinder C is smooth, its isoperimetric profile IC and
its power I (n+1)/n

C are known to be concave using a suitable deformation of an isoperimetric
region and the first and second variations of perimeter and volume, as in Kuwert [7].

By approximation [19], there exists a sequence {Ki }i∈N of convex bodies in R
m with C∞

boundary such that Ki → K in Hausdorff distance. Set Ci = Ki × R
q . By Lemma 3.4,

Ci → C in lipschitz distance. Fix now some v > 0. By Proposition 3.2, there is a sequence
of isoperimetric sets Ei ⊂ Ci of volume v. Thus arguing as in [17, Theorem 4.1], using the
continuity of the isoperimetric profile IC , we get

IC (v) ≤ lim inf
i→∞ ICi (v).

Again by Proposition 3.2 there exists an isoperimetric set E ⊂ C of volume v. Arguing again
as in [17, Theorem 4.1], we obtain

IC (v) ≥ lim sup
i→∞

ICi (v).

Combining both inequalities we get

IC (v) = lim
i→∞ ICi (v).

So I (n+1)/n
C , IC are concave functions as they are pointwise limits of concave functions.

Connectedness of isoperimetric regions is a consequence of the concavity of I (n+1)/n
C as

in [17, Theorem 4.6]. �
Assume now that the cylinder C = K × R

q has C2,α boundary. By Theorem 2.6 in
Stredulinsky and Ziemer [21], a local minimizer of perimeter under a volume constraint has
the property that either cl(∂E ∩ int(C)), the closure of ∂E ∩ int(C), is either connected or it
consists of a union of parallel (totally geodesic) components meeting ∂C orthogonally with
the part of C lying between any two of such components consisting of a right cylinder. By
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650 M. Ritoré, E. Vernadakis

the connectedness of isoperimetric regions proven in Proposition 3.5, E must be a slab in
K × R. So we have proven the following

Theorem 3.6 Let C = K × R
q be a convex cylinder with C2,α boundary, and E ⊂ C an

isoperimetric region. Then either the closure of ∂E ∩ int(C) is connected or E is an slab in
K × R.

Let us consider now the isoperimetric profile for small volumes. The following is inspired
by [17, Theorem 6.6], although we have simplified the proof.

Theorem 3.7 Let C = K ×R
q , where K ⊂ R

m is a convex body. Then isoperimetric regions
of small volume are close to points with the narrowest tangent cone. Furthermore,

lim
v→0

IC (v)

ICmin (v)
= 1. (3.4)

Proof To prove (3.4), consider a sequence {Ei }i∈N ⊂ C of isoperimetric regions of volumes
vi → 0. By Proposition 3.5, the sets Ei are connected. The key of the proof is to show

diam(Ei ) → 0. (3.5)

To accomplish this we consider λi → ∞ so that the isoperimetric regions λi E ⊂ λiC have
volume 1. Then we argue exactly as in [17, Theorem 6.6]. We first produce an elimination
Lemma as in [17, Theorem 5.5], with ε > 0 independent of λi , that yields a perimeter lower
density bound [17, Corollary 5.8] independent of λi . Hence the sequence {diam(λi Ei )}i∈N
must be bounded, since otherwise applying the perimeter lower density bound we would get
Pλi C (λi Ei ) → ∞, contradicting Proposition 2.6. Since {diam(λi Ei )}i∈N is bounded, (3.5)
follows.

Translating each set of the sequence {Ei }i∈N, and eventually C , we may assume that
Ei converges to 0 ∈ ∂K × R

k in Hausdorff distance. Taking ri = (diam(Ei ))
1/2 we have

diam(r−1
i Ei ) → 0 and so

r−1
i Ei → 0 in Hausdorff distance. (3.6)

Let q ∈ int(K ∩ D(0, 1)) and let Dq be an m-dimensional closed ball centered at q and
contained in int(K ∩ D(0, 1)). As the sequence r−1

i K ∩ D(0, 1) converges to K0 ∩ D(0, 1)
in Hausdorff distance, we construct, using [17, Thm. 3.4], a family of bilipschitz maps

fi : r−1
i K ∩D(0, 1) → K0∩ B(0, 1)with Lip( fi ),Lip

(
f −1
i

)
→ 1, where fi is the identity

on Dq and is extended linearly along the segments leaving fromq .Wedefine, as inLemma3.4,

the maps Fi :
(
r−1
i K ∩ D(0, 1)

)
× R

k → (
K0 ∩ D(0, 1)

) × R
k by Fi (x, y) = ( fi (x), y).

These maps satisfy Lip(Fi ), Lip
(
F−1
i

)
→ 1. Since (3.6) holds, the maps Fi have the

additional property

PC0(Fi (r
−1
i Ei )) = PC0∩B(0,1)(Fi (r

−1
i Ei )), for large i ∈ N. (3.7)

Thus by Lemma 2.1 and (2.7) we get
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PC (Ei )

|Ei |n/(n+1)
=

Pr−1
i C

(
r−1
i Ei

)

|r−1
i Ei |n/(n+1)

≥
PC0

(
Fi (r

−1
i Ei )

)

|Fi
(
r−1
i Ei

)
|n/(n+1)

(
Lip(Fi )Lip

(
F−1
i

))−n

≥ α(C0)
1/(n+1) (n + 1)n/(n+1)

(
Lip(Fi )Lip

(
F−1
i

))−n
(3.8)

Since Ei are isoperimetric regions of volumes vi , passing to the limit we get

lim inf
i→∞

IC (vi )

v
n/(n+1)
i

≥ α(C0)
1/(n+1) (n + 1)n/(n+1).

