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Abstract In the present paper we prove a multiplicity theorem for a quasi-linear elliptic
problem with dependence on the gradient ensuring the existence of a positive solution and
of a negative solution. In addition, we show the existence of the extremal constant-sign
solutions: the smallest positive solution and the biggest negative solution. Our approach
relies on extremal solutions for an auxiliary parametric problem. Other basic tools used in
our paper are sub-supersolution techniques, Schaefer’s fixed point theorem, regularity results
and strongmaximum principle. In our hypotheses we only require a general growth condition
with respect to the solution and its gradient, and an assumption near zero involving the first
eigenvalue of the negative p-Laplacian operator.

Mathematics Subject Classification 35J60 · 35J92

1 Introduction and statement of main results

There is a wide literature on semilinear and quasilinear elliptic equations with gradient
dependence on the nonlinear term of the following type

(P)

{−�pu = f (x, u,∇u) in �

u = 0 on ∂�,
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where � is a smooth bounded domain in R
N , 1 < p < N , �p is the p-Laplacian operator

and f : � × R × R
N → R is a Carathéodory function.

In this setting, the classical variational methods cannot be applied. This kind of problems
are usually studied bymeans of topological degree, method of sub-supersolutions, fixed point
theory and approximation techniques. For instance, in [2] the authors, assuming that f is a
C1 function with growth given by

| f (x, s, ξ)| ≤ a(s)(1 + |ξ |2),
for some increasing function a, obtain a solution of (P) in an ordered interval of sub-
supersolutions. In this respect, we also mention [14] where existence results for (P), when
p = 2, are obtained via sub-supersolutions in the Sobolev space W 2,q(�) with q > N , pro-
vided f (x, s, ξ) is Lipschitzianwith respect to ξ . For the general theory of sub-supersolutions
for nonlinear elliptic problems depending on the gradient we refer to [4]. In [15], by com-
bining Krasnoselskii’s fixed point theorem in cones with blow up techniques, the existence
of a positive solution of (P) is proved when f (x, s, ξ) is a non negative function and has a
suitable growth with respect to s and ξ . Recently, in [5] and [16], under different growth in
the gradient, the existence of a positive solution is achieved via an approximation on finite
dimensional subspaces. An approximation approach in a general functional setting with a
p-sublinear growth condition in the gradient can be found in [3]. A different approach is
proposed in [7] where the authors prove the existence of a positive and a negative solution for
(P), when p = 2, through an iterative method involving Mountain Pass technique assuming
that f (x, s, ξ) satisfies Lipschitz conditions on s and ξ in a neighborhood of zero and has a
growth like

| f (x, s, ξ)| ≤ a1(1 + |s|q), with 1 < q < 2∗ − 1.

It is shown in [11, Theorem 4.3] that if there exist a subsolution u and a supersolution u
belonging to C1(�) with u ≤ u, then the growth condition of Bernstein-Nagumo type

| f (x, s, ξ)| ≤ a(x) + b|ξ |p, with a ∈ L
p

p−1 (�) and b > 0,

for a.a. x ∈ �, all s ∈ [u(x), u(x)], all ξ ∈ R
N , implies the existence of a solution u ∈

W 1,p
0 (�) of (P) satisfying u ≤ u ≤ u. Different other results based on the sub- supersolution

method can be found in [6].
In the present paper, we will prove the existence of a positive and a negative solution for

problem (P) by combining sub-supersolution techniqueswith Schaefer’s fixed point theorem.
More precisely, we will consider an auxiliary problemwhich can be studied through operator
theory and sub-supersolutions method and we will obtain solutions of extremal type. This
allows us to construct a map whose fixed points are exactly the solutions of our problem
(P). Finally, we will show the existence of a fixed point for the constructed map. Moreover,
under the same assumptions, we will prove the existence of the smallest positive and of the
biggest negative solution of (P). Notice that our assumptions imply that zero is a solution of
our problem.

We believe that our result gives a natural approach to the theory of quasilinear elliptic
problemswith gradient dependence. Furthermore, the hypotheseswe assume on the nonlinear
reaction term are general and verifiable. An example is provided at the end of our work.

