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Abstract We study the existence of cylindrically symmetric electro-magneto-static solitary
waves for a system of a nonlinear Klein–Gordon equation coupled with Maxwell’s equations
in presence of a positive mass and of a nonnegative nonlinear potential. Nonexistence results
are provided as well.
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1 Introduction, motivations and results

In recent years great attention has being paid to some classes of systems of partial differential
equations that provide a model for the interaction of matter with electromagnetic field. Such
theories are known in literature as Abelian Gauge Theories, and in this framework a crucial
rôle is played by systems whose field equation is the Klein–Gordon’s one. In particular, we
recall the papers [2–7,9,12,13,16,21,26–29,36,39], where existence or non existence results
are proved in the whole physical space for systems of Klein–Gordon–Maxwell type.

Here we are interested in a particular class of solutions, consisting in the so called solitary
waves, i.e. solutions of a field equation whose energy travels as a localized packet. This
kind of solutions plays an important rôle in these theories because of their relationship with
solitons. “Soliton” is the name by which solitary waves are known when they exhibit some
strong form of stability; they appear in many situations of mathematical physics, such as
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2 D. Mugnai, M. Rinaldi

classical and quantum field theory, nonlinear optics, fluid mechanics and plasma physics (for
example, see [14,18,33]). Therefore, the first step to prove the existence of solitons is to
prove the existence of solitary waves, as we will do.

Our starting point is the following system, obtained by the interaction of a Klein–Gordon
field with Maxwell’s equations, which is, therefore, a model for electrodynamics:

⎧
⎪⎪⎨

⎪⎪⎩

(∂t + iqφ)2ψ − (∇ − iqA)2ψ + W ′(ψ) = 0,

div(∂t A + ∇φ) = q
(

Im ∂tψ
ψ

+ qφ
)

|ψ |2,
∇ × (∇ × A)+ ∂t (∂t A + ∇φ) = q

(
Im ∂tψ

ψ
− qA

)
|ψ |2.

(1.1)

Here ψ : R
3 × R → C, φ : R

3 → R and A : R
3 × R → R

3, see [4] for the derivation of the
general system and for a detailed description of the physical meaning of the unknowns.

We are interested in standing waves solutions of system (1.1), under the assumption that
W possesses some good invariants (necessary to be considered in Abelian Gauge Theories),
typically some conditions of the form

W (eiαu) = W (u) and (W ′)(eiαu) = eiαW ′(u)

for any function u and any α ∈ R. Thus we look for solutions having the special form

ψ(x, t) = u(x)ei S(x,t), u : R
3 → R, S(x, t) = S0(x)− ωt ∈ R, ω ∈ R, (1.2)

∂t A = 0, ∂tφ = 0. (1.3)

In this way the previous system reads as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−�u + |∇S − qA|2u −
(
∂S
∂t + qφ

)2
u + W ′(u) = 0,

∂
∂t

[(
∂S
∂t + qφ

)
u2
]

− div[(∇S − qA)u2] = 0,

div
(
∂A
∂t + ∇φ

)
= q

(
∂S
∂t + qφ

)
u2,

∇ × (∇ × A)+ ∂
∂t

(
∂A
∂t + ∇φ

)
= q(∇S − qA)u2,

(1.4)

where the equations are the matter equation, the charge continuity equation, the Gauss equa-
tion and the Ampère equation, respectively.

Three different types of finite energy, stationary nontrivial solutions can be considered:

• electrostatic solutions: A = 0, φ �= 0;
• magnetostatic solutions: A �= 0, φ = 0;
• electro-magneto-static solutions: A �= 0, φ �= 0.

Under suitable assumptions, all these types of solutions may exist.
Existence and nonexistence of electrostatic solutions for system (1.4) have been proved

under different assumptions on W : in [12] and [13] the following potential (or more general
ones) has been considered:

W (s) = 1

2
s2 − s p

p
, s ≥ 0.

In [4] the case 4 < p < 6, in [13] the case 2 < p < 6 and in [12] the remaining cases are
studied.

In [3] and [29] the existence of electrostatic solutions has been studied for the first time
when the potential W is nonnegative. In particular the existence of radially symmetric, elec-
trostatic solutions has been analyzed in both papers, and it turns out that all these solutions
have zero angular momentum.
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Spinning Q-balls in Abelian Gauge 3

Here we are interested in electro-magneto-static solutions when W ≥ 0; in particular,
we shall study the existence of vortices, which are solutions with non vanishing angular
momentum, namely solutions with S0(x) = lθ(x)–θ is the polar function in cylindrical
coordinates–i.e. of the form

ψ(t, x) = u(x)ei(lθ(x)−ωt), l ∈ Z \ {0}, (1.5)

and we will see that the angular momentum Mm of the matter field of a vortex does not
vanish (see Remark 2.3); this fact justifies the name “vortex”. These kinds of solutions are
also known as spinning Q-balls; in this regard we recall the pioneering paper of Rosen [35]
and of Coleman [11]. Coleman was the first to use the name Q-ball, referring to spherically
symmetric solutions.Vortices in the nonlinear Klein–Gordon–Maxwell equations with a non-
negative nonlinear term W (s) with W (0) = 0 are also considered in Physics literature with
the name of gauged spinning Q-balls, the name balls being used even if they do not exhibit
a spherical symmetry, as in the case treated in this paper. More precisely, spinning axially
symmetric Q-balls have been constructed by Volkov and Wohnert [39], and have already
been analysed also in [1,9,19,20]. For a review of the problem of constructing classical field
theory solutions describing stationary vortex rings we refer to [32], where applications in
relativistic field theories and non-linear optics is presented.

However, in most of the previous considerations the existence of such solutions is discussed
only qualitatively, so that almost no solutions of this type are explicitly known. Indeed, the
mathematical existence of spinning Q-balls was given for the first time in [5], though some
numerical results are known since [22]. Therefore, this paper is a contribution to an existence
theory which is still at the very beginning.

By (1.5), system (1.4) becomes

−�u + [|l∇θ − qA|2 − (ω − qφ)2
]

u + W ′(u) = 0, (1.6)

−�φ = q(ω − qφ)u2, (1.7)

∇ × (∇ × A) = q(l∇θ − qA)u2, (1.8)

which is the Klein–Gordon–Maxwell system we have investigated. Moreover, though system
(1.6)–(1.8) was obtained by means of considerations on gauge invariance of W , from a
mathematical point of view we can also replace (1.6) with

−�u + [|l∇θ − qA|2 − (ω − qφ)2
]

u + Wu(x, u) = 0,

i.e. we could let W depend on the x–variable. More precisely, in order to use our functional

approach, we let W depend on (
√

x2
1 + x2

2 , x3), but we do not require any positivity far from
0, in contrast to the usual Ambrosetti–Rabinowitz condition. We think that this fact is quite
interesting, both from a mathematical and a physical point of view: for example, it may
happen that the potential is inactive in some cylinder, or, even more interestingly, out of a
cylinder, as it happens where strong magnetic potential are present in linear accelerators.

According to what just said, in the second section we will show a new existence result
for system (1.6)–(1.8) under general assumptions on the nonnegative potential W . We were
inspired by the approach of [5], and for this reason, the functional structure is the same one of
that article. However, our hypotheses on W imply, in particular, that the potential W (s)might
be 0 for values of s different from 0, in contrast to all previous results, where the potential W
was assumed to lye above a parabola. This corresponds to the situation in which, for values
of the unknown different from 0, there is no interaction among particles (see [13,29]).

