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Abstract We describe how to use the perturbation theory of Caffarelli to prove Evans–
Krylov typeC2,α estimates for solutions of nonlinear elliptic equations in complex geometry,
assuming a bound on the Laplacian of the solution. Our results can be used to replace the
various Evans–Krylov type arguments in the complex geometry literature with a sharper and
more unified approach. In addition, our methods extend to almost-complex manifolds, and
we use this to obtain a new local estimate for an equation of Donaldson.
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1 Introduction

The Evans–Krylov theorem [22,38] for nonlinear elliptic equations

F(D2u) = f,

with F concave, has long been used in the study of PDEs to show that bounds on u and D2u
imply C2,α bounds on u for some α > 0. This theory applies whenever f is suitably bounded
and the bounds on u imply uniform ellipticity. This scenario appears in the study of many
PDEs, including the real Monge–Ampère equation, the σk-equations and their differential-
geometric counterparts.

At the same time, nonlinear concave operators occur frequently in the study of complex
geometry. Complex-differential techniques often yield the estimates
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432 V. Tosatti et al.

‖u‖L∞ � K , �u � K , (1.1)

and one would like to conclude that u is bounded in C2,α . In the examples, as we will see,
the bound on the Laplacian of u typically gives bounds for the complex Hessian of u, but not
on the real Hessian of u.

Up until recently there have been two approaches to the C2,α estimate in complex geom-
etry. The first is to carefully reprove the Evans–Krylov estimates in the complex setting by
differentiating the equation twice in complex coordinates and using concavity together with
a Harnack inequality. The second approach is to establish estimates on the real Hessian D2u,
using bounds that one typically has on the complex Hessian, and then apply the real Evans–
Krylov theory referred to above. Both approaches require considerable work to carry out,
and are also suboptimal, in the sense that the C2,α estimates depend on two derivatives of f .

Recently the second-named author showed that [65], for the complex Monge–Ampère
equation,

det

(
∂2u

∂zi∂z j

)
= eψ,

one can instead directly apply the theory of Caffarelli [3] to obtain local C2,α estimates
depending only on the constant K of (1.1) and aHölder estimate ofψ . This settled a regularity
issue in complex geometry related to [12] (see also [19]).

In this paper, we generalize the method of [65] to a number of nonlinear equations which
naturally occur in complex (and almost complex) geometry.We show that for these equations,
under the assumptions (1.1), theC2,α estimates follow from the general nonlinear PDE theory
developed by Caffarelli. This can replace the menagerie of arguments in the literature by a
single unified theorem.Moreover, we hope that our results can be used as a convenient “black
box” in the future study of elliptic equations in complex geometry.

We should stress that the contributions of this paper are not to the general theory of real
nonlinear elliptic PDE. Rather our aim is to demonstrate how the existing PDE theory (some
of which may be unfamiliar to complex geometers) can be used to simplify and improve the
C2,α estimate for many examples of elliptic equations appearing in complex geometry.

We now describe the various equations in complex geometry for which our results can
be applied. Let (M, J, ω) be a compact Hermitian manifold. Suppose that the real-valued
function u ∈ C2(M) satisfies

‖u‖L∞(M) � K , and �u � K , (1.2)

where

�u = nωn−1 ∧ √−1∂∂u

ωn

is the complex Laplacian associated to ω. Note that in all of the cases described below, the
L∞ bound on u could be replaced by a normalization condition, say

∫
M u = 0, once the

Laplacian bound is given.
Assume thatψ ∈ Cα0(M) andχ is a real (1, 1) formwith coefficients inCβ(M).We allow

the possibility that χ and ψ depend on u, and indeed this is important for our applications.
We consider u satisfying one of the following equations.

The complex Monge–Ampère equation:(
χ + √−1∂∂u

)n = eψωn

χ + √−1∂∂u > 0. (1.3)
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The complex Hessian equations: for a fixed k = 2, . . . , n − 1,
(
χ + √−1∂∂u

)k ∧ ωn−k = eψωn,

(
χ + √−1∂∂u

) j ∧ ωn− j > 0, for j = 1, . . . , k. (1.4)

The complex σn/σk equations: for a fixed k = 2, . . . , n − 1,
(
χ + √−1∂∂u

)k ∧ ωn−k = eψ
(
χ + √−1∂∂u

)n

χ + √−1∂∂u > 0. (1.5)

The Monge–Ampère equation for (n − 1)-plurisubharmonic equations:(
χ + 1

n − 1

(
(�u)ω − √−1∂∂u

))n

= eψωn

χ + 1

n − 1

(
(�u)ω − √−1∂∂u

)
> 0. (1.6)

The (n − 1)-plurisubharmonic version of the complex Hessian and σn/σk equations:

replace
√−1∂∂u by

1

n − 1

(
(�u)ω − √−1∂∂u

)

and suppose u satisfies one of (1.4) or (1.5). (1.7)

Almost complex versions of all of the above. Replace (M, J, ω) Hermitian by (M, J, ω)

almost Hermitian, χ by a real (1, 1) formw.r.t. J and
√−1∂∂u by 1

2 (d Jdu)(1,1) and suppose
that

with these replacements,

u satisfies one of (1.3), (1.4), (1.5), (1.6) or (1.7). (1.8)

Our main result is:

Theorem 1.1 Assume that u ∈ C2(M) satisfies (1.2) on (M, J, ω) and any one of (1.3),
(1.4), (1.5), (1.6), (1.7) or (1.8). Then

‖u‖C2,α(M) � C,

where α, C depend only on n, β, (M, J, ω), K , ‖ψ‖Cα0 and ‖χ‖Cβ .

A first remark is that although we have stated the results for compact M , this is only for
convenience. All our estimates and results are purely local.

We now discuss each of the Eqs. (1.3), (1.4), (1.5), (1.6), (1.7) and (1.8) in turn, describing
briefly some of the existing results in the literature.

We begin with the complex Monge–Ampère equation (1.3) when χ is a fixed Kähler
metric (i.e. χ > 0 and dχ = 0). Global existence of solutions was proved in the seminal
work of Yau [71], in which he used Calabi’s third order estimate [7] to establish the C2,α

estimate. This estimate depends on three derivatives of ψ . A direct proof depending on two
derivatives of ψ , using the Evans–Krylov approach, was given by Siu [50] (cf. Trudinger
[63]). A C2,α estimate depending only on the Hölder bound for ψ , but also on a bound
for the real Hessian of u was given by Dinew–Zhang–Zhang [19]. As discussed above, the
second-named author [65] established the result of Theorem 1.1 in the case of the complex
Monge–Ampère equation (under slightly weaker hypotheses for u).
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In the general setting of a fixed Hermitian metric χ , the existence of solutions to the
complex Monge–Ampère equation (1.3) was established by Cherrier [13] for n = 2 (and in
higher dimensions with additional hypotheses) and by the first and third-named authors in
general [56]. Cherrier [13] established a C2,α bound via a Calabi-type third order estimate.
Guan–Li [30] proved a C2,α estimate by first establishing a bound on the real Hessian of u
using a maximum principle argument and then applying the usual Evans–Krylov theory. In
[55], a direct Evans–Krylov argument was given, following a similar approach to that given
in the notes of Siu [50]. All of these existing estimates depend on at least two derivatives of
ψ . Theorem 1.1 can replace and improve these results.

