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Abstract We consider the volume-normalized Ricci flow close to compact shrinking Ricci
solitons. We show that if a compact Ricci soliton (M, g) is a local maximum of Perelman’s
shrinker entropy, any normalized Ricci flow starting close to it exists for all time and converges
towards a Ricci soliton. If g is not a local maximum of the shrinker entropy, we show that there
exists a nontrivial normalized Ricci flow emerging from it. These theorems are analogues
of results in the Ricci-flat and in the Einstein case (Haslhofer and Müller, arXiv:1301.3219,
2013; Kröncke, arXiv:1312.2224, 2013).

Mathematics Subject Classification 53C44 · 58E11 · 37C75

1 Introduction

A Riemannian manifold (M, g) is called a Ricci soliton if there exist a vector field X ∈ X(M)

and a constant c ∈ R such that

Ricg + L X g = c · g.

The soliton is called gradient, if X = grad f for some f ∈ C∞(M). We call (M, g) expand-
ing, if c < 0, steady, if c = 0 and shrinking, if c > 0. If X = 0, we recover the definition
of an Einstein metric with Einstein constant c. If (M, g) is not Einstein, we call the soliton
nontrivial.

Ricci solitons were first introduced by Hamilton in the eighties [21]. They appear as
self-similar solutions of the Ricci flow

ġ(t) = −2Ricg(t).
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266 K. Kröncke

More precisely, a Ricci flow starting at a Ricci soliton g evolves by

g(t) = (1 − 2ct)ϕ∗
t g

where ϕt is a family of diffeomorphisms on M . In other words, Ricci solitons are fixed
points of the Ricci flow considered as a dynamical system in the space of metrics modulo
diffeomorphism and rescaling. Ricci solitons satisfy many interesting geometric properties
and have been studied extensively in recent research (see [5] for a survey). They also appear
in string theory [17,29].

Compact Ricci solitons satisfy additional properties. In dimensions n = 2, 3, any compact
Ricci soliton is of constant curvature [21,28]. By Perelman’s work [38], they are always
gradient (see also [16, Proposition 3.1]). Moreover, any expanding or steady compact Ricci
soliton is necessarily Einstein [5, Proposition 1.1]. In dimensions n ≥ 4 there exist examples
of nontrivial compact Ricci solitons [4,9,14,34,39,43]. All known nontrivial compact Ricci
solitons are Kähler.

In this work, we are going to study the Ricci flow as a dynamical system close to compact
shrinking Ricci solitons. Previously the behaviour of Ricci flow close to Ricci-flat metrics
has been studied by various authors [19,23,26,41]. The Einstein case was studied in [44] and
in a recent paper by the author [36].

In the context of Ricci solitons, it is more convenient to deal with the volume-normalized
Ricci flow

ġ(t) = −2Ricg(t) + 2

n

1

vol(M, g(t))

⎛
⎝
∫

M

scalg(t) dVg(t)

⎞
⎠ g(t), (1.1)

where scalg(t), dVg(t) and vol(M, g(t)) are the scalar curvature, the volume element and the
total volume with respect to g(t), respectively.

Definition 1.1 A compact Ricci soliton (M, g) is called dynamically stable if for any
Ck-neighbourhood U of g in the space of metrics (where k ≥ 3), there exists a Ck+5-
neighbourhood V ⊂ U such that for any g0 ∈ V , the normalized Ricci flow (1.1) starting at
g0 exists for all t ≥ 0 and converges modulo diffeomorphism to an Einstein metric in U as
t → ∞.

We call a compact Ricci soliton (M, g) dynamically unstable if there exists a nontrivial
normalized Ricci flow defined on (−∞, 0] which converges modulo diffeomorphism to g as
t → −∞.

In his pioneering work [38], Perelman introduced the shrinker entropy ν, which is a functional
on the space of metrics and admits precisely the shrinking Ricci solitons as its critical points.
Perelman discovered the remarkable property that ν is nondecreasing under the Ricci flow
and stays constant only at its critical points. The shrinker entropy is the most important tool
in proving our main theorems.

Theorem 1.2 (Dynamical stability) Let (M, g) be a compact shrinking Ricci soliton. If
(M, g) is a local maximizer of ν, it is dynamically stable.

Note that we do not need to assume that (M, g) is a strict local maximizer in the space of
metrics modulo diffeomorphism and rescaling.

Theorem 1.3 (Dynamical instability) Let (M, g) be a compact shrinking Ricci soliton. If
(M, g) is not a local maximizer of ν, it is dynamically unstable.
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Stability and instability of Ricci solitons 267

Observe that any compact shrinking Ricci soliton must be either dynamically stable or unsta-
ble, so we have a complete description of the Ricci flow as a dynamical system close to Ricci
solitons. Since non-shrinking compact Ricci solitons are Einstein, they are already covered
by previous results.

In the Einstein case, we additionally were able to give geometric stability/instability con-
ditions in terms of the conformal Yamabe invariant and the Laplace spectrum [36]. It would
be intersting to find similar geometric conditions in the case of nontrivial Ricci solitons. So
far, we can characterize stability in terms of the eigenvalues of a second-order differential
operator, supposed that an additional technical condition holds.

Theorem 1.4 Let (M, g) be a compact shrinking Ricci soliton and suppose all infinitesimal
solitonic deformations are integrable. Then (M, g) is a local maximum of ν if and only if
ν′′ ≤ 0.

The integrability condition means that all elements in the kernel of ν′′ can be integrated to
curves of Ricci solitons. We show that this condition does not always hold.

Theorem 1.5 The complex projective space (CPn, g f s) with the Fubini-Study metric admits
nonintegrable infinitesimal solitonic deformations.

2 Notation and conventions

For the Riemann curvature tensor, we use the sign convention such that RX,Y Z = ∇2
X,Y Z −

∇2
Y,X Z . Given a fixed metric, we equip the bundle of (r, s)-tensor fields (and any subbun-

dle) with the natural pointwise scalar product induced by the metric. By S p M , we denote
the bundle of symmetric (0, p)-tensors. For a given f ∈ C∞(M), we introduce some f -
weighted differential operators. The f -weighted Laplacian (or Baker-Emery Laplacian) act-
ing on C∞(S p M) is

� f h = −
n∑

i=1

∇2
ei ,ei

h + ∇2
grad f h.

By the sign convention, � f = (∇∗
f )∇, where ∇∗

f is the adjoint of ∇ with respect to the

weighted L2-scalar product
∫

M 〈., .〉e− f dV . The weighted divergence δ f : C∞(S p M) →
C∞(S p−1 M) and its formal adjoint δ∗

f : C∞(S p−1 M) → C∞(S p M) with respect to the
weighted scalar product are given by

δ f T (X1, . . . , X p−1) = −
n∑

i=1

∇ei T (ei , X1, . . . , X p−1) + T (grad f, X1, . . . , X p−1),

δ∗
f T (X1, . . . , X p) = 1

p

p−1∑
i=0

∇X1+i T (X2+i , . . . , X p+i ),

where the sums 1 + i, . . . , p + i are taken modulo p. If f is constant, we recover the usual
notions of Laplacian and divergence. In this case, we will drop the f in the notation. For
ω ∈ �1(M), we have δ∗

f ω = 1
2 Lω� g where ω� is the sharp of ω. Thus, δ∗

f (�
1(M)) is the

tangent space of the manifold g ·Diff(M) = {ϕ∗g|ϕ ∈ Diff(M)}. Throughout, any manifold
M will be compact and any metric considered on M will be smooth, unless the contrary is
explicitly asserted.
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268 K. Kröncke

3 The shrinker entropy

Let g be a Riemannian metric, f ∈ C∞(M), τ > 0 and define

W(g, f, τ ) = 1

(4πτ)n/2

∫

M

[τ(|∇ f |2g + scalg) + f − n]e− f dV .

Let

μ(g, τ ) = inf

⎧⎨
⎩W(g, f, τ )

∣∣∣∣∣∣
f ∈ C∞(M),

1

(4πτ)n/2

∫

M

e− f dVg = 1

⎫⎬
⎭ .