Moreover, even more interestingly, we show the existence of solutions for all possible
values of the charge q . We believe this is a very nice result, since for the first time in literature
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4 D. Mugnai, M. Rinaldi

from the seminal paper by Coleman [11], in which the charge was supposed small, as in
all the subsequent papers in our bibliography, we give existence results for all values of the
charge.

In conclusion, though our assumptions are weaker, our results are stronger than those
found so far.

Remark 1.1 If we consider the electrostatic case, i.e. −�u + W ′(u) = 0, calling “rest mass”
of the particle u the quantity

∫

R3

W (u) dx,

see [7], our assumptions on W imply that we are dealing a priori with systems for particles
having positive mass, which is, of course, the physical interesting case.

Entering into details, we shall study system (1.6)–(1.8) under the following hypothesis on
the potential W :

(W1) W (s) ≥ 0 for all s ≥ 0;
(W2) W is of class C2 with W (0) = W ′(0) = 0,W ′′(0) = m2 > 0;
(W3) setting

W (s) = m2

2
s2 + N (s), (1.9)

we assume that there exist positive constants c1, c2, p, 	, with 2 < 	 ≤ p < 6, such that for
all s ≥ 0 there holds

|N ′(s)| ≤ c1s	−1 + c2s p−1.

Moreover, though we are interested in positive solutions, it is convenient to extend W to
all of R setting

W (s) = W (−s) for every s < 0.

System (1.6)–(1.8) was introduced in [5] assuming (W1), (W2), (W3) and the fundamental
requirement

inf
s>0

(
W (s)
m2

2 s2

)

< 1. (1.10)

We immediately see that assumption (W3) plus (1.10) is equivalent to require that there exists
s0 > 0 such that N (s0) < 0, the first step in the classical “Berestycki–Lions” approach. In
this paper we will use an hypothesis different from (1.10), which will let us prove our main
result without any restriction on the charge q , in contrast to all previous results.

Indeed, we will assume
(W4) there exist τ > 2,

D ≥
{

3(1 + l2)
τ−2

2 23τ/2−5m4−τ if q ≤ 1,

3(1 + l2)
τ−2

2 23τ/2−5m4−τq3(τ−2) if q > 1

and ε0 > 0 with ε0 = ε0(q) if q > 1, such that

N (s) ≤ −D|s|τ for all s ∈ [0, ε0].

123



Spinning Q-balls in Abelian Gauge 5

It is clear that functions of the type N (s) = |s|p − |s|q , 2 < q < p, satisfy (W4). Of
course, (W4) implies that there exists s0 > 0 such that N (s0) < 0, but (W4) permits to prove
existence results for any q > 0 and suitable potentials W , see Theorem 1.3.

Remark 1.2 We emphasize the fact that (W1) and (W4) together imply that D cannot be as
large as desired, since the condition W ≥ 0 forces D to depend on ε0 and q . However, we
remark that the parameter ε0 is allowed to depend on q only when q > 1, hence D does not
depend on the charge q when q ≤ 1, but it depends only on m and l. As a consequence, the
class of admissible potentials does not depend on the value of the charge q , whenever q ≤ 1.

As usual, for physical reasons, we look for solutions having finite energy, i.e. (u, φ,A) ∈
H1 × D1 × (D1

)3
, where H1 = H1(R3) is the usual Sobolev space, and D1 = D1(R3) is

the completion of D = C∞
C (R

3) with respect to the norm ‖u‖2
D1 := ∫

R3 |∇u|2 dx (see Sect.
2.2 for the precise functional setting).

Before giving our main result, we remark that, as in [5], the parameter ω is an unknown
of the problem.

Theorem 1.3 Assume (W1), (W2), (W3), (W4), let l ∈ Z and q ≥ 0. Then, system (1.6)–(1.8)
admits a finite energy solution in the sense of distributions (u, ω, φ,A), u �= 0, ω > 0 such
that

• the maps u, φ depend only on the variables r =
√

x2
1 + x2

2 and x3;
•

∫

R3

u2

r2 dx ∈ R;

• the magnetic potential A has the following form:

A = a(r, x3)∇θ = a(r, x3)
( x2

r2 e1 − x1

r2 e2

)
. (1.11)

If q = 0, then φ = 0 and A = 0. If q > 0, then φ �= 0. Moreover, A �= 0 if and only if l �= 0.

Remark 1.4 By definition, the angular momentum is the quantity which is preserved by
virtue of the invariance under space rotations of the Lagrangian with respect to the origin.
Using the gauge invariant variables, we get:

M = Mm + M f ,

where

Mm =
∫

R3

[

−x × (∇u∂t u)+ x × ρj
q2u2

]

dx

and

M f =
∫

R3

x × (E × H) dx .

Here Mm refers to the “matter field” and M f to the “electromagnetic field”, while ρ and j
denote the electric charge and the current density, respectively.

We will see below that the solution found in Theorem 1.3 has nontrivial angular momen-
tum, see Remark 2.3.
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6 D. Mugnai, M. Rinaldi

Remark 1.5 When l = 0 and q > 0 the last part of Theorem 1.3 states the existence of
electrostatic solutions, namely finite energy solutions with u �= 0, φ �= 0 and A = 0. This
result is a variant of a recent ones (see [3,29]).

Moreover, let us observe that under general assumptions on W , magnetostatic solutions (i.e.
with ω = φ = 0) do not exist. In fact also the following proposition is proved in [5]:

Remark 1.6 [5, Proposition 8] Assume that W satisfies the assumptions W (0) = 0 and
W ′(s)s ≥ 0. Then (1.6)–(1.8) has no solutions with ω = φ = 0 (see [31, Proposition 1.2]
for a related result).

In our setting, we are able to prove the following nonexistence results:

Theorem 1.7 If u is a finite energy solution of (1.6) with
∫

R3

N (u) dx ∈ R,

and

• ω2 < m2 and either N ≥ 0 or N ′(s)s ≤ 6N (s) for all s ∈ R,
or

• N ′(s)s ≥ 2N (s) for all s ∈ R,

then u ≡ 0.

A natural consequence is the following

Corollary 1.8 If u ∈ L p(R3) is a finite energy solution of (1.6)–(1.8), and

• ω2 < m2 and

N (u) =

⎧
⎪⎨

⎪⎩

|u|p

p
, p ≤ 6,

−|u|p

p
, p ≥ 6,

or
•

N (u) =

⎧
⎪⎨

⎪⎩

|u|p

p
, p ≥ 2,

−|u|p

p
, p ≤ 2,

then u ≡ 0.

Remark 1.9 Theorem 1.7 implies that, in general, in order to have vortices with N ≥ 0 it is
necessary to have a “large” frequency. We are not aware of similar results in the theory of
vortices, and we believe that such a result can shed a new light on this subject.

In Sect. 4 we shall prove another existence result concerning a different kind of solutions,
namely solutions having fixed L2 norm. In general these solutions cannot be obtained from
the solutions found in Theorem 1.3, for example via a rescaling argument, and we shall focus
on the case

∫

R3 u2dx = 1, which corresponds to solutions having a density of probability
equal to 1. An analogous result could be obtained for

∫

R3 u2dx = c ∈ R
+, but the physical
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Spinning Q-balls in Abelian Gauge 7

meaning of this kind of solutions is not clear to us. Indeed, in different situations it may
happen that if

∫

R3 u2 = c is fixed a priori, then solutions appear only for certain values of c:
a typical example is in the context of boson stars, when solutions with fixed energy do exist
if and only if c < MC , the Chandrasekhar limit mass (see [23,30]).

