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Abstract In this paper, we study the existence and multiplicity of solutions for the
Schrodinger—Poisson equations

—Au+AVXu+ K@x)u = f(x,u) inR3,
—A¢ = K (x)u? in R3,

where A > 0 is a parameter, the potential V may change sign and f is either superlinear or
sublinear in u as |u| — oo.
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1 Introduction and main results

Consider the following Schodinger—Poisson equations:

[ —Au4+AVu+ K@)du = f(x,u) inR3,

—A¢ = K (x)u? in R3, (P,

where A > 1 is a parameter, V € C(R3, R) and fe C(R> x R, R).

Problem (SP), (also called Schrodinger—-Maxwell equation) arises in applications from
mathematical physics, such as in quantum electrodynamics, to describe the interaction of a
charged particle with the electromagnetic field, and also in semiconductor theory, in nonlinear
optics and in plasma physics. For more details in physical aspects, we refer to [9,12].
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There has been a vast literature on the study of existence and multiplicity of solutions of
system (S P); under various hypotheses on the potential V (x) and the nonlinearity f(x, u),
see [1-3,5,9-14,18,19,21,22,24-28,31,34-37] and the references therein. Most of them
dealt with the situation where V (x) is a positive constant or being radially symmetric and
fo,u) = ulP~'u, 1 < p < 5.1In [25] the case p = 5/3 was studied. The authors applied
a minimization procedure in an appropriate manifold to find a positive solution (possibly
non-radial) for system (SP); (i.e. (SP), with A = 1). In [11,12], a radial positive solution
of (SP); was obtained for 3 < p < 5, by taking advantage of the mountain pass theorem due
to Ambrosetti and Rabinowitz [4]. In [13], a related Pohozaev identity was found, and with
this in hand, the authors proved that problem (S P); has no nontrivial solutions for p < 1
or p > 5. This result was completed in [24], where Ruiz showed that if p < 2, problem
(SP)1 does not admit any nontrivial solution, and if 2 < p < 5, there exists a positive radial
solution of (SP);. Ambrosetti and Ruiz [2] and Ambrosetti [3] considered problem (SP);
with a parameter, i.e.,

—Au+u+rgu=ulP'u inR3,

—A¢ = u? in R3. (A

Using variational methods, they constructed the existence of infinitely many pairs of radial
solutions of problem (A);, where 2 < p < 5, for all A > 0, and also multiple solutions (but
not infinitely many) of (A);, where 1 < p < 2, for . > 0 small sufficiently. In addition,
the existence of infinitely many non-radial solutions of system (SP); was constructed in
d’Avenia et al. [14], when 1 < p < 5 and K (x) is a positive radial function decaying at
infinity. See also [5,19,34,37] for the critical case.

The case of positive and non-radial potential V has been discussed in[10,22,26,28,31,35].
In particular, supposing that V (x) satifies:

(V1) V e C(R3, R) and inf, g3 V(x) > a > 0, where a is a positive constant;
(V2) Forany b > 0, meas{x eRI:V(x) < b} < 400, where meas denotes the Lebesgue
measure in R3;

[10,22,31] established the existence of infinitely many high-energy solutions of problem
(SP)1, where f is 4-superlinear at infinity, while the existence of infinitely many small-
energy solutions was proved in Sun [26] with sublinear nonlinearity. The proofs in [10,22,31]
were based on the (variant) fountain theorem. It is worth mentioning that conditions (Vi)—
(V2) were first introduced by Bartsch and Wang [8] to guarantee the compact embedding of
the functional space (see [8, Remark 3.5]). If replacing (V>) by a more general assumption:

(V3) There is b > 0 such that meas{x € R®: V(x) < b} < 400,

the compactness of the embedding fails and this situation becomes more delicated.
Recently, [32,35] considered this case. Yang et al. [32] investigated the semiclassical
solutions of the Schrodinger—Poisson equations

[ —&2Au+V@u+¢u= f(x,u) inR3,

—A¢p = dmu? in R3. (B)e

They assumed that (V3) holds, V(0) = minV = 0 and f(x, u) satisfies:

(g1) f(x,u) =o0(u)as u — 0 uniformly in x;

(g2) There are cop > 0 and ¢ < 6 such that | f(x, u)| < co(1 + lu|?= 1) for all (x, u);

(g3) There are ag > 0, p > 4 and u > 4 such that F(x,u) > aglu|? and uF(x,u) <
f(x,u)u for all (x, u), where F(x,u) := 0” f(x,s)ds.
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Existence and multiplicity of solutions for Schrodinger—Poisson equations 385

They showed that for any o > 0 there exists &, > 0 such that (B), has at least one solution
when ¢ < g4; and if additionally f (x, u) is odd in u, then given any ¢ > 0 small enough (B),
has at least m pairs of solutions. Zhao et al. [35] studied the existence of nontrivial solution
and concentration results (as A — +-00) of (S P);, provided that V satisfies (V3) and

(Va) V € C(R*,R) and V is bounded below, B
(Vs) Q=intV-10)is nonempty and has smooth boundary and 2 = v—L0),

and f(x,u) = [ulP~u 2 < p < 6).
We also note that if K = 0, (SP);, reduces to the Schodinger equation

—Au+AV(@)u = f(x,u), x e RV, (N

which has been the object of interest for many authors, see e.g. [15,16,29] and their references.
In [16], Ding and Szulkin studied the existence and the number of decaying solutions of
problem (C); when V may change sign, satisfies (V4) and

(Vs) There exists b > 0 such that the set {x € R¥ : V(x) < b} is nonempty and has finite
measure;

and f is either asymptotically linear or superlinear (but subcritical) in « as |u| — oco. Wang
and Zhou [29] dealt with the ground states of problem (C);, where V (x) changes sign and
may vanish at infinity, f(x,u) = K{(x)g(u) and g is either of the form g(u) = lu|P~'u
with1 < p < % or asymptotically linear.

Motivated by the works mentioned above, in the present paper, we are mostly interested
in sign-changing potentials though in a few cases we need to have V > 0. Under (V3)—(V4)
and some more generic 4-superlinear conditions on f(x, u), we prove the existence and
multiplicity of solutions of problem (SP); when A > 0 large, using variational method.
Furthermore, we investigate the situation where the nonlinearity f(x, u) is sublinear with
mild assumptions different from those studied previously. Infinitely many small-energy solu-
tions are obtained for problem (S P); by applying a new version of symmetric mountain pass
lemma developed by Kajikiya. The main results are the following theorems.

First, we handle the 4-superlinear case, and hence make the following assumptions:

(f1) F(x,u) > 0forall (x,u)and f(x,u) = o(x) uniformly in x as u — 0.
(o) F(x,u)/u* — +oc as |u| — oo uniformly in x.

(f3) Fx,u) = 3 f(x,u)u — F(x,u) > 0 forall (x,u) € R3 x R.

(fa) There existay, L1 > 0 and t € (3/2,2) such that

few]" <aFeowlul™,  Vx e R, |u| > Ly.
(K) K € L2 (R?*) U L®(R3) and K (x) > 0 for all x € R3.

Remark 1.1 Tt follows from (f2) and (f4) that | f(x, u)|" < G| f(x, w)||u|*+! for large u.
Thus, by (f1), for any ¢ > 0, there is C; > 0 such that

|Fx,u)| < elul+ Celul”™',  V(x,u) eR¥®xR (1.1)
and
|F(x,u)| < eu® + CelulP,  V(x,u) e R’ xR,

where p = 27/(r — 1) € (4,2%), 2* = 6 is the critical exponent for the Sobolev embedding
in dimension 3.

