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Abstract In this paper, we study the existence and multiplicity of solutions for the
Schrödinger–Poisson equations{−�u + λV (x)u + K (x)φu = f (x, u) inR

3,

−�φ = K (x)u2 in R
3,

where λ > 0 is a parameter, the potential V may change sign and f is either superlinear or
sublinear in u as |u| → ∞.

Mathematics Subject Classification 35J47 · 35J50

1 Introduction and main results

Consider the following Schödinger–Poisson equations:{−�u + λV (x)u + K (x)φu = f (x, u) in R
3,

−�φ = K (x)u2 in R
3,

(S P)λ

where λ ≥ 1 is a parameter, V ∈ C(R3,R) and f ∈ C(R3 × R,R).
Problem (S P)λ (also called Schrödinger–Maxwell equation) arises in applications from

mathematical physics, such as in quantum electrodynamics, to describe the interaction of a
charged particle with the electromagnetic field, and also in semiconductor theory, in nonlinear
optics and in plasma physics. For more details in physical aspects, we refer to [9,12].
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There has been a vast literature on the study of existence and multiplicity of solutions of
system (S P)λ under various hypotheses on the potential V (x) and the nonlinearity f (x, u),
see [1–3,5,9–14,18,19,21,22,24–28,31,34–37] and the references therein. Most of them
dealt with the situation where V (x) is a positive constant or being radially symmetric and
f (x, u) = |u|p−1u, 1 < p < 5. In [25] the case p = 5/3 was studied. The authors applied
a minimization procedure in an appropriate manifold to find a positive solution (possibly
non-radial) for system (S P)1 (i.e. (S P)λ with λ = 1). In [11,12], a radial positive solution
of (S P)1 was obtained for 3 ≤ p < 5, by taking advantage of the mountain pass theorem due
to Ambrosetti and Rabinowitz [4]. In [13], a related Pohozǎev identity was found, and with
this in hand, the authors proved that problem (S P)1 has no nontrivial solutions for p ≤ 1
or p > 5. This result was completed in [24], where Ruiz showed that if p ≤ 2, problem
(S P)1 does not admit any nontrivial solution, and if 2 < p < 5, there exists a positive radial
solution of (S P)1. Ambrosetti and Ruiz [2] and Ambrosetti [3] considered problem (S P)1
with a parameter, i.e.,{−�u + u + λφu = |u|p−1u in R

3,

−�φ = u2 in R
3.

(A)λ

Using variational methods, they constructed the existence of infinitely many pairs of radial
solutions of problem (A)λ, where 2 < p < 5, for all λ > 0, and also multiple solutions (but
not infinitely many) of (A)λ, where 1 < p ≤ 2, for λ > 0 small sufficiently. In addition,
the existence of infinitely many non-radial solutions of system (S P)1 was constructed in
d’Avenia et al. [14], when 1 < p < 5 and K (x) is a positive radial function decaying at
infinity. See also [5,19,34,37] for the critical case.

The case of positive and non-radial potential V has been discussed in [10,22,26,28,31,35].
In particular, supposing that V (x) satifies:

(V1) V ∈ C(R3,R) and infx∈R3 V (x) ≥ a > 0, where a is a positive constant;
(V2) For any b > 0, meas

{
x ∈ R

3 : V (x) ≤ b
}
< +∞, where meas denotes the Lebesgue

measure in R
3;

[10,22,31] established the existence of infinitely many high-energy solutions of problem
(S P)1, where f is 4-superlinear at infinity, while the existence of infinitely many small-
energy solutions was proved in Sun [26] with sublinear nonlinearity. The proofs in [10,22,31]
were based on the (variant) fountain theorem. It is worth mentioning that conditions (V1)–
(V2) were first introduced by Bartsch and Wang [8] to guarantee the compact embedding of
the functional space (see [8, Remark 3.5]). If replacing (V2) by a more general assumption:

(V3) There is b > 0 such that meas
{

x ∈ R
3 : V (x) ≤ b

}
< +∞,

the compactness of the embedding fails and this situation becomes more delicated.
Recently, [32,35] considered this case. Yang et al. [32] investigated the semiclassical

solutions of the Schrödinger–Poisson equations{−ε2�u + V (x)u + φu = f (x, u) inR
3,

−�φ = 4πu2 in R
3.

(B)ε

They assumed that (V3) holds, V (0) = minV = 0 and f (x, u) satisfies:

(g1) f (x, u) = o(u) as u → 0 uniformly in x ;
(g2) There are c0 > 0 and q < 6 such that | f (x, u)| ≤ c0(1 + |u|q−1) for all (x, u);
(g3) There are a0 > 0, p > 4 and μ > 4 such that F(x, u) ≥ a0|u|p and μF(x, u) ≤

f (x, u)u for all (x, u), where F(x, u) := ∫ u
0 f (x, s)ds.
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Existence and multiplicity of solutions for Schrödinger–Poisson equations 385

They showed that for any σ > 0 there exists εσ > 0 such that (B)ε has at least one solution
when ε ≤ εσ ; and if additionally f (x, u) is odd in u, then given any ε > 0 small enough (B)ε
has at least m pairs of solutions. Zhao et al. [35] studied the existence of nontrivial solution
and concentration results (as λ → +∞) of (S P)λ, provided that V satisfies (V3) and

(V4) V ∈ C(R3,R) and V is bounded below,
(V5) � = intV −1(0) is nonempty and has smooth boundary and � = V −1(0),

and f (x, u) = |u|p−2u (2 < p < 6).
We also note that if K ≡ 0, (S P)λ reduces to the Schödinger equation

−�u + λV (x)u = f (x, u), x ∈ R
N , (C)λ

which has been the object of interest for many authors, see e.g. [15,16,29] and their references.
In [16], Ding and Szulkin studied the existence and the number of decaying solutions of
problem (C)λ when V may change sign, satisfies (V4) and

(V6) There exists b > 0 such that the set
{

x ∈ R
N : V (x) < b

}
is nonempty and has finite

measure;

and f is either asymptotically linear or superlinear (but subcritical) in u as |u| → ∞. Wang
and Zhou [29] dealt with the ground states of problem (C)λ, where V (x) changes sign and
may vanish at infinity, f (x, u) = K1(x)g(u) and g is either of the form g(u) = |u|p−1u
with 1 < p < N+2

N−2 or asymptotically linear.
Motivated by the works mentioned above, in the present paper, we are mostly interested

in sign-changing potentials though in a few cases we need to have V ≥ 0. Under (V3)–(V4)

and some more generic 4-superlinear conditions on f (x, u), we prove the existence and
multiplicity of solutions of problem (S P)λ when λ > 0 large, using variational method.
Furthermore, we investigate the situation where the nonlinearity f (x, u) is sublinear with
mild assumptions different from those studied previously. Infinitely many small-energy solu-
tions are obtained for problem (S P)1 by applying a new version of symmetric mountain pass
lemma developed by Kajikiya. The main results are the following theorems.

First, we handle the 4-superlinear case, and hence make the following assumptions:

( f1) F(x, u) ≥ 0 for all (x, u) and f (x, u) = o(u) uniformly in x as u → 0.
( f2) F(x, u)/u4 → +∞ as |u| → ∞ uniformly in x .
( f3) F(x, u) := 1

4 f (x, u)u − F(x, u) ≥ 0 for all (x, u) ∈ R
3 × R.

( f4) There exist a1, L1 > 0 and τ ∈ (3/2, 2) such that

| f (x, u)|τ ≤ a1F(x, u)|u|τ , ∀x ∈ R
3, |u| ≥ L1.

(K ) K ∈ L2(R3) ∪ L∞(R3) and K (x) ≥ 0 for all x ∈ R
3.

Remark 1.1 It follows from ( f2) and ( f4) that | f (x, u)|τ ≤ a1
4 | f (x, u)||u|τ+1 for large u.

Thus, by ( f1), for any ε > 0, there is Cε > 0 such that

| f (x, u)| ≤ ε|u| + Cε|u|p−1, ∀(x, u) ∈ R
3 × R (1.1)

and

|F(x, u)| ≤ εu2 + Cε|u|p, ∀(x, u) ∈ R
3 × R,

where p = 2τ/(τ − 1) ∈ (4, 2∗), 2∗ = 6 is the critical exponent for the Sobolev embedding
in dimension 3.

Theorem 1.1 (Superlinear) Assume that (V3)–(V4), (K ) and ( f1)–( f4) are satisfied.
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(i) If V (x) < 0 for some x ∈ R
3, then for each k ∈ N, there exist λk > k and bk > 0 such

that problem (S P)λ has a nontrivial solution (uλ, φλ) ∈ H1(R3) × D1,2(R3) for every
λ = λk and |K |2 < bk (or |K |∞ < bk).

(ii) If V −1(0) has nonempty interior, then there exist 
 > 0 and bλ > 0 such that problem
(S P)λ has a nontrivial solution (uλ, φλ) ∈ H1(R3) × D1,2(R3) for every λ > 
 and
|K |2 < bλ (or |K |∞ < bλ).

Remark 1.2 Theorem 1.1 (ii) generalizes [35, Theorem 1.1], which is the special case of
Theorem 1.1 (ii) corresponding to f (x, u) = |u|p−2u (4 < p < 6).

If V ≥ 0, the restriction on the norm of K can be removed and we have the following
theorem.

Theorem 1.2 (Superlinear) Assume that V ≥ 0, (V3)–(V4), (K ) and ( f1)–( f4) are satisfied,
and V −1(0) has nonempty interior�. Then there exist
∗ > 0 such that problem (S P)λ has
at least one nontrivial solution (uλ, φλ) ∈ H1(R3)×D1,2(R3)whenever λ > 
∗. Moreover,
if f is odd in t, then for each k ≥ 1 there exists
k > 0 such that problem (S P)λ has at least
k pairs of nontrivial solutions whenever λ > 
k .