Our result is the following

Proposition 1.10 Under the hypotheses of Theorem 1.3, there exists μ ∈ R and a solution
in the sense of distributions for the system

−�u + [|l∇θ − qA|2 − (ω − qφ)2
]

u + W ′(u) = μu,

−�φ = q(ω − qφ)u2,

∇ × (∇ × A) = q(l∇θ − qA)u2,

such that
∫

R3 u2dx = 1. Moreover, if ω2 ≤ m2 and N ′(s)s ≥ 0 for all s ∈ R, then μ > 0.

Due to the presence of the multiplier μ, we give the following

Definition 1.11 We call effective mass of the system the quantity m̃ = m2 − μ.

2 Preliminary setting

2.1 Standing wave solutions and vortices

Substituting (1.2) and (1.3) in (1.4), we get the following equations in R
3:

−�u +
[

|∇S0 − qA|2 − (ω − qφ)2
]

u + W ′(u) = 0, (2.1)

−div

[

(∇S0 − qA)u2
]

= 0, (2.2)

−�φ = q(ω − qφ)u2, (2.3)

∇ × (∇ × A) = q(∇S0 − qA)u2. (2.4)

We can easily observe that (2.2) follows from (2.4): as a matter of fact, applying the divergence
operator to both sides of (2.4), we immediately get (2.2). Then we are reduced to study system
(2.1), (2.3), (2.4).

We are interested in finite-energy solutions—the most relevant physical case—i.e. solu-
tions of system (2.1)–(2.4) for which the following energy is finite:

E(u) = 1

2

∫

R3

(

|∇u|2 + |∇φ|2 + |∇ × A|2 + (|∇S0 − qA|2 + (ω − qφ)2)u2
)

dx

+
∫

R3

W (u)dx (2.5)

Furthermore, in order to study the behavior of some particular functional which will be
introduced later on, it is useful to give the electric charge Q a specific representation in terms
of the solution u, as (see e.g. [5], p.644):

Q = qσ, (2.6)
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8 D. Mugnai, M. Rinaldi

where

σ =
∫

R3

(ω − qφ)u2 dx . (2.7)

However, our strategy will consist in fixing a real number σ and then find a solution u which
turns out to verify (2.7).

Remark 2.1 When u = 0, the only finite energy gauge potentials which solve (2.3), (2.4) are
the trivial ones A = 0, φ = 0.

In particular, following [5], we shall look for solutions of the above system which are
known in literature as vortices. In order to do that, we need some preliminaries. First, set

� =
{
(x1, x2, x3) ∈ R

3 : x1 = x2 = 0
}
,

and define the map

θ : R
3 \� → R

2πZ
,

θ(x1, x2, x3) = Im log(x1 + i x2).

The following definition is crucial:

Definition 2.2 A finite energy solution (u, S0, φ,A) of (2.1)–(2.4) is called vortex if S0 = lθ
for some l ∈ Z \ {0}.
Of course, in this case, ψ has the form

ψ(t, x) = u(x)ei(lθ(x)−ωt), l ∈ Z \ {0}. (2.8)

Remark 2.3 In [5, Proposition 7] it was proved that if (u, ω, φ,A) is a non trivial, finite
energy solution of (2.1)–(2.4), then the angular momentum Mm has the expression

Mm = −
⎡

⎢
⎣

∫

R3

(l − qa)(ω − qφ)u2dx

⎤

⎥
⎦ e3, (2.9)

and, if l �= 0, it does not vanish. Hence, in this case, the name “vortex” is justified and by
Theorem 1.3 the existence of a spinning Q-ball is guaranteed.

Now, observe that θ ∈ C∞ (
R

3 \�, R

2πZ

)
, and, with an abuse of notation, we set

∇θ(x) = x2

x2
1 + x2

2

e1 − x1

x2
1 + x2

2

e2,

where e1, e2, e3 is the standard frame in R
3.

Using the Ansatz (2.8), Eqs. (2.1), (2.3), (2.4) give rise to Eqs. (1.6), (1.7), (1.8), which is
the Klein–Gordon–Maxwell system we shall study from now on.

Remark 2.4 If A =
(

x2

x2
1 + x2

2

,− x1

x2
1 + x2

2

, 0

)

, we obviously get ∇×A = 0. Viceversa, if A

is irrotational and it solves (1.8), then A = l
q ∇θ . In such a case, system (1.6)–(1.8) reduces

to the one considered in [29], where, by Theorem 1.7, we can now say that the nontrivial
solution found therein is such that ω2 ≥ m2.
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Spinning Q-balls in Abelian Gauge 9

2.2 Functional approach

We shall follow the functional approach of [5], with minor changes in some parts. Anyway,
our main Theorem 1.3 has been proved thanks to completely new results (see Lemma 3.4
and Proposition 3.5), which let us avoid any bound on q , differently from [5].

First, we denote by L p ≡ L p(R3) (1 ≤ p < +∞) the usual Lebesgue space endowed
with the norm

‖u‖p
p :=

∫

R3

|u|p dx .

We also recall the continuous embeddings

H1(R3) ↪→ D1(R3) ↪→ L6(R3) and H1(R3) ↪→ L p(R3) ∀ p ∈ [2, 6], (2.10)

being 6 the critical exponent for the Sobolev embedding D1(R3) ↪→ L p(R3). Here H1 ≡
H1(R3) denotes the usual Sobolev space with norm

‖u‖2
H1 =

∫

R3

(|∇u|2 + u2)dx

and D1 = D1(R3) is the completion of D = C∞
C (R

3) with respect to the norm

‖u‖2
D1 :=

∫

R3

|∇u|2 dx,

induced by the scalar product (u, v)D1 := ∫

R3 ∇u · ∇v dx .

Moreover, we need the weighted Sobolev space Ĥ1 ≡ Ĥ1
l (R

3), depending on a fixed
integer l, whose norm is given by

‖u‖2
Ĥ1 =

∫

R3

[

|∇u|2 +
(

1 + l2

r2

)

u2
]

dx, l ∈ Z,

where r =
√

x2
1 + x2

2 . Clearly Ĥ1 = H1 if and only if l = 0. Moreover, it is not hard to see
that

C∞
C (R

3) ∩ Ĥ1(R3) is dense in Ĥ1(R3). (2.11)

We set

H = Ĥ1 × D1 × (D1)3
,

‖(u, φ,A)‖2
H =

∫

R3

[

|∇u|2 +
(

1 + l2

r2

)

u2 + |∇φ|2 + |∇A|2
]

dx .

We shall denote by u = u(r, x3) any real function in R
3 which depends only on the cylindrical

coordinates (r, x3), and we set

D� =
{

u ∈ D : u = u(r, x3)
}
.

Finally, we shall denote by D1
� the closure of D� in the D1 norm and by Ĥ1

� the closed

subspace of Ĥ1 whose functions are of the form u = u(r, x3).
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10 D. Mugnai, M. Rinaldi

Now, we consider the functional

J (u, φ,A) = 1

2

∫

R3

[|∇u|2 − |∇φ|2 + |∇ × A|2]dx

+1

2

∫

R3

[|l∇θ − qA|2 − (ω − qφ)2
]

u2dx +
∫

R3

W (u)dx, (2.12)

where (u, φ,A) ∈ H . Formally, Eqs. (1.6)–(1.8) are the Euler–Lagrange equations of the
functional J , and, indeed, standard computations show that the following lemma holds:

Lemma 2.5 Assume that W satisfies (W3). Then the functional J is of class C1 on H and
Eqs. (1.6)–(1.8) are its Euler–Lagrange equations.