From (2.7) we obtain,

lim inf
i→∞

IC (vi )

IC0(vi )
≥ 1.

Combining this with (2.8) and the minimal property of ICmin we deduce

lim sup
i→∞

IC (vi )

IC0(vi )
≤ lim sup

i→∞
IC (vi )

ICmin (vi )
≤ 1 ≤ lim inf

i→∞
IC (vi )

IC0(vi )
.

Thus

lim
i→∞

IC (vi )

ICmin (vi )
= 1. (3.9)

By (2.7), we conclude that C0 has minimum solid angle. �
A convex prism � is a set of the form P × R

q where P ⊂ R
m is a polytope. For convex

prisms we are able to characterize the isoperimetric regions for small volumes.

Theorem 3.8 Let� ⊂ R
n+1 be a convex prism. For small volumes the isoperimetric regions

in � are geodesic balls centered at vertices with the smallest solid angle.

Proof Let {Ei }i∈N be a sequence of isoperimetric regions in � with |Ei | → 0. By The-
orem 3.7, after translation, a subsequence of Ei is close to some vertex x in �. Since
diam(Ei ) → 0 we can assume that the sets Ei are also subsets of the tangent cone �x

and they are isoperimetric regions in �x . By [3] the only isoperimetric regions in this cone
are, after translation, the geodesic balls centered at x . These geodesic balls are also subsets
of �. �

To end this section, let us characterize the isoperimetric regions for large volume in the
right cylinder K ×R. We closely follow the proof by Duzaar and Steffen [2], which is slightly
simplified by the use of Steiner symmetrization. The case of the cylinder K ×R

q , with q > 1,
is more involved and will be treated in a different paper.

We shall say that a set E ⊂ K × R is normalized if, for every x ∈ K , the intersection
E ∩ ({x} × R) is a segment with midpoint (x, 0).

Theorem 3.9 Let C = K × R, where K ⊂ R
n is a convex body. Then there is a constant

v0 > 0 so that the slabs K × I , where I ⊂ R is a compact interval, are the only isoperimetric
regions of volume larger than or equal to v0. In particular, IC (v) = 2Hn(K ) for all v ≥ v0.
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Proof The proof is modeled on [2, Prop 2.11]. By comparison with slabs we have IC (v) ≤
2 Hn(K ) for all v > v0.

Let us assume first that E ⊂ K ×R is a normalized set of finite volume and Hn(∂C E) ≤
2 Hn(K ), and let E∗ be its orthogonal projection over K0 = K × {0}. We claim that, it
Hn(K0 \ E∗) > 0, then there is a constant c > 0 so that

Hn(∂C E) ≥ c|E |. (3.10)

For t ∈ R, we define Et = E ∩ (K × {t}). As E is normalized, we can choose τ > 0 so that
Hn(Et ) ≤ Hn(K )/2 for t ≥ τ and Hn(Et ) > Hn(K )/2 for 0 < t < τ .

For t ≥ τ we apply the coarea formula and Lemma 2.4 to get

Hn(∂C E) ≥ Hn(∂C E ∩ (K × [t,∞))

≥
∫ +∞

τ

Hn−1(∂C Es) ds ≥ c1

∫ +∞

τ

Hn(Es) ds ≥ c1|E ∩ (K × [τ,+∞))|,
(3.11)

where c1 is a constant only depending on Hn(K )/2.
Let St = K × {t}. For 0 < t < τ we have

Hn(St \ Et ) ≥ Hn(∂C E ∩ (K × (0, t))), (3.12)

since otherwise

Hn(K ) = Hn(St \ Et ) + Hn(Et )

< Hn(∂C E ∩ (K × (0, t))) + Hn(∂C E ∩ (K × [t,+∞)))

≤ Hn(∂C E)/2,

and we should get a contradiction to our assumption Hn(∂C E) ≤ 2 Hn(K ), what proves
(3.12). So we obtain from (3.12) and Lemma 2.4

Hn(St \ Et ) ≥ Hn(∂C E ∩ (K × (0, t)))

≥
∫ t

0
Hn−1(∂C E ∩ St )dt

≥ c2

∫ τ

0
Hn(St \ Et )

(n−1)/ndt, (3.13)

where c2 is a constant only depending on Hn(K )/2. Letting y(t) = Hn(St \ Et ), inequality
(3.13) can be rewritten as the integral inequality

y(t) ≥ c2

∫ t

0
y(s)(n−1)/nds.