Remark 1.3 Theorem 1.2 can be viewed as an improvement of the results in Yang et al. [32]
and Zhao et al. [35]. Comparing with [32, Theorems 1.1 and 1.2], our hypotheses on f are
much weaker. Indeed, assumption (g3) implies

0 < μF(x, u) ≤ f (x, u)u for some μ > 4 and all (x, u) with u �= 0.

So, if f satisfies (g1) and (g3), it is easy to see that ( f2)–( f3) hold, and it will be showed as
in the proof of [16, Lemma 2.2 (i)] that so does ( f4). As for [35], we consider a larger class
of nonlinearities and discuss the multiplicity result.

Remark 1.4 There are functions f which match conditions ( f1)–( f4) but not satisfying the
results in [32,35]. For example, let

f (x, t) = h(x)t3
(

2 ln(1 + t2)+ t2

1 + t2

)
, ∀(x, t) ∈ R

3 × R,

where h is a continuous bounded function with infx∈R3 h(x) > 0.

Next, we treat the sublinear case. Assume that:

( f5) There exist constants σ , γ ∈ (1, 2) and functions m ∈ L2/(2−σ)(R3,R+), h ∈
L2/(2−γ )(R3,R+) such that

| f (x, u)| ≤ m(x)|u|σ−1 + h(x)|u|γ−1, ∀(x, u) ∈ R
3 × R.

( f6) There exist x0 ∈ R
3, two sequences {εn}, {Mn} and constants a2, ε, δ > 0 such that

εn > 0, Mn > 0 and

lim
n→∞ εn = 0, lim

n→∞ Mn = +∞,

ε−2
n F(x, u) ≥ Mn for |x − x0| ≤ δ and |u| = εn,

F(x, u) ≥ −a2u2 for |x − x0| ≤ δ and |u| ≤ ε. (1.2)
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Existence and multiplicity of solutions for Schrödinger–Poisson equations 387

Theorem 1.3 (Sublinear) Assume that V ≥ 0, (V3), (K ) and ( f5)–( f6) are satisfied and
that f (x, u) is odd in u. Then problem (S P)1 possesses infinitely many nontrivial solutions
{(uk, φk)} such that

1

2

∫

R3

(|∇uk |2 + V (x)u2
k)dx + 1

4

∫

R3

K (x)φku2
kdx −

∫

R3

F(x, uk)dx → 0− as k → ∞.

Remark 1.5 In Sun [26], the existence of infinitely many small-energy solutions was obtained
for (S P)1, where K ≡ 1, under assumptions (V1)–(V2) and:

( f ′) f (x, u) = b(x)|u|σ−1, where b : R
3 → R

+ is a positive continuous function such that
b ∈ L2/(2−σ)(R3,R) and 1 < σ < 2 is a constant.

Observing ( f ′) implies that there is an open set J ⊂ R
3 such that

F(x, t)/t2 → +∞ as t → 0 uniformly for x ∈ J,

it is stronger than ( f5)–( f6). Hence Theorem 1.3 improves [26, Theorem 1.1] by weakening
hypotheses on V , K and f . There are functions V , K and f which match our setting but not
satisfying the results in [21,26]. For example, let

V ≡ c(> 0), K (x) = |x |−4,

and

f (x, u) =
{

|x |e−|x |2
[
σ |u|σ−2u sin2

(
1

|u|
)

− |u|σ−−2 sin
(

2
|u|

)]
, t �= 0,

0, t = 0,

where  > 0 small enough and σ ∈ (1 + , 2). Simple calculation shows that

F(x, u) =
{

|x |e−|x |2 |u|σ sin2
(

1
|u|

)
, t �= 0,

0, t = 0.

It is easy to check that (V3)–(V4), (K ) and ( f5)–( f6) are satisfied with εn =
(

2
(2n+1)π

)1/
.

However, in this case, (V2) and ( f ′) fail.

The paper is organized as follows. In Sect. 2 we introduce the variational setting and recall
some related preliminaries. Section 3 is concerned with the 4-superlinear case and Sect. 4
with the sublinear case. In Sect. 5, concentration of solutions to problem (S P)λ on the set
V −1(0) as λ → +∞ is discussed.

Notation • H1(R3) is the usual Sobolev space endowed with the standard scalar and norm

(u, v)H1 =
∫

R3

(∇u · ∇v + uv)dx; ‖u‖H1 = (u, u)1/2
H1 .

• D1,2(R3) is the completion of C∞
0 (R

3) with respect to the norm ‖u‖2
D1,2 := ∫

R3 |∇u|2dx .

• Ls(�), 1 ≤ s ≤ +∞, � ⊂ R
3, denotes a Lebesgue space; the norm in Ls(�) is denoted

by |u|s,�, where � is a proper subset of R
3, by | · |s when � = R

3.
• S̄ is the best Sobolev constant for the Sobolev embedding D1,2(R3) ↪→ L6(R3), i.e.,

S̄ = inf
u∈H1(R3)\{0}

‖u‖D1,2

|u|6 .
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388 Y. Ye, C.-L. Tang

• For any r > 0 and z ∈ R
3, Br (z) denotes the ball of radius r centered at z.

• The letter c will be used to denote various positive constants which may vary from line to
line and are not essential to the problem.

2 Variational setting and preliminaries

Let

E :=

⎧⎪⎨
⎪⎩u ∈ H1(R3) :

∫

R3

V +(x)u2dx < +∞

⎫⎪⎬
⎪⎭ ,

where V ±(x) = max {±V (x), 0}. Then E is a Hilbert space with the inner product and norm

(u, v) =
∫

R3

(∇u · ∇v + V +(x)uv)dx, ‖u‖ = (u, u)1/2.

We also need the following inner product

(u, v)λ =
∫

R3

(∇u · ∇v + λV +(x)uv)dx,

and the corresponding norm is denoted by ‖u‖λ = (u, u)1/2λ (so ‖·‖ = ‖·‖1). Set Eλ = (E, ‖·
‖λ). It follows from (V3), (V4) and the Poincaré inequality that the embedding Eλ ↪→ H1(R3)

is continuous, and hence, for s ∈ [2, 2∗], there exists νs > 0 (independent of λ) such that

|u|s ≤ νs‖u‖λ, ∀u ∈ Eλ. (2.1)

Let

Fλ := {
u ∈ Eλ : suppu ⊂ V −1([0,+∞))

}
,

and F⊥
λ denote the orthogonal complement of Fλ in Eλ. Clearly, Fλ = Eλ if V ≥ 0, otherwise

F⊥
λ �= {0}. Define

Aλ := −�+ λV,

then Aλ is formally self-adjoint in L2(R3) and the associated bilinear form

aλ(u, v) :=
∫

R3

(∇u · ∇v + λV (x)uv)dx

is continuous in Eλ. As in [16], we consider the eigenvalue problem

−�u + λV +(x)u = μλV −(x)u, u ∈ F⊥
λ . (2.2)

In view of (V3)–(V4), the functional I (u) = ∫
R3 V −(x)u2dx for u ∈ F⊥

λ is weakly continu-
ous. Hence, as a result of [30, Theorems 4.45 and 4.46], we deduce the following proposition,
which is the spectral theorem for compact self-adjoint operators jointly with the Courant-
Fischer minimax characterization of eigenvalues.
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Existence and multiplicity of solutions for Schrödinger–Poisson equations 389

Proposition 2.1 Assume that (V3)–(V4) hold, then for any fixed λ > 0, problem (2.2) has a
sequence of positive eigenvalues

{
μ j (λ)

}∞
j=1, which may be characterized by

μ j (λ) = inf
dimM≥ j,M⊂F⊥

λ

sup

⎧⎪⎨
⎪⎩‖u‖2

λ : u ∈ M,
∫

R3

λV −(x)u2dx = 1

⎫⎪⎬
⎪⎭ , j = 1, 2, . . . .

Furthermore, μ1(λ) ≤ μ2(λ) ≤ · · · ≤ μ j (λ)
j−→ +∞ and the corresponding eigenfunc-

tions
{
e j (λ)

}∞
j=1, which may be chosen so that (ei (λ), e j (λ))λ = δi j , are a basis of F⊥

λ .

For the eigenvalues
{
μ j (λ)

}
defined above, we have the following properties.

Proposition 2.2 (see Lemma 2.1 in [16]) Assume that (V3)–(V4) hold and V − �≡ 0. Then,
for each fixed j ∈ N,

(i) μ j (λ) → 0 as λ → +∞.
(ii) μ j (λ) is a non-increasing continuous function of λ.

Remark 2.1 By Proposition 2.2 (i), there exists
0 > 0 such that μ1(λ) ≤ 1 for all λ > 
0.
Take

E−
λ := span

{
e j (λ) : μ j (λ) ≤ 1

}
and E+

λ := span
{
e j (λ) : μ j (λ) > 1

}
.

Then we have the following orthogonal decomposition:

Eλ = E−
λ

⊕
E+
λ

⊕
Fλ.

From Remark 2.1, we have that dimE−
λ ≥ 1 when λ > 
0. Moreover, dimE−

λ < +∞ for

every fixed λ > 0 since μ j (λ)
j−→ +∞.