By the above lemma it follows that any critical point (u, φ,A) ∈ H of J is a weak
solutions of system (1.6)–(1.8), namely

∫

R3

[∇u · ∇v + [|l∇θ − qA|2 − (ω − qφ)2
]

uv + W ′(u)v
]
dx = 0 ∀ v ∈ Ĥ1, (2.13)

∫

R3

[∇φ · ∇w − qu2(ω − qφ)w
]

dx = 0 ∀w ∈ D1, (2.14)

∫

R3

[
(∇ × A) · (∇ × V)− qu2(l∇θ − qA) · V

]
dx = 0 ∀ V ∈ (D1)3. (2.15)

2.3 Solutions in the sense of distributions

Since D is not contained in Ĥ1, a solution (u, φ,A) ∈ H of (2.13)–(2.15) need not be a
solution of (1.6)–(1.8) in the sense of distributions on R

3. However, we will show that the
singularity of ∇θ(x) on � is removable in the following sense:

Theorem 2.6 Let (u0, φ0,A0) ∈ H, u0 ≥ 0 be a solution of (2.13)–(2.15) (i.e. a critical
point of J ). Then (u0, φ0,A0) is a solution of system (1.6)–(1.8) in the sense of distributions,
namely

∫

R3

[∇u0 · ∇v + [|l∇θ − qA0|2 − (ω − qφ0)
2] u0v + W ′(u0)v

]
dx = 0 ∀ v ∈ D, (2.16)

∫

R3

[∇φ0 · ∇w − qu2
0(ω − qφ0)w

]
dx = 0 ∀w ∈ D, (2.17)

∫

R3

[
(∇ × A0) · (∇ × V)− qu2

0(l∇θ − qA0) · V
]
dx = 0 ∀ V ∈ (D)3. (2.18)

A proof of Theorem 2.6 was given in [5].
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Spinning Q-balls in Abelian Gauge 11

Let us now remark that the presence of the term − ∫

R3 |∇φ|2dx gives the functional J a
strong indefiniteness, namely any nontrivial critical point of J has infinite Morse index. It
turns out that a direct approach to finding critical points for J is very hard. For this reason,
as usual in this setting, it is convenient to introduce a reduced functional.

2.4 The reduced functional

Writing Eq. (1.7) as
−�φ + q2u2φ = qωu2, (2.19)

then we can verify that the following holds:

Proposition 2.7 [13, Proposition 2.2] For every u ∈ H1(R3), there exists a unique φ =
φu ∈ D1 which solves (2.19) and there exists S > 0 such that

‖φu‖ ≤ q S‖u‖2
12/5 for every u ∈ H1(R3). (2.20)

Lemma 2.8 If u ∈ Ĥ1
� (R

3), then the solution φ = φu of (2.19) belongs to D1
� (R

3).

The proof is an adaptation of the analogue in [13] and is thus omitted.
By the lemma above, we can define the map

u ∈ Ĥ1
� (R

3) �→ Zω(u) = φu ∈ D1
� solves (2.19). (2.21)

Since φu solves (2.19), clearly we have

dφ J (u, Zω(u),A) = 0, (2.22)

where J is defined in (2.12) and dφ J denotes the partial differential of J with respect to φ.
Following the lines of the proof of [12, Proposition 2.1], using Lemma 2.8, we can easily

prove the following result:

Proposition 2.9 The map Zω defined in (2.21) is of class C1 and

(Z ′
ω[u])[v] = 2q

(
�− q2u2)−1

[(qφu − ω)uv] ∀ u, v ∈ D1
� . (2.23)

For u ∈ H1(R3), let � = �u be the solution of (2.19) with ω = 1; then � solves the
equation

−��u + q2u2�u = qu2, (2.24)

and clearly
φu = ω�u . (2.25)

Now let q > 0; then, by maximum principle arguments, one can show that for any u ∈ H1(R3)

the solution �u of (2.24) satisfies the following estimate, first proved in [28]:

0 ≤ �u ≤ 1

q
. (2.26)

Now, if (u,A) ∈ Ĥ1 × (D1
)3

, we introduce the reduced action functional

J̃ (u,A) = J (u, Zω(u),A).

Recalling that J and the map u → Zω(u) = φu are of class C1 by Lemma 2.5 and Proposition
2.9) respectively, functional J̃ is of class C1. as well. Now, by using the chain rule and (2.22),
it is standard to show that the following Lemma holds:
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12 D. Mugnai, M. Rinaldi

Lemma 2.10 If (u,A) is a critical point of J̃ , then (u, Zω(u),A) is a critical point of J (and
viceversa).

From (2.24) we have
∫

R3

qu2�udx =
∫

R3

|∇�u |2dx + q2
∫

R3

u2�2
udx, (2.27)

which is another way of writing (2.22).
Now, by (2.25) and (2.27), we have:

J̃ (u,A) = J (u, Zω(u),A) = 1

2

∫

R3

[|∇u|2 − |∇φu |2 + |∇ × A|2]dx

+1

2

∫

R3

[|l∇θ − qA|2 − (ω − qφu)
2] u2dx +

∫

R3

W (u)dx

= 1

2

∫

R3

[|∇u|2 + |∇ × A|2 + |l∇θ − qA|2u2]dx +
∫

R3

W (u)dx

−ω
2

2

∫

R3

(1 − q�u)u
2dx .

Then

J̃ (u,A) = I (u,A)− ω2

2
Kq(u), (2.28)

where I : Ĥ1 × (D1
)3 → R and Kq : Ĥ1 → R are defined as

I (u,A) = 1

2

∫

R3

(|∇u|2 + |∇ × A|2 + |l∇θ − qA|2u2) dx +
∫

R3

W (u)dx (2.29)

and

Kq(u) =
∫

R3

(1 − q�u)u
2dx . (2.30)

Now, let us introduce the reduced energy functional, defined as

Ê(u,A) = E(u, Zω(u),A),

where, as in (2.5),

E(u, φ,A) = 1

2

∫

R3

(|∇u|2 + |∇φ|2 + |∇ × A|2 + (|l∇θ − qA|2 + (ω − qφ)2)u2) dx

+
∫

R3

W (u)dx . (2.31)

By using (2.27) and (2.25), we easily find that

Ê(u,A) = I (u,A)+ ω2

2
Kq(u). (2.32)
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Spinning Q-balls in Abelian Gauge 13

Recalling (2.6) and (2.7), we note that

Q = qσ = qωKq(u)

represents the (electric) charge, so that, if u �= 0, we can write

Ê(u,A) = I (u,A)+ ω2

2
Kq(u) = I (u,A)+ σ 2

2Kq(u)
.

Then for any σ �= 0, the functional Eσ,q : (Ĥ1 \ {0})× (D1
)3 → R, defined by

Eσ,q(u,A) = I (u,A)+ ω2

2
Kq(u) = I (u,A)+ σ 2

2Kq(u)
(2.33)

represents the energy on the configuration (u, ω�u,A) having charge Q = qσ or, equiva-
lently, frequency ω = σ

Kq (u)
.

The following lemma holds (see [5, Lemma 13]):

Lemma 2.11 The functional

Ĥ1 � u �→ K (u) =
∫

R3

(1 − q�u)u
2dx

is differentiable and for any u, v ∈ Ĥ1 we have

K ′(u)[v] = 2
∫

R3

(1 − q�u)
2uv dx . (2.34)

Introducing Eσ,q turns out to be a useful choice, as the following easy consequence shows
(see [5, Proposition 14]):

Proposition 2.12 Let σ �= 0 and let (u,A) ∈ Ĥ1 × (D1)3, u �= 0 be a critical point of Eσ,q .
Then, if we set ω = σ

Kq (u)
, (u, Zω(u),A) is a critical point of J .

Therefore, by Proposition 2.12 and Theorem 2.6 we are reduced to study the critical points
of Eσ,q , which is a functional bounded from below, since all its components are nonnegative.