The complexHessian equations (1.4)withχ = ωKählerwere solved byDinew–Kołodziej
[18], who made use of estimates of Hou [34] and Hou–Ma–Wu [35]. For related works see
[1,17,36,39,44,45]. A C2,α estimate in this case was proved by Jbilou [36] by bounding the
real Hessian and then applying the real Evans–Krylov theory (see also [34,37]).

The σn/σk equations for k = n − 1 and χ a fixed Kähler metric was introduced by
Donaldson [20] in the context of global complex geometry.When n = 2, Chen [10] observed
that the equation reduces to the complex Monge–Ampère equation (1.3). Necessary and
sufficient conditions for existence of solutions for k = n − 1 were given by Song–Weinkove
[51] using a parabolic method (see [11,68,69]). For general k, the analogous result was
proved by Fang–Lai–Ma [23], again using a parabolic equation. The elliptic equation, for χ

a Hermitian metric, was solved by Sun [53] (see also the work of Guan–Sun [31] and Li [40]).
In particular, Sun established the elliptic Evans–Krylov C2,α estimate [53], again depending
on two derivatives of ψ .

The Monge–Ampère equation for (n − 1)-plurisubharmonic functions (1.6) has appeared
in the literature in various forms, corresponding to different choices of χ and ω. Harvey–
Lawson introduced this equation and the notion of (n −1)-plurisubharmonic functions in Cn

[32]. In the case of compactmanifolds, the simplest case is whenχ is a fixedHermitianmetric
and ω is Kähler. This was introduced and investigated by Fu–Wang–Wu [25,26], motivated
by some questions related to mathematical physics (see [27,41], for example). The Eq. (1.6)
in this setting was solved by the first and third-named authors [60], and then more recently
extended to the case of ω Hermitian [61].

Another important setup for Eq. (1.6) is the case

χ = χ0 + ∗E,

where χ0 is a Hermitian metric, ∗ is the Hermitian Hodge star operator of ω, and

E = 1

(n − 1)!Re
(√−1∂u ∧ ∂(ωn−2)

)
.

Note that Theorem 1.2 still applies, because by the bounds (1.2) we conclude that
‖∇u‖Cβ (M) � C , for a uniform constant C , and hence χ has a uniform Cβ bound. The
Eq. (1.6) with this choice of χ was introduced by Popovici [48], motivated by some ques-
tions in algebraic geometry, and was also studied by the first and third-named authors [61]
as an approach towards a conjecture of Gauduchon [28]. The general question of existence
of solutions remains open.

There is yet another natural choice of χ in (1.6):

χ = χ0 + 2 ∗ E + u
√−1∂∂

(
ωn−2) ,

where χ0 is a Hermitian metric, and ∗E is the same as above. In this case,

χ + 1

n − 1

(
(�u)ω − √−1∂∂u

)
= ∗

(
ωn−1
0 + √−1∂∂(uωn−2)

)
,
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where ω0 is Hermitian and ωn−1
0 + √−1∂∂(uωn−2) is a positive (n − 1, n − 1) form. This

choice of χ gives an equation introduced by Fu–Wang–Wu [25]. It is not known in general
whether it can be solved (except when ω is Kähler [60]).

The C2,α estimates for (1.6) in the above settings (again, depending on two derivatives of
ψ) were established in [25,60,61] by adapting the usual Evans–Krylov approach. Theorem
1.1 replaces and sharpens these arguments.

As far as we know, the Eqs. (1.7) have yet to be studied, at least in these explicit forms
on compact manifolds. However, we have included these equations since they appear to be
natural PDEs which easily fit into our setting.

The Dirichlet problem for the almost complex Monge–Ampère equation (1.8) has been
solved in various settings by Harvey–Lawson [33] and Pliś [47]. A related, but different,
equation in the almost complex case was investigated by Delanoë [16]. Donaldson’s Calabi–
Yau equation for almost Kähler forms [21], which is not ostensibly of the form (1.8), does
in fact fit into this setting. Evans–Krylov results were proved for this equation in [70] and
[62]. In Section 5 below, we describe Donaldson’s equation and how our results can be used
to prove a new local Evans–Krylov estimate (Theorem 5.1).

We next describe the local PDE theorem which we use to prove Theorem 1.1. This PDE
theorem is a consequence of results of Caffarelli [3] and ideas adapted from the work of the
second-named author [65] (see also [49]). We have packaged the theorem in a way to make
it easy to apply to our examples.

Let B1 be the unit ball inR2n . Write Sym(2n) for the space of symmetric 2n×2n matrices
with real entries. We consider equations of the form

F(S(x) + T (D2u(x), x), x) = f (x), for f ∈ Cα0 , x ∈ B1, (1.9)

where

F : Sym(2n) × B1 → R,

S : B1 → Sym(2n),

T : Sym(2n) × B1 → Sym(2n).

For any A ∈ Sym(2n) will denote by ‖A‖ its operator norm, i.e. the maximum of the
absolute value of the eigenvalues of A. We impose the following structure conditions on F, S
and T . We assume that there exists a compact convex set E ⊂ Sym(2n), positive constants
λ,�, K and β ∈ (0, 1) such that the following hold.

H1: F is of class C1 in U × B1 where U is a neighborhood of E and

(1) F is uniformly elliptic in E :

λ|ξ |2 �
∑
i, j

Fi j (A, x)ξ iξ j � �|ξ |2,

for all A ∈ E, ξ ∈ R
2n, x ∈ B1, where Fi j (A, x) = ∂ F

∂ Ai j
(A, x).

(2) F is concave in E :

F

(
A + B

2
, x

)
�

1

2
F(A, x) + 1

2
F(B, x), for all A, B ∈ E, x ∈ B1.

(3) F has the following uniform Hölder bound in x :

|F(N , x) − F(N , y)| � K |x − y|β, for all N ∈ E, x, y ∈ B1,

and |F(N , 0)| � K , for all N ∈ E .
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H2: The map T : Sym(2n) × B1 → Sym(2n) satisfies the following conditions:

(1) For all x, y ∈ B1 and all N ∈ Sym(2n),

‖T (N , x) − T (N , y)‖
‖N‖ + 1

� K |x − y|β .

(2) For each fixed x ∈ B1, the map N �→ T (N , x) is linear on Sym(2n).
(3) For all P � 0 and x ∈ B1,

T (P, x) � 0, and K −1‖P‖ � ‖T (P, x)‖ � K‖P‖.
H3: S : B1 → Sym(2n) has a uniform Cβ bound:

‖S(x) − S(y)‖ � K |x − y|β, for all x, y ∈ B1

and ‖S(0)‖ � K .
The result is:

Theorem 1.2 With the assumptions above, suppose that u ∈ C2(B1) solves (1.9)and satisfies

S(x) + T (D2u(x), x) ∈ E, for all x ∈ B1. (1.10)

Then u ∈ C2,α(B1/2) and

‖u‖C2,α(B1/2)
� C,

where α, C depend only on α0, K , n,�, λ, β, ‖ f ‖Cα0 and ‖u‖L∞(B1).