Since Hn(K0 \ E∗) > 0 by assumption and E is normalized, we have y(t) > 0 for all t > 0,
and so

2 Hn(K ) ≥ Hn(Sτ \ Eτ ) = y(τ ) ≥ cn2
nn

τ n,

what implies

τ ≤ n

c2 (2 Hn(K ))1/n
. (3.14)

We finally estimate

|E ∩ (K × [0, τ ])| =
∫ τ

0
Hn(Et ) dt ≤ 2Hn(E0) τ ≤ n

c2 (2 Hn(K ))1/n
Hn(∂C E). (3.15)

123



Isoperimetric inequalities in convex cylinders and cylindrically bounded convex bodies 653

Combining (3.11) and (3.15), we get (3.10). This proves the claim.
Let now E ⊂ K × R be an isoperimetric region of large enough volume v. Following

Talenti [22] or Maggi [10], we may consider its Steiner symmetrized sym E . The set sym E
is normalized and we have |E | = |sym E | and PC (sym E) ≤ PC (E). Of course, since E is
an isoperimetric region we have PC (sym E) = PC (E). If Hn(K0 \ E∗) > 0, then (3.10)
implies

PC (E) = PC (sym E) = Hn(∂C (sym E)) ≥ c |sym E | = c |E |,
providing a contradiction since IC ≤ 2 Hn(K ).

We conclude that Hn(K0 \ E∗) = 0 and that E is the intersection of the subgraph of a
function u : K → R and the epigraph of a function v : K → R. The perimeter of E is then
given by

PC (E) =
∫
K

√
1 + |∇u|2 dHn +

∫
K

√
1 + |∇v|2 dHn ≥ 2Hn(K ),

with equality if and only if ∇u = ∇v = 0. Hence u, v are constant functions and E is a slab.
�

As a consequence we have

Corollary 3.10 Let K ⊂ R
n be a convex body and C = K ×[0,∞). Then there is a constant

v0 > 0 such that any isoperimetric region in M with volume v ≥ v0 is the slab K × [0, b],
where b = v/Hn(K ). In particular, IC (v) = Hn(K ) for v ≥ v0.

Proof Just reflect with respect to the plane xn+1 = 0 and apply Theorem 3.9. Alternatively,
the proof of Theorem 3.9 can also be adapted to handle this case. �

4 Cilindrically bounded convex sets

Given a cylindrically bounded convex body C ⊂ R
n × R so that K is the closure of the

orthogonal projection of C over Rn × {0}, we shall say that C∞ = K × R is the asymptotic
cylinder of C . Recall that, from our definition, C is different from a cylinder. Assuming C
is unbounded in the positive vertical direction, the asymptotic cylinder can be obtained as
a Hausdorff limit of downward translations of C . Another property of C∞ is the following:
given t ∈ R, define

Ct = C ∩ (Rn × {t}). (4.1)

Then the orthogonal projection ofCt toRn ×{0} converges in Hausdorff distance to the basis
K of the asymptotic cylinder when t ↑ +∞ by [19, Thm. 1.8.16]. In particular, this implies

lim
t→+∞ Hn(Ct ) = Hn(K ).

Let us prove now that the isoperimetric profile of C is asymptotic to the one of the half-
cylinder.

Theorem 4.1 Let C ⊂ R
n+1 be a cylindrically bounded convex body with asymptotic cylin-

der C∞ = K × R. Then
lim

v→∞ IC (v) = Hn(K ). (4.2)
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Proof We assume that C is unbounded in the positive xn+1-direction and consider the sets
(v) = C ∩ (Rn × (−∞, t (v)]), where t (v) is chosen so that |(v)| = v. Then

IC (v) ≤ PC ((v)) ≤ Hn(K ),

and taking limits we get

lim sup
v→∞

IC (v) ≤ Hn(K ).

Let us prove now that
Hn(K ) ≤ lim inf

v→∞ IC (v). (4.3)

Fix ε > 0. We consider a sequence of volumes vi → ∞ and a sequence Ei ⊂ C of finite
perimeter sets of volume vi with smooth boundary, so that

PC (Ei ) ≤ IC (vi ) + ε. (4.4)

We shall consider two cases. Recall that (Ei )t = Ei ∩ (Rn × {t}).
Case 1. lim inf

i→∞

(
sup
t>0

Hn((Ei )t )

)
= Hn(K ).

This is an easy case. Since the projection over the horizontal hyperplane does not increase
perimeter we get

IC (vi ) + ε ≥ PC (Ei ) ≥ sup
t>0

Hn((Ei )t ).

Taking inferior limit, we get (4.3) since ε > 0 is arbitrary.

Case 2. lim inf
i→∞

(
sup
t>0

Hn((Ei )t )

)
< Hn(K ).

In this case, passing to a subsequence, there exists v0 < Hn(K ) such that Hn((Ei )t ) ≤ v0
for all t . By [19, Thm. 1.8.16] we have Hn(Ct ) → Hn(K ). Hence there exists t0 > 0 such
that v0 < Hn(Ct ) for t ≥ t0. By Lemma 2.4, for ct = ICt (v0)/v0, we get

ICt (v) ≥ ctv, for all v ≤ v0, t ≥ t0.

Furthermore, as ICt (v0) → IK (v0) > 0 and IK (v0) > 0, we obtain the existence of c > 0
such that ct > c for t large enough. Taking t0 larger if necessary we may assume ct > c
holds when t ≥ t0. Thus for large i ∈ N we obtain

|Ei | =
∫ ∞

0
Hn((Ei )t ) dt ≤ b +

∫ ∞

t0
Hn((Ei )t ) dt

≤ b +
∫ ∞

t0
c−1
t Hn−1((∂Ei )t ) dt

≤ b + c−1
∫ ∞

0
Hn−1((∂Ei )t ) dt ≤ b + c−1PC (Ei ),

where b = t0Hn(K ). So PC (Ei ) → ∞ when |Ei | → ∞. From (4.4) and IC ≤ Hn(K ) we
get a contradiction. This proves that Case 2 cannot hold and so (4.3) is proven. �

Let us show now that the isoperimetric profile of C is continuous and, when the boundary
of C is smooth enough, that the isoperimetric profile IC and its normalization I (n+1)/n

C are
both concave non-decreasing functions. We shall need first some preliminary results.