For any fixed τ > 0, the infimum is finite and is realized by a smooth function [10, Lemma
6.23 and 6.24]. We define the shrinker entropy as

ν(g) = inf {μ(g, τ ) | τ > 0} .

Recall also the definition of Perelman’s λ-functional

λ(g) = inf
f ∈C∞(M)∫

M
e− f dVg=1

∫

M

(scalg + |∇ f |2g)e− f dVg. (3.1)

If λ(g) > 0, then ν(g) is finite and realized by some τg > 0 (see [10, Corollary 6.34]). In
this case, a pair ( fg, τg) realizing ν(g) satisfies the equations

τ(2� f + |∇ f |2 − scal) − f + n + ν = 0, (3.2)
1

(4πτ)n/2

∫

M

f e− f dV = n

2
+ ν, (3.3)

see e.g. [8, p. 5]. On the other hand, ν(g) is not finite if λ(g) < 0 [10, p. 244].

Remark 3.1 Note that W posseses the symmetries W(ϕ∗g, ϕ∗ f, τ ) = W(g, f, τ ) for ϕ ∈
Diff(M) and W(αg, f, ατ) = W(g, f, τ ) for α > 0. Therefore, ν(g) = ν(α · ϕ∗g) for any
ϕ ∈ Diff(M) and α > 0.

Remark 3.2 The shrinker entropy is upper semicontinuous with respect to the C2-topology if
defined. Let g be fixed and ( fg, τg) be a minimizing pair. Let gi → g in C2 and vi ∈ C∞(M)

such that e−vi dVgi = e− fg dVg . Then,

ν(g) = W(g, fg, τg) = lim
i→∞ W(gi , vi , τg) ≥ lim sup

i→∞
ν(gi ).

Proposition 3.3 (First variation of ν) Let (M, g) be a Riemannian manifold. Then the first
variation of ν is given by

ν(g)′(h) = − 1

(4πτg)n/2

∫

M

〈
τg(Ric + ∇2 fg) − 1

2
g, h

〉
e− fg dVg,

where ( fg, τg) realizes ν(g).

Proof See e.g. [8, Lemma 2.2]. �
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Stability and instability of Ricci solitons 269

By scale and diffeomorphism invariance, it is easy to see that ν is nondecreasing under
the Ricci flow and that ν stays constant if and only if

Ric + ∇2 fg = 1

2τg
g, (3.4)

i.e. if g is a critical point of ν. Observe that in this case, the pair ( fg, τg) realizing ν(g) is
unique.

Remark 3.4 A metric g is a critical point of ν if and only if g is a gradient shrinking Ricci
soliton. Suppose that (3.4) holds, then g is a gradient shrinking Ricci soliton since ∇2 fg =
1
2 Lgrad fg g and 1

2τg
> 0. Conversely, any gradient shrinking Ricci soliton g has positive scalar

curvature [28, Proposition 1]. Therefore, ν(g) is finite, since λ(g) ≥ min scalg > 0. Since ν

stays constant along the flow starting at g, we necessarily have (3.4).

Proposition 3.5 (Second variation of ν) Let (M, g) be a gradient shrinking Ricci soliton.
Then the second variation of ν at g is given by

ν′′
g (h) = τ

(4πτ)n/2

∫

M

〈Nh, h〉e− f dV (3.5)

where ( f, τ ) is the minimizing pair realizing ν. The stability operator N is given by

Nh = −1

2
� f h + R̊h + δ∗

f (δ f (h)) + 1

2
∇2vh − Ric

∫
M 〈Ric, h〉e− f dV∫

M scale− f dV
. (3.6)

Here, R̊h(X, Y ) = ∑n
i=1 h(Rei ,X Y, ei ) and vh is the unique solution of

(
−� f + 1

2τ

)
vh = δ f (δ f (h)). (3.7)

Proof See [8, Theorem 1.1]. �

Remark 3.6 In the following, we explain how this variational formula can be substantially
simplified. The operator N is formally self-adjoint with respect to the weighted measure
because
∫

M
〈∇2vh, k〉e− f dV =

∫

M

〈vh, δ f (δ f (k))〉e− f dV =
∫

M

〈vh, (−� f + 1

2τ
)vk〉e− f dV

and the right hand side is symmetric in h and k. The other summands of N are clearly
self-adjoint. Therefore,

d2

dsdt

∣∣∣∣
s,t=0

ν(g + th + sk) = τ

(4πτ)n/2

∫

M

〈Nh, k〉e− f dV .

By scale and diffeomorphism invariance of ν, we have, for an arbitrary k ∈ C∞(S2 M),

τ

(4πτ)n/2

∫

M

〈Nh, k〉e− f dV = 0, if h ∈ R · g ⊕ δ∗
f (�

1(M)) = R · Ric ⊕ δ∗
f (�

1(M)).
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270 K. Kröncke

The equality of the direct sums holds because g is a Ricci soliton. Thus ν′′ is only nontrivial
on the orthogonal component of Ric · g ⊕ δ∗

f (�
1(M)), given by

V =
⎧⎨
⎩h ∈ (S2 M)

∣∣∣∣ δ f (h) = 0 and
∫

M

〈Ric, h〉e− f dV = 0

⎫⎬
⎭ ,

and the stability operator N |V : V → V is of the form

N = −1

2
� f + R̊.

We also have δ f Ric = 0 [8, Lemma 3.1] and thus, δ−1
f (0) = R · Ric ⊕ V .

Definition 3.7 Let (M, g) be a Ricci soliton. We call the soliton linearly stable if all
eigenvalues of N are nonpositive and linearly unstable otherwise. If N is nonpositive and
kerN ∩ V �= {0}, we call the soliton neutrally linearly stable.

Remark 3.8 The round sphere is linearly stable; the complex projective space with the Fubini-
Study metric is neutrally linearly stable. Any product of positive Einstein manifolds is unsta-
ble. Some more examples are discussed in [6,7,24]. It is conjectured that all compact 4-
dimensional nontrivial Ricci solitons are linearly unstable [5, p. 29]. Due to a result by Hall and
Murphy [25], any kählerian shrinking Ricci soliton is linearly unstable if dimH1,1(M) > 1.
This results applies to all known nontrivial Ricci solitons in any dimension.

4 Analyticity and a Lojasiewicz–Simon inequality

A necessary tool in proving our stability and instability theorems is a Lojasiewicz–Simon
inequality for ν which will be the main theorem of this section. To prove this, ν needs to be
analytic. This is the content of the following

Lemma 4.1 Let (M, g0) be a gradient shrinking Ricci soliton. Then there exists a C2,α-
neighbourhood U of g0 in the space of metrics such that the minimizing pair ( fg, τg) realizing
ν(g) is unique and depends analytically on the metric. Moreover, the map g �→ ν(g) is
analytic on U .

Remark 4.2 Previously, analytic dependence of μ(g, 1/2) on g in the neighbourhood of a
Ricci soliton was shown in [42, Lemma 2.2]. The proof presented here turns out to be similar
but some subtleties occur due to the presence of the scale parameter τ .

Proof of Lemma 4.1 We use the implicit function theorem for Banach manifolds. We define
a map H(g, f, τ ) = τ(2� f + |∇ f |2 − scal) − f + n. Let

Ck,α
g0

(M) =
⎧⎨
⎩u ∈ Ck,α(M)

∣∣∣∣
∫

M

ue− fg0 dVg0 = 0

⎫⎬
⎭

and let M2,α be the Banach manifold of C2,α-metrics. Define

L : M2,α × C2,α(M) × R+ → C0,α
g0

(M) × R × R,

(g, f, τ ) �→ (L1, L2, L3),
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Stability and instability of Ricci solitons 271

where the three components are given by

L1(g, f, τ ) = H(g, f, τ ) − 1

(4πτg0)
n/2

∫

M

H(g, f, τ )e− fg0 dVg0 ,

L2(g, f, τ ) = 1

(4πτ)n/2

∫

M

f e− f dVg − n

2
+ 1

(4πτ)n/2

∫

M

H(g, f, τ )e− fg dVg,

L3(g, f, τ ) = 1

(4πτ)n/2

∫

M

e− f dVg − 1.