Theorem 1.1 (Superlinear) Assume that (V3)—(Va), (K) and (f1)—(f1) are satisfied.
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(i) If V(x) < O for some x € R3, then for each k € N, there exist Ay > k and by > 0 such
that problem (S P), has a nontrivial solution (u,,, ¢,) € H'(R3) x DI’Z(R3)f0r every
A=A and |K|y < by (or |K|so < bg).

(ii) If V—10) has nonempty interior, then there exist A > 0 and b) > 0 such that problem
(SP);. has a nontrivial solution (u;, ¢;) € H'(RY) x DV2(R3) for every . > A and
IKl|2 < by (or |Kloo < b3)

Remark 1.2 Theorem 1.1 (ii) generalizes [35, Theorem 1.1], which is the special case of
Theorem 1.1 (ii) corresponding to f(x, u) = [u|?~2u (4 < p < 6).

If V > 0, the restriction on the norm of K can be removed and we have the following
theorem.

Theorem 1.2 (Superlinear) Assume that V > 0, (V3)—(V4), (K) and ( f1)—( fa) are satisfied,
and V~1(0) has nonempty interior Q. Then there exist Ay > 0 such that problem (S P), has
at least one nontrivial solution (uy, ¢5.) € H'(R?) x DV2(R3) whenever A > A. Moreover,
if fisoddint, then for each k > 1 there exists Ay > O such that problem (S P), has at least
k pairs of nontrivial solutions whenever ). > A.

Remark 1.3 Theorem 1.2 can be viewed as an improvement of the results in Yang et al. [32]
and Zhao et al. [35]. Comparing with [32, Theorems 1.1 and 1.2], our hypotheses on f are
much weaker. Indeed, assumption (g3) implies

0 < uF(x,u) < f(x,u)u forsome pu > 4 and all (x, u) withu # 0.

So, if f satisfies (g1) and (g3), it is easy to see that (f2)—( f3) hold, and it will be showed as
in the proof of [16, Lemma 2.2 (i)] that so does ( f4). As for [35], we consider a larger class
of nonlinearities and discuss the multiplicity result.

Remark 1.4 There are functions f which match conditions ( f1)—( f1) but not satisfying the
results in [32,35]. For example, let

2

fx, 1) = h(x)e? (21n(1 +1%) + ) . Y(x,1) eR} xR,

1+ 12
where £ is a continuous bounded function with inf g3 2 (x) > 0.
Next, we treat the sublinear case. Assume that:

(fs) There exist constants o, y € (1,2) and functions m € L¥C 9)(R3 RT), h e
L3@=y)(R3, R) such that

| uw)| <m)ul® P+ h@)ul?™",  Vix,u) e R xR.

(f6) There exist xg € R3, two sequences {&,}, {M,} and constants a;, €, § > 0 such that
&, > 0, M,, > 0and

lim ¢, =0, lim M, = +o0,
n—00 n—o0

a;zF(x,u)ZMn for |x — xo| < 6 and |u| = ¢,

F(x,u) > —apu®>  for |x — x| < 8 and |u| < e. (1.2)
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Existence and multiplicity of solutions for Schrodinger—Poisson equations 387

Theorem 1.3 (Sublinear) Assume that V- > 0, (V3), (K) and (f5)—(fe) are satisfied and
that f(x, u) is odd in u. Then problem (S P)| possesses infinitely many nontrivial solutions
{(ug, ¢r)} such that

1 1

E/”V”k'Z + V(x)u)dx + Z/1<(x)¢ku,%dx - / F(x,ux)dx — 0~ as k — oo.
R3 R3 R3

Remark 1.5 In Sun[26], the existence of infinitely many small-energy solutions was obtained

for (SP)1, where K = 1, under assumptions (V7)—(V>) and:

(f) fQx,u) =bx)|ul°"!, where b : R? — RT is a positive continuous function such that
b e L*C=9)(R3 R)and | <o < 2 is a constant.

Observing (') implies that there is an open set J C R3 such that
F(x,1)/t* - 400 as t — 0 uniformly for x € J,

it is stronger than ( f5)—( fs). Hence Theorem 1.3 improves [26, Theorem 1.1] by weakening
hypotheses on V, K and f. There are functions V, K and f which match our setting but not
satisfying the results in [21,26]. For example, let

V=c(>0), K(x) = |x|™%,

and
Fu) = [ xle™ " [olul=2usin? (i) — elul”=¢2sin (%) ], 1 #0,
0, =0,

where ¢ > 0 small enough and o € (1 + o, 2). Simple calculation shows that

2 .
lx e~ 1| sin2 (ﬁ) 0,

F(x,u):(
0, t=0.

1/
It is easy to check that (V3)—(V4), (K) and (f5)—(fe) are satisfied with ¢, = ( 2 ) Q.

Cn+Dx
However, in this case, (V3) and (f’) fail.

The paper is organized as follows. In Sect. 2 we introduce the variational setting and recall
some related preliminaries. Section 3 is concerned with the 4-superlinear case and Sect. 4
with the sublinear case. In Sect. 5, concentration of solutions to problem (S P); on the set
V~1(0) as A — +o0 is discussed.

Notation e H!(R?)isthe usual Sobolev space endowed with the standard scalar and norm

(1, v) 1 :/(Vu'Vv—i—uv)dx; el g = ()}

R3
o DL2(R3) s the completion of C§° (R3) with respect to the norm || u ||2D1_2 = ng |Vu|?dx.
o L5(Q),1 <s < +o0, Q2 C R, denotes a Lebesgue space; the norm in L*(£2) is denoted

by |uls,q, where €2 is a proper subset of R3, by | - |s when Q@ = R3.
o S is the best Sobolev constant for the Sobolev embedding D'2(R3) «— LO(R3), i.e.,

_ u ,
§=  nr  tlpiz
ueHIR3IN (0}  |ul6
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e Foranyr >0and z € R3, B,(z) denotes the ball of radius r centered at z.
e The letter ¢ will be used to denote various positive constants which may vary from line to
line and are not essential to the problem.

2 Variational setting and preliminaries

Let

E=Juce H‘(R3):/v+(x)u2dx <400},

R3
where V*(x) = max {£V (x), 0}. Then E is a Hilbert space with the inner product and norm
(u,v) = /(w Vo4 Vi@uvydx,  ull = (u, w)'/?.
R3
We also need the following inner product
(u, v)) = /(w Vo +AVT(uv)dx,
R3

and the corresponding norm is denoted by [Jul; = (, )} (so[|-| = [|-l1). Set E;, = (E, ||-
I)- It follows from (V3), (V4) and the Poincaré inequality that the embedding E; — H L(r3)
is continuous, and hence, for s € [2, 2*], there exists vy > 0 (independent of A) such that

luls < vsllulls, Yu € E;. 2.1
Let
Fy == {u € E; : suppu C v=([0, +00))},

and F. )f- denote the orthogonal complement of F) in E,. Clearly, F; = E; if V > 0, otherwise
F;- # {0}. Define

Ay = —A+AV,
then A, is formally self-adjoint in L?(RR?) and the associated bilinear form
ay(u,v) = /(Vu - Vv + AV (x)uv)dx

R3

is continuous in E;. As in [16], we consider the eigenvalue problem
—Au42VE@u = prV-(u,  ue FL. (2.2)

In view of (V3)—(V4), the functional 7 (u) = [gs V= (x)u’dx foru € F;- is weakly continu-
ous. Hence, as aresult of [30, Theorems 4.45 and 4.46], we deduce the following proposition,
which is the spectral theorem for compact self-adjoint operators jointly with the Courant-
Fischer minimax characterization of eigenvalues.