Let us introduce our main results. In the sequel f : � × R × R
N → R is a Carathéodory

function that is, f (·, s, ξ) is measurable for every s ∈ R and ξ ∈ R
N , f (x, ·, ·) is continuous

for almost every x ∈ �. Let p′ stand for the conjugate of p, i.e., 1
p + 1

p′ = 1. As usual, λ1

denotes the first eigenvalue of the negative p-Laplacian operator on W 1,p
0 (�). For a later use,
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Positive solutions of quasi-linear elliptic equations 527

we recall that the cone of nonnegative functions C1
0 (�)+ = {u ∈ C1

0 (�) : u ≥ 0 in �}
has a nonempty interior in the Banach space C1

0 (�) = {u ∈ C1(�) : u = 0 on ∂�}
given by

int(C1
0 (�)+) =

{
u ∈ C1

0 (�) : u > 0 in �,
∂u

∂ν
< 0 on ∂�

}
,

where ν stands for the outward normal unit vector to ∂�.
Our assumptions are:

( f1) for every M > 0, there exist constants kM > 0 and 0 < θM < λ1 such that

| f (x, s, ξ)| ≤ kM + θM |s|p−1

for a.e. x ∈ �, s ∈ R and ξ ∈ R
N with |ξ | ≤ M ;

( f2)+ for every M > 0 there exists a constant ηM > λ1 such that

lim inf
s→0+

f (x, s, ξ)

s p−1 ≥ ηM > λ1

uniformly for a.e. x ∈ � and all ξ ∈ R
N with |ξ | ≤ M ;

( f3)+ for every M > 0 there exists a constant ζM > 0 such that

lim sup
s→0+

f (x, s, ξ)

s p−1 ≤ ζM

uniformly for a.e. x ∈ � and all ξ ∈ R
N with |ξ | ≤ M .

Assuming ( f1), ( f2)+, ( f3)+, for every w ∈ C1
0 (�), the Dirichlet problem

(Pw)

{−�pu = f (x, u,∇w) in �

u = 0 on ∂�.

has a smallest positive solution uw ∈ C1
0 (�). Then we introduce the map

T : C1
0(�) → C1

0(�), w 	→ uw,

which is continuous and compact. We notice that the fixed points of T coincide with the
solutions of (P). Later on, to apply Schaefer’s fixed point theorem, we need to strengthen
the growth condition ( f1). Namely, we will need

( f̃1) there exist positive constants k0, θ0, θ1 with θ0 + θ1λ
1/p′
1 < λ1 such that

| f (x, s, ξ)| ≤ k0 + θ0|s|p−1 + θ1|ξ |p−1

for a.a. x ∈ �, all s ∈ R, and ξ ∈ R
N .

Our first result reads as follows:

Theorem 1.1 Assume ( f̃1), ( f2)+, ( f3)+. Then, problem (P) has a solution u ∈ int
(C1

0 (�)+).

Let us state now the counterpart of the previous theorem on the negative half-line. We
formulate in a symmetric way the corresponding hypotheses:

( f2)− for every M > 0 there exists a constant ηM > λ1 such that

lim inf
s→0−

f (x, s, ξ)

|s|p−2s
≥ ηM > λ1

uniformly for a.e. x ∈ � and all ξ ∈ R
N with |ξ | ≤ M ;
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( f3)− for every M > 0 there exists a constant ζM > 0 such that

lim sup
s→0−

f (x, s, ξ)

|s|p−2s
≤ ζM

uniformly for a.e. x ∈ � and all ξ ∈ R
N with |ξ | ≤ M .

On the pattern of Theorem 1.1 we can state

Theorem 1.2 Assume ( f̃1), ( f2)−, ( f3)−. Then, problem (P) has a solution v ∈ −int
(C1

0 (�)+).

By combining Theorems 1.1 and 1.2 we obtain our main multiplicity result.

Theorem 1.3 Assume ( f̃1), ( f2)±, ( f3)±. Then, problem (P) has at least two solutions u
and v, with u ∈ int(C1

0(�)+) and v ∈ −int(C1
0 (�)+).

Corollary 1.1 Under the same assumptions as in Theorem 1.3, problem (P) has the smallest
positive solution and the biggest negative solution.

Remark 1.1 Notice that if u is a positive solution of (P), then it is valid the estimate

f (x, u(x),∇u(x)) ≤ λ1u p−1(x)

on a set of positive measure in �. Indeed, if not, u solves the problem{−�pu = m(x)u p−1 in �

u = 0 on ∂�,

for a.e. x ∈ �, where m(x) = f (x,u(x),∇u(x))

u p−1(x)
> λ1. Then the function u has to change sign

(see Remark 2.1 below), which contradicts that u is positive. An analogous remark holds for
a negative solution v of (P).

2 Auxiliary results

Wesplit the present section in two parts. The first one dealswith the sub-supersolutionmethod
for an auxiliary problem with fixed gradient in the right-hand side of the elliptic equation.
These preliminary results will be used to construct the map T on which relies our fixed point
approach for investigating problem (P). The properties of the map T will be studied in the
second part of this section.