This is an analytic map between Banach manifolds. We have L(g, f, τ ) = (0, 0, 0) if and
only if there exists a constant c ∈ R such that the set of equations

τ(2� f + |∇ f |2 − scal) − f + n = c, (4.1)

1

(4πτ)n/2

∫

M

f e− f dV − n

2
= −c, (4.2)

1

(4πτ)n/2

∫

M

e− f dV = 1 (4.3)

is satisfied. Now we compute the differential of L at (g0, fg0 , τg0) restricted to R =
C2,α(M) × R. Let Fg0 = fg0 − n

2 − ν(g0) and

V =
⎧⎨
⎩u ∈ C2,α

g0
(M)

∣∣∣∣
∫

M

u · Fg0 e− fg0 dVg0 = 0

⎫⎬
⎭ ,

W =
⎧⎨
⎩u ∈ C0,α

g0
(M)

∣∣∣∣
∫

M

u · Fg0 e− fg0 dVg0 = 0

⎫⎬
⎭ .

By (3.2) and smoothness of fg0 , we have Fg0 ∈ Ck,α
g0 (M) for all k ≥ 0. Moreover, we have

the decompositions

C2,α(M) ∼= V ⊕ span(Fg0) ⊕ R,

C0,α
g0

(M) ∼= W ⊕ span(Fg0),

where the last factor in the first decomposition represents the constant functions. Consider
the differential of L restricted to R as a linear map

d L(g0, fg0 ,τg0 )

∣∣
R : V ⊕ span(Fg0) ⊕ R ⊕ R → W ⊕ span(Fg0) ⊕ R ⊕ R.

Straightforward calculations, using the Euler–Lagrange equations (3.2) and (3.2), show that
it is equal to

d L(g0, fg0 ,τg0 )

∣∣
R =

⎛
⎜⎜⎜⎜⎝

2τg0� fg0
− 1 0 0 0

0 1 0 1
τg0

0 − ∥∥Fg0

∥∥2
L2(v dV )

− n
2 − ν(g0) − n

2τg0

( n
2 + ν(g0) + 1

)

0 0 −1 − n
2τg0

⎞
⎟⎟⎟⎟⎠

,
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272 K. Kröncke

where L2(v dV ) is the L2 norm with respect to the v-weighted measure, with v =
1

(4πτg0 )n/2 e− fg0 . In the following, we show that this map is an isomorphism. From (3.2),

we conclude that � fg0
Fg0 = 1

τg0
Fg0 . Thus, the map

2τg0� fg0
− 1 : V → W

is well defined. By [18, Proposition 3.1], the smallest nonzero eigenvalue of � fg0
satisfies

λ > 1
2τg0

. This implies invertibility of the above map. It remains to consider the lower right

3 × 3-block which we denote by A. We have

det(A) = 1

τg0

(∥∥Fg0

∥∥2
L2(v dV )

− n

2

)
.

Since Fg0 is an eigenfunction of the weighted Laplacian to the eigenvalue 1
τg0

,

∥∥Fg0

∥∥2
L2(v dV )

= τg0(� f Fg0 , Fg0)L2(v dV ) = τg0

∥∥∇Fg0

∥∥2
L2(v dV )

= τg0

∥∥∇ fg0

∥∥2
L2(v dV )

.

By definition of ν(g0),

τg0

∥∥∇ fg0

∥∥2
L2(v dV )

= 1

(4πτg0)
n/2

∫

M

τg0 |∇ fg0 |2e− fg0 dV

= ν(g0) − 1

(4πτg0)
n/2

∫

M

[τg0 scal + fg0 − n]e− fg0 dV

= n

2
− 1

(4πτg0)
n/2

∫

M

τg0 scale− fg0 dV .

Therefore,

det(A) = − 1

(4πτg0)
n/2

∫

M

scal e− fg0 dV < 0

because the scalar curvature of g0 is positive [28, Proposition 1]. In summary, we have shown
that d L(g0, fg0 ,τg0 )|R is invertible. By the implicit function theorem for Banach manifolds,

there exists a neighbourhood U ⊂ M2,α of g0 and an analytic map P : U → C2,α(M)× R+
such that L(g, P(g)) = 0. Moreover, there exists a neighbourhood V ⊂ C2,α(M)×R+ such
that for any (g, f, τ ) ∈ U × V , we have L(g, f, τ ) = 0 if and only if ( f, τ ) = P(g).

Now we claim that on a smaller neighbourhood U1 ⊂ U , there is a unique pair of mini-
mizers in the definition of ν and it is equal to P(g). Suppose this is not the case. Then there
exist a sequence gi of metrics such that gi → g0 in C2,α and pairs of minimizers ( fgi , τgi )

such that P(gi ) �= ( fi , τgi ) for all i ∈ N. By substituting w2
gi

= e− fgi , we see that the pair
(wgi , τgi ) is a minimizer of the functional

W̃(gi , w, τ) = 1

(4πτ)n/2

∫

M

[τ(4|∇w|2 + scalgw
2) − log(w2)w2 − nw2] dVgi
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Stability and instability of Ricci solitons 273

under the constraint 1
(4πτ)n/2

∫
M w2 dVgi = 1. It satisfies the pair of equations

−τgi (4�wgi + scalgi wgi ) − 2 log(wgi )wgi + nwgi + ν(gi )wgi = 0, (4.4)

− 1

(4πτgi )
n/2

∫

M

w2
gi

log w2
gi

dVgi = n

2
+ ν(gi ). (4.5)

By upper semicontinuity, ν(gi ) ≤ C1.
Now we show that there exist constants C2, C3 > 0 such that C2 ≤ τgi ≤ C3. Suppose

this is not the case. By [10, Lemma 6.30], we have a lower estimate

ν(gi ) = μ(gi , τgi ) ≥ (τgi − 1)λ(gi ) − n

2
log τgi − C4(gi ) ≥ (τgi − 1)C5 − n

2
log τgi − C6.

We have C5 > 0 because λ(g) is uniformly bounded on U and positive. The constant C4(g)

depends on the Sobolev constant and the volume. Now if τgi converges to 0 or ∞, ν(gi )

diverges, which causes the contradiction. Observe that we also obtained a lower bound on
ν(gi ).

Next, we show that
∥∥∇wgi

∥∥
L2 is bounded. Choose ε > 0 so small that 2 + 2ε ≤ 2n

n−2 . By
Jensen’s inequality and the bounds on τgi ,∫

M

w2
gi

log w2
gi

dVgi = 1

ε

∫

M

w2
gi

log w2ε
gi

dVgi

≤ 1

ε

∥∥wgi

∥∥2
L2 log

⎛
⎝ 1∥∥wgi

∥∥2
L2

∫

M

w2+2ε
gi

dVgi

⎞
⎠

= 1

ε
(4πτgi )

n/2 log

⎛
⎝(4πτgi )

−n/2
∫

M

w2+2ε
gi

dVgi

⎞
⎠

≤ C7 log

⎛
⎝
∫

M

w2+2ε
gi

dVgi

⎞
⎠+ C8.

By the Sobolev inequality,
∫

M

w2+2ε
gi

dVgi ≤C9(
∥∥∇wgi

∥∥2
L2 + ∥∥wgi

∥∥2
L2)

1+ε ≤ C9(
∥∥∇wgi

∥∥2
L2 + C10)

1+ε .

In summary, we have

C1 ≥ 1

(4πτ)n/2

∫

M

[τ(4|∇wgi |2 + scalgi w
2
gi

) − log(w2
gi

)w2
gi

− nw2] dVgi

≥ C11
∥∥∇wgi

∥∥2
L2 − C12 log(

∥∥∇wgi

∥∥2
L2 + C10) − C13,

which shows that
∥∥∇wgi

∥∥
L2 is bounded.