@ Springer



Existence and multiplicity of solutions for Schrodinger—Poisson equations 389

Proposition 2.1 Assume that (V3)—(Vy4) hold, then for any fixed . > 0, problem (2.2) has a
sequence of positive eigenvalues { Iy (k)};i], which may be characterized by

wi(h) = inf sup IIMII%IMEM,/AVf(x)uzdx:l , j=1,2,....
dimM=>j,MCF;- \
R;

Furthermore, j11(A) < p2(A) < --- < uj(d) s 400 and the corresponding eigenfunc-
tions {ej ()L)}jozl, which may be chosen so that (e; (1), (L)) = d;j, are a basis of F/\L

For the eigenvalues { Wj (A)} defined above, we have the following properties.

Proposition 2.2 (see Lemma 2.1 in [16]) Assume that (V3)—(V4) hold and V~ £ 0. Then,
for each fixed j € N,
(i) nj(A) — 0as A — +oo.

(ii) j(X) is a non-increasing continuous function of A.

Remark 2.1 By Proposition 2.2 (i), there exists Ag > 0 such that 11 (X)) < 1 forall A > Ayp.
Take

E; :=span{ej(A) : uj(x) <1} and E; :=spanfe;(0): pu;(1) > 1}.

Then we have the following orthogonal decomposition:

E,=E PE PF.

From Remark 2.1, we have that dimE, > 1 when A > Ag. Moreover, dimE, < +o0 for

every fixed A > 0 since (1) AN +00.
It is well known that problem (S P); can be transformed into a Schrodinger equation with
anonlocal term (see e.g. [24]). Indeed, the Lax-Milgram theorem implies that forall u € Ej,

N2
there exists a unique ¢, € D12(R3), which can be expressed as ¢, (x) = ﬁ ng K(‘%”yl(y)dy,
satisfying
— Ady = K (x)u’. (2.3)
If K € L>®(R?), by Holder and Sobolev inequality, we get
I8.00: = [ KCOuldr < 520 slK ol
R3
Similarly, if K € L*(R?),
a0z = [ K@l = 524K Bl
R3
Thus, there exists Cy > 0 such that
IpullZ,2 = / K@®)¢uuldx < Collul}, VK e L2®RHUL®®RY. (24

R3
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Take

200y,2
N(u) Z/K(x)¢uu2dx L // KK Gu”(0u (y)dxdy
4m lx — vl

R3 R3xR3
We recall some important properties of the functional N.

Lemma 2.1 Let K € L°R>) U L2R?). If u, — u in H'(R3) and u,(x) — u(x) a.e.
x € R3, then

(i) Gu, — bu in DV2(R), and N (u) < liminf,_ oo N(uy);
(ii) N(u, —u) = N(u,) — N(u) + o(1);
(iii) N'(up —u) = N'(uy) — N’ () + o(1) in H~H(R?).

Proof A straightforward adaption of [37, Lemma 2.1] shows that (i) holds. If K = 1, the
proofs of (ii) and (iii) have been given in [36], and it is easy to see that the conclusions remain
valid if K € L*(R?). Hence we only consider the case K € L>(R?).

We claim that

/ (K (x)y, u> — K (x)pyu>)dx —> 0 (2.5)
RS
and
/(K(x)aﬁununllf — K(X)puuy)dx — 0 (2.6)
R3

uniformly for ¢ € H 1 (R3) with ||| g1 < L. It follows from (i) and Holder’s inequality that

Jim / (K (X)¢u, 4 — K (x)pyu”)dx
R3

< lim / [K ), (= u?) + K () ($u, — pu)u?] dx
R3
< lim |y, lelun + 6| K () tn — w)[372

+ lim / . K (x)u*(p, — pu)dx. (2.7)
n—00 [p3

The first limit on the right is O by the fact K3/2 € L*/3(R3) and (u,, — u)>/> — 0in L*(R?),
and so is the second limit because (¢, —¢,) — 0in LO(R?) and K (x)u? € L%5(R?). Thus
(2.5) holds. Moreover, observing that |K (x)u|®’ e L3*(R3) and (Pu, — ¢ — 0in
L3 (R?), we obtain

/(K(x)dmnunl// — K(x)puuy)dx
R3

< / [K (), (i — 00 + K () (G, — buur] dx

]R3
< 16, 1619 61K () (ttn — )13/ + ¥/ 61K ()t @, — )65
< c|Kx)(up — )32 + clK(xX)u(du, — ¢u)les

-0
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uniformly with respect to v, i.e., (2.6) is satisfied. Now (ii) and (iii) follow from (2.5) and
(2.6), respectively. O

By (1.1) and the above lemma, the functional ¢, : E) — R,

¢ (u) = %/(IVMI2 +AV(x)u2)dx + i/K(x)qﬁulﬂdx — / F(x,u)dx,

R3 R3 R3
is of class C! with derivative
((p,/\(u), v) = /(Vu -V 4+ AV(x)uv + K (x)pyuv — f(x, u)v)dx
R3

for all u, v € E,. It can be proved that the pair (u, ¢) € E; X DL2(R3) is a solution of
problem (S P); if and only if u € E) is a critical point of ¢, and ¢ = ¢, (see [9]).

To conclude this section, we state the following propositions, which will be applied to
prove Theorems 1.1-1.3. Recall that a C' functional I satisfies Cerami condition at level
¢ ((C), condition for short) if any sequence (u,) C E such that I (u,) — c¢ and (1 +
llun DI (uy)|l — O has a converging subsequence; such a sequence is then called a (C),
sequence.

Proposition 2.3 (see [17]) Let E be a real Banach space and I € C'(E, R) satisfying
max {/(0), I(e)} <a <b < | iﬁlf 1 (u)
ull=p

forsomea < b, p > 0ande € E with |le|| > p. Let ¢ > b be characterized by

¢ = inf max I(y(t)),
yel t€[0,1] r®)

where I' = {y € C([0, 1], E) : y(0) =0, y(1) = e} is the set of continuous paths jointing
0 and e, then I possesses a (C). sequence.

If V(x) is sign-changing, we need the following linking theorem.
Proposition 2.4 (see [23]) Let E = X @Y be a Banach space with dimY < +oo, I €
CY(E,R). If there exist R > p > 0, o > 0 and eq € X such that

a:=inf I(XNS,) > supl(dQ)

where S, ={u e E : lul| = p}, O={u=v+teg:veY, t>0,|ull <R} Then I has a
(C), sequence with ¢ € [a, sup I (Q)].

Proposition 2.5 (see [6]) Suppose that I € C'(E,R) is even, 1(0) = 0 and there exist
closed subspaces E1, E» such that codimE; < 400, inf I(E1 N S,) > o for some p, o > 0
and sup I (E7) < +o0. If I satisfies the (C).-condition for all ¢ € [o, sup [ (E>)], then I
has at least dim Ey—codimE| pairs of critical points with corresponding critical values in
[a, sup I (E2)].

To establish the existence of infinitely many solutions in the sublinear case, we require the
new version of symmetric mountain pass lemma of Kajikiya (see [20]). Let E be a Banach
space and

I' :={A C E\ {0} : Aisclosed and symmetric with respect to the origin} .
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We define
My :={AeT:y(A) =k,
where y(A) := inf {m € N:3h € C(A, R™\ {0}), —h(x) = h(—x)}. If there is no such
mapping & for any m € N, we set y (A) = +00.
Proposition 2.6 (Symmetric mountain pass lemma) Let E be an infinite dimensional Banach

space and I € C'(E, R) be even, I1(0) = 0 and satisfies the following conditions:

(i) 1 is bounded from below and satisfies the Palais-Smale condition (PS), i.e., (u;) C E has
a converging subsequence whenever {1 (u,)} is bounded and 1’ (u,) — 0 as n — oo.
(ii) Foreachk € N, there exists an Ay € 'y such that SUP,eq, I(u) <O0.