123



Isoperimetric inequalities in convex cylinders and cylindrically bounded convex bodies 655

Proposition 4.2 Let C ⊂ R
n+1 be a cylindrically bounded convex set, and C∞ = K × R

its asymptotic cylinder. Consider a diverging sequence of finite perimeter sets {Ei }i∈N ⊂ C
such that v = limi→∞ |Ei |. Then

lim inf
i→∞ PC (Ei ) ≥ IC∞(v).

Proof Without loss of generality we assume Ei ⊂ C ∩ {xn+1 ≥ i}. Let r > 0 and t0 > 0
so that the half-cylinder B(0, r) × [t0,+∞) is contained in C ∩ {xn+1 ≥ t0}. Consider the
horizontal sections Ct = C ∩ {xn+1 = t}, (C∞)t = C∞ ∩ {xn+1 = t}. We define a map
F : C ∩ {xn+1 ≥ t0} → C∞ ∩ {xn+1 ≥ t0} by

F(x, t) = ( ft (x), t),

where ft : Ct → (C∞)t is defined as in (3.6) in [17]. For i ∈ N, let Fi = F |C∩{xn+1≥i}. We

will check that max
{
Lip(Fi ),Lip

(
F−1
i

)}
→ 1 when i → ∞.

Take now (x, t), (y, s) ∈ C ∩ {xn+1 ≥ i}, and assume t ≥ s, i ≥ t0. Then we have

|F(x, t) − F(y, s)| = (| ft (x) − fs(y)|2 + |t − s|2)1/2
= (| ft (x) − ft (y) + ft (y) − fs(y)|2 + |t − s|2)1/2
= (| ft (x) − ft (y)|2 + | ft (y) − fs(y)|2

+2 | ft (x) − ft (y)|| ft (y) − fs(y)| + |t − s|2)1/2 (4.5)

We have |( ft (x) − ft (y))| ≤ Lip( ft )|x − y|. By [17, Theorem 3.4], we can write Lip( ft ) <

(1 + εi ) for t ≥ i , where εi → 0 when i → ∞. Hence

|( ft (x) − ft (y))| ≤ (1 + εi ) |x − y|, for t ≥ i. (4.6)

We estimate now | ft (y)− fs(y)|. In case |y| ≤ r , we trivially have | ft (y)− fs(y)| = 0. Sowe
assume |y| ≥ r . For u ∈ S

n−1, consider the functions ρt (u) = ρ(Ct , u), ρ(u) = ρ(K , u).
Observe that, for every u ∈ S

n orthogonal to ∂/∂xn+1, the two-dimensional half-plane
defined by u and ∂/∂xn+1 intersected with C is a two-dimensional convex set, and the
function t �→ ρt (u) is concave with a horizontal asymptotic line at height ρ(u). So we have,
taking u = y/|y|,

| ft (y) − fs(y)|
|t − s| = (|y| − r)

|t − s|
∣∣∣∣ρt (u) − r

ρ(u) − r
− ρs(u) − r

ρ(u) − r

∣∣∣∣ ≤ |ρt (u) − ρs(u)|
|t − s| ,

since |y| − r ≥ ρ(u) − r . Using the concavity of t �→ ρt (u) we get

|ρt (u) − ρs(u)|
|t − s| ≤ |ρi (u) − ρi−1(u)| , for t, s ≥ i.

Letting �i = supu∈Sn−1 |ρi (u) − ρi−1(u)|, we get
| ft (y) − fs(y)| ≤ �i |t − s|. (4.7)

As C∞ is the asymptotic cylinder of C we conclude that �i → 0 when i → ∞.
From (4.5) to (4.7), and trivial estimates, we obtain

|Fi (x, t) − Fi (y, s)| ≤ (
(1 + εi )

2 + �2i + (1 + εi ) �i
)1/2 |(x, t) − (y, s)| (4.8)

Now εi → 0 and �i → 0 as i → ∞. Thus inequality (4.8) yields

lim sup
i→∞

Lip(Fi ) ≤ 1.
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Similarly we find lim supi→∞ Lip
(
F−1
i

)
≤ 1 and since Lip

(
F−1
i

)
Lip(Fi ) ≥ 1 by

Remark 2.2, we finally get max
{
Lip(Fi ),Lip

(
F−1
i

)}
→ 1 when i → ∞.

Thus we have

v = lim
i→∞ |Ei | = lim

i→∞ |Fi (Ei )|,
lim inf
i→∞ PC (Ei ) = lim inf

i→∞ PC∞(Fi (Ei )). (4.9)

Now from (4.9) and the continuity of IC∞ we get

lim inf
i→∞ PC (Ei ) = lim inf

i→∞ PC∞(Fi (Ei )) ≥ IC∞(v).