Now we continue with a bootstrap argument. By Sobolev embedding, the bound on∥∥wgi

∥∥
H1 implies a bound on

∥∥wgi

∥∥
L2n/(n−2) . Let p = 2n/(n − 2) and choose some q slightly

smaller than p. By elliptic regularity and (4.4),
∥∥wgi

∥∥
W 2,q ≤ C14(

∥∥wgi log wgi

∥∥
Lq + ∥∥wgi

∥∥
Lq ).
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274 K. Kröncke

Since for any β > 1, |x log x | ≤ |x |β for |x | large enough, we have
∥∥wgi log wgi

∥∥
Lq ≤ C15(vol(M, gi )) + ∥∥wgi

∥∥
L p ≤ C16 + ∥∥wgi

∥∥
L p .

Thus,
∥∥wgi

∥∥
W 2,q ≤ C(q). Using Sobolev embedding, we obtain bounds on

∥∥wgi

∥∥
L p′ for

some p′ > p. From (4.4) again, we have bounds on
∥∥wgi

∥∥
W 2,q′ for any q ′ < p′. Using these

arguments repetitively, we obtain
∥∥wgi

∥∥
W 2,q ≤ C(q) for all q ∈ (1,∞). Again by elliptic

regularity,
∥∥wgi

∥∥
C2,α ≤ C17

(∥∥wgi log wgi

∥∥
C0,α + ∥∥wgi

∥∥
C0,α

) ≤ C18
((∥∥wgi

∥∥
C0,α

)γ + ∥∥wgi

∥∥
C0,α

)

for some γ > 1. For some sufficiently large q , we have, by Sobolev embedding,
∥∥wgi

∥∥
C0,α ≤ C19

∥∥wgi

∥∥
W 1,q ≤ C19 · C(q).

We finally obtained an upper bound on
∥∥wgi

∥∥
C2,α . Thus there exists a subsequence, again

denoted by (wgi , τgi ), which converges in C2,α′
, α′ < α, to some limit (w∞, τ∞). By Remark

3.2,

ν(g0) ≥ lim
i→∞ ν(gi ) = lim

i→∞ W̃(gi , wgi , τgi ) = W̃(g0, w∞, τ∞) ≥ ν(g0),

and therefore, (w∞, τ∞) = (wg0 , τg0) because the minimizing pair is unique at g0. Moreover,
by resubstituting,

( fgi , τgi ) → ( f∞, τ∞) = ( fg0 , τg0)

in C2,α′
. Because the pair ( fgi , τgi ) satisfies (3.2) and (3.2), L(gi , fgi , τgi ) = 0 and the

implicit function argument from above implies that P(gi ) = ( fgi , τgi ) for large i . This
proves the claim by contradiction. We also have shown that the constant c appearing above
is equal to −ν(g). Since the map g �→ ( fg, τg) is analytic, the map

g �→ ν(g) = −τg(2� fg + |∇ fg|2 − scalg) + fg − n

is also analytic. This proves the lemma. �
Lemma 4.3 Let (M, g0) be a gradient shrinking Ricci soliton. Then there exists a C2,α-
neighbourhood U of g0 in the space of metrics and a constant C > 0 such that

∥∥∥∥
d

dt

∣∣∣∣
t=0

fg+th

∥∥∥∥
C2,α

≤ C ‖h‖C2,α ,

∥∥∥∥
d

dt

∣∣∣∣
t=0

fg+th

∥∥∥∥
Hi

≤ C ‖h‖Hi , i = 0, 1, 2,

∣∣∣∣
d

dt

∣∣∣∣
t=0

τg+th

∣∣∣∣ ≤ C ‖h‖L2

for all g ∈ U .

Proof Let the maps P, L and the space R be as in the proof of the previous lemma. Note
that if U is small enough, the map

h �→
(

d

dt

∣∣∣∣
t=0

fg+th,
d

dt

∣∣∣∣
t=0

τg+th

)

is precisely the differential of P . By the chain rule,

d Pg = − (d Lg, fg,τg |R
)−1 ◦ d Lg, fg,τg |C2,α(S2 M). (4.6)
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First, we compute d Lg, f,τ |C2,α(S2 M). We have

d H(g, h, f, τ ) := d

dt

∣∣∣∣
t=0

H(g + th, f, τ ) = 2τ�′ f − τh(grad f, grad f ) − scal′.

Then,

d L1(h) = d H(g, h, f, τ ) − 1

(4πτg0)
n/2

∫

M

d H(g, h, f, τ )e− fg0 dVg0 ,

d L2(h) = 1

(4πτ)n/2

1

2

∫

M

f e− f trh dVg + 1

(4πτg0)
n/2

∫

M

d H(g, h, f, τ )e− fg dVg0 ,

d L3(h) = 1

(4πτ)n/2

1

2

∫

M

e− f trh dVg

by the first variation of the volume element. The first variation of the Laplacian and the scalar
curvature are

d

dt

∣∣∣∣
t=0

�g+th f =〈h,∇2 f 〉 −
〈
δh + 1

2
∇trh,∇ f

〉
,

d

dt

∣∣∣∣
t=0

scalg+th =�g(trgh) + δg(δgh) − 〈Ricg, h〉g,

c.f. [2, pp. 62–64]. Therefore, we have the estimates
∥∥d Lg, f,τ |C2,α(S2 M)(h)

∥∥
C0,α ≤ C1 ‖h‖C2,α ,∥∥d Lg, f,τ |C2,α(S2 M)(h)

∥∥
Hi−2 ≤ C2 ‖h‖Hi ,

where i = 0, 1, 2. Now we consider d Lg, f,τ |R . This is essentially an elliptic operator which is
invertible at (g0, fg0 , τg0). By continuity, it is also invertible on a small C2,α-neighbourhood
of the tuple. By elliptic estimates, we conclude from (4.6) that

∥∥d Pg(h)
∥∥

C2,α ≤ C3 ‖h‖C2,α ,
∥∥d Pg(h)

∥∥
Hi ≤ C4 ‖h‖Hi

for g close to g0. This finishes the proof of the lemma. �
To prove the main result of this section, we need a form of the slice theorem. Recall that

Ebin’s slice theorem [15] states the following: For any Riemannian metric g on a compact
manifold, there exists neighbourhood U of g and a submanifold Sg ⊂ M tangent to δ−1

g (0)

such that any metric in U is isometric to a unique metric in Sg . We call Sg a slice of the action
of Diff(M).

For our purpose, it is more convenient to use a slice tangent to δ−1
g, f (0) where f is the

potential function of the Ricci soliton. In fact, we can choose the slice to be affine, i.e.

Sg, f = {
g + h | δg, f (h) = 0

}
. (4.7)

By [1, Lemma A.5], there exists a C1+k,α-neighbourhood U of g such that any metric in U
is isometric to a unique metric in Sg, f ∩ U .

Theorem 4.4 (Lojasiewicz–Simon inequality) Let (M, g0) be a gradient shrinking Ricci
soliton. Then there exists a C2,α neighbourhood U of g0 and constants σ ∈ [1/2, 1), C > 0
such that

|ν(g) − ν(g0)|σ ≤ C

∥∥∥∥τ(Ricg + ∇2 fg) − 1

2
g

∥∥∥∥
L2

(4.8)
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for all g ∈ U .

Proof Since both sides are diffeomorphism invariant, it suffices to show the inequality on a
slice to the action of the diffeomorphism group. Let

Sg0, fg0
= U ∩

{
g0 + h

∣∣∣∣ δg0, fg0
(h) = 0

}
.