Then either (1) or (2) holds.

(1) There exists a sequence {uy} such that I’ (u) = 0, I (u) < 0 and {u;} converges to zero.

(2) There exist two sequence {u} and {vi} such that I'(ug) = 0, I(ux) = 0, ux # 0,
limgsoour =0, I'(vg) = 0, I(vg) < 0, limg— oo I (vy) = 0 and {v} converges to a
non-zero limit.

Remark 2.2 From Proposition 2.6, we deduce a sequence {uy} of critical points such that
T(up) <0, u; #0andlimg_ o up = 0.

3 Proofs of Theorems 1.1-1.2
We first discuss the (C),. sequence. We only consider the case K € L2(R3), the other case
K € L% (R3) is similar.

Lemma 3.1 Let (V3)—(Vy), (K), (f1)—(f4) be satisfied. Then each (C).-sequence (¢ € R)
of ¢, is bounded in Ej.

Proof Let (u,) C E) be a (C), sequence of ¢, . Arguing indirectly, we can assume that

@a(un) = ¢, o @ll(X+ llugll) = 0, Nuplln — o0 (3.1

asn — oo after passing to a subsequence. Take w,, := u, /||u, 5. Then |w, |y = L, w, — w
in E; and w,(x) — w(x) a.e. x € R3 after passing to a subsequence.

We first consider the case w = 0. Combining this with (3.1), (f3) and the fact w,, — 0 in
L*({x e R*: V(x) < 0}), we obtain

1 1
o(l) = —— (QDA(MH) - Z(‘P;L(un)’ “n))

2
llun Il

1 A _ ’ 1
> —Jwully — = [ VT ()w;dx + — F(x,u)dx
4 4 lunlls
R3 R3
| Y 2
> Z - Z'V loo w;,dx
suppV—
Ly o)
= — 0 .
4

a contradiction.
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If w # 0, then the set Q; = {x € R?: w(x) # 0} has positive Lebesgue measure. For
x € Q1, one has |u,(x)|] > o0 as n — 00, and then, by (f2),

F ’
wwi(x) — 400 asn — 00,
Uy (x)

which, jointly with Fatou’s lemma (see [33]), shows that

F b

/Mwidx — 400 asn — o0. 3.2)
u}’l

Q

We see from (f1), (2.4), (3.2) and the first limit of (3.1) that

C F(x, . F(x,
=0 > lim sup/ Lﬂn)dx > lim sup/ (xijln)widx = 4-00.
4 n—o00 ||Ltn||)\ n— 00 u,

Q)

This is impossible.
In any case, we deduce a contradiction. Hence (u;,) is bounded in E;. ]

Lemma 3.2 Suppose that (V3)—(Va), (K) and (1.1) are satisfied. If u, — win E;, u, (x) —
u(x) a.e. in R3, and we denote w,, = u, — u, then

3. (n) = @ (wy) + @a(u) +o(1) (3.3)
and
@ (un) = @} (wy) + @5 (u) + o(1) 3.4

as n — oo. In particular, if ¢, (u,) — d (€ R) and goi (up) — 0in EY (the dual space of
Ey), then ¢} (u) = 0, and

or(wn) = d — @a(u), @5 (wy) = 0 (3.5)
after passing to a subsequence.
Proof Since u, — u in E;, one has (u, — u, u); — 0 as n — oo, which implies that
lnll3 = wn + 4, wy + )y = llwall} + )3 + o(1). (3.6)
Recall (V3) and w,, — 0, we have
1/2
/V_(x)w,,udx = / V=) weudx| < |V o / wldx luly — 0
3 uppV= uppV-=
by the Holder inequality. Thus
/Vf(x)uﬁdx :/Vf(x)w%dx+/V7(x)u2dx+0(l).
R3 R3 R3

Combining this with (3.6) and Lemma 2.1 (ii), we obtain

%a,\(un, u,) + %N(un) = (%a;\(wn, wy) + %N(wn)) + (%a;h(u, u) + %N(u)) + o(1).
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Similarly, by Lemma 2.1 (iii),

a(un, h) +/K(x)¢u,,unhdx = | ax(wy, h) +/K(x)¢wnwnhdx
R3 R3

+ | a)(u, h) —|—/K(x)¢uuhdx 4+ o0(1), VYh € E;.
R3
Therefore, to obtain (3.3) and (3.4), it suffices to check that

/(F(x, uy) — F(x,w,) — F(x,u))dx = o(1) 3.7
R3
and
”hS”uPI/(f(x, up) — f(x, wy) — f(x,u))hdx = o(1). (3.8)
A= B

Here, we only prove (3.8), the verification of (3.7) is similar. Inspired by [1], we take
limy s o SUpyy, =1 | [ (F (e, un) — f(x,wn) — f(x,u))hdx| = A.If A > 0, then, there
R3

is hg € E; with ||hg|[, = 1 such that

(3.9

(SN

/(f(x, up) — fx, wy) — f(x, u))hodx| >
3

for n large enough. It follows form (1.1) and the Young inequality that

|(F G, un) — £ wa)hol < e(lwy + ul + [wa Dol + Ce(Jwn + ul?~" 4 [w, [P~ ko
< c(elwyllhol + elullhol + Celwa|”~ hol + Celul?~|hol)
< c(ew? 4 eh} + eu” + elwy|P + Ce.1|ul? + Cealhol”)

for all n. Hence
|(f (e, un)— £ (x, wp) = f (x, w))hol < c(ewy +ehg+eu®+&lwa|” +Ce 1 |ul” +Ce 2 ho| ).
Letting
gn () = max {|(f (x, un) — f(x, wp) — f(x,u)ho| — ce(wy + [wa|?), 0},
we have
0 < gu(x) < c(ehf + eu® + Ce1|ul? + Cenlhol?) € L' (R?),
which implies that
/g,,(x)dx —0 asn—> o0 (3.10)

R3

because of the Lebesgue dominated convergence theorem and the fact w, — 0 a.e. in R,
The definition of g, (x) implies that

|(F(x, un) — £, wn) — £, w)hol < gn(x) + ce(w? + [w,|P),
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which, together with (3.10) and (2.1), shows that

/(f(x7 uy) — fx,wy) — f(x,u)hodx| < ce
3

for n sufficiently large. This contradicts (3.9). Hence A = 0 and (3.8) holds.
If moreover ¢; (u,) — 0 asn — oo, then ¢ (1) = 0. Indeed, for each ¥ € Cy° (R3), we
have

(tn — u, Y5 —> 0, (3.11)
and
1/2

/V_(X)(un —wydx| < |V | / @y — u)*dx Wl —> 0. (3.12)

3 uppy
since u,, — u in leoc(R3)' By Lemma 2.1 (i), u, — u in E, yields ¢,, — ¢, in DL2(R3).
So