The above interior estimate can immediately be applied to each local chart for equations
on a compact manifold to obtain a global estimate.

Remark 1.3 We also expect a parabolic version of the above theorem to hold (cf. [66]). This
would be useful in providing a unified approach to parabolic Hölder estimates for parabolic
flows in complex geometry, including theKähler–Ricci flow, the Chern–Ricci flow, the J-flow
and their generalizations (see [8,9,11,14,23,29,46,59,68] for example).

The outline of the paper is as follows. In Sect. 2 we describe how to apply Theorem 1.2
to obtain Theorem 1.1. In Sect. 3 we briefly describe the relevant Evans–Krylov–Caffarelli
theory that we need, and then in Sect. 4 we use it to establish Theorem 1.2. Finally in Sect.
5 we describe an application of our results to an equation of Donaldson.

2 Equations on complex and almost complex manifolds

In this section, we give the proof of Theorem 1.1. First, pick a chart in M which is identified
with the unit ball B1 inCn with local coordinates (z1, . . . , zn). In these coordinates we write

ω = √−1
∑
i, j

gi j dzi ∧ dz j ,

where (gi j (x)) is a positive definite n × n Hermitian matrix at each point x ∈ B1. Similarly,
we write

χ = √−1
∑
i, j

hi j dzi ∧ dz j ,
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Nonlinear elliptic equations on complex manifolds 437

for (hi j (x)) an n × n Hermitian matrix (not necessarily positive definite). Furthermore we

have
√−1∂∂u = √−1

∑
i, j ui j dzi ∧ dz j , where ui j = ∂2u

∂zi ∂z j is the complex Hessian of u.

We also have real coordinates x1, . . . , x2n on B1 defined by

zi = xi + √−1xn+i , for i = 1, . . . , n.

The standard complex structure onCn corresponds to an endomorphism J of the real tangent
space to B1. The endomorphism J sends ∂/∂xi to ∂/∂xn+i and ∂/∂xn+i to −∂/∂xi . As a
matrix,

J =
(
0 −In

In 0

)
,

for In the n × n identity matrix.
In the standard way, we can identify Hermitian n ×n matrices with the subset of Sym(2n)

given by J -invariant matrices. Namely, for H a Hermitian matrix, we write H = A+√−1B
with A, B real n × n matrices, and define

ι(H) =
(

A B
−B A

)
∈ Sym(2n).

Note that if H1, H2 are two Hermitian matrices then

H1 � H2 ⇐⇒ ι(H1) � ι(H2). (2.1)

Moreover, observe that

ι
(
2ui j (x)

)
= p(D2u(x)),

for

p(N ) := 1

2
(N + J T N J ),

the projection onto the J -invariant part. The image of ι is equal to the image of p.
The complex Monge–Ampère equation (1.3). Define S(x) = ι(2hi j (x)) and T (N , x) =

p(N ). Notice that T (D2u(x), x) = ι(2ui j (x)).
Next observe that the assumption �u � K implies that the positive (1, 1) form χ +√−1∂∂u is bounded from above. Moreover, the Eq. (1.3) together with the arithmetic-

geometric means inequality gives a lower bound for χ + √−1∂∂u away from zero. Hence
there is a uniform C0 such that on B1,

C−1
0 (δi j ) � 2(hi j + ui j ) � C0(δi j ), (2.2)

where (δi j ) is the n × n identity matrix, considered as a Hermitian matrix. Hence from (2.1)
we have, for x ∈ B1,

C−1
0 I2n � S(x) + T (D2u(x), x) � C0 I2n . (2.3)

We take the convex set E to be the set of matrices N ∈ Sym(2n) with

C−1
0 I2n � N � C0 I2n,

and note that this set is compact. It is then immediate that

S(x) + T (D2u(x), x) ∈ E, for all x ∈ B1.
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438 V. Tosatti et al.

We define F(N , x) = det(N )
1
2n (independent of x) for all N in a small neighborhood of

E , extend F arbitrarily to all of Sym(2n) × B1, and let f = 2eψ/n det(gi j )
1/n ∈ Cα0 . Note

that for a Hermitian matrix H ,

det(ι(H)) = (det H)2.

Then since u solves (1.3), we have that

F(S(x) + T (D2u(x), x), x) = det
(
ι
(
2(hi j + ui j )

))1/2n

= det
(
2(hi j + ui j )

)1/n

= 2eψ/n det(gi j )
1/n = f. (2.4)

It remains to check the conditions H1–H3. For H1.(1), note that Fi j (N , x) =
1
2n (det N )1/2n(N−1)i j for N ∈ E and by definition of E it follows immediately that we
have uniform ellipticity with λ and � depending only on n and C0. Concavity of F in E is
well-known (see e.g. [5]), giving H1.(2). H1.(3) is trivially satisfied.

For H2.(3), observe that if P ∈ Sym(2n) is nonnegative then for all vectors v ∈ R
2n

〈T (P, x)v, v〉 = 〈p(P)v, v〉 = 1

2
(〈Pv, v〉 + 〈P Jv, Jv〉) � 0,

and hence T (P, x) � 0. Next,

1

2
‖P‖ � ‖T (P, x)‖ = 1

2
sup

‖v‖=1

(〈Pv, v〉 + 〈P Jv, Jv〉) � ‖P‖. (2.5)

The other conditions follow easily. We can then apply Theorem 1.2 and obtain
‖u‖C2,α(M) � C , as required.

The complex Hessian equations (1.4). Recall that if λ = (λ1, . . . , λn) ∈ R
n , we define

σk(λ) to be the kth elementary symmetric polynomial

σk(λ) =
∑

i1<···<ik

λi1 · · · λik .

We can rewrite the Eq. (1.4) in terms of σk as follows. Write T 1,0M for the (1, 0) part of the
complexified tangent space of M (that is, the span of ∂

∂z1
, . . . , ∂

∂zn over C). Then we have an
endomorphism

A : T 1,0M → T 1,0M

given by the matrix Ak
i = gk j (hi j + ui j ). Namely, given X = Xi ∂

∂zi we define A(X) =
Ak

i Xi ∂
∂zk . The matrix (Ak

i ) is Hermitian with respect to the inner product on T 1,0M given

by (gi j ). That is, for X, Y ∈ T 1,0M , we have

〈AX, Y 〉g = gi j Ai
k XkY j = (hi j + ui j )Xi Y j = gi j Xi A j

�Y � = 〈X, AY 〉g.