It is well known that problem (S P)λ can be transformed into a Schrödinger equation with
a nonlocal term (see e.g. [24]). Indeed, the Lax-Milgram theorem implies that for all u ∈ Eλ,

there exists a unique φu ∈ D1,2(R3), which can be expressed as φu(x) = 1
4π

∫
R3

K (y)u2(y)
|x−y| dy,

satisfying

−�φu = K (x)u2. (2.3)

If K ∈ L∞(R3), by Hölder and Sobolev inequality, we get

‖φu‖2
D1,2 =

∫

R3

K (x)φuu2dx ≤ S̄−2ν4
12/5|K |2∞‖u‖4

λ.

Similarly, if K ∈ L2(R3),

‖φu‖2
D1,2 =

∫

R3

K (x)φuu2dx ≤ S̄−2ν4
6 |K |22‖u‖4

λ.

Thus, there exists C0 > 0 such that

‖φu‖2
D1,2 =

∫

R3

K (x)φuu2dx ≤ C0‖u‖4
λ, ∀K ∈ L2(R3) ∪ L∞(R3). (2.4)
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Take

N (u) =
∫

R3

K (x)φuu2dx = 1

4π

∫∫

R3×R3

K (x)K (y)u2(x)u2(y)

|x − y| dxdy

We recall some important properties of the functional N .

Lemma 2.1 Let K ∈ L∞(R3) ∪ L2(R3). If un ⇀ u in H1(R3) and un(x) → u(x) a.e.
x ∈ R

3, then

(i) φun ⇀ φu in D1,2(R3), and N (u) ≤ lim infn→∞ N (un);
(ii) N (un − u) = N (un)− N (u)+ o(1);

(iii) N ′(un − u) = N ′(un)− N ′(u)+ o(1) in H−1(R3).

Proof A straightforward adaption of [37, Lemma 2.1] shows that (i) holds. If K ≡ 1, the
proofs of (ii) and (iii) have been given in [36], and it is easy to see that the conclusions remain
valid if K ∈ L∞(R3). Hence we only consider the case K ∈ L2(R3).

We claim that ∫

R3

(K (x)φun u2
n − K (x)φuu2)dx

n−→ 0 (2.5)

and ∫

R3

(K (x)φun unψ − K (x)φuuψ)dx
n−→ 0 (2.6)

uniformly forψ ∈ H1(R3)with ‖ψ‖H1 ≤ 1. It follows from (i) and Hölder’s inequality that

lim
n→∞

∫

R3

(K (x)φun u2
n − K (x)φuu2)dx

≤ lim
n→∞

∫

R3

[
K (x)φun (u

2
n − u2)+ K (x)(φun − φu)u

2] dx

≤ lim
n→∞ |φun |6|un + u|6|K (x)(un − u)|3/2

+ lim
n→∞

∫
R3

K (x)u2(φun − φu)dx . (2.7)

The first limit on the right is 0 by the fact K 3/2 ∈ L4/3(R3) and (un − u)3/2 ⇀ 0 in L4(R3),
and so is the second limit because (φun −φu) ⇀ 0 in L6(R3) and K (x)u2 ∈ L6/5(R3). Thus
(2.5) holds. Moreover, observing that |K (x)u|6/5 ∈ L5/4(R3) and (φun − φu)

6/5 ⇀ 0 in
L5(R3), we obtain∫

R3

(K (x)φun unψ − K (x)φuuψ)dx

≤
∫

R3

[
K (x)φun (un − u)ψ + K (x)(φun − φu)uψ

]
dx

≤ |φun |6|ψ |6|K (x)(un − u)|3/2 + |ψ |6|K (x)u(φun − φu)|6/5
≤ c|K (x)(un − u)|3/2 + c|K (x)u(φun − φu)|6/5
→ 0
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Existence and multiplicity of solutions for Schrödinger–Poisson equations 391

uniformly with respect to ψ , i.e., (2.6) is satisfied. Now (ii) and (iii) follow from (2.5) and
(2.6), respectively. ��

By (1.1) and the above lemma, the functional ϕλ : Eλ → R,

ϕλ(u) = 1

2

∫

R3

(|∇u|2 + λV (x)u2)dx + 1

4

∫

R3

K (x)φuu2dx −
∫

R3

F(x, u)dx,

is of class C1 with derivative

〈ϕ′
λ(u), v〉 =

∫

R3

(∇u · ∇v + λV (x)uv + K (x)φuuv − f (x, u)v)dx

for all u, v ∈ Eλ. It can be proved that the pair (u, φ) ∈ Eλ × D1,2(R3) is a solution of
problem (S P)λ if and only if u ∈ Eλ is a critical point of ϕλ and φ = φu (see [9]).

To conclude this section, we state the following propositions, which will be applied to
prove Theorems 1.1–1.3. Recall that a C1 functional I satisfies Cerami condition at level
c ((C)c condition for short) if any sequence (un) ⊂ E such that I (un) → c and (1 +
‖un‖)‖I ′(un)‖ → 0 has a converging subsequence; such a sequence is then called a (C)c
sequence.

Proposition 2.3 (see [17]) Let E be a real Banach space and I ∈ C1(E,R) satisfying

max {I (0), I (e)} ≤ a < b ≤ inf‖u‖=ρ I (u)

for some a < b, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ b be characterized by

c = inf
γ∈� max

t∈[0,1] I (γ (t)),

where � = {γ ∈ C([0, 1], E) : γ (0) = 0, γ (1) = e} is the set of continuous paths jointing
0 and e, then I possesses a (C)c sequence.

If V (x) is sign-changing, we need the following linking theorem.

Proposition 2.4 (see [23]) Let E = X
⊕

Y be a Banach space with dim Y < +∞, I ∈
C1(E,R). If there exist R > ρ > 0, α > 0 and e0 ∈ X such that

α := inf I (X ∩ Sρ) > sup I (∂Q)

where Sρ = {u ∈ E : ‖u‖ = ρ}, Q = {u = v + te0 : v ∈ Y, t ≥ 0, ‖u‖ ≤ R}. Then I has a
(C)c sequence with c ∈ [α, sup I (Q)].
Proposition 2.5 (see [6]) Suppose that I ∈ C1(E,R) is even, I (0) = 0 and there exist
closed subspaces E1, E2 such that codimE1 < +∞, inf I (E1 ∩ Sρ) ≥ α for some ρ, α > 0
and sup I (E2) < +∞. If I satisfies the (C)c-condition for all c ∈ [α, sup I (E2)], then I
has at least dim E2−codimE1 pairs of critical points with corresponding critical values in
[α, sup I (E2)].

To establish the existence of infinitely many solutions in the sublinear case, we require the
new version of symmetric mountain pass lemma of Kajikiya (see [20]). Let E be a Banach
space and

� := {A ⊂ E\ {0} : A is closed and symmetric with respect to the origin} .
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We define

�k := {A ∈ � : γ (A) ≥ k} ,
where γ (A) := inf {m ∈ N : ∃h ∈ C(A,Rm\ {0}),−h(x) = h(−x)}. If there is no such
mapping h for any m ∈ N, we set γ (A) = +∞.

Proposition 2.6 (Symmetric mountain pass lemma) Let E be an infinite dimensional Banach
space and I ∈ C1(E,R) be even, I (0) = 0 and satisfies the following conditions:

(i) I is bounded from below and satisfies the Palais-Smale condition (PS), i.e., (un) ⊂ E has
a converging subsequence whenever {I (un)} is bounded and I ′(un) → 0 as n → ∞.

(ii) For each k ∈ N, there exists an Ak ∈ �k such that supu∈Ak
I (u) < 0.

Then either (1) or (2) holds.

(1) There exists a sequence {uk} such that I ′(uk) = 0, I (uk) < 0 and {uk} converges to zero.
(2) There exist two sequence {uk} and {vk} such that I ′(uk) = 0, I (uk) = 0, uk �= 0,

limk→∞ uk = 0, I ′(vk) = 0, I (vk) < 0, limk→∞ I (vk) = 0 and {vk} converges to a
non-zero limit.

Remark 2.2 From Proposition 2.6, we deduce a sequence {uk} of critical points such that
I (uk) ≤ 0, uk �= 0 and limk→∞ uk = 0.

3 Proofs of Theorems 1.1–1.2

We first discuss the (C)c sequence. We only consider the case K ∈ L2(R3), the other case
K ∈ L∞(R3) is similar.

Lemma 3.1 Let (V3)–(V4), (K ), ( f1)–( f4) be satisfied. Then each (C)c-sequence (c ∈ R)
of ϕλ is bounded in Eλ.

Proof Let (un) ⊂ Eλ be a (C)c sequence of ϕλ. Arguing indirectly, we can assume that

ϕλ(un) → c, ‖ϕ′
λ(un)‖(1 + ‖un‖λ) → 0, ‖un‖λ → ∞ (3.1)

as n → ∞ after passing to a subsequence. Takewn := un/‖un‖λ. Then ‖wn‖λ = 1,wn ⇀ w

in Eλ and wn(x) → w(x) a.e. x ∈ R
3 after passing to a subsequence.

We first consider the case w = 0. Combining this with (3.1), ( f3) and the fact wn → 0 in
L2(

{
x ∈ R

3 : V (x) < 0
}
), we obtain

o(1) = 1

‖un‖2
λ

(
ϕλ(un)− 1

4
〈ϕ′
λ(un), un〉

)

≥ 1

4
‖wn‖2

λ − λ

4

∫

R3

V −(x)w2
ndx + 1

‖un‖2
λ

∫

R3

F(x, u)dx

≥ 1

4
− λ

4
|V −|∞

∫
suppV −

w2
ndx

= 1

4
+ o(1),

a contradiction.
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Existence and multiplicity of solutions for Schrödinger–Poisson equations 393

If w �= 0, then the set �1 = {
x ∈ R

3 : w(x) �= 0
}

has positive Lebesgue measure. For
x ∈ �1, one has |un(x)| → ∞ as n → ∞, and then, by ( f2),

F(x, un(x))

u4
n(x)

w4
n(x) → +∞ as n → ∞,

which, jointly with Fatou’s lemma (see [33]), shows that∫
�1

F(x, un)

u4
n

w4
ndx → +∞ as n → ∞. (3.2)

We see from ( f1), (2.4), (3.2) and the first limit of (3.1) that

C0

4
≥ lim sup

n→∞

∫

R3

F(x, un)

‖un‖4
λ

dx ≥ lim sup
n→∞

∫
�1

F(x, un)

u4
n

w4
ndx = +∞.