$u, = b in LORY),

and hence

/K(x)(%n — ¢uuydx — 0

R3
since K (x)uyr € L%3(R?). Combining this with Holder’s inequality, we obtain

/ (K )yt — K ()bt

< / | K (X)Pu, (n — w)rldx +/ |K () (¢u, — pu)uyy| dx
R3

R3

IA

[ oo | K |21 @u, l61tn — ul3 suppy + /3 |K (x)(Pu, — du)uvr|dx
R
=o(D). (3.13)
Furthermore, it follows from (1.1) and the dominated convergence theorem that
/(f(x, up) — fx, w))pdx = / (f(x,un) = fx, u))pdx = o(1).
R3

suppyr
This, jointly with (3.13), (3.12) and (3.11), shows that

(@, ), ¥) = lim (@} (un), ¥) =0, Vi € CP(RY).
n—o0
Consequently, goi (u) = 0 and (3.5) follows from (3.3)—(3.4). The proof is complete. ]
Lemma 3.3 Let V > 0, (V3)—(Va), (K), (f1)—(f1) be satisfied. Then, for any M > 0, there
exists A = A(M) > 0 such that ¢, satisfies (C). condition for all c < M and ) > A.
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Proof Let (u,) C E, be a (C),. sequence with ¢ < M. According to Lemma 3.1, (u,) is
bounded. Hence we may assume that

up—u inEy, up—uinLi (R 2 <s<2%), up(x)—>u(x)ae xR (3.14)

loc

after passing to a subsequence. Denote w,, := u,, —u, we claim that w, — Oin E, forA > 0
large. In fact, Lemma 3.2 yields that ¢} () = 0, and

on(wp) = ¢ — @ (W), @ (wy) >0  asn — oo. (3.15)

Noting V > 0 and using ( f3), we get
1 ’ 1 2
on(u) = @ (u) — Z(sﬂ,\(u), u) = leullk + [ F(x,up)dx > 0,
R3
and then, by (3.15),
1
/f(x wp)dx < @ (wy) — (w,\(wn) wp) =c— @) +o(l) =M+o(l). (3.16)
R3
Since V(x) < b on a set of finite measure and w, — 0,
2 1 + 2 2 1 2
lwply < I AVT(xX)w,dx + wydx < E”wn”/\ + o(1). (3.17)
V>b V<b

For 2 < 5 < 2*, by (3.17) and the Holder and Sobolev inequality, we obtain

2= s=2
2%—2 2¥ 2
lwaly < /w,z,dx /w,zl*dx
3 3
2*%(s=2)
20%F-2)
1 2* = _ 2%(s-2) )
=< lenll)\ § T2 /|an| dx +o(1)
3
2% 5
__2%(s-2) 1 2¥2 s
=5 72 (E) lwnlly + o(1). (3.18)

By (f1), for any ¢ > 0, there exists § = §(¢) > 0 such that | f(x, )| < e|t| forall x € R3
and |7| < 8, and ( fy) is satisfied for |¢| > § (with the same t but possibly larger a1). Hence
we obtain

Jx, wp)wpdx < € / wydx < E“wn I3 + o(D), (3.19)

|wn <8 |wn|<8
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and

[, wy)

Wp

T 1/t
/ [, wp)w,dx < (/ dx) |w,,|§
[wy|>8

[wy|>8
1/t
< (/ a1 F(x, wn)dX) lwy, |2
[wy =8

2%(25—4)

e ’ 2
< (@M)/TS sy B lwally + o(1) (3.20)

by (f4),(3.16), (3.18) with s = 2t /(t — 1) and the H6lder inequality, where 6 = 2(2:_5) > 0.
y q Yy 5(2F22)
Therefore, using (3.20), (3.19) and the second limit of (3.15),

o(1) = (¢ (wn), w)
> Nwnl? = / £, wn)wndx
]R'é

* 9
e Vra—20=b (] 2
> |:1 — (aM)V/7§™ 5@ (E) :| lw, 5 + o(1). (3.21)

So, there exists A = A(M) > 0 such that w, — 0in E; when A > A. Since w, = u,, — u,
it follows that u, — u in E. ]

Lemma 3.4 Suppose that (V3)—(Va), (K), (f1)—(f4) are satisfied, and (u,) C E; be a (C),
(¢ > 0) sequence of ;. satisfying u, — u as n — oo. Then, for any M > 0, there exists
A = A(M) > 0 such that, u is a nontrivial critical point of ;. and ¢, (u) < c forallc < M
and A > A.

Proof By Lemma 3.2, we have ¢} (1) = 0 and
oa(wp) —> c— @ (w),  @y(wy) >0 asn—> oo. (3.22)
Since V is allowed to be sign-changing, from
1, I 5 A _ 2
() = () = 2@ ), u) = llully = 7 [ V= (x)u dx + | F(x,uwdx,
R3 R3
it cannot deduce ¢, (1) > 0. We consider two possibilities:

1) ¢@an(u) <0,
(ii) @y (u) > 0.

If p) (1) < 0, then u # 0 and the proof is done. If ¢, (1) > 0, following the same lines as the
proof of Lemma 3.3, we can deduce u, — u in E;. Indeed, using (V>) and the fact w, — 0
in L>({x € R?: V(x) < b}), we have

/v—(x)w,%dx <V o / wldx = o(1).

3 suppV~—
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Combining this with (3.22), we obtain

4

1 1 1
/f(x, wn)dx = g300) = 5 (6} ), w) + f/xv—mw,%dx L
R3 R3

IA

c—@n(u) +o(1)
M+ o(1).

A

It follows that (3.20) and (3.21) remain valid. Hence u, — u in E; and ¢, (1) = ¢ (> 0).
This completes the proof. O

Next, we give some preliminary results, i.e., Lemmas 3.5 to 3.8, which ensure that the
functional ¢, has the linking structure.

Lemma 3.5 Suppose that (V3)—(Vy), (K) and (1.1) with p € (4,2%) are satisfied. Then, for
each . > Ao (Ao is the constant given in Remark 2.1), there exist ;, p; > 0 such that

o) =, forallu € Ef @) Fy with |lull, = p;.. (3.23)
Furthermore, if V. > 0, we can choose a, p > 0 independent of A.
Proof For any u € E;r P F,, writing u = uy + up with u; € E;r and up € F). Clearly,
(w1, u2);, =0, and
2 2 _ 2 2 2

/(|Vu| + AV (x)u)dx = /(|Vu|1 +AV@)udx + |luzll;. (3.24)

R3 R3
For each fixed A > Ao, noticing w ;(A) N 400, there exists a positive integer n; such

that (&) < 1for j < ny and p;j(A) > 1 for j > ny + 1. Foru; € E:, we set u; =
> 32, +1@j()ej(3). Thus

2 2 2 - 2 1 2
(IVur | + AV (@updx = llurlly — [ AV-(uidx > {1 — ———— ) llu1lly
Nn,\-&-l()\)
R3 R3
(3.25)
Now, using (3.24), (3.25) and (2.1), we obtain
1

1
go)h(u) = 5 (1 a /'Ln;ﬂ-l()\)

1 1
> (1-— —evz} lullf — Cevpllull?,
|:2 ( Mn;ﬁ»l()")) 2 * o *

consequently the conclusion follows because p > 2 and ¢ has been chosen arbitrarily.
If V>0, since E; = F,, and

2 2 14
) lully — elulz — Celulp

JavuP v ey = ik,
R3
we can choose «, p > 0 (independent of A) such that (3.23) holds. O

Lemma 3.6 Let (V3)—(Va), (K), (f1) and (f2) be satisfied. Then, for any finite dimensional
subspace E, C E,, there holds

¢ (u) > —o0 as lullp —> oo, ue€ EA.
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Proof Assuming the contrary, there is a sequence (u,) C E, with |lun|ln — oo such that

-0 < irr%f o3 (up). (3.26)

Take v, := up/||un||- Since dimE,x < +00, there exists v € E,\\ {0} such that
v, = vin EA, v, (x) > v(x) ae. x eR3

after passing to a subsequence. If v(x) # 0, then |u,, (x)| 4 400, and hence by (f2),

T 40) > oo asn— oo,
uy, (x)

Combining this with (f1), (2.4) and Fatou’s lemma, we obtain

(pl(“n) < 1 @_/F(xyun)
luall} = 2lunl? 4 Nl 113

1 C F(x,
= S+ - / + / Mvﬁdx
2”“11”)\ 4 Uy

v=0 v#0
1 C F(x,
< e / FO ) 4
2””"”A 4 Uy
v#0
— —00,
a contradiction with (3.26). ]

Lemma 3.7 Suppose that (V3)-(Va), (K), (f1) and ( f2) are satisfied. If V (x) < 0 for some
X, then, for each k € N, there exist .y > k, wi € E;rk D F,, Ry, > pa, (P, is the constant
given in Lemma 3.5) and by > 0 such that, for |K |y < by (or |K |so < bi),

(a) sup @y, (3Qk) <0,
(b) sup @y, (Qk) is bounded above by a constant independent of Ay,

where Qf = {u =v+rtwg:veE E;k,t >0, lu] < R,\k}.