2.1 Sub-supersolution method

Let us first recall some well known results that are needed in the sequel. In what follows

we endow the Sobolev space W 1,p
0 (�) with the standard norm ‖u‖ = (∫

�
|∇u|p dx

) 1
p . As

usual, we set u+ = max{u, 0} and u− = max{0,−u}. It is well known if u ∈ W 1,p
0 (�), then

u+, u− ∈ W 1,p
0 (�).

Given m ∈ L∞(�)+, m �= 0, consider the nonlinear weighted eigenvalue problem{−�pu = λ̂m(x)|u|p−2u in �

u = 0 on ∂�
.
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Positive solutions of quasi-linear elliptic equations 529

The least number λ̂ > 0, denoted by λ̂1(m), such that the above problem admits a nontrivial
solution is called the first eigenvalue of (−�p, W 1,p

0 (�), m). It is well known that λ̂1(m) is
positive, isolated, simple and the following variational characterization holds

λ̂1(m) = min

{ ‖u‖p∫
�

m|u|p dx
: u ∈ W 1,p

0 (�), u �= 0

}
.

Wedenote byφ1,m the positive eigenfunction normalized as ‖φ1,m‖p = 1,which is associated
to λ̂1(m). One has φ1,m ∈ int(C1

0 (�)+).
As usual, if m ≡ 1, set λ1 = λ̂1(m) and φ1 = φ1,m . The next remark contains useful

information on the weighted eigenvalue problems (for the proof and further details we refer
to [1]).

Remark 2.1 (1) Ifm1, m2 ∈ L∞(�)+\{0} satisfym1 ≤ m2 a.e. in�, then one has λ̂1(m2) ≤
λ̂1(m1). If in addition m1 �= m2, then, λ̂1(m2) < λ̂1(m1).

(2) If u is an eigenfunction corresponding to an eigenvalue λ̂ �= λ̂1(m), then u ∈ C1
0 (�)

changes sign.

Remark 2.2 Because of assumptions ( f2)+, ( f3)+, we get that f (x, 0, ξ) = 0 for a.e. x ∈ �

and every ξ ∈ R
N . So, in particular, u = 0 is a solution of (P).

Since in the construction below we will deal with positive solutions, without loss of
generality we may assume that f (x, s, ξ) = 0 for a.e. x ∈ �, s ≤ 0, ξ ∈ R

N .

We are going to consider an auxiliary problem and to prove existence of solutions for it.
Namely, for every w ∈ C1

0(�), let us state the Dirichlet problem

(Pw)

{−�pu = f (x, u,∇w) in �

u = 0 on ∂�.

We recall that, for fixed w ∈ C1
0 (�), a function uw ∈ W 1,p(�), with uw ≥ 0 on ∂� (in

the sense of trace), is a supersolution for problem (Pw) if∫
�

|∇uw|p−2∇uw∇v dx ≥
∫

�

f (x, uw,∇w)v dx

for all v ∈ W 1,p
0 (�), v ≥ 0 a.e. in �. A function uw ∈ W 1,p(�), with uw ≤ 0 on ∂� (in the

sense of trace), is a subsolution for problem (Pw) if∫
�

|∇uw|p−2∇uw∇v dx ≤
∫

�

f (x, uw,∇w)v dx

for all v ∈ W 1,p
0 (�), v ≥ 0 a.e. in �.

By a solution of problem (Pw) we mean a weak solution, i.e. a function u ∈ W 1,p
0 (�)

such that ∫
�

|∇u|p−2∇u∇v dx =
∫

�

f (x, u,∇w)v dx

for all v ∈ W 1,p
0 (�).

Before stating the theorem guaranteeing existence of solutions of (Pw), some auxiliary
lemmas are required.

Lemma 2.1 Assume ( f1). Then, for every w ∈ C1
0 (�) there exists uw ∈ int(C1

0 (�)+)

supersolution of (Pw).
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Proof Let us fix w ∈ C1
0 (�) and set M = ‖w‖C1 . From assumption ( f1), we have that

| f (x, s,∇w(x))| ≤ kM + θM |s|p−1 (2.1)

for a.e. x ∈ � and all s ∈ R, where kM > 0 and 0 < θM < λ1.
Consider the following Dirichlet problem{−�pu = kM + θM |u|p−1 in �

u = 0 on ∂�.

Since the embedding of W 1,p
0 (�) into L p(�) is compact, the superposition operator

KM : W 1,p
0 (�) → W −1,p′

(�) defined by KM (u(·)) = kM + θM |u(·)|p−1 is completely
continuous. Since the p-Laplacian operator is strictly monotone, continuous and bounded
(see [4]), we have that −�p − KM is pseudomonotone and bounded. Thanks to the estimate

1

p

∫
�

|∇u|p dx −
∫

�

[
kM |u| + 1

p
θM |u|p

]
dx ≥ 1

p

(
1 − θM

λ1

)
‖u‖p − kM |�| 1

p′ λ
− 1

p
1 ‖u‖,

where |�| denotes the Lebesgue measure of �, and using θM < λ1 (see ( f1)), it follows that
−�p − KM is coercive, hence surjective. Therefore, there exists a function uw ∈ W 1,p

0 (�)

such that {−�puw = kM + θM |uw|p−1 in �

uw = 0 on ∂�.