This is impossible.
In any case, we deduce a contradiction. Hence (un) is bounded in Eλ. ��

Lemma 3.2 Suppose that (V3)–(V4), (K ) and (1.1) are satisfied. If un ⇀ u in Eλ, un(x) →
u(x) a.e. in R

3, and we denote wn := un − u, then

ϕλ(un) = ϕλ(wn)+ ϕλ(u)+ o(1) (3.3)

and

ϕ′
λ(un) = ϕ′

λ(wn)+ ϕ′
λ(u)+ o(1) (3.4)

as n → ∞. In particular, if ϕλ(un) → d (∈ R) and ϕ′
λ(un) → 0 in E∗

λ (the dual space of
Eλ), then ϕ′

λ(u) = 0, and

ϕλ(wn) → d − ϕλ(u), ϕ′
λ(wn) → 0 (3.5)

after passing to a subsequence.

Proof Since un ⇀ u in Eλ, one has (un − u, u)λ → 0 as n → ∞, which implies that

‖un‖2
λ = (wn + u, wn + u)λ = ‖wn‖2

λ + ‖u‖2
λ + o(1). (3.6)

Recall (V3) and wn ⇀ 0, we have
∣∣∣∣∣∣∣
∫

R3

V −(x)wnudx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

suppV −
V −(x)wnudx

∣∣∣∣∣∣∣
≤ |V −|∞

⎛
⎜⎝

∫
suppV −

w2
ndx

⎞
⎟⎠

1/2

|u|2 n−→ 0

by the Hölder inequality. Thus∫

R3

V −(x)u2
ndx =

∫

R3

V −(x)w2
ndx +

∫

R3

V −(x)u2dx + o(1).

Combining this with (3.6) and Lemma 2.1 (ii), we obtain

1

2
aλ(un, un)+ 1

4
N (un) =

(
1

2
aλ(wn, wn)+ 1

4
N (wn)

)
+
(

1

2
aλ(u, u)+ 1

4
N (u)

)
+ o(1).
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Similarly, by Lemma 2.1 (iii),

aλ(un, h)+
∫

R3

K (x)φun unhdx =
⎛
⎜⎝aλ(wn, h)+

∫

R3

K (x)φwnwnhdx

⎞
⎟⎠

+
⎛
⎜⎝aλ(u, h)+

∫

R3

K (x)φuuhdx

⎞
⎟⎠+ o(1), ∀h ∈ Eλ.

Therefore, to obtain (3.3) and (3.4), it suffices to check that∫

R3

(F(x, un)− F(x, wn)− F(x, u))dx = o(1) (3.7)

and

sup
‖h‖λ=1

∫

R3

( f (x, un)− f (x, wn)− f (x, u))hdx = o(1). (3.8)

Here, we only prove (3.8), the verification of (3.7) is similar. Inspired by [1], we take
limn→∞ sup‖h‖λ=1

∣∣ ∫
R3

( f (x, un) − f (x, wn) − f (x, u))hdx
∣∣ = A. If A > 0, then, there

is h0 ∈ Eλ with ‖h0‖λ = 1 such that∣∣∣∣∣∣∣
∫

R3

( f (x, un)− f (x, wn)− f (x, u))h0dx

∣∣∣∣∣∣∣
≥ A

2
(3.9)

for n large enough. It follows form (1.1) and the Young inequality that

|( f (x, un)− f (x, wn))h0| ≤ ε(|wn + u| + |wn |)|h0| + Cε(|wn + u|p−1 + |wn |p−1)|h0|
≤ c(ε|wn ||h0| + ε|u||h0| + Cε|wn |p−1|h0| + Cε|u|p−1|h0|)
≤ c(εw2

n + εh2
0 + εu2 + ε|wn |p + Cε,1|u|p + Cε,2|h0|p)

for all n. Hence

|( f (x, un)− f (x, wn)− f (x, u))h0|≤c(εw2
n +εh2

0+εu2+ε|wn |p +Cε,1|u|p+Cε,2|h0|p).

Letting

gn(x) := max
{|( f (x, un)− f (x, wn)− f (x, u))h0| − cε(w2

n + |wn |p), 0
}
,

we have

0 ≤ gn(x) ≤ c(εh2
0 + εu2 + Cε,1|u|p + Cε,2|h0|p) ∈ L1(R3),

which implies that ∫

R3

gn(x)dx → 0 as n → ∞ (3.10)

because of the Lebesgue dominated convergence theorem and the fact wn → 0 a.e. in R
3.

The definition of gn(x) implies that

|( f (x, un)− f (x, wn)− f (x, u))h0| ≤ gn(x)+ cε(w2
n + |wn |p),
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which, together with (3.10) and (2.1), shows that∣∣∣∣∣∣∣
∫

R3

( f (x, un)− f (x, wn)− f (x, u))h0dx

∣∣∣∣∣∣∣
≤ cε

for n sufficiently large. This contradicts (3.9). Hence A = 0 and (3.8) holds.
If moreover ϕ′

λ(un) → 0 as n → ∞, then ϕ′
λ(u) = 0. Indeed, for each ψ ∈ C∞

0 (R
3), we

have

(un − u, ψ)λ
n−→ 0, (3.11)

and ∣∣∣∣∣∣∣
∫

R3

V −(x)(un − u)ψdx

∣∣∣∣∣∣∣
≤ |V −|∞

⎛
⎜⎝

∫
suppψ

(un − u)2dx

⎞
⎟⎠

1/2

|ψ |2 n−→ 0, (3.12)

since un → u in L2
loc(R

3). By Lemma 2.1 (i), un ⇀ u in Eλ yields φun ⇀ φu in D1,2(R3).
So

φun ⇀ φu in L6(R3),

and hence ∫

R3

K (x)(φun − φu)uψdx → 0

since K (x)uψ ∈ L6/5(R3). Combining this with Hölder’s inequality, we obtain∣∣∣∣∣∣∣
∫

R3

(K (x)φun unψ − K (x)φuuψ)dx

∣∣∣∣∣∣∣
≤
∫

R3

|K (x)φun (un − u)ψ |dx +
∫

R3

∣∣K (x)(φun − φu)uψ
∣∣ dx

≤ |ψ |∞|K |2|φun |6|un − u|3,suppψ +
∫

R3
|K (x)(φun − φu)uψ |dx

= o(1). (3.13)

Furthermore, it follows from (1.1) and the dominated convergence theorem that∫

R3

( f (x, un)− f (x, u))ψdx =
∫

suppψ

( f (x, un)− f (x, u))ψdx = o(1).

This, jointly with (3.13), (3.12) and (3.11), shows that

〈ϕ′
λ(u), ψ〉 = lim

n→∞〈ϕ′
λ(un), ψ〉 = 0, ∀ψ ∈ C∞

0 (R
3).

Consequently, ϕ′
λ(u) = 0 and (3.5) follows from (3.3)–(3.4). The proof is complete. ��

Lemma 3.3 Let V ≥ 0, (V3)–(V4), (K ), ( f1)–( f4) be satisfied. Then, for any M > 0, there
exists 
 = 
(M) > 0 such that ϕλ satisfies (C)c condition for all c < M and λ > 
.
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Proof Let (un) ⊂ Eλ be a (C)c sequence with c < M . According to Lemma 3.1, (un) is
bounded. Hence we may assume that

un⇀u in Eλ, un →u in Ls
loc(R

3) (2 ≤ s < 2∗), un(x)→u(x) a.e. x ∈ R
3 (3.14)

after passing to a subsequence. Denotewn := un −u, we claim thatwn → 0 in Eλ for λ > 0
large. In fact, Lemma 3.2 yields that ϕ′

λ(u) = 0, and

ϕλ(wn) → c − ϕλ(u), ϕ′
λ(wn) → 0 as n → ∞. (3.15)

Noting V ≥ 0 and using ( f3), we get

ϕλ(u) = ϕλ(u)− 1

4
〈ϕ′
λ(u), u〉 = 1

4
‖u‖2

λ +
∫

R3

F(x, un)dx ≥ 0,

and then, by (3.15),

∫

R3

F(x, wn)dx ≤ ϕλ(wn)− 1

4
〈ϕ′
λ(wn), wn〉 = c − ϕλ(u)+ o(1) ≤ M + o(1). (3.16)

Since V (x) < b on a set of finite measure and wn ⇀ 0,

|wn |22 ≤ 1

λb

∫
V ≥b

λV +(x)w2
ndx +

∫
V<b

w2
ndx ≤ 1

λb
‖wn‖2

λ + o(1). (3.17)

For 2 < s < 2∗, by (3.17) and the Hölder and Sobolev inequality, we obtain

|wn |ss ≤
⎛
⎜⎝
∫

R3

w2
ndx

⎞
⎟⎠

2∗−s
2∗−2

⎛
⎜⎝
∫

R3

w2∗
n dx

⎞
⎟⎠

s−2
2∗−2

≤
(

1

λb
‖wn‖2

λ

) 2∗−s
2∗−2

S̄− 2∗(s−2)
2∗−2

⎛
⎜⎝
∫

R3

|∇wn |2dx

⎞
⎟⎠

2∗(s−2)
2(2∗−2)