�
Lemma 4.3 Let C ⊂ R

n+1 be a cylindrically bounded convex set and C∞ = K × R its
asymptotic cylinder. Let E∞ ⊂ C∞ a bounded set of finite perimeter. Then there exists a
sequence {Ei }i∈N ⊂ C of finite perimeter sets such that |Ei | = |E∞| and limi→∞ PC (Ei ) =
PC∞(E∞).

Proof Let en+1 = (0, . . . , 0, 1) ∈ R
n+1. We consider the truncated downward translations

of C defined by

Ci = (−i en+1 + C) ∩ {t ≥ 0}, i ∈ N.

These convex bodies have the same asymptotic cylinder and⋃
i∈N

Ci = C∞ ∩ [0,∞). (4.10)

Translating E∞ along the vertical direction if necessary we assume E∞ ⊂ {t > 0}. Consider
the sets Gi = E∞ ∩ Ci . For large indices Gi is not empty by (4.10).

By the monotonicity of the Hausdorff measure we have |Gi | ↑ |E∞|, and Hn(∂Gi ∩
int(Ci )) ↑ Hn(∂E∞ ∩ int(C∞)). As E∞ is bounded, for large i we can find Euclidean
geodesic balls Bi ⊂ int(Ci ), disjoint from Gi , such that |Bi | = |E∞| − |Gi |. Obviously
the volume and and the perimeter of these balls go to zero when i goes to infinity. Then
Ei = Gi ∪ Bi are the desired sets. �
Proposition 4.4 Let C ⊂ R

n+1 be a cylindrically bounded convex body. Then IC is
continuous.

Proof LetC∞ = K ×R be the asymptotic cylinder ofC . The continuity of the isoperimetric
profile IC at v = 0 is proven by comparison with geodesic balls intersected with C .

Fix v > 0 and let {vi }i∈N be a sequence of positive numbers converging to v. Let us
prove first the lower semicontinuity of IC . By the definition of isoperimetric profile, given
ε > 0, there is a finite perimeter set Ei of volume vi so that IC (vi ) ≤ PC (Ei ) ≤ IC (vi ) + 1

i ,
for every i ∈ N. Reasoning as in [16, Thm. 2.1], we can decompose Ei = Ec

i ∪ Ed
i into

convergent and diverging pieces, and there is a finite perimeter set E ⊂ C , eventually empty,
so that

|Ei | = |Ec
i | + |Ed

i |,
PC (Ei ) = PC (Ec

i ) + PC (Ed
i ),

|Ec
i | → |E |,

PC (E) ≤ lim inf
i→∞ PC (Ec

i ). (4.11)
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Let w1 = |E |. By Proposition 3.2, there exists an isoperimetric region E∞ ⊂ C∞ of volume
|E∞| = w2 = v−w1. By Proposition 4.2 we have PC∞(E∞) ≤ lim inf i→∞ PC (Ed

i ). Hence

IC (v) ≤ IC (w1) + IC∞(w2) ≤ PC (E) + PC∞(E∞)

≤ lim inf
i→∞ PC (Ec

i ) + lim inf
i→∞ PC (Ed

i )

≤ lim inf
i→∞ PC (Ei )

= lim inf
i→∞ IC (vi ).

To prove the upper semicontinuity of IC we shall use a variational argument. We can find
bounded sets E0 ⊂ C , E∞ ⊂ C∞ such that |E0| + |E∞| = v and IC (v) = PC (E0) +
PC∞(C∞). Deforming these sets and using Lemma 4.3, we easily show the existence of
subsets Es ⊂ C , with |Es | = v + s, s ∈ (−δ, δ), such that

|Hn(∂C Es) − IC (v)| � Ms,

for some uniform constant M > 0. Hence

IC (v + s) � Hn(∂C Es) � IC (v) + Ms.

Taking a sequence vi → v we get lim supi→∞ IC (vi ) � IC (v) and we obtain the upper
semicontinuity of IC . �

Proposition 4.5 Let C ⊂ R
n+1 be a cylindrically bounded convex body with asymptotic

cylinder C∞ = K × R. Assume that both C and C∞ have smooth boundary. Then isoperi-
metric regions exist on C for large volumes and have connected boundary.Moreover I (n+1)/n

C
and so IC are concave non-decreasing functions.

Proof Fix v > 0. By [16, Thm. 2.1] there exists an isoperimetric region E ⊂ C (eventually
empty) of volume |E | = v1 ≤ v, and a diverging sequence {Ei }i∈N of finite perimeter sets
of volume v2 = v − v1, such that

IC (v) = PC (E) + lim
i→∞ PC (Ei ) (4.12)

By Proposition 3.2, there is an isoperimetric region E∞ ⊂ C∞ of volume v2. We claim

lim
i→∞ PC (Ei ) = PC∞(E∞). (4.13)

If (4.13) does not hold, then Proposition 4.2 implies lim inf i→∞ PC (Ei ) > IC∞(v2), and
Lemma 4.3 provides a sequence of finite perimeter sets inC , of volume v2, approaching E∞.
This way we can build a minimizing sequence of sets of volume v whose perimeters converge
to some quantity strictly smaller than IC (v), a contradiction that proves (4.13). From (4.12)
to (4.13) we get

IC (v) = PC (E) + PC∞(E∞). (4.14)

Reasoning as in the proof of Theorem 2.8 in [15], the configuration E ∪ E∞ in the disjoint
union of the sets C,C∞ must be stationary and stable, since otherwise we could slightly
perturb E ∪ E∞, keeping constant the total volume, to get a set E ′ ∪ E ′∞ such that
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PC (E ′) + PC∞(E ′∞) < PC (E) + PC∞(E∞),

contradicting (4.14).
Now as C,C∞ are convex and have smooth boundary, we can use a stability argument

similar to that in [1, Proposition 3.9] to conclude that one of the sets E or E∞ must be empty
and the remaining onemust have connected boundary. A third possibility, that ∂C E∪∂C∞E∞
consists of a finite number of hyperplanes intersecting orthogonally both C and C∞, can be
discarded since in this case E∞ would be a slab with PC∞(E∞) = 2Hn(K ) > IC .