However Eσ,q contains the term
∫

R3 |∇ × A|2, which is not a Sobolev norm in
(D1

)3
. In

order to avoid consequent difficulties, we introduce a suitable manifold V ⊂ Ĥ1 × (D1
)3

in
the following way: first, we set

A0 :=
{

X ∈ C∞
C (R

3 \�,R3) : X = b(r, z)∇θ; b ∈ C∞
C (R

3 \�,R)
}
,

and we denote by A the closure of A0 with respect to the norm of
(D1

)3
. We now consider

the space

V := Ĥ1
� × A, (2.35)

and we set U = (u,A) ∈ V with

‖U‖V = ‖(u,A)‖V = ‖u‖Ĥ1
�

+ ‖A‖(D1)3 .

We need the following result, for whose proof see [5, Lemma 15]:
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14 D. Mugnai, M. Rinaldi

Lemma 2.13 If A ∈ A, then
∫

R3

|∇ × A|2dx =
∫

R3

|∇A|2dx .

Working in V has two advantages: first, the components A of the elements in V are
divergence free, so that the term

∫

R3 |∇ × A|2 can be replaced by ‖A‖2
(D1)3

= ∫

R3 |∇A|2.
Second, the critical points of J constrained on V satisfy system (1.6)–(1.8); namely V is a
“natural constraint” for J .

3 Proof of Theorem 1.3

In this section we shall always assume that W satisfies (W1)–(W4) and we will show that
Eσ,q constrained on V as in (2.35) has a minimum which is a nontrivial solution of system
(1.6)–(1.8).

We start with the following a priori estimate on minimizing sequences, whose proof is
similar to the proof of [5, Lemma 18]:

Lemma 3.1 For anyσ, q > 0, any minimizing sequence (un,An) ⊂ V for Eσ,q |V is bounded

in Ĥ1 × (D1
)3

.

Proposition 3.2 For any σ, q > 0 there exists a minimizing sequence Un = (un,An) of
Eσ,q |V , with un ≥ 0 and which is also a Palais–Smale sequence for Eσ,q , i.e.

E ′
σ,q(un,An) → 0.

Proof Let (un,An) ⊂ V be a minimizing sequence for Eσ,q |V . It is not restrictive to assume
that un ≥ 0. Otherwise, we can replace un with |un | and we still have a minimizing sequence
(see (2.31)). By Ekeland’s Variational Principle (see [15]) we can also assume that (un,An)

is a Palais–Smale sequence for Eσ,q |V , namely we can assume that

E ′
σ,q |V (un,An) → 0.

By using the same technique used to prove Theorem 16 in [6], it follows that (un,An) is a
Palais–Smale sequence also for Eσ,q , that is

E ′
σ,q(un,An) → 0.

��
A fundamental tool in proving the existence result, is given by the following

Lemma 3.3 For any σ, q > 0 and for any minimizing sequence (un,An) ⊂ V for Eσ,q |V ,
there exist positive numbers a1 < a2 such that

a1 ≤
∫

R3

(1 − q�un )u
2
ndx ≤ a2 for every n ∈ N

and

a1 ≤
∫

R3

u2
ndx ≤ a2 for every n ∈ N.
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Proof The upper bounds are an obvious consequence of Lemma 3.1 and of (2.26), so that
we only prove the lower bounds.

Since Eσ,q(un,An) → infV Eσ,q , from (2.33) we immediately get that there exists a1 > 0
such that

1
∫

R3(1 − q�un )u
2
ndx

≤ 1

a1
for every n ∈ N,

and thus all the claims follow. ��
As a corollary of the previous lemma, we have the following result, whose proof is now

very easy, but whose consequences are crucial:

Lemma 3.4 For any σ, q > 0

inf
V

Eσ,q > 0.

Proof Assume by contradiction that infV Eσ,q = 0. Hence, there would exist a sequence
(un,An)n ⊂ V such that Eσ,q(un,An) → 0 as n → ∞. Since both I and Kq are nonnegative,
from (2.33) we get

I (un,An) → 0 and
1

Kq(un)
→ 0 as n → ∞.

In particular,
∫

R3

(1 − q�un )u
2
ndx → ∞ as n → ∞,

and thus, by (2.26),
∫

R3

u2
ndx → ∞ as n → ∞,

a contradiction to Lemma 3.3. ��
The following result, which turns out to be a crucial one, is the only point where assumption

(W4) is used.

Lemma 3.5 There exists σ0 > 0 such that there exists u0 ∈ Ĥ1 with

Eσ0,q(u0, 0) < mσ0.

Moreover, if q ≤ 1, then σ0 depends only on D and m, while, if q > 1, then σ0 depends on
D, m and q.

Proof Let us define

v(x) :=
{

1 −
√

(r − 2)2 + x2
3 , (r − 2)2 + x2

3 ≤ 1,

0, elsewhere.

We define the set Aλ := {(r, x3) ∈ R
3 s.t. (r − 2λ)2 + x2

3 ≤ λ2} and we compute

|Aλ| =
∫

Aλ

dx1dx2dx3 = 4π2λ3 = λ3|A1|. (3.1)
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16 D. Mugnai, M. Rinaldi

Of course, v ∈ Ĥ1
r and, for a future need, we also compute

∫

R3

v2dx =
∫

A1

(

1 −
√

(r − 2)2 + x2
3

)2

dx1dx2dx3 = 2

3
π2,

∫

R3

vdx =
∫

A1

(

1 −
√

(r − 2)2 + x2
3

)

dx1dx2dx3 = 4

3
π2,

∫

R3

|∇v|2dx =
∫

A1

dx1dx2dx3 = 4π2. (3.2)

Moreover, for ε ∈ (0, ε0) and λ ≥ 1 we define

uε,λ(x) = ε2λv
( x

λ

)
.

We also choose ε and λ such that
ελ ≤ 1, (3.3)

so that 0 ≤ uε,λ ≤ ε < ε0 in R
3.

Then we have

Eσλ,q(uε,λ, 0) =
∫

R3

[
1

2
|∇uε,λ|2 + l2

r2

u2
ε,λ

2
+ W (uε,λ)

]

dx + σ 2

2Kq(uε,λ)

= 1

2

∫

R3

|∇uε,λ|2 + l2

2

∫

R3

u2
ε,λ

r2 + m2

2

∫

R3

u2
ε,λ

+
∫

R3

N (uε,λ) dx + σ 2

2Kq(uε,λ)
. (3.4)

Now, observe that in Aλ we have

r ≥ 2λ−
√

λ2 − x2
3 ≥ λ,

so that, thanks to (3.1), we can estimate

∫

R3

u2
ε,λ

r2 dx1dx2dx3 = ε4
∫

Aλ

⎛

⎝λ− λ

√
( r

λ
− 2

)2 + x2
3

λ2

⎞

⎠

2

r2 drdx3

≤ ε4
∫

Aλ

(

λ−
√

(r − 2λ)2 + x2
3

)2

λ2 drdx3

≤ ε4
∫

Aλ

⎛

⎝
λ−

√

(r − 2λ)2 + x2
3

λ

⎞

⎠

2

drdx3 ≤ ε4|Aλ| = 4π2ε4λ3.

(3.5)

123



Spinning Q-balls in Abelian Gauge 17

By the change of variables y = x/λ we immediately get
∫

Aλ

|∇uε,λ|2dx = ε4λ3
∫

A1

|∇v|2dx,

∫

Aλ

(uε,λ)
ϑdx = ε2ϑλϑ+3

∫

A1

vϑdx ∀ θ > 0.