Let us prove that uw ≥ 0. Acting as test function with −u−
w , we get∫

�

|∇u−
w |p dx = −

∫
�

|∇uw|p−2∇uw∇u−
w dx = −

∫
�

(kM + θM |uw|p−1)u−
w dx ≤ 0,

which implies that u−
w = 0, so uw ≥ 0. Notice that uw �= 0. By classical regularity results

(see [9,10,17]), we have that uw ∈ int(C1
0 (�)+). Then from (2.1) we infer that uw is a

supersolution of (Pw), which completes the proof. ��
Lemma 2.2 Assume ( f2)+. Then, for every w ∈ C1

0(�), there exists δ = δ(w) > 0 such
that if 0 < ε < δ, then εφ1 is a subsolution of (Pw).

Proof Let us fix w ∈ C1
0(�) and set M = ‖w‖C1 . From assumption ( f2)+, for σ > 0 so

small that ηM − σ > λ1, there exists γ = γ (w) > 0 such that

f (x, s,∇w(x)) ≥ (ηM − σ)s p−1 > λ1s p−1 (2.2)

for a.e. x ∈ � and all 0 < s < γ . Set δ = γ ‖φ1‖−1
L∞ . Then, for every 0 < ε < δ and all

ϕ ∈ W 1,p(�), ϕ ≥ 0, we find that∫
�

|∇(εφ1)|p−2∇(εφ1)∇ϕ dx = λ1

∫
�

(εφ1)
p−1ϕ dx ≤

∫
�

f (x, εφ1,∇w(x))ϕ dx,

that is, εφ1 is a subsolution of (Pw). ��
Now we are ready to prove the main result of this subsection.

Theorem 2.1 Assume ( f1), ( f2)+, ( f3)+. Then, for every w ∈ C1
0 (�) there exists uw ∈

int(C1
0 (�)+) which is the smallest positive solution of (Pw).
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Positive solutions of quasi-linear elliptic equations 531

Proof Let us fix w ∈ C1
0 (�) and set M = ‖w‖C1 . From Lemmas 2.1 and 2.2, we get that

there exist a supersolution uw and for 0 < ε < δ(w) a subsolution εφ1 of (Pw). Since
uw and εφ1 belong to int(C1

0 (�)+), it is possible to choose ε small enough in order that
uw − εφ1 ∈ int(C1

0 (�)+). Consider now the following truncation of f :

f+(x, s) =
⎧⎨
⎩

f (x, εφ1(x),∇w(x)) if s < εφ1(x)

f (x, s,∇w(x)) if εφ1(x) ≤ s ≤ uw(x)

f (x, uw(x),∇w(x)) if s > uw(x).

Denote by E+ : W 1,p
0 (�) → R the associated energy functional, that is

E+(u) = 1

p
‖u‖p −

∫
�

∫ u(x)

0
f+(x, t) dt dx for all u ∈ W 1,p

0 (�).

Clearly, E+ is sequentially weakly lower semicontinuous, coercive, and continuously differ-
entiable. Hence, it has a global minimum ũε

w which is a critical point of E+, thus a weak
solution of {−�pu = f+(x, u) in �

u = 0 on ∂�.

Moreover, by a standard comparison argument one can show that

εφ1 ≤ ũε
w ≤ uw,

a.e. in �, so that ũε
w is a solution of (Pw). Also the strong maximum principle entails

ũε
w ∈ int(C1

0 (�)+). Denote by Sε the set of C1
0 -solutions of (Pw) which lie in the ordered

interval [εφ1, uw]. As seen from above, Sε �= ∅. If we consider in Sε the pointwise order,
then Sε is downward directed and, as can be noticed through Zorn’s Lemma, it has a minimal
element uε

w (see [12] for more details). Let us prove that uε
w is the smallest solution of (Pw) in

Sε. To this end, take v ∈ Sε. The function min{v, uε
w} is a supersolution of (Pw) and clearly,

min{v, uε
w} ≥ εφ1. Then, there exists a solution z of (Pw) such that εφ1 ≤ z ≤ min{v, uε

w}.
In particular, it turns out that z ∈ Sε, z ≤ uε

w, and from the minimality of uε
w in Sε, we

conclude that z = uε
w. So uε

w ≤ v, as we wished.
Fix now a decreasing sequence {εn}n of positive numbers such that εn → 0. For every

n ∈ N there existsuεn
w which is the smallest solution of (Pw) in the ordered interval [εnφ1, uw].