Now let λ1 � . . . � λn be the eigenvalues of (Ak
i ), some of which could be negative. Then

the Eq. (1.4) can be written as

(σk(λ))1/k =
(

n

k

)1/k

eψ/k

σ j (λ) > 0, for j = 1, . . . , k, (2.6)
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Nonlinear elliptic equations on complex manifolds 439

for λ = (λ1, . . . , λn). Indeed, this is easy to see after picking coordinates for which (gi j ) is
the identity, and (hi j + ui j ) is diagonal.

To cast (2.6) in the form (1.9), we take a chart in M which is identifiedwith the unit ball B1

in C
n with local coordinates (z1, . . . , zn). We let S(x) = ι(2hi j (x)) and T (N , x) = p(N ),

so that T (D2u(x), x) = ι(2ui j (x)).

Next observe that the assumption�u � K implies that the eigenvalues λ j of (Ak
i ) satisfy

σ1(λ) = λ1 + · · · + λn � K ′. We have

∂σk(λ)

∂λi
= σk−1(λ|i),

where σp(λ|i) is the pth elementary symmetric function of the n-tuple (λ1, . . . , λn) where
we set λi = 0. We will need the following algebraic lemma, which can be easily extracted
from the literature (cf. [64]).

Lemma 2.1 Let λ = (λ1, . . . , λn) be an n-tuple of real numbers which satisfy

σ j (λ) > 0, for j = 1, . . . , k, (2.7)

(σk(λ))1/k � A−1 > 0, (2.8)

σ1(λ) � A, (2.9)

for some 2 � k � n, and a constant A > 0. Then there exists a constant K0 > 0, which
depends only on A, n, k, such that

(σ j (λ))1/j � K −1
0 > 0, for j = 1, . . . , k, (2.10)

K −1
0 � σ j−1(λ|i) � K0, for i = 1, . . . , n, and j = 2, . . . , k, (2.11)

−K0 � λ j � K0, for j = 1, . . . , n. (2.12)

Proof Inequality (2.10) just follows from (2.7), (2.8) and the Maclaurin inequality

σ j (λ)
1
j � Cn, j,kσk(λ)

1
k � Cn, j,k A−1.

Next we show (2.11). Assumption (2.7) implies that we have for 2 � j � k,

σ j−1(λ|i) � σ j−1(λ|1) > 0,

see e.g. [64, Proposition 2.1 (2)]. It is also easy to check ([64, Proposition 2.1 (1)]) that for
2 � j � k,

n∑
i=1

σ j−1(λ|i) = (n − j + 1)σ j−1(λ),

hence
σ j−1(λ|i) � (n − j + 1)σ j−1(λ) � Cn, jσ1(λ) j−1 � Cn, j A j−1, (2.13)

using the Maclaurin inequality and (2.9). Using (2.8) we also have

n∏
i=1

σ j−1(λ|i) � Cn, jσ j (λ)
n( j−1)

j � Cn, j,kσk(λ)
n( j−1)

k � Cn, j,k A−n( j−1), (2.14)

where the first inequality is [64, Proposition 2.1 (4)]. Combining (2.13) and (2.14), we get
(2.11).
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Finally, we prove (2.12). Since k � 2, inequalities (2.11) hold with j = 2,

K −1
0 � σ1(λ|i) � K0.

But we clearly have

λi = σ1(λ) − σ1(λ|i),
and the bound (2.12) follows. ��

Thanks to (2.6), the eigenvalues λ j of (Ak
i ) satisfy the hypotheses of Lemma 2.1, for

some uniform constant A (on the whole of B1). Let K0 be the constant that we obtain from
Lemma 2.1.

Given a matrix N ∈ Sym(2n), then ι−1(p(N )) is an n × n Hermitian matrix. Denote
by A(N )k

i = gk j (0)
(
ι−1(p(N ))

)
i j , which is Hermitian with respect to the inner product

gi j (0), with eigenvalues λ(0) = (λ1(0), . . . , λn(0)). Let E be the convex set of matrices
N ∈ Sym(2n) with

−2K0 � λi (0) � 2K0, for 1 � i � n

(σ j (λ(0))1/j � (2K0)
−1, for 1 � j � k. (2.15)

The set E is compact, and the concavity of σ 1/j
j (see [5], for example) implies that E is convex.

Now write λ(x) = (λ1(x), . . . , λn(x)) for the eigenvalues of A(N , x)k
i = gk j (x)(

ι−1(p(N ))
)

i j . For N in a sufficiently small neighborhood of E we define

F(N , x) = (σk(λ(x)))1/k,

and extend F arbitrarily to Sym(2n)× B1. Since gi j (x) is a continuously-varying Hermitian
matrix, for all N ∈ E we have that λ(x) satisfies

−4K0 � λi (x) � 4K0, for 1 � i � n

(σ j (λ(x))1/j � (4K0)
−1, for 1 � j � k. (2.16)

as long as x is sufficiently close to 0. If necessary, we replace the ball B1 with a smaller ball
Br (for some uniform 0 < r < 1) to ensure that this holds. Of course, by a simple covering
argument this does not affect the conclusion.

From what we have shown above, if u solves (1.4) on M then the eigenvalue λ(x) corre-
sponding to the matrix N = S(x)+ T (D2u(x), x) satisfies (2.16) with 4K0 replaced by K0.
Again using the continuity of gi j (x), it follows from the definition of E that, after possibly
shrinking r , we have

S(x) + T (D2u(x), x) ∈ E,

for all x ∈ Br .
By the concavity of σ 1/k

k , we see that for each fixed x , F(N , x) is concave in E . Moreover,
thanks to Lemma 2.1, (2.16) implies bounds of the form

(K ′
0)

−1 � σk−1(λ|i) � K ′
0, 1 � i � n,

so we see that for N ∈ E , F(N , x) is uniformly elliptic. Since gi j (x) is a smoothly-varying
Hermitian matrix, it is easy to see that, since E is compact,

|F(N , x) − F(N , y)| � K |x − y|β,

for all N ∈ E and all x, y ∈ B1, giving H1.(3).
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We can then apply Theorem 1.2 and obtain ‖u‖C2,α(M) � C , as required.
The complex σn/σk equations (1.5). The argument for the Eq. (1.5) is similar, and slightly

simpler, than the argument given above for the complex Hessian equations. Indeed, using the
same notation as there, we may write (1.5) in terms of the eigenvalues λ = (λ1, . . . , λn) as

(
σn

σk

)1/(n−k)

= e−ψ/(n−k)

(
n

k

)−1/(n−k)

, λ1 � · · · � λn > 0. (2.17)

From the assumption �u � K we have σ1(λ) � K ′ and hence all the eigenvalues λi are
bounded from above by K ′. Moreover, the equation (2.17) implies lower bounds for λi away
from zero. Indeed, from (2.17) we have an upper bound for∑

i1<···<ik
λi1 · · · λik

λ1λ2 · · · λn
,

and since each term in the sum is positive we obtain in particular,

1

λk+1λk+2 · · · λn
� C.