Let ν̃ be the ν-functional restricted to Sg0, fg0
. Obviously, ν̃ is analytic since ν is. By the first

variational formula in Lemma 3.3, the L2-gradient of ν is (up to a constant factor) given by
∇ν(g) = [τ(Ricg + ∇2 fg) − 1

2 g]e− fg . It vanishes at g0. On the neighbourhood U , we have
the uniform estimate

‖∇ν(g1) − ∇ν(g2)‖L2 ≤ C ‖g1 − g2‖H2 , (4.9)

which holds by Taylor expansion and Lemma 4.3. The L2-gradient of ν̃− is given by the
projection of ∇ν to δ−1

g0, fg0
(0). Therefore, (4.9) also holds for ∇ν̃. The linearization of ν̃ at

g0 vanishes on R · Ricg0 and equals

τg0

(4πτg0)
n/2 e− f0

(
−1

2
� f + R̊

)

on the L2(e− fg0 dV )-orthogonal complement of R · Ricg0 in δ−1
g0, fg0

(0), see Remark 3.6. Let
us denote this operator by D. By ellipticity,

D : (δ−1
g0, fg0

(0))2,α → (δ−1
g0, fg0

(0))0,α

is Fredholm. It also satisfies the estimate ‖Dh‖L2 ≤ C ‖h‖H2 . By a general Lojasiewicz–
Simon inequality [11, Theorem 7.3], there exists a constant σ ∈ [1/2, 1) such that the
inequality |ν(g) − ν(g0)|σ ≤ ‖∇ν̃−(g)‖L2 holds for any g ∈ Sg0, fg0

. Since

‖∇ν̃(g)‖L2 ≤ ‖∇ν(g)‖L2 ≤ C

∥∥∥∥τ(Ricg + ∇2 fg) − 1

2
g

∥∥∥∥
L2

,

(4.8) holds on all g ∈ Sg0, fg0
. By diffeomorphism invariance, it holds on all g ∈ U . �

5 Dynamical stability and instability

In this section, we prove the main theorems of the paper. We consider the τ -flow

ġ(t) = −2Ricg(t) + 1

τg(t)
g(t) (5.1)

which is well-defined in a neighbourhood of a gradient shrinking Ricci soliton. Observe that
ν is nondecreasing under the τ -flow. We also construct a modified τ -flow as follows: Let
ϕt ∈ Diff(M), t ≥ 1 be the family of diffeomorphisms generated by X (t) = −gradg(t) fg(t)

and define g̃(t) := ϕ∗
t g(t), where g(t) is a solution of (5.1). Then we have

d

dt
g̃(t) = −2(Ricg̃(t) + ∇2 fg̃(t)) + 1

τg̃(t)
g̃(t). (5.2)

This is the gradient flow of τ with respect to the weighted L2-measure.
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Lemma 5.1 Let (M, g) be a gradient shrinking Ricci soliton and let k ≥ 3. Then for each
Ck-neighbourhood U of g, there exists a Ck+5-neighbourhood V of g such that the modified
τ -flow (5.2), starting at any metric in V , stays in U for all t ∈ [0, 1].

Proof Let us denote the ε-ball with respect to the Ck
g-norm by Bk

ε . Without loss of generality,

we may assume that U is of the form U = Bk
ε for some ε > 0. Throughout the proof, let us

assume that we are in a neighbourhood of g such that Lemmas 4.1 and 4.3 hold. All covariant
derivatives, Laplacians and norms in this proof are taken with respect to g(t) (resp. g̃(t)).
Along the (unmodified) τ -flow, we have the evolution equations

∂t R = −�R + R ∗ R + 2

τ
R,

∂t Ric = −�Ric + R ∗ Ric,

∂t
1

2τ
g = − ∂tτ

2τ 2 g + 1

2τ

(
−2Ric + 1

τ
g

)
,

∂t∇2 f = ∇Ric ∗ ∇ f + ∇2∂t f,

where ∗ is Hamilton’s notation for a combination of tensor products and contractions. The
first two formulas follow from rescaling the evolution equations for the standard Ricci flow
[3, pp. 26–28]. The third formula is clear and the last one follows from the first variation
of the Hessian [36, Lemma A.2]. The evolution equation for the Riemann tensor yields the
evolution inequality

∂t |∇ i R|2 ≤ −�|∇ i R|2 +
i−1∑
j=1

Ci j |∇ j R||∇ i− j R||∇ i R| + Ci0

(
|R| + 1

τ

)
|∇ i R|2.

From the maximum principle, we obtain the following. Suppose we have a τ -flow g(t) defined
on [0, T ], T ≤ 1 and the bounds

sup
p∈M

|Rg(t)|g(t) ≤ K ,
1

τg(t)
≤ K , sup

p∈M
|∇ i Rg(0)|g(0) ≤ K (5.3)

for all t ∈ [0, T ] and i ≤ k + 3. Then there exists a constant K̃ (K , n, k) such that

sup
p∈M

|∇ i Rg(t)|g(t) ≤ K̃ (5.4)

for all t ∈ [0, T ] and i ≤ k + 3. Furthermore, we have the evolution inequality

∂t |Ric + ∇2 f − 1/2τ · g|2 ≤ −�|Ric + ∇2 f − 1/2τ · g|2
+ 2|Ric + ∇2 f − 1/2τ · g||(∗)|,

where (∗) is given by

(∗) = R ∗ Ric + ∂tτ

2τ 2 g − 1

2τ

(
−2Ric + 1

τ
g

)
+ ∇Ric ∗ ∇ f + ∇2∂t f + �∇2 f.

We obtain a bound

|(∗)| ≤ C(‖ f ‖C4 , ‖R‖C1 , ‖∂t f ‖C2),
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where we used the estimate |∂tτ | ≤ C
∥∥Ric − 1

2τ
g
∥∥

L2 . Similarly, we have

∂t |∇ i (Ric + ∇2 f − 1/2τ · g)|2 ≤ − �|∇ i (Ric + ∇2 f − 1/2τ · g)|2
+ 2|∇ i (Ric + ∇2 f − 1/2τ · g)||(∗∗)|,

where we have the bound

|(∗∗)| ≤ C(‖ f ‖Ci+4 , ‖R‖Ci+1 , ‖∂t f ‖Ci+2). (5.5)

It remains to control the norms of f and ∂t f . By the differential equation

τ(2� f + |∇ f |2 − scal) − f + n + ν = 0 (5.6)

and elliptic regularity,

‖ f ‖Ci,α ≤ C(‖ f ‖Ci−1,α + ‖scal‖Ci−2,α + |ν + n|). (5.7)

From differentiating (5.6), we obtain

‖∂t f ‖Ci,α ≤ C(‖Ric − 1/2τ · g‖Ci,α , ‖ f ‖Ci,α , ‖R‖Ci−2,α ). (5.8)

Suppose now again that (5.3) (and therefore, also 5.4) holds. Using an iteration argument in
(5.7) and descending to Ci -norms we obtain that

‖ f ‖Ci+4 ≤ C(‖ f ‖C2,α , ‖R‖Ci+3), ‖∂t f ‖Ci+2 ≤ C(‖ f ‖C2,α , ‖R‖Ci+3).

For all i ≤ k, we thus have, by (5.4) and (5.5),

∂t |∇ i (Ric + ∇2 f − 1/2τ · g)|2 ≤ −�|∇ i (Ric + ∇2 f − 1/2τ · g)|2
+C(‖ f ‖C2,α , K̃ )|∇ i (Ric + ∇2 f − 1/2τ · g)| (5.9)

along the τ flow. By diffeomorphism invariance, conclusion (5.4) and the inequality (5.9)
also hold for the modified τ -flow. Let us denote the modified τ -flow by g̃. Choose the Ck+5-
neighbourhood V so small that we have the bounds (5.3) for some constant K > 0 and any
modified τ -flow starting in V as long as the flow stays in U . Then (5.4) holds. Let ε1 > 0.
By (5.9) and the maximum principle, we can choose δ1 = δ1(ε1, U, V) > 0 so small that if

|∇ i (Ricg̃(0) + ∇2 fg̃(0) − 1/2τg̃(0) · g̃(0))| ≤ δ1,

then

|∇ i (Ricg̃(t) + ∇2 fg̃(t) − 1/2τg̃(t) · g̃(t))| ≤ ε1,

for i ≤ k and t ∈ [0, 1] as long as the flow stays in U . Let T > 0 be the maximal time such
that the modified τ -flow stays in U . Suppose that T ≤ 1. By integration,

‖g̃(T ) − g‖Ck
g

≤ ‖g̃(0) − g‖Ck
g
+

T∫

0

d

dt
‖g̃(t) − g̃(0)‖Ck

g
dt

≤ δ(V) + C(U)

T∫

0

∥∥∥ ˙̃g(t)
∥∥∥

Ck
g̃(t)

dt

≤ δ(V) + C(U) · k · ε1 ≤ ε

2
,

provided that we have chosen ε1 and δ(V) small enough. This contradicts the maximality of
T and proves the lemma. �
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Lemma 5.2 (Shi estimates for the τ -flow) Let g(t), t ∈ [0, T ] be a solution of the τ -flow
(5.1) and suppose that

sup
p∈M

|Rg(t)|g(t) + 1

τg(t)
≤ T −1 ∀t ∈ [0, T ].