Proof We adapt an argument in Ding and Szulkin [16]. For each k € N, since (k) — +00
as j — oo, there is ji € N such that u j, (k) > 1. By Proposition 2.2, there is A; > k such
that

1
I <pjp) <1+ —.
Ak

Taking wy := ej, (Ax) be an eigenvalue of 1 j, (Ar), then wy € E;; as [tj, (Ax) > 1. Since
dimE;k P Rwy < +oo, it follows directly from Lemma 3.6 that (a) holds with Ry, > 0
large.

By (f2), for each n > |V 7|, there is r;, > 0 such that F'(x, 1) > %ntz if || > ry. For
u=v+we E;}(@ka,weget

/V_(x)uzdx :/V_(x)vzdx—i—/V_(x)wzdx

R3 R3 R3
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by the orthogonality of E; and Rwy. Hence we obtain

o1, () < %/(|Vw|2+AkV(x)w2)dx + %/K(x)d)uuzdx - / F(x,u)dx

R3 R3 suppV =
1 _ 1 |
=3 (j ) — 1) Ak/V (w’dx — / Enuzder 25 2vglK 3lull,
R3 suppV~—

- / (F(x u)—l 2)d
, S ) dx

suppV =, |ul<ry

1 2 n 2 o2 aip2pd
< 5/V (wrdx — 2|V_|OO/V (wdx + Cy + ST K R,
R3 R3
<Cy+1
foru = v+ w € E;, @Ruy with [|ul| < Ry, and [K|s < by := 25(veRy,) "2, where C,
depends on 1 but not A. O

Lemma 3.8 Suppose that (V3)—(Vy), (K), (f1) and (f») are satisfied. If 2 = intV~=1(0) is
nonempty, then, for each . > Ay, there exist w € E}f D Fy, Ry > 0and by > 0 such that
Jor |K|2 < by (or|Kloo < by),

(a) suppr(3Q) <0,

(b) sup ) (Q) is bounded above by a constant independent of A,

where Q = {u:v—l—Zw veE Lt >0, (ull < R;L}.

Proof Choose ey € C3°(2)\ {0}, then ey € Fj. By Lemma 3.6, there is R) > 0 large such
that ¢, (u) < 0 whenever u € E;” @ Reg and [lufl, > R.
Foru =v+w € E, @ Rep, we obtain

() < %/lezdx—i—%/l((x)qﬁuuzdx—/ F(x, u)dx
Q

R3 R3
< 1/|Vw|2dx—ﬁ/u2dx— / (F(x,u)—ﬂuz) dx+ 520 K Blulld
-2 2 2 4 .
R3 Q Q, |ulsry
1 1
< E/ |Vw|*dx — g/uzdx +Cy+ ZS*%g‘|1<|§||u||§k. (3.27)
R Q

Observing w € C3°(£2), one has

d? n
[ 1vukds = [~ swudr < 18vhing < dl Voo < V0 + 2 o
R3 a
(3.28)

where d is a constant depending on eg. Choosing n > d?, we have |Vw|% < nlul%’g, and it
follows from (3.27) that

1-_
@) < Cp+ STGIK B, < 6y +1

forall u € E; @ Reg with [lu]| < R and |K|> < by := 2S5(veRy) 2. O
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Now we are in a position to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1 Case (i). It follows from Lemmas 3.5, 3.7 and Proposition 2.4 that,
for A = Ax and [K |2 € (0, by), ¢, has a (C), sequence with ¢ € [y, , sup @3, (Qk)]. Setting
M = sup ¢, (Qk), then @y, has a nontrivial critical point according to Lemmas 3.1 and 3.4.

Case (ii). The conclusion follows from Lemmas 3.1, 3.4, 3.5, 3.8 and Proposition 2.4. O

Proof of Theorem 1.2 (Existence) Suppose V > 0. By Lemma 3.5, there exist constants «,
p > 0 (independent of 1) such that

on(u) >a foru € E, with |ul, = p. (3.29)
Take ep € C°(2)\ {0}. Then, by (f1), (f2) and Fatou’s lemma,

@;.(teo) 1 2 1 F(x,tep) 4
" < 72 [Veg|“dx + ZN(eO) — ————epdx — —0
Q {xeQ:ep(x)#0}

as t — +o00, which yields that ¢, (teg) < O for r > 0 large. Clearly, there is C; > 0
(independent of 1) such that

¢, := inf max ¢, (h(t)) < sup g, (teg) < Ci, (3.30)
hel te[0,1] >0

where ' = {h € C([0, 1], E;) : h(0) =0, [|h(1)|lx = p, @i (h(1)) < 0}. By Proposition 2.3
and Lemma 3.3, we obtain a nontrivial critical point u; of ¢; with ¢, (#,) € [«, C1] for A
large.

(Multiplicity) For each k e N, we choose k functions e¢; € C{°() such that
suppe; Nsuppe; = Y if i # j. Let

Wy = span{ey, ez, ..., ex}.

According to (3.29), Lemma 3.3 and Proposition 2.5, it suffices to show that sup ¢, (Wy) is
bounded above by a constant independent of A.
For u € Wy and n > 0, we have [cf. (3.28)]

d2
/|Vu|2dx < ﬁwm% + g|u|§.Q
]R3

(dy is a constant depending on Wy). It follows that

/|Vu|2dx < nlul3 . if > d?. (3.31)
R3

Combining this with (2.4) and the Holder inequality, we obtain

2 2
4 _ 2 2 2 2 4
N@u) < Collull; = Co (/IVul dx) < Con (/u dx) < Con |§2|/u dx forall u € Wy.
Q

Q Q
(3.32)
By (f2), foreach n > d?, there is ry > 0 such that
l 2 l 2 4 3
F(x,t) > Znt + 4C0n |21, Vx e R7, [t] > ry. (3.33)
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Hence we obtain, using (3.31)—(3.33),

@ () < %/qu|2dx+%N(u)—/F(x,u)dx

R3 Q
1
< 7/|Vu|2dx+ N(u)—f/ de—fcon |sz|/ utdx
R3 Q
— / (F(x u) — fu Con |Q2|u )
Q,lul<ry
<Cy

for all u € Wy, where C,, is independent of A.