Hence for each i = 1, . . . , n,

λi � λn �
1

Cλk+1 · · · λn−1
� c > 0,

for a uniform c > 0, since λk+1, · · · , λn−1 are all uniformly bounded from above.
Now define E to be the compact convex set of matrices N ∈ Sym(2n) whose eigenvalues

λi (0) (with respect to g(0)) satisfy

K −1
0 � λi (0) � K0,

for a sufficiently large K0. The operator

F(N , x) =
(

σn(λ(x))

σk(λ(x))

)1/(n−k)

is concave (see e.g. [52]) and uniformly elliptic on E (after possibly shrinking the neighbor-
hood), and hence we can apply Theorem 1.2 in the same way as for the complex Hessian
equations above.

Remark 2.2 In fact, by a similar argument, Theorem 1.1 applies to the more general complex
σ�/σk equations

(χ + √−1∂∂u)k ∧ ωn−k = eψ(χ + √−1∂∂u)� ∧ ωn−�

(χ + √−1∂∂u) j ∧ ωn− j > 0, for j = 1, . . . , �, (2.18)

where 1 < k < � � n.

The Monge–Ampère equation for (n−1)-psh functions (1.6). First note that the assumption
�u � K implies that the positive definite (1, 1) form

χ + 1

n − 1

(
(�u)ω − √−1∂∂u

)
> 0

has bounded trace with respect to g. The Eq. (1.6) then implies that this positive definite
(1, 1) form is uniformly bounded from above, and below away from zero.
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We define S(x) = ι(2hi j (x)). We let g(x) = ι(2gi j (x)) be the Riemannian metric
associated to (gi j ) and we define

T (N , x) = 1

n − 1

(
1

2
tr(g(x)−1p(N ))g(x) − p(N )

)
.

As with the complex Monge–Ampère equation above, define F by F(N , x) = det(N )
1
2n

(independent of x) for N in a neighborhood of E , extend F arbitrarily to Sym(2n)× B1, and
observe that Eq. (1.6) is equivalent to

F(S(x) + T (D2u(x), x), x) = 2eψ/n det(gi j )
1/n =: f.

Take the convex set E to be the set of matrices N ∈ Sym(2n) with

K −1
0 I2n � N � K0 I2n,

for a sufficiently large constant K0.
We check that the hypotheses of Theorem 1.2 are satisfied. Clearly H1, H3 and H2.(2)

hold. For H2.(1) we have

‖T (N , x) − T (N , y)‖
�

1

(n − 1)

(
1

2
tr((g−1(x) − g−1(y))p(N ))g(x) − 1

2
tr(g−1(y)p(N ))(g(y) − g(x))

)

� K |x − y|β‖N‖.
Lastly, we check H2.(3). If P � 0, then 1

2 tr(g(x)−1p(P))g(x) − p(P) � 0, because at
any x we can choose a basis such that g(x) = I while p(P) is diagonal with eigenval-
ues λ1, λ1, . . . , λn, λn � 0, and then the eigenvalues of 1

2 tr(g(x)−1p(P))g(x) − p(P) are∑
i �= j λi � 0. From this we also see that

1

n − 1
‖p(P)‖ �

1

n − 1

∥∥∥∥12 tr(g(x)−1p(P))g(x) − p(P)

∥∥∥∥ � ‖p(P)‖.

But P � 0 implies from (2.5) that ‖p(P)‖ � ‖P‖ � 2‖p(P)‖, which gives H2.(3).
We can then apply Theorem 1.2 and obtain ‖u‖C2,α(M) � C .
The (n −1)-plurisubharmonic version of the complex Hessian and σn/σk equations (1.7).

This case follows easily by combining the arguments for the previous three examples, choos-
ing S(x), T (N , x) as in the discussion of (1.6), and F(N , x), E as in the discussions of (1.4)
and (1.5) respectively.

The almost complex case (1.8). Here we assume more generally that (M, J ) is an almost-
complex manifold. Then one can define (d Jdu)(1,1), which takes the place of

√−1∂∂u.
The convention we use for the action of J on 1-forms is Jα(X) := −α(J X), for any 1-
form α and vector X . With this convention, we have (d Jdu)(1,1) = 2

√−1∂∂u when J
is integrable. For notational convenience, in the following we will work with (d Jdu)(1,1)

instead of 1
2 (d Jdu)(1,1), which will not affect any of the results. We first deal with the case

of the Monge–Ampère equation (1.3) in this setting.
In this case, we define the Laplacian of u to be

�u = nωn−1 ∧ (d Jdu)

ωn
= nωn−1 ∧ (d Jdu)(1,1)

ωn
,

which differs from the usual Riemannian Laplacian by a first order term.
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We fix a point p ∈ M and choose a real coordinate system x1, . . . , x2n centered at p.
Writing J = (J k

�) we see that

d Jdu =
(
−J k

�∂k∂i u − (∂i J k
�)∂ku

)
dxi ∧ dx�. (2.19)

Its (1, 1) part is given by

(d Jdu)(1,1) = 1

2

(
−J k

�∂k∂i u − J a
i J b

� J k
b∂k∂au

−(∂i J k
�)∂ku − J a

i J b
� (∂a J k

b)∂ku
)

dxi ∧ dx�.

For later use, we note that

(d Jdu)(2,0)+(0,2) = 1

2

(
−(∂i J k

�)∂ku + J a
i J b

�(∂a J k
b)∂ku

)
dxi ∧ dx�. (2.20)

Associated to (d Jdu)(1,1) is a symmetric bilinear form H(u) defined by H(u)(X, Y ) =
(d Jdu)(1,1)(X, JY ). Compute

(H(u))i j := 1

2

(
∂i∂ j u + J k

i J �
j∂k∂�u

)
+ Ei j ,

where

Ei j = 1

4

(
−J �

j (∂i J k
�) − J �

i (∂ j J k
�) + J �

j (∂� J k
i ) + J �

i (∂� J k
j )

)
∂ku.

Or, in other words,

H(u)(x) = p(D2u(x), x) + E,

where the “error” E depends linearly on Du (cf. [33, Proposition 4.2]). Here we denote by

p(N , x) = 1

2
(N + J T (x)N J (x)).

We set T (N , x) = p(N , x). Observe that T satisfies the properties H2.(1) and H2.(2).
Moreover, we may pick coordinates x1, . . . , x2n so that at the origin,

J (0) =
(
0 −In

In 0

)
,

the standard complex structure. By shrinking the neighborhood if necessary, J (x) is only
a small perturbation of J (0) and so T (N , x) also satisfies the property H2.(3) by the same
argument as above.

We define S and F in the obvious way, and thus we have essentially the same setup as in
the complexMonge–Ampère equation (1.3) with the exception of the extra term E . However,
this term is linear in Du. The uniform bounds that we assume on u and �u imply a C1,β

bound for u for any 0 < β < 1. Hence the E term is bounded in Cβ and can then be absorbed
in the term χ .

The arguments for the other Eqs. (1.4), (1.5), (1.6) and (1.7) in the almost complex case
follow similarly.
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3 Evans–Krylov theory on Euclidean space

In this section,we recall Evans–Krylov theory onEuclidean space and its perturbation version
due to Caffarelli. Again in this section B1 will denote the unit ball in R

2n .
First, recall the following version of Evans–Krylov theorem (see [4, Theorem 6.6] and

also [6,22,38]).