Then for each k ≥ 1, there exists a constant C(k) such that

sup
p∈M

|∇k Rg(t)|g(t) ≤ C(k) · T −1t−k/2 ∀t ∈ (0, T ].

Proof See [37, Lemma 6.5.6]. �
Estimates of that type are well-known for the standard Ricci flow [22, Theorem 7.1]. Note
that we do not make assumptions on the derivatives of the curvature at t = 0.

Theorem 5.3 (Dynamical stability) Let (M, g) be a gradient shrinking Ricci soliton and let
k ≥ 3. Suppose that g is a local maximizer of ν. Then for every Ck-neighbourhood U of g,
there exists a Ck+5-neighbourhood V such that the following holds:

For any metric g0 ∈ V , there exists a 1-parameter family of diffeomorphisms ϕt such
that for the τ -flow (5.1) starting at g0, the modified flow ϕ∗

t g(t) stays in U for all time and
converges to a gradient shrinking Ricci soliton g∞ in U as t → ∞. The convergence is of
polynomial rate, i.e. there exist constants C, α > 0 such that

∥∥ϕ∗
t g(t) − g∞

∥∥
Ck ≤ C(t + 1)−α.

Proof Without loss of generality, we may assume that U = Bk
ε and that ε > 0 is so small

that Theorem 4.4 holds on U .
By Lemma 5.1, we can choose a small neighbourhood V such that the modified τ -flow

(5.2), starting at any metric g ∈ V stays in Bk
ε/4 up to time 1. Let T ≥ 1 be the maximal time

such that any solution of (5.2), starting in V , stays in U . By definition of T , we have uniform
bounds

sup
p∈M

|Rg̃(t)|g̃(t) ≤ C1 ∀t ∈ [0, T ),

|τg̃(t)| ≤ C2 ∀t ∈ [0, T ).

By Lemma 5.2 and diffeomorphism invariance, we have

sup
p∈M

|∇l Rg̃(t)|g̃(t) ≤ C(l) ∀t ∈ [1, T ). (5.10)

Because fg̃(t) satisfies the equation τ(2� f + |∇ f |2 − scal) − f + n + ν = 0, we obtain

sup
p∈M

|∇l fg̃(t)|g̃(t) ≤ C̃(l) ∀t ∈ [1, T ). (5.11)

We have

‖g̃(T ) − g‖Ck ≤‖g̃(1) − g‖Ck +
T∫

1

∥∥∥ ˙̃g(t)
∥∥∥

Ck
dt ≤ ε

4
+

T∫

1

∥∥∥ ˙̃g(t)
∥∥∥

Ck
dt.

By interpolation (c.f. [20, Corollary 12.7]), (5.10) and (5.11), we have
∥∥∥ ˙̃g(t)

∥∥∥
Ck

≤ C3

∥∥∥ ˙̃g(t)
∥∥∥1−η

L2
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for t ∈ [1, T ) and for η as small as we want. In particular, we can assume that θ :=
1 − σ(1 + η) > 0, where σ is the constant appearing in the Lojasiewicz–Simon inequality
4.4. By the first variation of ν,

d

dt
ν(g̃(t)) ≥ C4

∥∥∥ ˙̃g(t)
∥∥∥1+η

L2

∥∥∥ ˙̃g(t)
∥∥∥1−η

L2
.

By Theorem 4.4,

− d

dt
|ν(g̃(t)) − ν(g)|θ = θ |ν(g̃(t)) − ν(g)|θ−1 d

dt
ν(g̃(t))

≥ C5|ν(g̃(t)) − ν(g)|−σ(1+η)
∥∥∥ ˙̃g(t)

∥∥∥1+η

L2

∥∥∥ ˙̃g(t)
∥∥∥1−η

L2

≥ C6

∥∥∥ ˙̃g(t)
∥∥∥

Ck
.

for t ∈ [1, T ). Hence by integration,

T∫

1

∥∥∥ ˙̃g(t)
∥∥∥

Ck
dt ≤ 1

C6
|ν(g̃(1)) − ν(g)|θ ≤ 1

C6
|ν(g̃(0)) − ν(g)|θ ≤ ε

4
,

provided that V is small enough. Thus, T = ∞ and g̃(t) converges to some limit metric
g∞ ∈ U as t → ∞. By the Lojasiewicz–Simon inequality, we have

d

dt
|ν(g̃(t)) − ν(g)|1−2σ ≥ C7,

which implies

|ν(g̃(t)) − ν(g)| ≤ C8(t + 1)−
1

2σ−1 .

Therefore, ν(g∞) = ν(g), so g∞ is a gradient shrinking Ricci soliton, since it is also a local
maximum of ν. The convergence is of polynomial rate, since for t1 < t2,

‖g̃(t1) − g̃(t2)‖Ck ≤ C9|ν(g̃(t1)) − ν(g)|θ ≤ C10(t1 + 1)−
θ

2σ−1 .

The assertion follows from t2 → ∞. By the above arguments, one also sees that g̃(t)
converges in any Ck-norm and therefore, the limit metric is smooth. �
Theorem 5.4 (Dynamical instability) Let (M, g) be a gradient shrinking Ricci soliton that
is not a local maximizer of ν. Then there exists a nontrivial ancient τ -flow g(t), t ∈ (−∞, 0]
and a 1-parameter family of diffeomorphisms ϕt , t ∈ (−∞, 0] such that ϕ∗

t g(t) → g as
t → ∞.

Proof Let gi → g in Ck and suppose that ν(gi ) > ν(g) for all i . Let g̃i (t) be a solution
of (5.2) starting at gi . Then by Lemma 5.1, ḡi = gi (1) converges to g in Ck−5 and by
monotonicity, ν(ḡi ) > ν(g) as well. Let ε > 0 be so small that Theorem 4.4 holds on Bk−5

2ε .
Then we have the differential inequality

d

dt
(ν(g̃i (t)) − ν(g))1−2σ ≥ −C1,

from which we obtain

[(ν(g̃i (t)) − ν(g))1−2σ − C1(s − t)]− 1
2σ−1 ≤ (ν(g̃i (s)) − ν(g)),
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as long as g̃i (t) stays in Bk−5
2ε . Thus, there exists a ti such that

‖g̃i (ti ) − g‖Ck−5 = ε,

and ti → ∞. If {ti } was bounded, g̃i (ti ) → g in Ck−5. By interpolation,

∥∥∥ ˙̃gi (t)
∥∥∥

Ck−5
≤ C2

∥∥∥ ˙̃gi (t)
∥∥∥1−η

L2

for η > 0 as small as we want. We may assume that θ = 1 −σ(1 +η) > 0. By Theorem 4.4,
we have the differential inequality

d

dt
(ν(g̃i (t)) − ν(g))θ ≥ C3

∥∥∥ ˙̃gi (t)
∥∥∥1−η

L2
,

if ν(g̃i (t)) > ν(g). Thus,

ε = ‖g̃i (ti ) − g‖Ck−5 ≤ ‖ḡi − g‖Ck−5 + C4(ν(g̃i (ti )) − ν(g))θ . (5.12)

Now put g̃s
i (t) := g̃i (t + ti ), t ∈ [Ti , 0], where Ti = 1 − ti → −∞. We have

∥∥g̃s
i (t) − g

∥∥
Ck−5 ≤ ε ∀t ∈ [Ti , 0],

g̃s
i (Ti ) → g in Ck−5.