The sequence {uεn
w }n is bounded in W 1,p

0 (�), so there exists uw ∈ W 1,p
0 (�) such that

uεn
w ⇀ uw in W 1,p

0 (�). In particular, uεn
w → uw in L p(�) and uεn

w (x) → uw(x) for a.e.
x ∈ �. Notice that {uεn

w }n is decreasing by construction, so that the convergence uεn
w → uw

is uniform.
We want to prove that uw �= 0. Assume by contradiction that uw = 0 and set zn = uεn

w

‖uεn
w ‖ .

Hence zn ∈ W 1,p
0 (�) and ‖zn‖ = 1 for every n ∈ N. So, {zn}n converges weakly in W 1,p

0 (�)

to some z ∈ W 1,p
0 (�). On account of zn ≥ 0 a.e. in �, we get z ≥ 0 a.e. in �. Denote

hn(x) = f (x, uεn
w (x),∇w(x))

(uεn
w (x))p−1

.

The fact that uεn
w is a solution of (Pw) reads as

−�puεn
w = f (x, uεn

w (x),∇w(x)),

so we get
− �pzn = hn(x)z p−1

n . (2.3)
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Notice also that by invoking assumptions ( f2)+ and ( f3)+ and using the uniform convergence
of {uεn

w }n to zero, we deduce (for a possibly larger ζM )

λ1 < ηM − σ ≤ f (x, uεn
w (x),∇w(x))

(uεn
w (x))p−1

≤ ζM ,

that is

λ1 < ηM − σ ≤ hn(x) ≤ ζM

a.e. x ∈ �, whenever n is sufficiently large. From the above inequality we get that hn is
bounded in L∞(�). Consequently, there exists a function h ∈ L p′

(�) such that hn ⇀ h in
L p′

(�). By Mazur’s Lemma (see [8, Chapter II]) we derive that

λ1 < ηM − σ ≤ h(x) ≤ ζM (2.4)

a.e. x ∈ �. On the other hand, (2.3) implies that {zn}n strongly converges to some z in
W 1,p

0 (�). Here we use that {hn}n is bounded in L∞(�) and the (S+) property of the p-
Laplacian operator. The strong convergence ensures that ‖z‖ = 1, so z �= 0. Passing to the
limit in (2.3) yields that z verifies{−�pz = hz p−1 in �

z = 0 on ∂�.

Therefore 1 is an eigenvalue of thisweighted eigenvalue problem. From (2.4) andRemark 2.1,
we have that 1 = λ̂1(λ1) > λ̂1(h) which, again from Remark 2.1, implies that z changes
sign, a contradiction. So, we have proved that uw �= 0.

Classical regularity results enable us to derive that uw ∈ int(C1
0 (�)+). In order to conclude

the proof it remains to show that uw is the smallest positive solution of (Pw). It is enough to
prove that it is the smallest positive solution in the ordered interval [0, uw]. To this end, fix a
solution v of (Pw) in [0, uw]. In particular, v is a super solution of (Pw) and we can choose
εn > 0 such that v − εnφ1 ∈ int(C1

0 (�)+). Then we infer that εnφ1 ≤ uεn
w ≤ v ≤ uw for

n ∈ N large enough. Letting n → ∞, we are led to uw ≤ v as we wished. ��
2.2 Existence result via Schaefer’s fixed point theorem

Let us recall the well known (see, e.g., [13, Theorem 4.27 ])

Theorem 2.2 (Schaefer’s fixed point theorem) Let X be a Banach space and let T : X −→ X
be a continuous and compact map. Assume that the set

{u ∈ X : u = λT (u) for some λ ∈ [0, 1]}
is bounded. Then T has a fixed point.

Throughout the rest of the paper, assumptions ( f1), ( f2)±, ( f3)± hold.
In view of Theorem 2.1, it is well defined the map T : C1

0 (�) → C1
0(�) given by

T (w) = uw,

where uw is the smallest positive solution of (Pw) as guaranteed by Theorem 2.1.

123



Positive solutions of quasi-linear elliptic equations 533

It is clear that a fixed point for T will provide a positive solution to the original problem
(P). In order to prove the continuity and the compactness of themap T wewill need some pre-
liminary results. For any w ∈ C1

0 (�), denote by Sw the set of all functions u ∈ int(C1
0 (�)+)

that are solutions of problem (Pw).

Lemma 2.3 If {wn}n is a bounded sequence in C1
0 (�) and {un}n is a sequence in C1

0 (�)

with un ∈ Swn for all n, then {un}n is relatively compact in C1
0 (�).