Therefore, (3.2), (3.4), (3.5) and (W4) imply

Eσ,q(uε,λ, 0) ≤ 2π2ε4λ3 + m2π2

3
ε4λ5 + 2π2l2ε4λ3

−Dε2τ λτ+3
∫

A1

vτdx + σ 2

2Kq(uε,λ)
. (3.6)

Now, let us note that

−��uε,λ = qu2
ε,λ(1 − q�uε,λ ) ≤ qu2

ε,λ,

so that, by the Comparison Principle, for every x ∈ R
3 we have

�uε,λ (x) ≤ q

4π

∫

R3

u2
ε,λ(x − y)

|y| dy = qε4λ5

4π

∫

R3

v2(y)

|x − λy|dy ≤ q

2
ε4λ4. (3.7)

Indeed:
∫

R3

v2(y)

|x − λy|dy ≤
∫

A1

1

|x − λy|dy = 1

λ3

∫

A1/λ

1

|x − z|dz

= 1

λ3

∫

A1/λ−x

1

|z|dz ≤ 1

λ3

∫

B(0,1/λ)

1

|z|dz = 2π

λ
,

and (3.7) follows.
As a consequence,

Kq(uε,λ) =
∫

R3

u2
ε,λ

(
1 − q�uε,λ

)
dx ≥

∫

R3

u2
ε,λ

(

1 − q2

2
ε4λ4

)

dx

= 2

3
π2(1 − q2

2
ε4λ4)ε4λ5.

Hence, choosing
ε4λ4 ≤ 1/q2, (3.8)

(3.6) becomes

Eσ,q(uε,λ, 0) ≤ 2π2ε4λ3 + m2π2

3
ε4λ5 + 2π2l2ε4λ3

−Dε2τ λτ+3
∫

A1

vτdx + 3σ 2

π2ε4λ5
.
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18 D. Mugnai, M. Rinaldi

Now, take

ε4λ5 = 6σ

mπ2 , (3.9)

so that (3.8) implies

λ ≥ 6σ

mπ2 q2. (3.10)

With this choice we find

Eσ,q(uε,λ, 0) ≤ 12
σ

m
(1 + l2)λ−2 + 2mσ − Eλ3−3τ/2 + mσ

2
,

where we have set E = D(6σ/mπ2)τ/2
∫
vτ .

Let us show that we can find λ ≥ max{1, 3q2σ/mπ2} (and thus ε ≤ 1) satisfying (3.3)
and (3.8) such that

12
σ

m
(1 + l2)λ−2 + 5

2
mσ − Eλ3−3τ/2 ≤ mσ,

that is
12

m
(1 + l2)+ 3

2
mλ2 − Fλ5−3τ/2 ≤ 0, (3.11)

where F = D(6/mπ2)τ/2σ τ/2−1
∫
vτ . Also note that 5 − 3τ/2 < 2, since τ > 2.

Indeed, we choose

λ ≥
√

8(1 + l2)

m
, (3.12)

so that we can estimate the left hand side of (3.11) with

12

m
(1 + l2)+ 3

2
mλ2 − Fλ5−3τ/2 ≤ 3mλ2 − Fλ5−3τ/2,

and the last quantity is non positive as soon as

λ ≤
(

F

3m

)2/3(τ−2)

. (3.13)

Summing up, from (3.3), (3.8), (3.9), (3.10), (3.12) and (3.13), we are led to solve the
following set of conditions:

6σ

mπ2 ≤ λ (3.14)

6σ

mπ2 q2 ≤ λ (3.15)
√

8(1 + l2)

m
≤ λ (3.16)

λ ≤
(

F

3m

)2/3(τ−2)

. (3.17)

Now, if q ≤ 1, (3.14) implies (3.15). Then, choose σ such that

6σ

mπ2 ≥
√

8(1 + l2)

m
,

i.e.

σ ≥ π2
√

8(1 + l2)

6
. (3.18)
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Hence, from (3.14) and (3.17), we must solve

6σ

mπ2 ≤ λ ≤
(

G

3m

)2/3(τ−2)

σ 1/3,

where F = Gσ
τ−2

2 , so that G is independent of σ .
Of course, such a choice of λ is possible provided that

σ ≤
(

mτ−4π2τ−6

6τ−33
D
∫

R3

vτdx

)1/(τ−2)

≤
(

mτ−4π2τ−6

6τ−33
D
∫

R3

v2dx

)1/(τ−2)

(3.19)

In conclusion, (3.18), (3.19) and (3.2) imply

π2
√

8(1 + l2)

6
≤ cD1/(τ−2)m(τ−4)/(τ−2),

which is true by (W4).
On the other hand, if q > 1, proceeding as above, we find a suitable λ provided that

π2
√

8(1 + l2)

6
≤ cD1/(τ−2)m(τ−4)/(τ−2) 1

q3 .

In any case, the lemma holds. ��
As a consequence, we can prove the following

Lemma 3.6 There exists c > 0 and a minimizing sequence Un = (un,An) ⊂ V of Eσ0,q |V
such that

∫

R3

(|un |	 + |un |p)dx ≥ c > 0 for every n ∈ N.

Proof By Lemma 3.5 we know that there exists δ > 0 and n0 ∈ N such that

Eσ0,q(un,An) ≤ mσ0 − δ,

which implies in particular that

m2

2

∫

R3

u2
ndx +

∫

R3

N (un) dx + σ 2
0

2
∫

R3

u2
ndx

≤ mσ0 − δ.

Thus

∫

R3

N (un) dx ≤ mσ0 − δ −
⎛

⎜
⎝

m2

2

∫

R3

u2
ndx + σ 2

2
∫

R3

u2
ndx

⎞

⎟
⎠ ≤ −δ,

since a/(2b)+ b/(2a) ≥ 1 for any a, b > 0. Then
∣
∣
∣
∣
∣
∣
∣

∫

R3

N (un) dx

∣
∣
∣
∣
∣
∣
∣

≥ δ for all n ≥ n0,

and (W2) imply the claim, up to a relabelling of the sequence. ��
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By Lemma 3.1 we know that any minimizing sequence Un := (un,An) ⊂ V of Eσ0,q |V
weakly converges (up to a subsequence). Observe that Eσ0,q is invariant by translations along
the z-axis, namely for every U ∈ V and L ∈ R we have

Eσ0,q(TLU ) = Eσ0,q(U ),

where
TL(U )(x, y, z) = U (x, y, z + L). (3.20)

As a consequence of this invariance, we have that (un,An) does not contain in general a
strongly convergent subsequence. To overcome this difficulty, we will show that there exists
a minimizing sequence (un,An) of Eσ0,q |V which, up to translations along the z-direction,
weakly converges to a non–trivial limit (u0,A0). Eventually, we will show that (u0,A0) is a
critical point of Eσ,q for a suitable σ > 0.

In order to proceed with this strategy, we start proving the following weak compactness
result, whose proof is an adaptation of [5, Proposition 22], but whose statement is more
general:

Proposition 3.7 There exists a Palais–Smale sequence Un = (un,An) of Eσ0,q which weakly
converges to (u0,A0), u0 ≥ 0 and u0 �= 0.

Proof By Proposition 3.2, we know that there exists a minimizing sequence Un = (un,An)

of Eσ0,q |V , with un ≥ 0 and which is also a Palais–Smale sequence for Eσ0,q . Moreover, by
Lemma 3.6, we know that there exists c > 0 such that

‖un‖	L	 + ‖un‖p
L p ≥ c > 0 for n large. (3.21)

By Lemma 3.1 the sequence {Un} is bounded in Ĥ1 ×(D1
)3

, so we can assume that it weakly
converges. However the weak limit could be trivial. We will show that there is a sequence

of integers jn such that Vn := Tjn Un ⇀ U0 = (u0,A0) in H1 × (D1
)3

, with u0 �= 0, see
(3.20).