Theorem 3.1 Assume that F : Sym(2n) → R is a concave function and uniformly elliptic,
i.e.,

λ‖P‖ � F(N + P) − F(N ) � �‖P‖, ∀N , P ∈ Sym(2n), P � 0.

If F(0) = 0 and a continuous function u : B1 → R satisfies

F(D2u) = 0, in the viscosity sense.

Then u ∈ C2,β(B1/2) and

‖u‖C2,β (B1/2)
� C‖u‖L∞(B1)

where β ∈ (0, 1) and C only depend on n, λ,�.

For our application, we need a more general version of the above theorem. We first
introduce the following definition.

Definition 3.2 Let F2n(λ,�, K , γ ) be a family of functions � : Sym(2n) × B1 → R

depending on positive constants λ,�, K and γ ∈ (0, 1). An element � ∈ F2n(λ,�, K , γ )

satisfies the following conditions:

• Fiberwise concavity. For each fixed x ∈ B1,

�

(
A + B

2
, x

)
�

1

2
�(A, x) + 1

2
�(B, x), for all A, B ∈ Sym(2n).

• Uniform Ellipticity. For all x ∈ B1 and all N , P ∈ Sym(2n) with P � 0 we have

λ‖P‖ � �(N + P, x) − �(N , x) � �‖P‖.
• Hölder bound in x . For all x, y ∈ B1 and all N ∈ Sym(2n),

|�(N , x) − �(N , y)|
‖N‖ + 1

� K |x − y|γ .

Remark 3.3 If � ∈ F2n(λ,�, K , γ ) and the equation �(D2u(x), x) = 0 is a linear equa-
tion, then the linear equation takes the form∑

i, j

ai j (x)ui j (x) = 0

with ‖ai j (x)‖Cγ � K and the eigenvalues of (ai j (x)) lie between λ and �/2n.

Now, we state the Evans–Krylov theorem for � ∈ F2n(λ,�, K , γ ).

Theorem 3.4 Assume that � ∈ F2n(λ,�, K , γ ) and f ∈ Cα0(B1). If u ∈ C2(B1) satisfies

�(D2u(x), x) = f (x) in B1
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then u ∈ C2,α(B1/2) and

‖u‖C2,α(B1/2)
� C

where C, α depend only on α0, K , γ, n, λ,�, ‖ f ‖Cα0 (B1), ‖u‖L∞(B1) and �(0, 0).

Indeed this theorem is a direct consequence of a theorem of Caffarelli [3, Theorem 3].
This result is also used in the second-named author’s paper [65, Corollary 2.3], in the case
when � does not depend on x . Furthermore, Theorem 3.4 remains true if u ∈ C0(B1) is just
a viscosity solution, and the proof is the same.

For the reader’s convenience, we recall the statement of Caffarelli’s theorem, following
the exposition in [4, Theorem 8.1]. Suppose that we have a viscosity solution of the equation

G(D2u(x), x) = f (x), for x ∈ B1, (3.1)

where u ∈ C0(B1), G : Sym(2n) × B1 → R is continuous in x , f is continuous, G(0, 0) =
f (0) = 0, and G satisfies the uniform ellipticity condition

λ‖P‖ � G(N + P, x) − G(N , x) � �‖P‖, for x ∈ B1, (3.2)

for some positive constants λ,�, and for all N , P ∈ Sym(2n) with P � 0. Let

β̃(x) = sup
N∈Sym(2n)

|G(N , x) − G(N , 0)|
‖N‖ + 1

.

Furthermore assume that the following hypotheses hold:

Hypothesis 1. There are constants 0 < α < 1 and Ce > 0 such that for any symmetric
matrix N with G(N , 0) = 0 and any w0 ∈ C0(∂ B1), there exists a function w ∈ C2(B1) ∩
C0(B1) ∩ C2,α(B1/2) which solves

G(D2w(x) + N , 0) = 0 (3.3)

in B1 and w = w0 on ∂ B1, and

‖w‖C2,α(B1/2)
� Ce‖w‖L∞(B1). (3.4)

Hypothesis 2. There exist 0 < α < α, 0 < r0 � 1, C1 > 0 and C2 > 0, such that(
1

r2n

∫
Br

β̃2n
)1/2n

� C1rαr−α
0 ,

(
1

r2n

∫
Br

| f |2n
)1/2n

� C2rαr−α
0 ,

for all 0 < r � r0.
Then Theorem 8.1 of [4] asserts:

Theorem 3.5 Let u solve (3.1) with the assumptions described above, including Hypothesis
1 and Hypothesis 2. Then u is C2,α at the origin. More precisely, there exists a constant
C > 1 which depends only on n, λ, �, Ce, α, α, C1, C2 and a polynomial function P of
degree 2 such that

‖u − P‖L∞(Br ) � C3r2+αr−(2+α)
0 , for all r � C−1r0,

r0|D P(0)| + r20‖D2P‖ � C3,

C3 � C(‖u‖L∞(Br0 ) + r20 (C2 + 1)).

We now use Theorems 3.1 and 3.5 to prove Theorem 3.4.
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Proof of Theorem 3.4 We follow the exposition in [65, Corollary 2.3]. Define

G(N , x) = �(N + t0 I2n, x) − f (0),

where t0 ∈ R is chosen so that �(t0 I2n, 0) = f (0). Such a t0 exists because of the ellipticity
of �(N , 0), which also implies that

|t0| � λ−1|�(0, 0) − f (0)|. (3.5)

We also define g(x) = f (x) − f (0) and v(x) = u(x) − t0
2 |x |2. Then we have that

G(D2v(x), x) = g(x),

and G(0, 0) = g(0) = 0. Thanks to (3.5), it is enough to bound the C2,α norm of v.
It is clear that G satisfies the ellipticity condition (3.2) and is continuous in x . To verify

Hypothesis 1, it is enough to observe that since G is uniformly elliptic, the Dirichlet problem
for a viscosity solution of the Eq. (3.3) can be solved using Perron’s method, and the Evans–
Krylov Theorem 3.1 shows that u is C2,α with the estimate (3.4), with Ce and α depending
only on n, λ,�.

Furthermore, we have

β̃(x) = sup
N∈Sym(2n)

|�(N + t0 In, x) − �(N + t0 In, 0)|
‖N‖ + 1

� C |x |γ ,

where C depends on K , n, λ, �(0, 0) and f (0). It follows that Hypothesis 2 is satisfied for
any r0 � 1 and any α < min(γ, α0, α), with C1, C2 depending only on K , n, λ, �(0, 0),
f (0) and ‖ f ‖Cα0 (B1).
We can thus apply Theorem 3.5 and conclude that v (and hence u) is C2,α at 0 with the

bounds given there. By translation of the coordinates, we see that u is C2,α at every x ∈ B1/2

with these bounds. But a standard covering argument (see e.g. [4, Remark 3, p.74]) implies
that u ∈ C2,α(B1/2) with ‖u‖C2,α(B1/2)

� C for a constant C depending only on the stated
quantities. ��

4 Proof of Theorem 1.2

In this section, we present the proof of Theorem 1.2.