If v is large enough so that isoperimetric regions inC∞ are slabs, then the above argument
shows existence of isoperimetric regions of volume v in C .

As IC is always realized by an isoperimetric set in C or C∞, the arguments in [1, The-
orem 3.2] imply that the second lower derivative of I (n+1)/n

C is non-negative. As I (n+1)/n
C

is continuous by Proposition 4.4, Lemma 3.2 in [14] implies that I (n+1)/n
C is concave and

hence non-decreasing. Then IC is also concave as a composition of I (n+1)/n
C with the concave

non-increasing function x �→ xn/(n+1).
The connectedness of the isoperimetric regions in C follows easily as an application of

the concavity of I (n+1)/n
C , as in [17, Theorem 4.6]. �

The concavity of I (n+1)/n
C also implies the following Lemma. The proof in [17, Lemma

4.9] for convex bodies also holds in our setting.

Lemma 4.6 Let C be be a cylindrically bounded convex body with asymptotic cylinder C∞.
Assume that both C and C∞ have smooth boundary. Let λ ≥ 1. Then

IλC (v) ≥ IC (v) (4.15)

for all 0 ≤ v ≤ |C |.
Our aim now is to get a density estimate for isoperimetric regions of large volume in

Theorem 4.9. This estimate would imply the convergence of the free boundaries of large
isoperimetric regions to hyperplanes in Hausdorff distance given in Theorem 4.13.

Proposition 4.7 Let C be cylindrically bounded convex body with asymptotic cylinder C∞.
Given r0 > 0, there exist positive constants M, �1, only depending on r0 and C, C∞, and a
universal positive constant �2 so that

PBC (x,r)(v) ≥ M min{v, |BC (x, r)| − v}n/(n+1)
, (4.16)

for all x ∈ C, 0 < r ≤ r0, and 0 < v < |B(x, r)|. Moreover

�1r
n+1 ≤ |BC (x, r)| ≤ �2r

n+1, (4.17)

for any x ∈ C, 0 < r ≤ r0.

Proof Reasoning as in [17, Theorem 4.12], it is enough to show

�0 = inf
x∈C inr(BC (x, r0)) > 0.

To see this consider a sequence {xi }i∈N so that inr(BC (xi , r0)) converges to �0. If {xi }i∈N
contains a bounded subsequence then we can extract a convergent subsequence to some point
x0 ∈ C so that �0 = inr(B(x0, r0) > 0. If {xi }i∈N is unbounded, we translate vertically
the balls BC (xi , r0) so that the new centers x ′

i lie in the hyperplane xn+1 = 0. Passing to
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a subsequence we may assume that x ′
i converges to some point x0 ∈ C∞. By the proof of

Proposition 4.2, we have Hausdorff convergence of the translated balls to BC∞(x0, r0) and
so �0 = inr(BC∞(x0, r0)) > 0. �

The next Lemma appeared in [17, Lemma 5.4]. We recall the proof here for completeness.

Lemma 4.8 For any v > 0, consider the function fv : [0, v] → R defined by

fv(s) = s−n/(n+1)
((

v − s

v

)n/(n+1)

− 1

)
.

Then there is a constant 0 < c2 < 1 that does not depends on v so that fv(s) ≥
−(1/2) v−n/(n+1) for all 0 ≤ s ≤ c2 v.

Proof By continuity, fv(0) = 0. Observe that fv(v) = −v−n/(n+1) and that, for s ∈ [0, 1],
we have fv(sv) = f1(s) v−n/(n+1). The derivative of f1 in the interval (0, 1) is given by

f ′
1(s) = n

n + 1

(s − 1) + (1 − s)n/(n+1)

s − 1
s−1−n/(n+1),

which is strictly negative and so f1 is strictly decreasing. Hence there exists 0 < c2 < 1
such that f1(s) ≥ −1/2 for all s ∈ [0, c2]. This implies fv(s) = f1(s/v) v−n/(n+1) ≥
−(1/2) v−n/(n+1) for all s ∈ [0, c2v].

�
Theorem 4.9 Let C ⊂ R

n+1 be a cylindrically bounded convex body with asymptotic cylin-
der C∞ = K × R. Assume that C,C∞ have smooth boundary. Let E ⊂ C an isoperimetric
region of volume v > 1. Choose ε so that

0 < ε <

{
�2

−1, c2,
�2

n

8n+1 , �2
−1

(
IC (1)

4

)n+1}
, (4.18)

where c2 is the constant in Lemma 4.8., and �1, �2 the constants in Proposition 4.7.
Then, for any x ∈ C and R ≤ 1 so that h(x, R) ≤ ε, we get

h(x, R/2) = 0. (4.19)

Moreover, in case h(x, R) = |E ∩ BC (x, R)||BC (x, R)|−1, we get |E ∩ BC (x, R/2)| = 0
and, in case h(x, R) = |BC (x, R) \ E ||BC (x, R)|−1, we have |BC (x, R/2) \ E | = 0.