For any integer j we set

� j = {(x1, x2, x3) : j ≤ x3 < j + 1}.
In the following we denote by c various positive absolute constants which may vary also
from line to line. We have for all n,

‖un‖	L	 =
∑

j

⎛

⎜
⎝

∫

� j

|un |	dx

⎞

⎟
⎠

1/	⎛

⎜
⎝

∫

� j

|un |	dx

⎞

⎟
⎠

	−1
	

≤ sup
j

‖un‖L	(� j )

∑

j

⎛

⎜
⎝

∫

� j

|un |	dx

⎞

⎟
⎠

	−1
	

≤ c sup
j

‖un‖L	(� j )

∑

j

‖un‖	−1
H1(� j )

= c sup
j

‖un‖L	(� j )
‖un‖	−1

H1(R3)
≤ (since ‖un‖H1(R3) is bounded)

≤ c sup
j

‖un‖L	(� j )
for all n ≥ 1. (3.22)
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In the same way we get

‖un‖p
L p ≤ c sup

j
‖un‖L p(� j ) for all n ≥ 1. (3.23)

Then, by (3.21), (3.22) and (3.23) it immediately follows that, for n large, we can choose an
integer jn such that

‖un‖L	(� jn )
+ ‖un‖L p(� jn )

≥ c > 0. (3.24)

Now set
(
u′

n,A′
n

) = U ′
n(x1, x2, x3) = Tjn (Un) = Un(x1, x2, x3 + jn).

Since (U ′
n)n is again a minimizing sequence for Eσ0,q |V , by Lemma 3.1 the sequence {u′

n} is
bounded in Ĥ1(R3); then (up to a subsequence) it weakly converges to u0 ∈ Ĥ1(R3). Clearly
u0 ≥ 0, since u′

n ≥ 0. We want to show that u0 �= 0. Now, let ϕ = ϕ(x3) be a nonnegative,
C∞-function whose value is 1 for 0 < x3 < 1 and 0 for |x3| > 2. Then, the sequence ϕu′

n
is bounded in H1

0 (R
2 × (−2, 2)), and moreover ϕu′

n has cylindrical symmetry. Then, using
the compactness result of Esteban–Lions [17], we have that, up to a subsequence,

ϕu′
n → ϕu0 in L	(R2 × (−2, 2)), in L p(R2 × (−2, 2)) and a.e. in R

2 × (−2, 2). (3.25)

Moreover for r = p, 	 we clearly have

‖ϕu′
n‖Lr (R2×(−2,2)) ≥ ‖u′

n‖Lr (�0) = ‖un‖Lr (� jn )
. (3.26)

Then by (3.25), (3.26) and (3.24) we have

‖ϕu0‖L	(R2×(−2,2)) + ‖ϕu0‖L p(R2×(−2,2)) ≥ c > 0.

Thus we have that u0 �= 0, as claimed. ��
In order to approach the conclusion, we need

Proposition 3.8 For every q > 0 there exists σ > 0 such that Eσ,q has a critical point
(u0,A0), u0 �= 0, u0 ≥ 0.

Proof By Proposition 3.7, there exists a sequence Un = (un,An) in V , with un ≥ 0 and
such that

E ′
σ0,q(un,An) → 0 (3.27)

and

(un,An) ⇀ (u0,A0) , u0 ≥ 0, u0 �= 0.

We now show that there exists σ > 0 such that U0 = (u0,A0) is a critical point of Eσ,q .
By (3.27), in particular we get that

d Eσ0,q(Un)[w, 0] → 0 and d Eσ0,q(Un)[0,w] → 0 , for any (w,w) ∈ Ĥ1 × (
C∞

C

)3
.

Then for any w ∈ Ĥ1 and w ∈ (
C∞

C

)3 we have

∂u I (Un)[w] + ∂u

(
σ 2

0

2Kq(un)

)

[w] → 0 (3.28)

and
∂A I (Un)[w] → 0, (3.29)
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where ∂u and ∂A denote the partial derivatives of I with respect to u and A, respectively. So
from (3.28) we get for any w ∈ Ĥ1,

∂u I (Un)[w] − σ 2
0 K ′

q(un)

2
(
Kq(un)

)2 [w] → 0,

which can be written as follows:

∂u I (Un)[w] − ω2
n K ′

q(un)

2
[w] → 0, (3.30)

where we have set

ωn = σ0

Kq(un)
.

By Lemma 3.3 we have that (up to a subsequence)

ωn → ω0 > 0.

Then by (3.30) we get for any w ∈ Ĥ1

∂u I (Un)[w] − ω2
0 K ′

q(un)

2
[w] → 0. (3.31)

Now, let �n be the solution in D1 of the equation

−��n + q2u2
n�n = qu2

n . (3.32)

Since {un} is bounded in H1 and since �n solves (3.32), by (2.20) we have that {�n} is
bounded in D1 and, checking with test functions in C∞

C (R
3), it is easy to see that (up to a

subsequence) its weak limit �0 is a weak solution of

−��0 + q2u2
0�0 = qu2

0. (3.33)

Moreover, by Lemma 2.11, we have

K ′
q(un)[w] = 2

∫

R3

unw(1 − q�n)
2dx and K ′

q(u0)[w] = 2
∫

R3

u0w(1 − q�0)
2dx (3.34)

for every w ∈ Ĥ1.
We claim that

K ′
q(un)[w] → K ′

q(u0)[w] for any w ∈ Ĥ1. (3.35)

Indeed, by (2.11), for any w ∈ Ĥ1 and every ε > 0, there exists wε ∈ C∞
C ∩ Ĥ1 such that

‖w − wε‖Ĥ1 < ε. Then,

K ′
q(un)[w] − K ′

q(u0)[w] = K ′
q(un)[w − wε]

+[K ′
q(un)− K ′

q(u0)][wε] − K ′
q(u0)[wε − w].

But the sequence of operators (K ′(un))n is bounded in (Ĥ1)′, while [K ′
q(un)− K ′

q(u0)][wε]
→ 0 by the Rellich Theorem. The claim follows.

Similar estimates show that for any w ∈ Ĥ1

∂u I (Un)[w] → ∂u I (U0)[w]. (3.36)
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Then, passing to the limit in (3.31), by (3.35) and (3.36), we get

∂u I (U0)[w] − ω2
0 K ′

q(u0)

2
[w] = 0 for any w ∈ Ĥ1. (3.37)

On the other hand, similar arguments show that we can pass to the limit also in ∂A I (Un)[w]
and have

∂A I (Un)[w] → ∂A I (U0)[w] for all w ∈ (
C∞

C

)3
. (3.38)

From (3.29) and (3.38) we get

∂A I (U0)[w] = 0 for all w ∈ (
C∞

C

)3
,

and, by density, for any w ∈ (D1
)3

. From (3.37) we thus deduce that U0 = (u0,A0) is a
critical point of Eσ,q with σ = ω0 Kq(u0) > 0. ��

Now we are ready to prove the main existence Theorem 1.3.

Proof of Theorem 1.3 The first part of Theorem 1.3 immediately follows from Propositions
2.12, 3.8 and Theorem 2.6. In fact, if the couple (u0,A0) is like in Proposition 3.8, by
Proposition 2.12 and Theorem 2.6 we deduce that (u0, ω0, φ0,A0) with ω0 = σ

Kq (u0)
, φ0 =

Zω0(u0), solves (1.6)–(1.8).
Now assume q = 0, then, by (1.7) and (1.8), we easily deduce that φ0 = 0 and A0 = 0.