Proof Let M > 0 satisfy ‖wn‖C1 ≤ M for all n. We claim that there exists a subsequence
of {un}n converging in C1

0 (�). From assumption ( f1) it follows that

‖un‖p =
∫

�

f (x, un,∇wn)un dx

≤ kM |�| 1
p′ ‖un‖p + θMλ−1

1 ‖un‖p

≤ kM |�| 1
p′ λ

− 1
p

1 ‖un‖ + θMλ−1
1 ‖un‖p,

which implies that {un}n is bounded in W 1,p
0 (�) because θM < λ1. On the basis of classical

regularity results, we get that {un}n is bounded in C1,α(�) for some α ∈ (0, 1) independent
of n (due to the assumption that {wn}n is bounded in C1

0 (�)). Since C1,α(�) is compactly
embedded into C1(�), we achieve our claim. ��
Lemma 2.4 If {wn}n is a sequence in C1

0(�) such that wn → w in C1
0 (�) and if {un}n is

a sequence in C1
0 (�) with un ∈ Swn for all n, then there exist a subsequence {unk }k and an

element u ∈ Sw such that unk → u in C1
0 (�).

Proof From Lemma 2.3, there exist a subsequence {unk }k and some u ∈ C1
0(�) such that

unk −→ u in C1
0 (�). We wish to prove that u ∈ Sw. We note that

{−�punk = f (x, unk ,∇wnk ) in �

unk = 0 on ∂�

for all k ∈ N. So, for every ϕ ∈ W 1,p
0 (�) and k ∈ N we obtain

∫
�

|∇unk |p−2∇unk ∇ϕ dx =
∫

�

f (x, unk ,∇wnk )ϕ dx .

Passing to the limit as k → ∞ we deduce∫
�

|∇u|p−2∇u∇ϕ dx =
∫

�

f (x, u,∇w)ϕ dx,

i.e. u is a solution of (Pw). In order to prove that u �= 0 it is enough to make use of the same
argument as in the corresponding part of the proof of Theorem 2.1. Then classical regularity
results and maximum principle imply u ∈ int(C1

0 (�)+), which completes the proof. ��
The following is the key Lemma in our construction.

Lemma 2.5 If {wn}n is a sequence in C1
0(�) such that wn → w in C1

0 (�). Then, for any
v ∈ Sw there exist vn ∈ Swn such that

vn → v in C1
0 (�).
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Proof Fix n ∈ N, and let z0n be the unique solution of the problem
{−�pu = f (x, v,∇wn) in �

u = 0 on ∂�.

Exploiting assumption ( f2)+ and bearing in mind that v ∈ int(C1
0 (�)+) observe that

f (·, v(·),∇wn(·)) �≡ 0, which leads to z0n �= 0.
Let us prove that z0n lies in int(C1

0 (�)+). First, it is straightforward to establish that {z0n}n

is bounded in W 1,p
0 (�), thus it is bounded in L∞(�) (see [9]), and therefore in C1,α(�) for

some α ∈ (0, 1) (see [10]). Since C1,α(�) is compactly embedded in C1(�), there exists a
subsequence {z0n p

}p strongly convergent in C1
0 (�) to a solution of the problem

{−�pu = f (x, v,∇w) in �

u = 0 on ∂�.

Taking into account that v is the unique solution of the above problem, we get

lim
p→∞ z0n p

= v in C1
0 (�).

Actually, as readily seen, the strong convergence is true for the whole sequence

lim
n→∞ z0n = v in C1

0(�),

which implies the desired assertion.
Now, let us consider the unique positive solution z1n of the following problem

{−�pu = f (x, z0n,∇wn) in �

u = 0 on ∂�.

As before we infer that

lim
n→∞ z1n = v in C1

0 (�).

Inductively, we can define, for each n ∈ N, zk
n in C1

0(�) as the unique solution of the
problem

(Pk
n )

{−�pu = f (x, zk−1
n ,∇wn) in �

u = 0 on ∂�,

and for each k ∈ N it follows that

lim
n→∞ zk

n = v in C1
0 (�).

Let us now prove that there exists a constant c > 0 such that ‖zk
n‖ ≤ c for all n, k ∈ N.