+ o(1)

≤ S̄− 2∗(s−2)
2∗−2

(
1

λb

) 2∗−s
2∗−2 ‖wn‖s

λ + o(1). (3.18)

By ( f1), for any ε > 0, there exists δ = δ(ε) > 0 such that | f (x, t)| ≤ ε|t | for all x ∈ R
3

and |t | ≤ δ, and ( f4) is satisfied for |t | ≥ δ (with the same τ but possibly larger a1). Hence
we obtain

∫
|wn |≤δ

f (x, wn)wndx ≤ ε

∫
|wn |≤δ

w2
ndx ≤ ε

λb
‖wn‖2

λ + o(1), (3.19)
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and

∫
|wn |≥δ

f (x, wn)wndx ≤
(∫

|wn |≥δ

∣∣∣∣ f (x, wn)

wn

∣∣∣∣
τ

dx

)1/τ

|wn |2s

≤
(∫

|wn |≥δ
a1F(x, wn)dx

)1/τ

|wn |2s

≤ (a1 M)1/τ S̄− 2∗(2s−4)
s(2∗−2)

(
1

λb

)θ
‖wn‖2

λ + o(1) (3.20)

by ( f4), (3.16), (3.18) with s = 2τ/(τ−1) and the Hölder inequality, where θ = 2(2∗−s)
s(2∗−2) > 0.

Therefore, using (3.20), (3.19) and the second limit of (3.15),

o(1) = 〈ϕ′
λ(wn), wn〉

≥ ‖wn‖2
λ −

∫

R3

f (x, wn)wndx

≥
[

1 − ε

λb
− (a1 M)1/τ S̄− 2∗(2s−4)

s(2∗−2)

(
1

λb

)θ]
‖wn‖2

λ + o(1). (3.21)

So, there exists 
 = 
(M) > 0 such that wn → 0 in Eλ when λ > 
. Since wn = un − u,
it follows that un → u in Eλ. ��

Lemma 3.4 Suppose that (V3)–(V4), (K ), ( f1)–( f4) are satisfied, and (un) ⊂ Eλ be a (C)c
(c > 0) sequence of ϕλ satisfying un ⇀ u as n → ∞. Then, for any M > 0, there exists

 = 
(M) > 0 such that, u is a nontrivial critical point of ϕλ and ϕλ(u) ≤ c for all c < M
and λ > 
.

Proof By Lemma 3.2, we have ϕ′
λ(u) = 0 and

ϕλ(wn) → c − ϕλ(u), ϕ′
λ(wn) → 0 as n → ∞. (3.22)

Since V is allowed to be sign-changing, from

ϕλ(u) = ϕλ(u)− 1

4
〈ϕ′
λ(u), u〉 = 1

4
‖u‖2

λ − λ

4

∫

R3

V −(x)u2dx +
∫

R3

F(x, u)dx,

it cannot deduce ϕλ(u) ≥ 0. We consider two possibilities:

(i) ϕλ(u) < 0,
(ii) ϕλ(u) ≥ 0.

If ϕλ(u) < 0, then u �= 0 and the proof is done. If ϕλ(u) ≥ 0, following the same lines as the
proof of Lemma 3.3, we can deduce un → u in Eλ. Indeed, using (V2) and the fact wn → 0
in L2(

{
x ∈ R

3 : V (x) < b
}
), we have

∣∣∣∣∣∣∣
∫

R3

V −(x)w2
ndx

∣∣∣∣∣∣∣
≤ |V −|∞

∫
suppV −

w2
ndx = o(1).
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Combining this with (3.22), we obtain∫

R3

F(x, wn)dx = ϕλ(wn)− 1

4
〈ϕ′
λ(wn), wn〉 + 1

4

∫

R3

λV −(x)w2
ndx − 1

4
‖wn‖2

λ

≤ c − ϕλ(u)+ o(1)

≤ M + o(1).

It follows that (3.20) and (3.21) remain valid. Hence un → u in Eλ and ϕλ(u) = c (> 0).
This completes the proof. ��

Next, we give some preliminary results, i.e., Lemmas 3.5 to 3.8, which ensure that the
functional ϕλ has the linking structure.

Lemma 3.5 Suppose that (V3)–(V4), (K ) and (1.1) with p ∈ (4, 2∗) are satisfied. Then, for
each λ > 
0 (
0 is the constant given in Remark 2.1), there exist αλ, ρλ > 0 such that

ϕλ(u) ≥ αλ for all u ∈ E+
λ

⊕
Fλ with ‖u‖λ = ρλ. (3.23)

Furthermore, if V ≥ 0, we can choose α, ρ > 0 independent of λ.

Proof For any u ∈ E+
λ

⊕
Fλ, writing u = u1 + u2 with u1 ∈ E+

λ and u2 ∈ Fλ. Clearly,
(u1, u2)λ = 0, and∫

R3

(|∇u|2 + λV (x)u2)dx =
∫

R3

(|∇u|21 + λV (x)u2
1)dx + ‖u2‖2

λ. (3.24)

For each fixed λ > 
0, noticing μ j (λ)
j−→ +∞, there exists a positive integer nλ such

that μ j (λ) ≤ 1 for j ≤ nλ and μ j (λ) > 1 for j ≥ nλ + 1. For u1 ∈ E+
λ , we set u1 =∑∞

j=nλ+1 a j (λ)e j (λ). Thus
∫

R3

(|∇u1|2 + λV (x)u2
1)dx = ‖u1‖2

λ −
∫

R3

λV −(x)u2
1dx ≥

(
1 − 1

μnλ+1(λ)

)
‖u1‖2

λ

(3.25)

Now, using (3.24), (3.25) and (2.1), we obtain

ϕλ(u) ≥ 1

2

(
1 − 1

μnλ+1(λ)

)
‖u‖2

λ − ε|u|22 − Cε|u|p
p

≥
[

1

2

(
1 − 1

μnλ+1(λ)

)
− εν2

2

]
‖u‖2

λ − Cεν
p
p ‖u‖p

λ ,

consequently the conclusion follows because p > 2 and ε has been chosen arbitrarily.
If V ≥ 0, since Eλ = Fλ, and∫

R3

(|∇u|2 + λV (x)u2)dx = ‖u‖2
λ,

we can choose α, ρ > 0 (independent of λ) such that (3.23) holds. ��
Lemma 3.6 Let (V3)–(V4), (K ), ( f1) and ( f2) be satisfied. Then, for any finite dimensional
subspace Ẽλ ⊂ Eλ, there holds

ϕλ(u) → −∞ as ‖u‖λ → ∞, u ∈ Ẽλ.

123



Existence and multiplicity of solutions for Schrödinger–Poisson equations 399

Proof Assuming the contrary, there is a sequence (un) ⊂ Ẽλ with ‖un‖λ → ∞ such that

− ∞ < inf
n
ϕλ(un). (3.26)

Take vn := un/‖un‖λ. Since dimẼλ < +∞, there exists v ∈ Ẽλ\ {0} such that

vn → v in Ẽλ, vn(x) → v(x) a.e. x ∈ R
3

after passing to a subsequence. If v(x) �= 0, then |un(x)| n→ +∞, and hence by ( f2),

F(x, un(x))

u4
n(x)

v4
n(x) → +∞ as n → ∞.

Combining this with ( f1), (2.4) and Fatou’s lemma, we obtain

ϕλ(un)

‖un‖4
λ

≤ 1

2‖un‖2
λ

+ C0

4
−
∫

R3

F(x, un)

‖un‖4
λ

dx

= 1

2‖un‖2
λ

+ C0

4
−
⎛
⎜⎝
∫
v=0

+
∫
v �=0

⎞
⎟⎠ F(x, un)

u4
n

v4
ndx

≤ 1

2‖un‖2
λ

+ C0

4
−
∫
v �=0

F(x, un)

u4
n

v4
ndx

→ −∞,

a contradiction with (3.26). ��
Lemma 3.7 Suppose that (V3)–(V4), (K ), ( f1) and ( f2) are satisfied. If V (x) < 0 for some
x, then, for each k ∈ N, there exist λk > k, wk ∈ E+

λk

⊕
Fλk , Rλk > ρλk (ρλk is the constant

given in Lemma 3.5) and bk > 0 such that, for |K |2 < bk (or |K |∞ < bk),

(a) supϕλk (∂Qk) ≤ 0,
(b) supϕλk (Qk) is bounded above by a constant independent of λk ,

where Qk :=
{

u = v + twk : v ∈ E−
λk
, t ≥ 0, ‖u‖ ≤ Rλk

}
.

Proof We adapt an argument in Ding and Szulkin [16]. For each k ∈ N, since μ j (k) → +∞
as j → ∞, there is jk ∈ N such that μ jk (k) > 1. By Proposition 2.2, there is λk > k such
that

1 < μ jk (λk) < 1 + 1

λk
.