4 Proof of Theorem 1.3

In this section, we are concerned with problem (S P){ with sublinear nonlinearity. We consider

the functional ¢; (denoted by ¢ for simplicity) on (E, | - ||):

o) = % / (IVul* + V(x)uhdx + % / K (x)¢uu*dx — ¥ (u),

R3 R3

where ¥ (u) = fR3 F(x, u)dx. Since the constant vg given in (2.1) is independent of A, it

still holds
luls < vsllull, Yu € E.
It follows from ( f5) that
|F(x,u)] <m@)|ul® +h()|ul”, VY(x, u) e R xR,
which, jointly with (4.1) and Holder’s inequality, shows that
/F(x, u)dx < /(m(x)lul“ + h(x)|ul”)dx

R3 R3
Y
< Imlilulg + Ihlilub

< Iml 2 vy llull® +1h] 2 v2 fluel]”
< +oo.
Hence, v and ¢ are well defined. In addition, we have the following lemmas.
Lemma 4.1 Assume that (V3), (V4) and ( fs) hold and u,, — u in E, then
fup) = fx,u) in L*(R%).
Proof Since u,, — u in E, there is a constant M > 0 such that

lunll =M and  ul| <M, VneN.

@ Springer

4.1)

4.2)

4.3)

(4.4)

(4.5)



Existence and multiplicity of solutions for Schrodinger—Poisson equations 403

Up to a subsequence, we can assume that
up — u inL} (R,
up(x) = u(x) ae.x € R (4.6)

By the properties of the functions m and &, we have, for every ¢ > 0, there exists 7, > 0
such that

/|m(x)|%dx <z and /|h(x)|ﬁdx <Je. (47

x|>Te x|>Te

2—0o 2—y
2 2

By (4.6), passing to a subsequence if necessary, we can assume that > o | f\xlffs iy —ul>dx
< +o0. Taking w(x) = >.02 |uy(x) — u(x)| for |x| < T, then f‘X|<T£ wldx < +oo. It
follows from ( f5) that, for alln € N and |x| < T, B

£ Geun) = f oo, < Im ) (ual ™~ 4 [l + A ()~ 4 =D

< 4m? () (un 2772 4 (1> 72) + 402 () (un | 72 4w’ 72)

< 22(7+1 202 + |M|2(T—2)

m?(x)(|up — ul
2R 0 (e — w7 4 [ )

S 220+1m2(x)(|w|20’—2 + |u|20—2)
2R ) (Jw] P 72 + w72,

and, using Holder’s inequality,

[22(T+1m2(x)(|w|2(7—2+ |u|20‘—2)+22]/+1h2(x)(|w|2y—2+ |u|2}/—2)] d.x

[x|<T¢
o—1 o—1
<220+ m|2, /wzdx + /uzdx
=
x|<T; x|<T,
y—1 y—1
+22+ 2, /wzdx + /uzdx
-y
x|<T, x|<T,
< +00.

Hence, by Lebesgue dominated convergence theorem, we obtain

|f(x,up) — fx,u)]>dx — 0 as n — oo. (4.8)

[x|<T¢

On the other hand, using (f5), (4.7), (4.5), (4.1) and the Holder inequality, we have

|f (o un) — f (x, w)dx
[x|=Te
< [ oGt ) bl el P

[x|>T¢
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<4 / 2 () (1 P72 + [P ) dx

[x[|>T¢

4 / B2 QP72 + P ~2)dx
|x|>T;

2—0

2
= 20 -2 202
<4 / |m|2=o dx (|”n|za + |u|26 )

x|>T;
2 v 2y—2 2y—2
4 (/ 117 dx) Qa2 ™2 4 2?2
[x|>Te
<8 (vgo—ZMZ(r—Z + VQZV*2M2)/—2) _
This, together with (4.8), shows that (4.4) holds. This completes the proof. O

Lemma 4.2 Assume that V. > 0, (V3), (K) and (fs) hold. Then € CYE,R) and ¥ :
E — E* (the dual space of E) is compact, and hence ¢ € C'(E, R),

W), v) = / F . wvdx, 4.9)
R%

(@ (u),v) = / (Vu - Vo 4+ Vx)uv + K(x)puv — f(x, u)v)dx
R3

forallu,v € E. If u is a critical point of ¢, then the pair (u, ¢,) is a solution of problem
(SP);.

Proof In view of Lemma 4.1 and (4.1), the proof is standard and we refer to [23]. O

Proof of Theorem 1.3 In view of Lemma 4.2 and the oddness of f, we know that ¢ €
CY(E,R) and ¢(—u) = ¢(u). It remains to verify the conditions (i) and (ii) of Proposition
2.6. We follow an argument in [20].

Verification of (7). Since V > 0, we get F) = E,. It follows from (4.3) that

1 2 o o Y y
w(u)zillull —Imlﬁ% [lull —Ihlﬁvz flull”, Vu e E.
Noting that o, y € (1, 2), we have
ou) > +oo as |u|| — oo. (4.10)

Thus ¢ is bounded from below.
Let (u,) C E be a (PS)-sequence of ¢, i.e., {¢(u,)} is bounded and ¢'(u,) — 0 as
n — 00. By (4.10), (u,) is bounded, and then u,, — u in E for some u € E. Recall that

1/2

GNP +y) <x*+y% Y,y >0.

Hence we obtain, by (2.3) and Holder’s inequality,
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/ K(x)(¢Lln Upt + Guuyu)dx

R3
12 1/2

< /K(x)qbunuﬁdx /K(x)qﬁu”uzdx
3 3
1/2 1/2

+ / K (x)pyudx / K (x)¢uu’dx
3 3

172

/ Vo, - Voudx | (I6u, lpr2 + Idallpr2)

3

1/4 1/4

/ |V, |2dx / IVoul?dx | (I, llpr2 + lldullpr2)

IA

1/2 1/2
1, 152 Nt (1, iz + i pr.2)

2 2
S N u, 1512 + 1Pullprz

= / K (X) (¢, 2 + dpuu®)dx,

R3

which implies that

/K(x)(¢’14,, uy — ¢yu)(u, —u)dx > 0.
R3

Combining this with Lemma 4.1, we obtain
litn — ull* = (¢ (wn) — @' (), y — u) — / K (x)(u, un — Guu) (uy — u)dx
R3

+/(f(x, up) — f(x,u))(up —u)dx
R3

172

< " @) | = llun —ull = (@' W), un —u)+ /If(x,un)—f(x,u)lzdx “lup—ul2
3

— 0,

that is, u, — u (n — 00). Hence the (PS) condition holds.
Verification of (ii). For simplicity, we assume that xo = 0 in (fg). For r > 0, let D(r)
denotes the cube

D(r) ={(x1,x2,x3) : 0 <x; <r,i =123},
Fix r > 0 small enough such that D(r) C B(0, §), where § is the constant given in ( fs). For
arbitrary k € N, we shall construct an Ay € I'y satisfying sup,,c4, ¢(u) < 0.
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Letm € N be the smallest integer such that m3 > k. We divide D(r) equally into m> small
cubes by planes parallel to each face of D(r) and denote them by D; with 1 < i < m>. We
only use D; with 1 <i < k. Seta = r/m. Then the edge of D; has length a. We consider
acube E; C D; (i =1,2,...,k) such that E; has the same center as that of D;, the faces
of E; and D; are parallel and the edge of E; has length a/2. Define ¢ € C°(R, [0, 1]) such
that ¢(t) = 1 for ¢ € [a/4,3a/4], ¢(t) =0 fort € (—oo, 0] Ula, +00). Define

§() = cOE)¢ (), (x1,x2,x3) € R
Then suppé C [0, a]>. Now foreach 1 < i < k, we can choose a suitable y; € R> and define