Proof From the concavity of I (n+1)/n
C and the fact that IC (0) = 0 we get, as in Lemma 4.9

in [17], the following inequality

IC (w) ≥ c1w
n/(n+1), c1 = IC (1), (4.20)

for all 0 ≤ w ≤ 1.
Assume first that

h(x, R) = |E ∩ BC (x, R)|
|BC (x, R)| .

Define m(t) = |E ∩ BC (x, t)|, 0 < t ≤ R. Thus m(t) is a non-decreasing function. For
t ≤ R ≤ 1 we get

m(t) ≤ m(R) = |E ∩ BC (x, R)| = h(x, R) |BC (x, R)| ≤ h(x, R) �2R
n+1 ≤ ε�2 < 1,

(4.21)
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by (4.18). Since v > 1, we get v − m(t) > 0.
By the coarea formula, when m′(t) exists, we obtain

m′(t) = d

dt

∫ t

0
Hn(E ∩ ∂C B(x, s)) ds = Hn(E ∩ ∂C B(x, t)). (4.22)

Define

λ(t) = v1/(n+1)

(v − m(t))1/(n+1)
, E(t) = λ(t)(E \ BC (x, t)). (4.23)

Then E(t) ⊂ λ(t)C and |E(t)| = |E | = v. By Lemma 4.6, we get Iλ(t)C ≥ IC since
λ(t) ≥ 1. Combining this with [23, Cor. 5.5.3], Equ. (4.22), and elementary properties of the
perimeter functional, we have

IC (v) ≤ Iλ(t)C (v) ≤ Pλ(t)C (E(t)) = λn(t) PC (E \ BC (x, t))

≤ λn(t)
(
PC (E) − P(E, BC (x, t)) + Hn(E ∩ ∂BC (x, t))

)
≤ λn(t)

(
PC (E) − PC (E ∩ BC (x, t)) + 2Hn(E ∩ ∂BC (x, t))

)
≤ λn(t)

(
IC (v) − c1m(t)n/(n+1) + 2m′(t)

)
, (4.24)

where c1 is the constant in (4.20). Multiplying both sides by IC (v)−1λ(t)−n we find

λ(t)−n − 1 + c1
IC (v)

m(t)n/(n+1) ≤ 2

IC (v)
m′(t). (4.25)

As we have IC ≤ Hn(K ), and IC is concave by Proposition 4.5, there exists a constant α > 0
such that IC ≥ α for sufficient large volumes. Set

a = 2

α
≥ 2

IC (v)
, and b = c1

Hn(K )
≤ c1

IC (v)
. (4.26)

From the definition (4.23) of λ(t) we get

f (m(t)) ≤ am′(t) H1-a.e, (4.27)

where
f (s)

sn/(n+1)
= b +

(
v−s
v

)n/(n+1) − 1

sn/(n+1)
. (4.28)

By Lemma 4.8, there exists a universal constant 0 < c2 < 1, not depending on v, so that

f (s)

sn/n+1 ≥ b/2 whenever 0 < s ≤ c2. (4.29)

Since ε ≤ c2 by (4.18), Eq. (4.29) holds in the interval [0, ε]. If there were t ∈ [R/2, R]
such that m(t) = 0 then, by monotonicity of m(t), we would conclude m(R/2) = 0 as well.
So we assume m(t) > 0 in [R/2, R]. Then by (4.27) and (4.29), we get

b/2a ≤ m′(t)
m(t)n/n+1 , H1-a.e.

Integrating between R/2 and R we get by (4.21)

bR/4a ≤
(
m(R)1/(n+1) − m(R/2)1/(n+1)

)
≤ m(R)1/(n+1) ≤ (ε�2)

1/(n+1)R.

This is a contradiction, since ε�2 < (b/4a)n+1 = IC (v)n+1/
(
8n+1vn

) ≤ �n+1
2 /8n+1 by

(4.18) and Proposition 2.6. So the proof in case h(x, R) = |E ∩ BC (x, R)| (|BC (x, R))|−1
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is completed. For the remaining case, when h(x, R) = |BC (x, R)|−1|BC (x, R) \ E |, we use
Lemma 2.4 and the fact that IC is non-decreasing proven in Proposition 4.5. Then we argue
as in Case 1 in Lemma 4.2 of [8] to get

c1/4 ≤ (ε�2)
1/(n+1).

This is a contradiction, since ε�2 < (c1/4)n+1 by assumption (4.18) �
Proposition 4.10 Let C ⊂ R

n+1 be a cylindrically bounded convex body and C∞ its asymp-
totic cylinder. Assume that bothC andC∞ have smooth boundary. Then there exists a constant
c > 0 such that, for each isoperimetric region E of volume v > 1,

P(E, BC (x, r)) ≥ crn, (4.30)

for r ≤ 1 and x ∈ ∂C E.