Finally assume that q > 0. Then, since ω0 > 0, by (1.7) we deduce that φ0 �= 0. Moreover
by (1.8) we deduce that A0 �= 0 if and only if l �= 0. ��

4 Solutions with full probability

Throughout this section we are concerned with a different approach to system (1.6)–(1.8):
namely, we look for solutions having full probability and we prove Proposition 1.10. From a
physical point of view such solutions are the most relevant ones, and in general they cannot
be obtained from the solutions found in Theorem 1.3 by a rescaling argument, unless some
homogeneity in the potential is given. However, this is not the case if N �= 0.

Therefore, we will work in the new manifold Ṽ := V ∩ S, where

S =
{
(u,A) ∈ V :

∫

R3

u2dx = 1
}
.

We follow the lines of the previous part of the paper, and for this reason we will be sketchy,
though some differences will appear. For example, we begin with the following

Proposition 4.1 For any σ, q ≥ 0 there exists a minimizing sequence Un = (un,An) of
Eσ,q |Ṽ , with un ≥ 0, and a sequence (μn)n ∈ R, such that

E ′
σ,q(un,An)(v, B)− μn

∫

R3

unv dx → 0 ∀ (v, B) ∈ Ṽ .

Moreover, (μn)n converges to some μ ∈ R as n → ∞.

Proof Let (un,An) ⊂ V be a minimizing sequence for Eσ,q |Ṽ . Working with un ≥ 0, or
replacing un with |un | if necessary, we still have a minimizing sequence (see (2.31)). By
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Ekeland’s Variational Principle we can also assume that (un,An) is a Palais–Smale sequence
for Eσ,q |Ṽ , namely we can assume that

E ′
σ,q |Ṽ (un,An) → 0,

i.e. there exists a sequence (μn)n in R with

E ′
σ,q(un,An)(v, B)− μn

∫

R3

unvdx → 0, ∀ v ∈ Ĥ1
� , ∀ B ∈ A. (4.1)

Taking (un,An) as a test function and using
∫

R3 u2
ndx = 1 for all n ∈ N, we get

E ′
σ,q(un,An)(un,An)− μn

∫

R3

u2
ndx = E ′

σ,q(un,An)(un,An)− μn → 0. (4.2)

From (4.2) we get

μn = E ′
σ,q(un,An)(un,An)+ o(1)

=
∫

R3

|∇un |2dx +
∫

R3
|l∇θ − qAn |2u2

ndx +
∫

R3

W ′(un)undx

+
∫

R3

|∇ × An |2dx + q
∫

R3

u2
n |An |2dx + σK ′

q(un)undx + o(1), (4.3)

where o(1) → 0 as n → ∞. Thus, since all the terms in the right-hand-side of (4.3) are
bounded, as already shown for Lemma 3.1, we get that also (μn)n is bounded; hence, there
exists μ ∈ R such that, up to a subsequence, μn → μ as n → ∞. ��

Now we restate Proposition 3.7 which still holds in this case thanks to Proposition 4.1,
hence we get

Proposition 4.2 There exists a Palais–Smale sequence Un = (un,An) of Eσ0,q which weakly
converges to (u0,A0), u0 ≥ 0 and u0 �= 0.

In order to prove Proposition 1.10 we should just notice that the analogue of Proposition
3.8 still holds using Proposition 4.1 and Proposition 4.2. Hence, we just restate the result of
Proposition 3.8 as follows:

Proposition 4.3 For every q > 0 there exists σ > 0 such that Eσ,q has a critical point
(u0,A0), u0 �= 0, u0 ≥ 0.

Finally, we conclude with the

Proof of Proposition 1.10 It is a natural consequence of what already proved, exactly as done
for the proof of Theorem 1.3 in the previous section. Namely, since Proposition 4.3 holds
by Proposition 4.1 and Proposition 4.2, we can conclude that our claim is true thanks to
Propositions 4.3, 2.12 and Theorem 2.6.

Now, suppose that ω2 ≤ m2 and N ′(s)s ≥ 0. Passing to the limit as n → ∞ in (4.1) with
v = u0 and B = 0, as in the proof of Proposition 3.8, we get

∫

R3

[|∇u0|2 + |l∇θ − qA0|2u2
0 − (ω − qφu0)

2u2
0 + W ′(u0)u0]dx = μ

∫

R3

u2
0dx,
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which can be written as
∫

R3

[|∇u0|2 + |l∇θ − qA|2u2
0 + (m2 − ω2)u2

0 − (qφ − 2ω)u2
0qφu0

+ N ′(u0)u0]dx = μ

∫

R3

u2
0dx .

Thanks to (2.25), (2.26) and to the hypotheses under consideration, we get μ > 0, so that
the effective mass (see Definition 1.11) is strictly less than the original mass. ��

5 Non-existence of standing solutions

In this section we shall prove Theorem 1.7. To this purpose, we re-write the usual system
using (1.9), so that we deal with

−�u + [|l∇θ − qA|2 + m2 − (ω − qφ)2
]

u + N ′(u) = 0, (5.1)

−�φ = q(ω − qφ)u2, (5.2)

∇ × (∇ × A) = q(l∇θ − qA)u2. (5.3)

Proof of Theorem 1.7 If A = 0, in [12] a variational identity for solutions of (5.1) was given.
However, the same identity holds when A �= 0, and it reads as follows:

0 = −
∫

R3

|∇u|2dx +
∫

R3

|∇φ|2dx − 3�
∫

R3

u2dx

− 3q
∫

R3

(2ω − qφ)φu2dx + 6
∫

R3

F(u)dx, (5.4)

where we have set � = m2 − ω2, F(s) = ∫ s
0 f (t) dt and

f (u) = −|l∇θ − qA|2u − N ′(u).

Since φ solves (5.2), we have
∫

R3

|∇φ|2dx = q
∫

R3

(ω − qφ)u2φdx; (5.5)

substituting (5.5) into (5.4) and computing F(u) we get

0 = −
∫

R3

|∇u|2dx −
∫

R3

[
3�+ 5qωφ − 2q2φ2 + 3|l∇θ − qA|2] u2dx

− 6
∫

R3

N (u) dx . (5.6)

By (2.25) and (2.26), if N ≥ 0 and ω2 < m2, we get u ≡ 0.
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Moreover, since u solves (5.1), we have
∫

R3

|∇u|2dx+
∫

R3

|l∇θ−qA|2u2dx + m2
∫

R3

u2dx −
∫

R3

(ω − qφ)2u2dx+
∫

R3

N ′(u)udx = 0;

(5.7)

substituting the expression
∫

R3 |∇u|2dx taken from (5.7) into (5.6), we obtain

0 = q
∫

R3

(qφ − 3ω)u2φ dx − 2
∫

R3

|l∇θ − qA|2u2dx

+ 2(ω2 − m2)

∫

R3

u2dx +
∫

R3

[N ′(u)u − 6N (u)]dx . (5.8)

Thanks to (2.25) and (2.26), all the terms in (5.8) are non-positive if ω2 < m2, N ′(s)s −
6N (s) ≤ 0; hence u ≡ 0.

Finally, when N ′(s)s ≥ 2N (s), we proceed as follows: from (5.7) we get

�

∫

R3

u2dx = −
∫

R3

|∇u|2dx −
∫

R3

|lθ − qA|2u2dx

−2qω
∫

R3

u2φdx + q2
∫

R3

u2φ2dx −
∫

R3

N ′(u)u dx . (5.9)

Substituting (5.9) into (5.6) we get

0 = 2
∫

R3

|∇u|2dx +
∫

R3

qu2φ(ω − qφ)dx +
∫

R3

[3N ′(u)u − 6N (u)] dx . (5.10)

Analogously, now all the coefficients are non-negative, and thus u ≡ 0. ��
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