Taking wk := e jk (λk) be an eigenvalue of μ jk (λk), then wk ∈ E+
λk

as μ jk (λk) > 1. Since

dimE−
λk

⊕
Rwk < +∞, it follows directly from Lemma 3.6 that (a) holds with Rλk > 0

large.
By ( f2), for each η > |V −|∞, there is rη > 0 such that F(x, t) ≥ 1

2ηt2 if |t | ≥ rη. For
u = v + w ∈ E−

λk

⊕
Rwk , we get

∫

R3

V −(x)u2dx =
∫

R3

V −(x)v2dx +
∫

R3

V −(x)w2dx
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by the orthogonality of E−
λk

and Rwk . Hence we obtain

ϕλk (u) ≤ 1

2

∫

R3

(|∇w|2 + λk V (x)w2)dx + 1

4

∫

R3

K (x)φuu2dx −
∫

suppV −
F(x, u)dx

≤ 1

2

(
μ jk (λk)− 1

)
λk

∫

R3

V −(x)w2dx −
∫

suppV −

1

2
ηu2dx + 1

4
S̄−2ν4

6 |K |22‖u‖4
λk

−
∫

suppV −,|u|≤rη

(
F(x, u)− 1

2
ηu2

)
dx

≤ 1

2

∫

R3

V −(x)w2dx − η

2|V −|∞
∫

R3

V −(x)w2dx + Cη + 1

4
S̄−2ν4

6 |K |22 R4
λk

≤ Cη + 1

for u = v + w ∈ E−
λk

⊕
Rwk with ‖u‖ ≤ Rλk and |K |2 < bk := 2S̄(ν6 Rλk )

−2, where Cη
depends on η but not λ. ��
Lemma 3.8 Suppose that (V3)–(V4), (K ), ( f1) and ( f2) are satisfied. If � := intV −1(0) is
nonempty, then, for each λ > 
0, there exist w ∈ E+

λ

⊕
Fλ, Rλ > 0 and bλ > 0 such that

for |K |2 < bλ (or|K |∞ < bλ),

(a) supϕλ(∂Q) ≤ 0,
(b) supϕλ(Q) is bounded above by a constant independent of λ,

where Q = {
u = v + tw : v ∈ E−

λ , t ≥ 0, ‖u‖ ≤ Rλ
}
.

Proof Choose e0 ∈ C∞
0 (�)\ {0}, then e0 ∈ Fλ. By Lemma 3.6, there is Rλ > 0 large such

that ϕλ(u) ≤ 0 whenever u ∈ E−
λ

⊕
Re0 and ‖u‖λ ≥ Rλ.

For u = v + w ∈ E−
λ

⊕
Re0, we obtain

ϕλ(u) ≤ 1

2

∫

R3

|∇w|2dx + 1

4

∫

R3

K (x)φuu2dx −
∫
�

F(x, u)dx

≤ 1

2

∫

R3

|∇w|2dx− η
2

∫
�

u2dx−
∫

�,|u|≤rη

(
F(x, u)− η

2
u2
)

dx+ 1

4
S̄−2ν4

6 |K |22‖u‖4
λk

≤ 1

2

∫

R3

|∇w|2dx − η

2

∫
�

u2dx + Cη + 1

4
S̄−2ν4

6 |K |22‖u‖4
λk
. (3.27)

Observing w ∈ C∞
0 (�), one has

∫

R3

|∇w|2dx =
∫
�

(−�w)udx ≤ |�w|2|u|2,� ≤ d0|∇w|2|u|2,� ≤ d2
0

2η
|∇w|22 + η

2
|u|22,�,

(3.28)

where d0 is a constant depending on e0. Choosing η ≥ d2
0 , we have |∇w|22 ≤ η|u|22,�, and it

follows from (3.27) that

ϕλ(u) ≤ Cη + 1

4
S̄−2ν4

6 |K |22‖u‖4
λk

≤ Cη + 1

for all u ∈ E−
λ

⊕
Re0 with ‖u‖ ≤ Rλ and |K |2 < bλ := 2S̄(ν6 Rλ)−2. ��
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Existence and multiplicity of solutions for Schrödinger–Poisson equations 401

Now we are in a position to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1 Case (i). It follows from Lemmas 3.5, 3.7 and Proposition 2.4 that,
for λ = λk and |K |2 ∈ (0, bk), ϕλk has a (C)c sequence with c ∈ [αλk , supϕλk (Qk)]. Setting
M := supϕλk (Qk), then ϕλk has a nontrivial critical point according to Lemmas 3.1 and 3.4.

Case (ii). The conclusion follows from Lemmas 3.1, 3.4, 3.5, 3.8 and Proposition 2.4. ��
Proof of Theorem 1.2 (Existence) Suppose V ≥ 0. By Lemma 3.5, there exist constants α,
ρ > 0 (independent of λ) such that

ϕλ(u) ≥ α for u ∈ Eλ with ‖u‖λ = ρ. (3.29)

Take e0 ∈ C∞
0 (�)\ {0}. Then, by ( f1), ( f2) and Fatou’s lemma,

ϕλ(te0)

t4 ≤ 1

2t2

∫
�

|∇e0|2dx + 1

4
N (e0)−

∫
{x∈�:e0(x)�=0}

F(x, te0)

(te0)4
e4

0dx → −∞

as t → +∞, which yields that ϕλ(te0) < 0 for t > 0 large. Clearly, there is C1 > 0
(independent of λ) such that

cλ := inf
h∈� max

t∈[0,1]ϕλ(h(t)) ≤ sup
t≥0

ϕλ(te0) ≤ C1, (3.30)

where � = {h ∈ C([0, 1], Eλ) : h(0) = 0, ‖h(1)‖λ ≥ ρ, ϕλ(h(1)) < 0}. By Proposition 2.3
and Lemma 3.3, we obtain a nontrivial critical point uλ of ϕλ with ϕλ(uλ) ∈ [α,C1] for λ
large.

(Multiplicity) For each k ∈ N, we choose k functions ei ∈ C∞
0 (�) such that

suppei∩suppe j = ∅ if i �= j . Let

Wk = span {e1, e2, . . . , ek} .
According to (3.29), Lemma 3.3 and Proposition 2.5, it suffices to show that supϕλ(Wk) is
bounded above by a constant independent of λ.

For u ∈ Wk and η > 0, we have [cf. (3.28)]
∫

R3

|∇u|2dx ≤ d2
k

2η
|∇u|22 + η

2
|u|22,�

(dk is a constant depending on Wk). It follows that∫

R3

|∇u|2dx ≤ η|u|22,�, if η ≥ d2
k . (3.31)

Combining this with (2.4) and the Hölder inequality, we obtain

N (u) ≤ C0‖u‖4
λ = C0

⎛
⎝∫
�

|∇u|2dx

⎞
⎠

2

≤ C0η
2

⎛
⎝∫
�

u2dx

⎞
⎠

2

≤ C0η
2|�|

∫
�

u4dx for all u ∈ Wk .

(3.32)

By ( f2), for each η > d2
k , there is rη > 0 such that

F(x, t) ≥ 1

2
ηt2 + 1

4
C0η

2|�|t4, ∀x ∈ R
3, |t | ≥ rη. (3.33)
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Hence we obtain, using (3.31)–(3.33),

ϕλ(u) ≤ 1

2

∫

R3

|∇u|2dx + 1

4
N (u)−

∫
�

F(x, u)dx

≤ 1

2

∫

R3

|∇u|2dx + 1

4
N (u)− η

2

∫
�

u2dx − 1

4
C0η

2|�|
∫
�

u4dx

−
∫

�,|u|≤rη

(
F(x, u)− η

2
u2 − 1

4
C0η

2|�|u4
)

dx

≤ Cη

for all u ∈ Wk , where Cη is independent of λ. ��

4 Proof of Theorem 1.3

In this section, we are concerned with problem (S P)1 with sublinear nonlinearity. We consider
the functional ϕ1 (denoted by ϕ for simplicity) on (E, ‖ · ‖):

ϕ(u) = 1

2

∫

R3

(|∇u|2 + V (x)u2)dx + 1

4

∫

R3

K (x)φuu2dx − ψ(u),

where ψ(u) = ∫
R3 F(x, u)dx . Since the constant νs given in (2.1) is independent of λ, it

still holds

|u|s ≤ νs‖u‖, ∀u ∈ E . (4.1)

It follows from ( f5) that

|F(x, u)| ≤ m(x)|u|σ + h(x)|u|γ , ∀(x, u) ∈ R
3 × R, (4.2)

which, jointly with (4.1) and Hölder’s inequality, shows that∫

R3

F(x, u)dx ≤
∫

R3

(m(x)|u|σ + h(x)|u|γ )dx

≤ |m| 2
2−σ

|u|σ2 + |h| 2
2−γ

|u|γ2
≤ |m| 2

2−σ
νσ2 ‖u‖σ + |h| 2

2−γ
ν
γ
2 ‖u‖γ

< +∞. (4.3)

Hence, ψ and ϕ are well defined. In addition, we have the following lemmas.