Proof Let E ⊂ C be an isoperimetric region of volume larger than 1. Choose ε > 0 satisfying
(4.18). Since x ∈ ∂C E we have limr→0 h(x, r) �= 0 and, by Theorem 4.9, h(x, r) ≥ ε for
0 < r ≤ 1. So we get

P(E, BC (x, r)) ≥ M min {|E ∩ BC (x, r)|, |BC (x, r) \ E |}n/(n+1)

= M (|BC (x, r)| h(x, r))n/(n+1) ≥ M(|BC (x, r)| ε)n/(n+1)

≥ M (�1ε)
n/(n+1) rn .

Inequality (4.30) follows by taking c = M(�1ε)
n/(n+1), which is independent of v. �

Remark 4.11 Theorem 4.9 and Proposition 4.10 also hold if C is a convex cylinder.

As a Corollary we obtain a new proof of Theorem 3.9

Corollary 4.12 Let C = K × R, where K ⊂ R
n is a convex body. Then there is a constant

v0 > 0 so that IC (v) = 2Hn(K ) for all v ≥ v0. Moreover, the slabs K ×[t1, t2] are the only
isoperimetric regions of volume larger than or equal to v0.

Proof Let E be an isoperimetric region with volume

|E | > 2mr0H
n(K ), (4.31)

where r0, c > 0, are the constants in Proposition 4.10 (see also Remark 4.11), and m > 0 is
chosen so that

mcrn0 > 2Hn(K ). (4.32)

By results of Talenti on Steiner symmetrization for finite perimeter sets [22], we can assume
that the boundary of E is the union of two graphs, symmetric with respect to a horizontal
hyperplane, over a subset K ∗ ⊂ K . If K ∗ = K then PC (E) ≥ 2Hn(K ), since the orthogonal
projection over K × {0} is perimeter non-increasing. This implies PC (E) = 2Hn(K ) and it
follows, as in the proof of Theorem 3.9, that E is a slab.

So assume that K ∗ is a proper subset of K . Since |E | > 2mr0Hn(K ), E cannot be
contained in the slab K × [−r0m, r0m]. Then as ∂C E is a union of two graphs over K ∗ we
can find x j ∈ ∂C E, 1 ≤ j ≤ m, so that the balls centered at these points are disjoint. Then
by the lower density bound (4.30) we get

PC (E) ≥
m∑
j=1

P(E, BC (x j , r0)) ≥ mcrn0 > 2Hn(K ), (4.33)

a contradiction since IC ≤ 2Hn(K ). �
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Recall that, in Corollary 3.10, we showed that, given a half-cylinder K × [0,∞), there
exists v0 > 0 so that every isoperimetric region in K ×[0,∞) of volume larger than or equal
to v0 is a slab K × [0, b], where b = v/Hn(K ). We can use this result to obtain

Theorem 4.13 Let C ⊂ R
n+1 be a cylindrically bounded convex body, C∞ = K × R its

asymptotic cylinder and C+∞ = K × [0,∞). Let {Ei }i∈N be a sequence of isoperimetric
regions with limi→∞ |Ei | = ∞.

Then truncated downward translations of Ei converge in Hausdorff distance to a half-slab
K × [0, b] in C+∞. The same convergence result holds for their free boundaries.

Proof By Corollary 3.10, we can choose v0 > 0 such that each isoperimetric region with
volume v ≥ v0 in C∞+ is a half-slab K × [0, b(v)] of perimeter Hn(K ), where b(v) =
v/Hn(K ).

Since |Ei | → ∞,we canfindvertical vectors yi ,with |yi | → ∞, so thati = (−yi+Ei )∩
{xn+1 ≥ 0} has volume v0 for large enough i ∈ N. We observe also that, by Proposition 4.10
and the fact that IC ≤ Hn(K ), the sets ∂Ei have uniformly bounded diameter.

Consider the convex bodies

Ci = (−yi + C) ∩ {xn+1 ≥ 0}, (4.34)

for i ∈ N. The sets Ci have the same asymptotic cylinder C∞ and we have⋃
i∈N

Ci = C+∞. (4.35)

By construction
PCi (i ) ≤ PC (Ei ) ≤ Hn(K ). (4.36)

Since ∂Ei are uniformly bounded and |i | = v0, there exists a Euclidean geodesic ball
B such that i ⊂ B for all i ∈ N. By (4.35) the sequence of convex bodies {Ci ∩ B}i∈N
converges to C+∞ ∩ B in Hausdorff distance and, by [17, Theorem 3.4], in lipschitz distance.

Hence, by the proof of [17, Theorem 3.4] and [17, Lemma 2.3], we conclude there exists
a finite perimeter set  ⊂ C+∞, such that

i
L1→  and PC+∞() ≤ lim inf

i→∞ PCi (i ). (4.37)

So we obtain from (4.36) and (4.37),

Hn(K ) = IC+∞(v0) ≤ PC+∞() ≤ lim inf
i→∞ PCi (i ) ≤ lim inf

i→∞ PC (Ei ) ≤ Hn(K ), (4.38)

what implies that  is an isoperimetric region of volume v0 in C+∞ and so it is a slab.
Furthermore, the arguments of [17, Theorem 5.11] and [17, Theorem 5.13] can be applied

here to improve the L1 convergence to Hausdorff convergence, both for the sets i and for
their free boundaries. �
Remark 4.14 The proof of Theorem 4.13 implies lim

v→∞ IC (v) = Hn(K ). This way we get a

different proof of Theorem 4.1.
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