Because the embedding Ck−6(M) ⊂ Ck−5(M) is compact, we can choose a subsequence
of the g̃s

i , converging in Ck−6
loc (M × (−∞, 0]) to an ancient flow g̃(t), t ∈ (−∞, 0], which

satisfies the differential equation

˙̃g(t) = −2

(
Ricg̃(t) − 1

2τg̃(t)
g̃(t) + ∇2 fg̃(t)

)
.

From taking the limit i → ∞ in (5.12), we have ε ≤ C4(ν(g̃(0)) − ν(g))β/2 which shows
that the Ricci flow is nontrivial. For Ti ≤ t , the Lojasiewicz–Simon inequality implies

∥∥g̃s
i (Ti ) − g̃s

i (t)
∥∥

Ck−6 ≤ C4(ν(g̃i (t + ti )) − ν(g))θ

≤ C4[−C1t + (ν(g̃i (ti )) − ν(g))1−2σ ]− θ
2σ−1

≤ [−C5t + C6]− θ
2σ−1 .

Thus,

‖g − g̃(t)‖Ck−6 ≤ ∥∥g − g̃s
i (Ti )

∥∥
Ck−6 + [−C5t + C6]− θ

2σ−1 + ∥∥g̃s
i (t) − g̃(t)

∥∥
Ck−6 .

It follows that ‖g − g̃(t)‖Ck−6 → 0 as t → −∞. �

Remark 5.5 For any τ -flow g(t) we obtain a solution ĝ(t) of the normalized Ricci flow (1.1)
by projecting to the subset Mc of metrics of volume c and by rescaling the time parameter
suitably. Now if g(t) converges to some Ricci soliton as t → ±∞, the same holds for ĝ(t).
This shows that Theorems 5.3 and 5.4 also hold when replacing the τ -flow by the volume-
normalized Ricci flow. In this way, we obtain the theorems as stated in the introduction.

Remark 5.6 All known nontrivial Ricci solitons are dynamically unstable (c.f. Remark 3.8).
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6 The integrability condition

Let gt a C1-curve of Ricci solitons through g and suppose that all gt are of the same volume
c. By projecting to the affine slice, we obtain a C1-curve of Ricci solitons

g̃t ⊂ Mc ∩ {g + k | δg, fg (k) = 0
}

where Mc is the space of metrics of volume c. We have

d

dt

∣∣∣∣
t=0

g̃t = h ∈ V =
⎧⎨
⎩h ∈ (S2 M)

∣∣∣∣ δ f (h) = 0 and
∫

M

〈Ric, h〉e− f dV = 0

⎫⎬
⎭

and ν′′(h) = 0 because ν is constant along g̃t . This motivates the following definition:

Definition 6.1 Let (M, g) be a gradient shrinking Ricci soliton and let N be the stability
operator of Proposition 3.5. We call h ∈ C∞(S2 M) an infinitesimal solitonic deformation
if h ∈ V and N (h) = 0. An infinitesimal solitonic deformation is called integrable if there
exists a curve of Ricci solitons gt through g = g0 such that d

dt |t=0gt = h.

If g is Einstein, this generalizes the notion of infinitesimal Einstein deformations (IED).
Recall that an IED is a trace-free and divergence-free (TT) tensor which lies in the kernel of
the Einstein operator �E = � − 2R̊ [2, p. 347]. An IED is called integrable if there exists a
curve of Einstein metrics tangent to it.

Lemma 6.2 Let (M, g) be an Einstein manifold with Einstein constant μ. Let I E D be the
space of infinitesimal Einstein deformations and I SD the space of infinitesimal solitonic
deformations. Then we have

I SD = I E D ⊕ {
μv · g + ∇2v|v ∈ C∞(M),�v = 2μv

}
.

Proof Since g is Einstein, we have �E = − 1
2 N on V , where V is as above. The space V

splits as

V = T T ⊕
⎧⎨
⎩F(v) = (�v − μv)g + ∇2v

∣∣∣∣
∫

M

v dV = 0

⎫⎬
⎭

The kernel of �E on TT-tensors is I E D by definition. On the second component, we have
�E (F(v)) = F((� − 2μ)v) [6, p. 7]. See also [37, p. 106] for details. �
IED’s and their integrability were studied by Koiso [30–33], see also [2, Chapter 12]. Recently,
Podestà and Spiro [40] generalized some of Koiso’s results to the case of Ricci solitons. For a
given Ricci soliton g, they constructed a slice Sg, fg in the space of metrics tangent to δ−1

g, fg
(0)

such that the following holds: For any s ≥ [ n
2 ]+3, there exists a Hs-neighbourhood U ⊂ Sg, fg

of g and a finite-dimensional submanifold Z ⊂ U such that TgP = ker(N |V )⊕ R · Ricg and
the set of Ricci solitons P ⊂ Z is a real analytic subset of Z [40, Theorem 3.4]. Any metric
which is Hs-close to g is isometric to a unique metric in Sg, fg .

For the main theorem in this section, we impose the technical condition that all infinitesimal
solitonic deformations are integrable. If this condition holds, P = Z provided that U is small
enough. In particular, the set of Ricci solitons in U is a finite-dimensional manifold.

The slice used in [40] is constructed via the exponential map of the weak Riemannian
structure on M. Hence it differs from the affine slice S̃g, fg that we use in this paper. However,
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we can identify the Ricci solitons in Sg, fg and S̃g, fg via the map � : P → S̃g, fg which

associates to g1 ∈ Sg, fg the unique metric g̃1 ∈ S̃g, fg isometric to g1. Since P is finite-
dimensional, it also consists of all Ricci solitons in a suitable C2,α-neighbourhood of g. By
[1, Lemma A.5], � is a diffeomorphism onto its image and the set P̃ = �(P), consisting of
all Ricci solitons in S̃g, fg , is a finite-dimensional manifold.

Lemma 6.3 Let (M, g0) be a gradient shrinking Ricci soliton. Then there exists a C2,α-
neighbourhood U of g0 and a constant C > 0 such that∥∥∥∥∥

d2

dtds

∣∣∣∣
t,s=0

fg+sk+th

∥∥∥∥∥
H1

≤ C ‖k‖C2,α ‖h‖H1 ,

∣∣∣∣∣
d2

dtds

∣∣∣∣
t,s=0

τg+sk+th

∣∣∣∣∣ ≤ C ‖k‖C2,α ‖h‖H1

for all g ∈ U .

Proof Let the maps P, L and the space R be as in the proof of the Lemma 4.1. We then have
(

d2

dtds

∣∣∣∣
t,s=0

fg+sk+th,
d2

dtds

∣∣∣∣
t,s=0

τg+sk+th

)
= d

ds

∣∣∣∣
s=0

d Pg+sk(h).

Let us denote Ag = d Lg, fg,τg |R and Bg = d Lg, fg,τg |C2,α(S2 M), so that we can rewrite (4.6) as

d Pg = −A−1
g ◦ Bg. (6.1)

By differentiating,

d

ds

∣∣∣∣
s=0

d Pg+sk = −A−1
g ◦

(
d

ds

∣∣∣∣
t=0

Ag+sk

)
◦ A−1

g ◦ Bg − A−1
g ◦

(
d

ds

∣∣∣∣
s=0

Bg+sk

)
.