Lemma 4.1 Assume that (V3), (V4) and ( f5) hold and un ⇀ u in E, then

f (x, un) → f (x, u) in L2(R3). (4.4)

Proof Since un ⇀ u in E , there is a constant M > 0 such that

‖un‖ ≤ M and ‖u‖ ≤ M, ∀n ∈ N. (4.5)
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Existence and multiplicity of solutions for Schrödinger–Poisson equations 403

Up to a subsequence, we can assume that

un → u in L2
loc(R

3),

un(x) → u(x) a.e. x ∈ R
3. (4.6)

By the properties of the functions m and h, we have, for every ε > 0, there exists Tε > 0
such that

⎛
⎜⎝

∫
|x |≥Tε

|m(x)| 2
2−σ dx

⎞
⎟⎠

2−σ
2

<
√
ε and

⎛
⎜⎝

∫
|x |≥Tε

|h(x)| 2
2−γ dx

⎞
⎟⎠

2−γ
2

<
√
ε. (4.7)

By (4.6), passing to a subsequence if necessary, we can assume that
∑∞

n=1

∫
|x |≤Tε

|un −u|2dx

< +∞. Taking w(x) = ∑∞
n=1 |un(x)− u(x)| for |x | ≤ Tε, then

∫
|x |≤Tε

w2dx < +∞. It
follows from ( f5) that, for all n ∈ N and |x | ≤ Tε,

| f (x, un)− f (x, u)|2 ≤ [m(x)(|un |σ−1 + |u|σ−1)+ h(x)(|un |γ−1 + |u|γ−1)]2

≤ 4m2(x)(|un |2σ−2 + |u|2σ−2)+ 4h2(x)(|un |2γ−2 + |u|2γ−2)

≤ 22σ+1m2(x)(|un − u|2σ−2 + |u|2σ−2)

+22γ+1h2(x)(|un − u|2γ−2 + |u|2γ−2)

≤ 22σ+1m2(x)(|w|2σ−2 + |u|2σ−2)

+22γ+1h2(x)(|w|2γ−2 + |u|2γ−2),

and, using Hölder’s inequality,∫
|x |≤Tε

[
22σ+1m2(x)(|w|2σ−2 + |u|2σ−2)+ 22γ+1h2(x)(|w|2γ−2 + |u|2γ−2)

]
dx

≤ 22σ+1|m|2 2
2−σ

⎡
⎢⎣
⎛
⎜⎝

∫
|x |≤Tε

w2dx

⎞
⎟⎠
σ−1

+
⎛
⎜⎝

∫
|x |≤Tε

u2dx

⎞
⎟⎠
σ−1⎤

⎥⎦

+22γ+1|h|2 2
2−γ

⎡
⎢⎣
⎛
⎜⎝

∫
|x |≤Tε

w2dx

⎞
⎟⎠
γ−1

+
⎛
⎜⎝

∫
|x |≤Tε

u2dx

⎞
⎟⎠
γ−1⎤

⎥⎦
< +∞.

Hence, by Lebesgue dominated convergence theorem, we obtain∫
|x |≤Tε

| f (x, un)− f (x, u)|2dx → 0 as n → ∞. (4.8)

On the other hand, using ( f5), (4.7), (4.5), (4.1) and the Hölder inequality, we have∫
|x |≥Tε

| f (x, un)− f (x, u)|2dx

≤
∫

|x |≥Tε

[m(x)(|un |σ−1 + |u|σ−1)+ h(x)(|un |γ−1 + |u|γ−1)]2dx
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≤ 4
∫

|x |≥Tε

m2(x)(|un |2σ−2 + |u|2σ−2)dx

+4
∫

|x |≥Tε

h2(x)(|un |2γ−2 + |u|2γ−2)dx

≤ 4

⎛
⎜⎝

∫
|x |≥Tε

|m| 2
2−σ dx

⎞
⎟⎠

2−σ

(|un |2σ−2
2 + |u|2σ−2

2 )

+4

(∫
|x |≥Tε

|h| 2
2−γ dx

)2−γ
(|un |2γ−2

2 + |u|2γ−2
2 )

≤ 8ε
(
ν2σ−2

2 M2σ−2 + ν
2γ−2
2 M2γ−2

)
.

This, together with (4.8), shows that (4.4) holds. This completes the proof. ��

Lemma 4.2 Assume that V ≥ 0, (V3), (K ) and ( f5) hold. Then ψ ∈ C1(E,R) and ψ ′ :
E → E∗ (the dual space of E) is compact, and hence ϕ ∈ C1(E,R),

〈ψ ′(u), v〉 =
∫

R3

f (x, u)vdx, (4.9)

〈ϕ′(u), v〉 =
∫

R3

(∇u · ∇v + V (x)uv + K (x)φuuv − f (x, u)v) dx

for all u, v ∈ E. If u is a critical point of ϕ, then the pair (u, φu) is a solution of problem
(S P)1.

Proof In view of Lemma 4.1 and (4.1), the proof is standard and we refer to [23]. ��

Proof of Theorem 1.3 In view of Lemma 4.2 and the oddness of f , we know that ϕ ∈
C1(E,R) and ϕ(−u) = ϕ(u). It remains to verify the conditions (i) and (ii) of Proposition
2.6. We follow an argument in [20].

Verification of (i). Since V ≥ 0, we get Fλ = Eλ. It follows from (4.3) that

ϕ(u) ≥ 1

2
‖u‖2 − |m| 2

2−σ
νσ2 ‖u‖σ − |h| 2

2−γ
ν
γ
2 ‖u‖γ , ∀u ∈ E .

Noting that σ , γ ∈ (1, 2), we have

ϕ(u) → +∞ as ‖u‖ → ∞. (4.10)

Thus ϕ is bounded from below.
Let (un) ⊂ E be a (PS)-sequence of ϕ, i.e., {ϕ(un)} is bounded and ϕ′(un) → 0 as

n → ∞. By (4.10), (un) is bounded, and then un ⇀ u in E for some u ∈ E . Recall that

(xy)1/2(x + y) ≤ x2 + y2, ∀x, y ≥ 0.

Hence we obtain, by (2.3) and Hölder’s inequality,
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∫

R3

K (x)(φun unu + φuunu)dx

≤
⎛
⎜⎝
∫

R3

K (x)φun u2
ndx

⎞
⎟⎠

1/2 ⎛
⎜⎝
∫

R3

K (x)φun u2dx

⎞
⎟⎠

1/2

+
⎛
⎜⎝
∫

R3

K (x)φuu2
ndx

⎞
⎟⎠

1/2 ⎛
⎜⎝
∫

R3

K (x)φuu2dx

⎞
⎟⎠

1/2

=
⎛
⎜⎝
∫

R3

∇φun · ∇φudx

⎞
⎟⎠

1/2

(‖φun ‖D1,2 + ‖φu‖D1,2
)

≤
⎛
⎜⎝
∫

R3

|∇φun |2dx

⎞
⎟⎠

1/4 ⎛
⎜⎝
∫

R3

|∇φu |2dx

⎞
⎟⎠

1/4

(‖φun ‖D1,2 + ‖φu‖D1,2
)

= ‖φun ‖1/2
D1,2‖φu‖1/2

D1,2

(‖φun ‖D1,2 + ‖φu‖D1,2
)

≤ ‖φun ‖2
D1,2 + ‖φu‖2

D1,2

=
∫

R3

K (x)(φun u2
n + φuu2)dx,

which implies that ∫

R3

K (x)(φun un − φuu)(un − u)dx ≥ 0.

Combining this with Lemma 4.1, we obtain

‖un − u‖2 = 〈ϕ′(un)− ϕ′(u), un − u〉 −
∫

R3

K (x)(φun un − φuu)(un − u)dx

+
∫

R3

( f (x, un)− f (x, u))(un − u)dx

≤ ‖ϕ′(un)‖E∗‖un −u‖−〈ϕ′(u), un −u〉+
⎛
⎜⎝
∫

R3

| f (x, un)− f (x, u)|2dx

⎞
⎟⎠

1/2

· |un −u|2

→ 0,

that is, un → u (n → ∞). Hence the (PS) condition holds.
Verification of (i i). For simplicity, we assume that x0 = 0 in ( f6). For r > 0, let D(r)

denotes the cube

D(r) = {(x1, x2, x3) : 0 ≤ xi ≤ r, i = 1, 2, 3} .
Fix r > 0 small enough such that D(r) ⊂ B(0, δ), where δ is the constant given in ( f6). For
arbitrary k ∈ N, we shall construct an Ak ∈ �k satisfying supu∈Ak

ϕ(u) < 0.
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Let m ∈ N be the smallest integer such that m3 ≥ k. We divide D(r) equally into m3 small
cubes by planes parallel to each face of D(r) and denote them by Di with 1 ≤ i ≤ m3. We
only use Di with 1 ≤ i ≤ k. Set a = r/m. Then the edge of Di has length a. We consider
a cube Ei ⊂ Di (i = 1, 2, . . . , k) such that Ei has the same center as that of Di , the faces
of Ei and Di are parallel and the edge of Ei has length a/2. Define ζ ∈ C∞

0 (R, [0, 1]) such
that ζ(t) = 1 for t ∈ [a/4, 3a/4], ζ(t) = 0 for t ∈ (−∞, 0]⋃[a,+∞). Define

ξ(x) = ζ(x1)ζ(x2)ζ(x3), (x1, x2, x3) ∈ R
3.

Then suppξ ⊂ [0, a]3. Now for each 1 ≤ i ≤ k, we can choose a suitable yi ∈ R
3 and define

ξi (x) = ξ(x − yi ), ∀x ∈ R
3

such that

suppξi ⊂ Di , suppξi

⋂
suppξ j = ∅ (i �= j), (4.11)

and

ξi (x) = 1 (x ∈ Ei ), 0 ≤ ξi (x) ≤ 1 (x ∈ R
3).

Set

Vk =
{
(t1, t2, . . . , tk) ∈ R

k : max
1≤i≤k

|ti | = 1

}
(4.12)

and

Wk =
{

k∑
i=1

tiξi (x) : (t1, t2, . . . , tk) ∈ Vk

}
.

Observing Vk is homeomorphic to the unit sphere in R
k by an odd mapping, we getγ (Vk) = k.