Indeed, setting M = max{supn ‖wn‖C1 , ‖w‖C1}, by hypothesis ( f1) we have that

‖zk
n‖p =

∫
�

f (x, zk−1
n ,∇wn)zk

n dx ≤
⎡
⎣kM |�| 1

p′ + θM

(∫
�

(zk−1
n )p dx

) p−1
p

⎤
⎦ λ

− 1
p

1 ‖zk
n‖,

so

‖zk
n‖p−1 ≤ λ

− 1
p

1

[
kM |�| 1

p′ + θM‖zk−1
n ‖p−1

L p

]
≤ λ

− 1
p

1 kM |�| 1
p′ + λ−1

1 θM‖zk−1
n ‖p−1.
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If we set c1 = λ
− 1

p
1 kM |�| 1

p′ and c2 = λ−1
1 θM , it is easy to see by induction that

‖zk
n‖p−1 ≤ c1

⎛
⎝k−1∑

j=0

c j
2

⎞
⎠ + ck

2‖z0n‖p−1

for every k ∈ N. Since c2 < 1 (in view of assumption ( f1)) and {z0n}n is bounded in W 1,p
0 (�),

we deduce that, for every n, k ∈ N, there holds

‖zk
n‖p−1 ≤ c1

⎛
⎝ ∞∑

j=0

c j
2

⎞
⎠ + c3,

with a constant c3 > 0. This entails our claim.
By standard arguments as already used before, we have that the net {zk

n}n,k is relatively
compact in C1

0(�). Then up to a subnet, we can assume that there exists u ∈ C1
0 (�) such

that

lim
n,k→∞ zk

n = u,

that is, there exists N ∈ N such that

‖zk
n − u‖C1 < ε (2.5)

for all n, k > N . At this point, for every k > N , we obtain that lim supn→∞ ‖zk
n −u‖C1 ≤ ε.

We are thus able to select a subsequence {zn p }p with the property

lim
p→∞ ‖zk

n p
− u‖C1 = ‖ lim

p→∞ zk
n p

− u‖C1 = ‖v − u‖C1 ≤ ε,

thereby u = v.

Consequently, according to (2.5), for all n, k > N we have

‖zk
n − v‖C1 < ε. (2.6)

Now, for each n ∈ N there exist {ks = ks(n)}s ⊆ N and vn ∈ C1
0(�) satisfying

lim
s→∞ zks

n = vn in C1
0 (�).

Clearly, vn is a solution of (Pwn ). Let us prove that

lim
n→∞ vn = v in C1

0 (�).

If not, we can construct a subsequence {n p}p with n p > N such that ‖vn p − v‖C1 > ε > 0
for all p ∈ N and some ε > 0. This amounts to saying that

ε < ‖vn p − v‖C1 = ‖ lim
s→∞ zks

n p
− v‖C1 = lim

s→∞ ‖zks
n p

− v‖C1 .

In particular, for any p ∈ N there exists sp = sp(n p) ∈ N such that ksp > N and

‖z
ksp
n p − v‖C1 > ε,

against (2.6).
Recall that v ∈ int(C1

0 (�)+). Since the convergence of {vn}n to v is uniform on compact
subsets of �, it follows that vn > 0 in � whenever n is sufficiently large. Also, since { ∂vn

∂ν
}n

converges uniformly to ∂v
∂ν

on ∂� we obtain that vn ∈ int(C1
0 (�)+) for n large enough. This

completes the proof. ��
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3 Proofs of main results

In the present section, in order to apply Schaefer’s theorem, we replace ( f1)with the stronger
assumption ( f̃1).

Proof of Theorem 1.1 We wish to prove that the map T introduced in the previous section is
continuous and compact. First, let us note that the map T is compact, i.e. for any sequence
{wn}n bounded in C1

0 (�), {T (wn)}n is relatively compact in C1
0 (�). This follows readily

from Lemma 2.3 applied to un = T (wn) ∈ Swn .
Let us prove now that T is continuous. Let {wn}n be a sequence in C1

0 (�) such that

lim
n→∞ wn = w in C1

0 (�)

and, for every n ∈ N, set un = T (wn). By Lemma 2.4, there exist a subsequence {unk }k and
u ∈ Sw that fulfill

lim
k→∞ unk = u in C1

0 (�).

We need to check that u is the smallest positive solution of (Pw). Fix a positive solution
v of (Pw). By Lemma 2.5, there exists vn ∈ int(C1

0 (�)+) (positive) solution of (Pwn ) such
that

lim
n→∞ vn = v in C1

0 (�).

Since unk is the smallest positive solution of (Pwnk
), we have that

unk ≤ vnk for all k ∈ N.

Passing to the limit yields u ≤ v. This means that

lim
k→∞ T (wnk ) = T (w) in C1

0 (�).