Proof of Theorem 1.2 Under the assumptions of Theorem 1.2, we shall construct a map
� : Sym(2n) × B1 → R in F2n(K −1λ, 2K n�, 5�K n, β) such that

F(S(x) + T (D2u(x), x), x) = �(D2u(x), x) for all x ∈ B1,

and then apply Theorem 3.4.
First of all, recall that since 〈A, B〉 = tr(AB) defines an inner product on the space of

symmetric matrices, every linear map Sym(2n) → R can be written as X �→ tr(AX) for
some symmetric matrix A ∈ Sym(2n). In this way, we identify the derivative DG of any
map G : Sym(2n) → R at a given point with an element of Sym(2n).

Let alsoH be subset of Sym(2n) given by symmetric matrices with all eigenvalues in the
interval [λ,�]. By assumptionH1.(1), for any x ∈ B1 and A ∈ E , the derivative DF = (Fi j )

of F(·, x) at A lies in H.
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Following [65], we define F̄ : Sym(2n) × B1 → R as follows

F̄(N , x) := inf{L(N ) | L : Sym(2n) → R affine linear, DL ∈ H,

L(A) � F(A, x),∀A ∈ E}.
Note that F̄(N , x) > −∞ for all N ∈ Sym(2n), x ∈ B1. We have the following lemma (cf.
[65, Section 3]). ��
Lemma 4.1 F̄ satisfies the following properties.

(i) F̄(·, x) is concave on Sym(2n) for all x ∈ B1, and F̄ = F on E × B1.
(ii) F̄(·, x) is Lipschitz on Sym(2n) with Lipschitz constant 2n�, for all x ∈ B1.
(iii) For all N , P ∈ Sym(2n) with P � 0 and for all x ∈ B1, we have

λ‖P‖ � F̄(N + P, x) − F̄(N , x) � 2n�‖P‖.
(iv) For all N ∈ Sym(2n) and all x, y ∈ B1 we have

|F̄(N , x) − F̄(N , y)| � K |x − y|β.

Proof Part (i) is immediate. Indeed, F̄(·, x) is concave on Sym(2n) since it is an infimum
of affine linear functions. From H1, F(·, x) is concave on E and its derivative DF at a point
A ∈ E lies in H, it follows that F̄ = F on E × B1.

Every affine linear map L : Sym(2n) → R can be written as

L(X) = tr(AX) + c

for A = DL ∈ Sym(2n) and some constant c ∈ R. Now for any N , X ∈ Sym(2n) we will
show that

|F̄(N + X, x) − F̄(N , x)| � 2n�‖X‖,
which will establish (ii). From the definition of F̄ it follows easily that there exist affine linear
maps L1, L2 : Sym(2n) → R with A1 = DL1, A2 = DL2 ∈ H, L1, L2 � F(·, x) on E
and

F̄(N + X, x) = L1(N + X), F̄(N , x) = L2(N ).

Hence

F̄(N + X, x) − F̄(N , x) = L1(N + X) − L2(N )

� L2(N + X) − L2(N )

= tr(A2X) � 2n�‖X‖,
where the first inequality uses the fact that L1(N + X) is an infimum of L(N + X) over all
affine linear functions L with L|E � F(·, x)|E . Similarly,

F̄(N + X, x) − F̄(N , x) = L1(N + X) − L2(N )

� L1(N + X) − L1(N )

= tr(A1X) � −2n�‖X‖.
For (iii), all that remains is to prove the lower bound of F̄(N + P, x) − F̄(N , x) for

P � 0. Write μi � 0 for the eigenvalues of P . Then if F̄(N + P, x) = L1(N + P) and
F̄(N , x) = L2(N ), we have, using the notation and argument as above,

F̄(N + P, x) − F̄(N , x) � tr(A1P) � λ(μ1 + · · · + μ2n) � λ‖P‖.
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For (iv), given N ∈ Sym(2n) there exist affine linear maps L1, L2 : Sym(2n) → R with
DL1, DL2 ∈ H, L1 � F(·, x) and L2 � F(·, y) on E and

F̄(N , x) = L1(N ), F̄(N , y) = L2(N ).

For any given A ∈ E we have

L2(A) � F(A, y) � F(A, x) − K |x − y|β,

using hypothesisH1.(3). Therefore L̃2 := L2 + K |x − y|β is another affine linear map with
DL̃2 ∈ H and L̃2 � F(·, x) on E . By definition of F̄ , we have

L1(N ) � L̃2(N ) = L2(N ) + K |x − y|β,

i.e. L1(N ) − L2(N ) � K |x − y|β . Similarly we obtain L2(N ) − L1(N ) � K |x − y|β , and
so

|F̄(N , x) − F̄(N , y)| = |L1(N ) − L2(N )| � K |x − y|β .

This completes the proof. ��

Now, define � : Sym(2n) × B1 → R by

�(N , x) := F̄ (S(x) + T (N , x), x) ,

noting that �(0, 0) = F̄(S(0), 0) is bounded by H1 and H3.

Lemma 4.2 � lies in F2n(K −1λ, 2K n�, 5�K n, β).

Given the lemma, we can complete the proof of Theorem 1.2. Indeed, by the assumption
(1.10), we know

S(x) + T (D2u(x), x) ∈ E, ∀x ∈ B1.

It follows then from Lemma 4.1 (i) that for x ∈ B1

�(D2u(x), x) = F(S(x) + T (D2u(x), x), x) = f (x).

and applying Theorem 3.4 completes the proof. ��

Proof of Lemma 4.2 First, we check fiberwise concavity of �. Fix x ∈ B1. Then for any
A, B ∈ Sym(2n) we have

�

(
A + B

2
, x

)
= F̄

(
S(x) + T

(
A + B

2
, x

)
, x

)

= F̄

(
S(x) + T (A, x)

2
+ S(x) + T (B, x)

2
, x

)

�
1

2
F̄ (S(x) + T (A, x), x) + 1

2
F̄ (S(x) + T (B, x), x)

= 1

2
�(A, x) + 1

2
�(B, x).

Here, we have used linearity of T and concavity of F̄ .
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For uniform ellipticity of �, we compute for x ∈ B1 and any N , P ∈ Sym(2n) with
P � 0,

�(N + P, x) − �(N , x)

= F̄(S(x) + T (N + P, x), x) − F̄(S(x) + T (N , x), x)

= F̄(S(x) + T (N , x) + T (P, x), x) − F̄(S(x) + T (N , x), x).

From the ellipticity of F̄ we have

λ‖T (P, x)‖ � �(N + P, x) − �(N , x) � 2n�‖T (P, x)‖
and hence from H2.(3),

K −1λ‖P‖ � �(N + P, x) − �(N , x) � 2K n�‖P‖,
giving the required ellipticity of �.