() =E(x —y), VrxeR’

such that
supp& C Di,  suppéi [ |suppt; =¥ (i # j), @11
and
E)=1 (xeE), 0<&x =<1 @xeR).
Set
Vi = ‘(tl,zz,...,tk) e RF: 1nfliasxk|ti| = 1] (4.12)
and

k
Wy = {Zti&i(x) st ) € Vk]'

i=1

Observing Vj is homeomorphic to the unit sphere in R¥ by an odd mapping, we get y (Vi) = k.
Furthermore, y (Wy) = y(Vk) = k because the mapping (¢, ..., ) —> Zle ;& (x) is
odd and homeomorphic. Since Wj is compact, there exists Cx > 0 such that

lull < Ck, Vu € Wy. (4.13)

For 0 < s < & (¢ is the constant given in (fg)) and u = Zle t;& (x) € Wy, we obtain

2 4 k
oo = TP+ [ K@oulds —/F(x,sZzisi(x))dx

R3 R; i=1

2 4 k

N 2 N 4

5 G+ 7 CoCi - iE_I/F(X:Stisi(x))dx 4.14)
=15,

by (4.13), (4.11) and Lemma 3.5 (i). Observing (4.12), there exists an integer ip € [1, k]
such that |#;,| = 1. Then it follows that
k
Z/ F(x, st;§(x))dx = / F(x, stig&iy (x))dx + / F(x, stip&ip (x))dx
=D, Eiy Dig\Eqg
+> / F(x, st;& (x))dx. (4.15)

i#io ),
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Noting that |t;,| = 1, &, = 1 on E;, and F(x, u) is even in u, we get

/ F(x, stiy&iy(x))dx = / F(x,s)dx. (4.16)
Ej Ej
By (f6),
/ F(x, stiy&iy(x))dx + Z/F(x, sti&i(x))dx > —azvol(D(r))sz, “4.17)
D: k E: i#iOD.
lO\ IO v

where vol(D(r)) denotes the volume of D(r), i.e. r3. Combining (4.14)—(4.17), one has

52

4
s
o(su) < EC,% + —

) COC;(t + a2r332 — / F(x,s)dx.

EiO

Substituting s = ¢, and using (1.2), we obtain

Cc: g2 a\3
@(equ) < &2 [2" + Z"CoC,? +ayr® — (5) M, |.

Since &, — 0T and M,, — +00 as n — oo, we choose ng large enough such that the right
side of the last inequality is negative. Take

A = gyy Wi
Then we have

y(A)=yW)=k and sup ¢(u) <O0.

ueAg

Consequently, Theorem 1.3 follows from Proposition 2.6. This completes the proof. O

5 Concentration of solutions

In this section, we deal with problem (S P); with A = Ay — +o0.

Theorem 5.1 Suppose that (V3)—(V4) and (K) are satisfied, V=Y0) has nonempty interior
Q and there exist az > 0, p € (2,2%) such that

|f(x, 0] < az(le] + [e1P7H, V(x,1) € R® x R. (5.1)

Let (ux) C E be a solution of (SP)y with & = Ag. If Ay — 400 and |ui||y, < C for some
C > 0 and all k, then, passing to a subsequence, uy — u in L* (R3) fors € (2,2%), iiisa
weak solution of

[ —Aut g (Ko « ) K@u = ferw) i, (5.2)

u=20 on 092,
and u = 0 a.e. in R3\V_1(0). If moreover V> 0 and (f1) is satisfied, then uy — u in E.

We note thatu € HO1 (Q) if V=1(0) = Q and 8L is locally Lipschitz continuous (see [7]).
Before proving the above theorem we point out some of its consequences.
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Corollary 5.1 Let (u;, ¢;) be the solution obtained in Theorem 1.2 (existence result). Then
uy —> uin E, ¢y — ¢ in DL2(R3) as A — +00, and i is a nontrivial solution of (5.2).

Proof For A — +o00, set uy := uy, be the critical point of ¢;, obtained in Theorem 1.2. It
follows from (3.30) that

1 1 1
Ci1 = cp = on (i) — Z(wik(uk), ug) = leukllik +/f(x, up)dx > leukllik-
R?

Hence {|lu|l5, } is bounded. So the conclusion of Theorem 5.1 holds.
We show that u # 0. Since V > 0 and W,/xk (ur), ug) = 0, we have

s + N = [ e < sl + Colulf.
R3
If i = 0, then ux — 0in LP(R?), and therefore
lluglln, — O, N@i) -0 ask — oo

(note |u;, |» is bounded and ¢ is arbitrary). Now it follows easily that ¢;, (ux) — 0, a
contradiction with the fact ¢, (ux) = ¢y, > . o

Proof of Theorem 5.1 We adapt an argument in [7]. We divide the proof into three steps.
(1) Since [luk|| < lluklln, < C, one has

up =it nE, ux— i inL (R 2<s<2%, w(x)—>i(x) ae xeR.

For any ¢ € C(‘]>o (R3), it follows from the fact ((p/’\k (ug), ) = 0 that

/ V(x)urvdx

3

1
<L /|f(x,uk)w|dx+/|K(x)¢ukukw|dx+/|wk~wf|dx
k 3 RS R3

1

—1
= 5 Las ol b sl 1) 1K bl o ecluels + 1V ol Vo

c
<— —0 ask — oo,
Ak

and hence

/ V()iaydx =0, Yy € CP(RY),

R3
which implies that # = 0 ae. in R3\V~!(0). Now for each ¥ € C3°(R2), since
(¢}, i), ¥) = 0, it follows that

/va-vwdx+/K(x)¢aﬁwdx =/f(x’ﬁ)\”dx’
R3 R3 R3

i.e., it is a weak solution of (5.2) by the density of C;°(£2) in HO1 ().
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() up — iiin LS(R3) for2 < s < 2*, Arguing indirectly, by Lion’s vanishing lemma,
there exist 8, p > 0 and (x;) C R? such that

/ (up — i)?dx > 8.

Bp(xk)
It is easy to see that |xy| -+, . S0 meas(B, (xx) N {x € R : V(x) < b}) — 0, and

(u — i)2dx < |ux — i3 (meas(B, () N {V < bH)"> -5 0.

B, (xp)N{V <b}

Thus,

lugl, > g / W2dx
B, (x)N{V=b)
= b / (ug — it)2dx

By, (xi)N{V =b}

= b / (up — )>dx — / (up — i)*dx
Bp (x1) B, (x)N{V <b}
— +00,

a contradiction with the boundedness of { |||l }, -
(3) Suppose that V > 0 and ( f1) holds. We show that uy — i in E. Since ((pik (ug), ug) =
0 and “"ik (ug), it) = 0, we have

il = [ £rowods ~ [ Keogdds 53)
R3 R3
and
(U, )y, :/f(x,uk)ﬁdx —/K(x)qﬁukukﬁdx. 5.4
R3 R3

From (5.1) and (f1), for any ¢ > 0, there exists C; > 0 such that
|fCe D < elt] + CeltlP™!, ¥(x, 1) e R xR,

Hence we obtain

IA

e/ el —ﬁ|dx+cs/ gl g — itldx
R3 R3

/f(x, up)(ug — u)dx
3

IA

- —1 -
eluklalug — il + Celuglhy ™ |ux — il
=o0(1) (5.5)
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since up — @ in LP(R3) (2 < p < 6), (ux) C E is bounded and ¢ has been chosen
arbitrarily. Similar to (2.7), we have

2/3

/ K (0)uuk (g, — it)dx| < |, lolurle / K —i)*?dx | — 0. (5.6)
3 3

Using (5.3)-(5.6) and recalling u(x) = 0 if V(x) > 0, we obtain

]l < Nurll3, = (u, @)z, + o(1) = / Vuy - Vidx + o(1) = [li]* + o(1). (5.7)
R3
It follows from the weak lower semicontinuity that
la|? < lim inf fug |,
k— 00
which, jointly with (5.7), shows that uy — u in E. The proof is complete. O
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