In fact, the whole sequence T (wn) converges to T (w). If not, there exists a subsequence
{wn p }p such that ‖T (wn p ) − T (w)‖C1 ≥ ε for every p ∈ N and for some ε > 0. Arguing
as above, we find a subsequence un pr

= T (wn pr
) converging to T (w), which gives rise to a

contradiction. It is thus proven that T is continuous.
Now we check that the set

{w ∈ C1
0 (�) : w = λT (w) for some λ ∈ [0, 1]} (3.1)

is bounded in C1
0 (�). So let w ∈ C1

0 (�) and λ ∈ [0, 1] be such that w = λT (w). We may
assume that λ > 0 (otherwise, w = 0). Then, w is a solution of the problem{−�pw = f̃λ(x, w,∇w) in �

w = 0 on ∂�,

where f̃λ(x, s, ξ) = λp−1 f (x, λ−1s, ξ). By ( f̃1), the Carathéodory function f̃λ satisfies the
growth condition

| f̃λ(x, s, ξ)| ≤ k0 + θ0|s|p−1 + θ1|ξ |p−1 (3.2)

for a.a. x ∈ �, all s ∈ R, and all ξ ∈ R
N . Notice that the coefficients in (3.2) are independent

of λ ∈ (0, 1]. We claim that there is M > 0 independent of w and λ such that

‖w‖ ≤ M. (3.3)
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To see this, acting with the test function w and using (3.2), we obtain the following estimate

‖w‖p =
∫

�

f̃λ(x, w,∇w)w dx ≤
∫

�

(
k0w + θ0|w|p + θ1|∇w|p−1|w|) dx

≤ k0|�| 1
p′ λ

− 1
p

1 ‖w‖ + θ0λ
−1
1 ‖w‖p + θ1λ

− 1
p

1 ‖w‖p.

Since 1 > θ0λ
−1
1 +θ1λ

− 1
p

1 (see ( f̃1)) and p > 1, we get (3.3). In view of (3.2), (3.3), classical
regularity theory (cf. [9,10]) yields M ′ > 0 independent of w and λ such that ‖w‖C1 ≤ M ′.
This establishes the boundedness of the set in (3.1).

Observe that any fixed point of the map T is a solution of problem (P) in the interior of
the cone of nonnegative functions by construction, the thesis follows by applying Schaefer’s
fixed point theorem (Theorem 2.2). ��

Mutatis mutandis we can show that the map assigning to every w ∈ C1
0 (�) the biggest

negative solution of (Pw) (its existence can be proved similarly to that of the smallest positive
solution) is also continuous and compact. Finally, we can conclude as in the case of positive
solutions to achieve the results in Theorems 1.2 and 1.3.

Proof of Corollary 1.1 From Theorem 1.1 we know that there exists a solution u ∈
int(C1

0 (�)+) which can be regarded as a supersolution of (P).
By virtue of ( f2)+ we can find ε0 > 0 such that

−�p(εφ1) = λ1(εφ1)
p−1 ≤ f (x, εφ1, ε∇φ1)

provided 0 < ε ≤ ε0. This expresses that εφ1 is a subsolution of (P) for all 0 < ε ≤ ε0. In
addition, since u, φ1 ∈ int(C1

0 (�)+), wemay choose ε0 so small that u−εφ1 ∈ int(C1
0 (�)+)

for every 0 < ε ≤ ε0.
We are thus in the position to apply [4, Theorem 3.22], which yields the existence of

the smallest positive solution uε of problem (P) in the ordered interval [εφ1, u] for all
0 < ε ≤ ε0. Set un := u 1

n
. Thanks to the choice of un , we note that the sequence {un}n is

decreasing. So, there exists u0 ∈ C1
0(�)+ such that un → u0 in C1

0(�) and u0 is a solution
of (P). On the basis of hypotheses ( f2)+ and ( f3)+ we also infer that u0 �= 0 (see the
proof of Theorem 2.1). This enables us to apply the strong maximum principle to obtain that
u0 ∈ int(C1

0 (�)+).
Now we show that u0 is the smallest positive solution. To this end, let v be a positive

solution of problem (P). The nonlinear regularity theory and strong maximum principle
ensure that v ∈ int(C1

0 (�)+). It follows that

1

n
φ1 ≤ min{u, v} ≤ u

whenever n is sufficiently large. By [4, Theorem 3.22] we see that there exists a solution vn

of (P)with vn ∈ [ 1n φ1,min{u, v}] because min{u, v} is a supersolution. Then the minimality
property of un entails that un ≤ vn ≤ v. Letting n → ∞ leads to u0 ≤ v.

In an analogouswaywe can proceed to justify the existence of the biggest negative solution
of problem (P). ��

Finally, we provide a simple example of nonlinearity f (x, s, ξ) which fulfills our
hypotheses.
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Example 3.1 Let g : � × R
N → R be a continuous, positive function. Then, for any

continuous function f : � × R × R
N → R satisfying the growth condition ( f̃1) and

f (x, s, ξ) = |s|p−2s(λ1 + g(x, ξ)) for |s| small,

Theorem 1.3 applies. Indeed, it is readily seen that hypotheses ( f2)±, ( f3)± hold true.
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