The derivatives of Ag and Bg contain the second variation of the Laplacian and the scalar
curvature, which can be schematically written as

d2

dsdt

∣∣∣∣
s,t=0

�g+sk+th f = ∇k ∗ h ∗ ∇ f + k ∗ ∇h ∗ ∇ f,

d2

dsdt

∣∣∣∣
s,t=0

scalg+sk+th = ∇2k ∗ h + k ∗ ∇2h + ∇k ∗ ∇h + R ∗ k ∗ h,

see [36, Lemma A.3]. Thus by straightforward calculation and standard estimates,∥∥∥∥
d

ds

∣∣∣∣
t=0

Ag+sk( f )

∥∥∥∥
H−1

≤ C ‖k‖C2,α ‖ f ‖H1 ,

∥∥∥∥
d

ds

∣∣∣∣
t=0

Bg+sk(h)

∥∥∥∥
H−1

≤ C ‖k‖C2,α ‖h‖H1 ,

where f ∈ R and h ∈ C2,α(S2 M). By combining these estimates with those for Ag and Bg

in the proof of Lemma 4.3, we obtain the result. �
Proposition 6.4 (Estimates of the third variation of ν) Let (M, g0) be a gradient shrinking
Ricci soliton. There exists a C2,α-neighbourhood U of g0 such that

∣∣∣∣
d3

dt3

∣∣∣∣
t=0

ν(g + th)

∣∣∣∣ ≤ C ‖h‖2
H1 ‖h‖C2,α

for all g ∈ U and some constant C > 0.
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Proof We put v = e− f

(4πτ)n/2 and ∇ν = τ(Ric + ∇2 f ) − 1
2 g. Then

d3

dt3

∣∣∣∣
t=0

ν(g + th) = − d2

dt2

∣∣∣∣
t=0

∫

M

〈∇ν, h〉v dV

= −
∫

M

〈(∇ν)′′, h〉v dV − 6
∫

M

〈∇ν, h ◦ h ◦ h〉v dV −
∫

M

〈∇ν, h〉(v dV )′′

+ 2
∫

M

〈(∇ν)′, h ◦ h〉v dV + 2
∫

M

〈∇ν, h ◦ h〉(v dV )′

−
∫

M

〈(∇ν)′, h〉(v dV )′.

Here, ◦ denotes the composition of symmetric (0, 2)-tensors, considered as endomorphisms
on T M . We have

d

dt

∣∣∣∣
t=0

∇2
g+th f = ∇h ∗ ∇ f,

d

dt

∣∣∣∣
t=0

Ricg+th = (∇2 ∗ h) + (R ∗ h),

see [36, Lemma A.1 and Lemma A.2]. The second variation of the Ricci tensor and the
Hessian appearing in (∇ν)′′ are of the form

d

ds

d

dt

∣∣∣∣
s,t=0

∇2
g+sk+th f =k ∗ ∇h ∗ ∇ f + ∇k ∗ h ∗ ∇ f,

d

ds

d

dt

∣∣∣∣
s,t=0

Ricg+sk+th =k ∗ ∇2h + ∇2k ∗ h + ∇k ∗ ∇h + R ∗ k ∗ h,

see [36, Lemma A.3]. Now, standard estimates and the Lemmas 4.3 and 6.3 yield an upper
bound of the form C ‖h‖2

H1 ‖h‖C2,α for each of these terms. �

Theorem 6.5 Let (M, g0) be a shrinking gradient Ricci soliton and suppose that all infini-
tesimal solitonic deformations are integrable. If g0 is linearly stable, then there exists a small
C2,α-neighbourhood U ⊂ M of g0 such that ν(g) ≤ ν(g0) for all g ∈ U .

Remark 6.6 Observe that the converse implication always holds, even if we drop the inte-
grability assumption.

Proof By diffeomorphism invariance of ν, it suffices to prove the theorem on a slice in the
space of metrics. Let

Sg0, fg0
= U ∩

{
g0 + h

∣∣∣∣ h ∈ δ−1
g0, fg0

(0)

}

and let

P =
{

g ∈ Sg0, fg0

∣∣∣∣Ricg + ∇2 fg = 1

2τg
· g

}
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be the set of gradient shrinking Ricci solitons in the slice. By integrability, P is a finite-
dimensional manifold with tangent space

Tg0P = R · Ric ⊕ ker(N |
δ−1

fg0
(0)

)

where N is the stability operator in Proposition 3.5. Let W be the L2(e− fg0 dV )-orthogonal
complement of Tg0P in δ−1

fg0
(0). Let us pass to C2,α-spaces for the rest of the proof. By the

inverse function theorem for Banach manifolds, any (C2,α-)metric g in Sg0, fg0
can be written

as g = ḡ + h, where ḡ ∈ P and h ∈ W . By Taylor expansion,

ν(ḡ + h) = ν(ḡ) + 1

2

d2

dt2

∣∣∣∣
t=0

ν(ḡ + th) + R(ḡ, h),

R(ḡ, h) =
1∫

0

(
1

2
− t + 1

2
t2
)

d3

dt3 ν(ḡ + th)dt.

By assumption, v
′′
g0

is negative definite on V and therefore,

ν′′
g0

(h) = τ

(4πτ)n/2

⎡
⎣−ε

∫

M

|∇h|e− f dV +
∫

M

〈[(
ε − 1

2

)
� f + R̊

]
h, h

〉
e− f dV

⎤
⎦

≤ −C1 ‖h‖2
H1 (6.2)

for all h ∈ V . By Taylor expansion again,

|ν′′̄
g (h) − ν′′

g0
(h)| ≤ C2 ‖ḡ − g0‖C2,α ‖h‖H1 . (6.3)

More precisely,

d

ds

∣∣∣∣
s=0

Ng+skh =∇2k ∗ h + ∇k ∗ ∇h + k ∗ ∇2h + R ∗ h ∗ k + ∇k ∗ ∇vh + ∇2v′

+ ∇ f ∗ ∇k ∗ h + ∇ f ∗ k ∗ ∇h + ∇2 f ′ ∗ h + ∇ f ′ ∗ h

by straightforward calculation. By elliptic regularity,

‖vh‖H1 ≤ C3 ‖h‖H1

and by differentiating (3.7) and Lemma 4.3,
∥∥v′∥∥

H1 ≤ C4 ‖h‖H1 ‖k‖C2,α .

Together with Lemma 4.3 again, this proves (6.3). As a consequence,

ν′′̄
g (h) ≤ −C1 ‖h‖2

H1 (6.4)

for all h ∈ V and for all ḡ in a sufficiently small neighbourhood of g0. Thus by Proposition
6.4,

ν(ḡ + h) ≤ ν(ḡ) − (C5 − C6 ‖h‖C2,α ) ‖h‖2
H1

which shows that any ν(g) ≤ ν(g0) for any g ∈ Sg0, fg0
close enough to g0 in C2,α . By [1,

Lemma A.5], any metric in U is isometric to some metric in Sg0, fg0
, so that this inequality

holds for all g ∈ U . In particular, it holds for smooth metrics. �

123



286 K. Kröncke

Corollary 6.7 Let (M, g0) be a gradient shrinking Ricci soliton and suppose that all infini-
tesimal solitonic deformations are integrable. Then, linear stability and dynamical stability
are equivalent.

Remark 6.8 It would be interesting to find curvature conditions which ensure linear stability
of a given Ricci soliton. This would generalize previous results obtained in the Einstein case,
see [12,13,27,30,33,35]. A detailed study of the stability operator N will be the content of
our future investigations.

Proof of Theorem 1.5 The Fubini-Study metric is Einstein and its Einstein constant is given
by 1/2τ . By [36, pp. 25–26], there exists an eigenfunction v ∈ C∞(M) of the Laplacian
with eigenvalue 1/τ such that

∫
M v3 dV �= 0. By Lemma 6.2, h = v · g f s + 2τ∇2v is an

infinitesimal solitonic deformation. Suppose there exists a curve of Ricci solitons gt such
that d

dt |t=0gt = h. Since g f s is a critical point of ν and h lies in the kernel of its linearization,
d
dt |t=0ν(gt ) = d2

dt2 |t=0ν(gt ) = 0. The third variation equals

d3

dt3

∣∣∣∣
t=0

ν(gt ) = ν′′′(h) = ν′′′(v · g f s) = 3n − 4

vol(M, g f s)

∫

M

v3 dV �= 0.

Here we used the diffeomorphism invariance of ν and the third variational formula in [36,
Proposition 9.1]. This contradicts the fact that ν must be constant along gt and thus, h is not
integrable. �
Remark 6.9 It seems likely that (CPn, g f s) is isolated in the moduli space of Ricci solitons,
because all infinitesimal solitonic deformations arise from conformal deformations.

Remark 6.10 The space (CPn, g f s) is neutrally linearly stable but dynamically unstable [36,
Corollary 1.11].
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