Finally, we need to check that � has a Hölder bound in x . Using Lemma 4.1 (ii) and (iv)
we have

|�(N , x) − �(N , y)|
‖N‖ + 1

= 1

‖N‖ + 1

∣∣F̄(S(x) + T (N , x), x) − F̄(S(y) + T (N , y), y)
∣∣

�
1

‖N‖ + 1

( ∣∣F̄(S(x) + T (N , x), x) − F̄(S(x) + T (N , x), y)
∣∣

+ ∣∣F̄(S(x) + T (N , x), y) − F̄(S(y) + T (N , y), y)
∣∣ )

� K |x − y|β + 2n�

‖N‖ + 1
‖S(x) + T (N , x) − S(y) − T (N , y)‖

� K |x − y|β + 2n�‖S(x) − S(y)‖
‖N‖ + 1

+ 2n�‖T (N , x) − T (N , y)‖
‖N‖ + 1

� K |x − y|β + 2K n�|x − y|β + 2K n�|x − y|β � 5K n�|x − y|β,

as required. ��

5 Donaldson’s equation

In this final section, we give an application of Theorem 1.1 to an equation of Donaldson.
We begin by recalling some basic definitions. A symplectic form ω on a manifold M

tames an almost complex structure J if at each point of M , ω(X, J X) > 0 for all nonzero
vectors X . We can define a Riemannian metric by gω(X, Y ) = 1

2 (ω(X, JY ) + ω(Y, J X)).
If, in addition, ω(J X, JY ) = ω(X, Y ) for all X, Y then we say that ω is compatible with J .

We now describe a conjecture of Donaldson. Let M be a compact 2n dimensional (real)
manifold with an almost complex structure J and a symplectic form � taming J . Let σ be
a smooth (positive) volume form on M . Suppose ω̃ is a symplectic form on M compatible
with J , satisfying [ω̃] = [�] ∈ H2(M,R) and solving the Calabi-Yau equation

ω̃n = σ. (5.1)

Donaldson conjectured that, for n = 2, there are C∞ a priori bounds on ω̃ depending only
on �, J and σ . If this result were true, it would have important applications to symplectic
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topology [21,42,43,54]. Some partial results towards this conjecture were given in [62,70].
In particular, the conjecture holds, for any n, if the curvature of the canonical connection
of (g�, J ) satisfies a certain positivity condition [62]. The conjecture was solved in several
special cases, such as the Kodaira–Thurstonmanifold [58] andmore general T 2-bundles over
T 2 [2,24] assuming T 2 symmetry. The interested reader can consult the survey [57].

The result we prove is as follows:

Theorem 5.1 Let ω̃ ∈ [�] solve (5.1) on (M2n, J,�) with the notation as above. Fix α0 ∈
(0, 1). Suppose that on a geodesic g�-ball BR of radius R > 0 in M we have

trg� g̃ � C0, (5.2)

where g̃ := gω̃ is the metric associated to ω̃. Then there exist α ∈ (0, 1) and C > 0 depending
only on M,�, J, R, α0 and ‖σ‖Cα0 (BR , g�) such that

‖g̃‖Cα(BR/2, g�) � C.

In fact, one can easily derive from this higher order estimates

‖g̃‖Ck (BR/4, g�) � Ck,

for all k � 1, exactly as in [62, Section 5], of course depending on higher derivatives of σ .
In the case when � is compatible with J (not just taming), such a local estimate on the Cα

norm of g̃ was proved by the third-named author [70] depending on two derivatives of σ ,
by adapting the Evans–Krylov method. A global Calabi-type estimate on g̃ was proved by
Tosatti–Weinkove–Yau [62], depending on three derivatives of σ.Note that we state Theorem
5.1 as a local rather than global result, because we anticipate that such local arguments may
be useful in any future progress on the full conjecture of Donaldson (cf. [57]).

We now give the proof.

Proof of Theorem 5.1 By shrinking R if necessary, wemay assumewithout loss of generality
that BR is contained in a single coordinate patch for M , and that it is contractible. Write �

for the following Laplace operator associated to g�,

�u = n(�(1,1))n−1 ∧ (d Jdu)

(�(1,1))n
= tr�(1,1) (d Jdu),

which in [62] is called the canonical Laplacian of g� (up to a factor of 2). Note that

tr�(1,1) (�) = tr�(1,1) (�
(1,1)) = n,

and

tr�(1,1) (ω̃) = 1

2
trg� g̃.

We let u solve the Dirichlet problem

�u = 1

2
trg� g̃ − n on BR, u|∂ BR = 0.

From the assumption (5.2) and the Eq. (5.1), the metric g̃ is uniformly equivalent to g�. By
standard linear elliptic theory, u is uniformly bounded in W 2,p(BR) for any given p > 1.
From now on, we fix a value of p > n.

Since ω̃ − � − d Jdu is exact, there is a 1-form a0 on BR with da0 = ω̃ − � − d Jdu.
We solve the Neumann problem

�dv = −d∗a0 on BR, ∗dv|∂ BR = − ∗ a0|∂ BR , (5.3)
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where ∗ is the Riemannian Hodge star operator of g�, d∗ is the adjoint of d with respect to
g�, and �d = d∗d is the Hodge Laplacian on functions. As usual given a differential form α

on BR , we write α|∂ BR for the pullback of α under the inclusion of ∂ BR into BR . Then (5.3)
is indeed a Neumann problem, because

∗dv|∂ BR = ∂νv d S, ∗a0|∂ BR = iνa0 d S,

where ν is the g�-unit outward normal vector to ∂ BR , iν is the interior product with ν, and
d S is volume form on ∂ BR induced by g�.

We conclude that a := a0 + dv satisfies

ω̃ = � + d Jdu + da, d∗a = 0, ∗a|∂ BR = 0.

We can then apply for example [67, Theorem D (b)] to get

‖a‖W 1,p(BR) � C‖da‖L p(BR) � C,

for a uniform constant C , thanks to assumption (5.2) and the W 2,p(BR) bound for u.
Now observe that on BR , a solves the elliptic system (cf. [62, equation (5.4)])

da ∧ (�(1,1))n−1 = 0, d∗a = 0, (da)(2,0)+(0,2) = −(� + d Jdu)(2,0)+(0,2).

Equation (2.20) shows that (d Jdu)(2,0)+(0,2) does not contain any second derivatives of u,
and in fact it depends linearly on the gradient of u. Since u is bounded in W 2,p it follows that
(d Jdu)(2,0)+(0,2) is bounded in W 1,p and hence in Cα for some α ∈ (0, 1). By the standard
interior elliptic estimates and the fact that a is already bounded in W 1,p , we obtain C1,α

bounds for a in a slightly smaller ball. Hence da is bounded in Cα in that ball.
Since ω̃ = � + da + d Jdu, we can now write Eq. (5.1) locally as

(χ + (d Jdu)(1,1))n = σ,

for χ = � + da + (d Jdu)(2,0)+(0,2) a form of type (1, 1) which is bounded in Cα . The
theorem then follows immediately from the (local version of) Theorem 1.1 for the almost
complex version of (1.3). ��
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