Furthermore, γ (Wk) = γ (Vk) = k because the mapping (t1, . . . , tk) �−→ ∑k
i=1 tiξi (x) is

odd and homeomorphic. Since Wk is compact, there exists Ck > 0 such that

‖u‖ ≤ Ck, ∀u ∈ Wk . (4.13)

For 0 < s < ε (ε is the constant given in ( f6)) and u = ∑k
i=1 tiξi (x) ∈ Wk , we obtain

ϕ(su) ≤ s2

2
‖u‖2 + s4

4

∫

R3

K (x)φuu2dx −
∫
R3

F

(
x, s

k∑
i=1

tiξi (x)

)
dx

≤ s2

2
C2

k + s4

4
C0C4

k −
k∑

i=1

∫
Di

F(x, sti ξi (x))dx (4.14)

by (4.13), (4.11) and Lemma 3.5 (i). Observing (4.12), there exists an integer i0 ∈ [1, k]
such that |ti0 | = 1. Then it follows that

k∑
i=1

∫
Di

F(x, stiξi (x))dx =
∫

Ei0

F(x, sti0ξi0(x))dx +
∫

Di0 \Ei0

F(x, sti0ξi0(x))dx

+
∑
i �=i0

∫
Di

F(x, stiξi (x))dx . (4.15)

123



Existence and multiplicity of solutions for Schrödinger–Poisson equations 407

Noting that |ti0 | = 1, ξi0 ≡ 1 on Ei0 and F(x, u) is even in u, we get∫
Ei0

F(x, sti0ξi0(x))dx =
∫

Ei0

F(x, s)dx . (4.16)

By ( f6), ∫
Di0 \Ei0

F(x, sti0ξi0(x))dx +
∑
i �=i0

∫
Di

F(x, sti ξi (x))dx ≥ −a2vol(D(r))s2, (4.17)

where vol(D(r)) denotes the volume of D(r), i.e. r3. Combining (4.14)–(4.17), one has

ϕ(su) ≤ s2

2
C2

k + s4

4
C0C4

k + a2r3s2 −
∫

Ei0

F(x, s)dx .

Substituting s = εn and using (1.2), we obtain

ϕ(εnu) ≤ ε2
n

[
C2

k

2
+ ε2

n

4
C0C4

k + a2r3 −
(a

2

)3
Mn

]
.

Since εn → 0+ and Mn → +∞ as n → ∞, we choose n0 large enough such that the right
side of the last inequality is negative. Take

Ak = εn0 Wk .

Then we have

γ (Ak) = γ (Wk) = k and sup
u∈Ak

ϕ(u) < 0.

Consequently, Theorem 1.3 follows from Proposition 2.6. This completes the proof. ��

5 Concentration of solutions

In this section, we deal with problem (S P)λ with λ = λk → +∞.

Theorem 5.1 Suppose that (V3)–(V4) and (K ) are satisfied, V −1(0) has nonempty interior
� and there exist a3 > 0, p ∈ (2, 2∗) such that

| f (x, t)| ≤ a3(|t | + |t |p−1), ∀(x, t) ∈ R
3 × R. (5.1)

Let (uk) ⊂ E be a solution of (S P)λ with λ = λk . If λk → +∞ and ‖uk‖λk ≤ C for some
C > 0 and all k, then, passing to a subsequence, uk → ū in Ls(R3) for s ∈ (2, 2∗), ū is a
weak solution of{

−�u + 1
4π

(
(K (x)u2) ∗ 1

|x |
)

K (x)u = f (x, u) in �,

u = 0 on ∂�,
(5.2)

and ū = 0 a.e. in R
3\V −1(0). If moreover V ≥ 0 and ( f1) is satisfied, then uk → ū in E.

We note that ū ∈ H1
0 (�) if V −1(0) = � and ∂� is locally Lipschitz continuous (see [7]).

Before proving the above theorem we point out some of its consequences.
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Corollary 5.1 Let (uλ, φλ) be the solution obtained in Theorem 1.2 (existence result). Then
uλ → ū in E, φλ → φū in D1,2(R3) as λ → +∞, and ū is a nontrivial solution of (5.2).

Proof For λk → +∞, set uk := uλk be the critical point of ϕλk obtained in Theorem 1.2. It
follows from (3.30) that

C1 ≥ cλk = ϕλk (uk)− 1

4
〈ϕ′
λk
(uk), uk〉 = 1

4
‖uk‖2

λk
+
∫

R3

F(x, uk)dx ≥ 1

4
‖uk‖2

λk
.

Hence
{‖uk‖λk

}
is bounded. So the conclusion of Theorem 5.1 holds.

We show that ū �= 0. Since V ≥ 0 and 〈ϕ′
λk
(uk), uk〉 = 0, we have

‖uk‖2
λk

+ N (uk) =
∫

R3

f (x, uk)ukdx ≤ ε|uk |22 + Cε|uk |p
p.

If ū = 0, then uk → 0 in L p(R3), and therefore

‖uk‖λk → 0, N (uk) → 0 as k → ∞
(note |uλk |2 is bounded and ε is arbitrary). Now it follows easily that ϕλk (uk) → 0, a
contradiction with the fact ϕλk (uk) = cλk ≥ α. ��
Proof of Theorem 5.1 We adapt an argument in [7]. We divide the proof into three steps.

(1) Since ‖uk‖ ≤ ‖uk‖λk ≤ C , one has

uk ⇀ ū in E, uk → ū in Ls
loc(R

3) (2 ≤ s < 2∗), uk(x) → ū(x) a.e. x ∈ R
3.

For any ψ ∈ C∞
0 (R

3), it follows from the fact 〈ϕ′
λk
(uk), ψ〉 = 0 that∣∣∣∣∣∣∣

∫

R3

V (x)ukψdx

∣∣∣∣∣∣∣

≤ 1

λk

⎛
⎜⎝
∫

R3

| f (x, uk)ψ |dx +
∫

R3

|K (x)φuk ukψ |dx +
∫

R3

|∇uk · ∇ψ |dx

⎞
⎟⎠

≤ 1

λk

[
a3(|uk |2|ψ |2 + |uk |p−1

p |ψ |p)+ |K |2|φuk |6|ψ |∞|uk |3 + |∇uk |2|∇ψ |2
]

≤ c

λk
−→ 0 as k → ∞,

and hence ∫

R3

V (x)ūψdx = 0, ∀ψ ∈ C∞
0 (R

3),

which implies that ū = 0 a.e. in R
3\V −1(0). Now for each ψ ∈ C∞

0 (�), since
〈ϕ′
λk
(uk), ψ〉 = 0, it follows that∫

R3

∇ū · ∇ψdx +
∫

R3

K (x)φū ūψdx =
∫

R3

f (x, ū)ψdx,

i.e., ū is a weak solution of (5.2) by the density of C∞
0 (�) in H1

0 (�).
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(2) uk → ū in Ls(R3) for 2 < s < 2∗. Arguing indirectly, by Lion’s vanishing lemma,
there exist δ, ρ > 0 and (xk) ⊂ R

3 such that
∫

Bρ(xk )

(uk − ū)2dx ≥ δ.

It is easy to see that |xk | k−→ ∞. So meas
(
Bρ(xk) ∩ {

x ∈ R
3 : V (x) < b

}) → 0, and

∫
Bρ(xk )∩{V<b}

(uk − ū)2dx ≤ |uk − ū|23
(
meas(Bρ(xk) ∩ {V < b}))1/3 k−→ 0.

Thus,

‖uk‖2
λk

≥ λkb
∫

Bρ(xk )∩{V ≥b}
u2

kdx

= λkb
∫

Bρ(xk )∩{V ≥b}
(uk − ū)2dx

= λkb

⎛
⎜⎝

∫
Bρ(xk )

(uk − ū)2dx −
∫

Bρ(xk )∩{V<b}
(uk − ū)2dx

⎞
⎟⎠

→ +∞,

a contradiction with the boundedness of
{‖uk‖λk

}
k .

(3) Suppose that V ≥ 0 and ( f1) holds. We show that uk → ū in E . Since 〈ϕ′
λk
(uk), uk〉 =

0 and 〈ϕ′
λk
(uk), ū〉 = 0, we have

‖uk‖2
λk

=
∫

R3

f (x, uk)ukdx −
∫

R3

K (x)φuk u2
kdx (5.3)

and

(uk, ū)λk =
∫

R3

f (x, uk)ūdx −
∫

R3

K (x)φuk uk ūdx . (5.4)

From (5.1) and ( f1), for any ε > 0, there exists Cε > 0 such that

| f (x, t)| ≤ ε|t | + Cε|t |p−1, ∀(x, t) ∈ R
3 × R.

Hence we obtain∣∣∣∣∣∣∣
∫

R3

f (x, uk)(uk − ū)dx

∣∣∣∣∣∣∣
≤ ε

∫

R3

|uk ||uk − ū|dx + Cε

∫

R3

|uk |p−1|uk − ū|dx

≤ ε|uk |2|uk − ū|2 + Cε|uk |p−1
p |uk − ū|p

= o(1) (5.5)
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since uk → ū in L p(R3) (2 < p < 6), (uk) ⊂ E is bounded and ε has been chosen
arbitrarily. Similar to (2.7), we have

∣∣∣∣∣∣∣
∫

R3

K (x)φuk uk(uk − ū)dx

∣∣∣∣∣∣∣
≤ |φuk |6|uk |6

⎛
⎜⎝
∫

R3

K (x)(uk − ū)3/2dx

⎞
⎟⎠

2/3

→ 0. (5.6)

Using (5.3)-(5.6) and recalling ū(x) = 0 if V (x) > 0, we obtain

‖uk‖2 ≤ ‖uk‖2
λk

= (uk, ū)λk + o(1) =
∫

R3

∇uk · ∇ūdx + o(1) = ‖ū‖2 + o(1). (5.7)

It follows from the weak lower semicontinuity that

‖ū‖2 ≤ lim inf
k→∞ ‖uk‖2,

which, jointly with (5.7), shows that uk → ū in E . The proof is complete. ��
Acknowledgments The authors express their gratitude to the anonymous referee for a careful reading and
helpful suggestions which led to an improvement of the original manuscript.
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