Calc. Var. (2015) 52:899-925

DOI 10.1007/500526-014-0737-6 Calculus of Variations

From dimension free concentration to the Poincaré
inequality

Nathael Gozlan - Cyril Roberto - Paul-Marie Samson

Received: 21 November 2013 / Accepted: 25 March 2014 / Published online: 29 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We prove that a probability measure on an abstract metric space satisfies a non
trivial dimension free concentration inequality for the £> metric if and only if it satisfies the
Poincaré inequality. Under some additional assumptions, our result extends to convex sets
situation.
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1 Introduction

Throughout the paper (X, d) denotes a polish metric space and P(X) the set of Borel prob-
ability measures on X. On the product space X", we consider the following £, product
distance d), defined by
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900 N. Gozlan et al.

n 1/p
dp(x,y) = [de(xi,)’i):| , x,yext, px=1
i=1

(Note that the dependence on the dimension 7 is understood.) If A is a Borel subset of X",
we define its enlargement A, , (simply denoted by A, whenn = 1), r > 0 as follows

Arp= {x e X" dy(x, A) < r}.

Also, in all what follows, o : Rt — R* will always be a non increasing function. One will
say that u € P(X) satisfies the dimension free concentration property with the concentration
profile & and with respect to the £, product structure if

Mn(Ar,1J) >1—a(r), Vr=0, (L.1)

forall A C A", with u"*(A) > 1/2. For simplicity, we will often say that u satisfies the
dimension free concentration inequality CIZO (@), and, if u satisfies (1.1) only for n = 1,
we will say that p satisfies CI(«). We refer to [28] for an introduction on the notion of
concentration of measure.

The general problem considered in this paper is to give a characterization of the class of
probability measures satisfying CIZQ (ov). Our main result shows that the class of probability
measures satisfying CI5°(«), for some non trivial «, is always contained in the class of
probability measures satisfying the Poincaré inequality. Moreover, these two classes coincide
when « is exponential: «(r) = be™%", for some a, b > 0.

Before stating this result, let us recall the definition of the Poincaré inequality: one says
that u € P(X) satisfies the Poincaré inequality with the constant A € R™ U {+o0}, if

Waru() < [ 19 P dw. (12)
for all Lipschitz function f : X — R, where by definition
V™ fl(x) = lim sup M (with [X]_ := max(—X, 0))
y—>x d(y, x)

when x is not isolated in X’ (we set |V~ f|(x) = 0, when x is isolated in X’). By convention
oo x 0 =0, so that A = 400 if and only if u is a Dirac measure.

Remark 1.1 Let us make a few comments about the definition of the Poincaré inequality.

(1) Since the right hand side of (1.2) is always finite when f is Lipschitz, it follows in
particular that Lipschitz functions always have finite variance when Poincaré inequality
holds.

(2) When (X, d) is a smooth Riemannian manifold equipped with its geodesic distance and
f & — R, it is not difficult to check that if f is differentiable at a point x, then
|V~ f](x) coincides with the norm of the vector V f (x) (belonging to the tangent space
atx).If (X,d) = (B, | - ||) isaBanach space, and f : B — Risdifferentiable atx € B,
then |V~ f|(x) is equal to || Df (x)||«, the dual norm of the differential Df (x) € B* of
f at x. So (1.2) gives back the usual definitions in a smooth context.

(3) To a Lipschitz function f on X, one can also associate |V' f| and |V f|, which are
defined by replacing [-]_ by [ -]+ or by | - | respectively. Since |V f| = |V~ (- f)],
replacing f by — f, we observe that the Poincaré inequality can be equivalently restated
as

Waru() < [ 197 P du. (13)
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From dimension free concentration to the Poincaré inequality 901

for all Lipschitz function f : X — R. Moreover, since |V f| = max(|V~ f|; |[VT f|), we
see that (1.2) and (1.3) both imply yet another version of Poincaré inequality (considered
for instance in [28] or [10]):

AVar, (f) < / VP du, (1.4)

for all Lipschitz function f : X — R.That (1.4) also implies (1.2) is not obvious. A proof
of this fact can be found in [17, Proposition 5.1] (the result is stated for the logarithmic
Sobolev inequality but the same conclusion holds for the Poincaré inequality). The proof
relies on a technique, developed in [2], consisting in relaxing the right hand side of (1.4)
and yielding to the notion of Cheeger energy.

1.1 Main results

Denote by @ the tail distribution function of the standard Gaussian measure y(dx) =
Q@7)~1/2¢=*/2 dx on R defined by

1 +00
D(x) = E / e 2 du, x eR.
X

The main result of this paper is the following theorem.

Theorem 1.2 If p satisfies the dimension free concentration property CIS®(a), then v sat-
isfies the Poincaré inequality (1.2) with the constant ). defined by

——1
ﬁ:sup[w; r>0stalr) < 1/2].

Moreover, if a is convex decreasing and such that «(0) = 1/2, then A = (2no{f,,_ (0)2), where
ozfi_ (0) € [—00, 0) is the right derivative of o at 0.

Conversely, it is well known—since the work by Gromov and Milman [25] (see also [1,
10,19,39] for related results)—that a probability measure p verifying the Poincaré inequality
satisfies a dimension free concentration property with a profile of the form «(r) = be™",
for some a, b > 0. We recall this property in the following theorem and refer to Sect. 5 for

a proof.

Theorem 1.3 (Gromov and Milman) Suppose that p satisfies the Poincaré inequality (1.2)
with a constant A > 0, then it satisfies the dimension free concentration property with the

profile
a(r) = bexp(—av/ar), r >0,

where a, b are universal constants.

Thus, Theorems 1.2 and 1.3 give a full description of the set of probability distributions
verifying a dimension free concentration property with a concentration profile & such that
{r - a(r) < 1/2} # @ : this set coincides with the set of probability measures verifying
the Poincaré inequality. An immediate corollary of Theorems 1.2 and 1.3 (see Corollary 4.1
below) is that any type of dimension free concentration inequality can always be improved
into a dimension free concentration inequality with an exponential profile (up to universal
constants). This was already noticed by Talagrand [41]. See Sect. 4.3 for a further discussion.
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Remark 1.4 Let us make some comments on the constant A appearing in Theorem 1.2.

(1) We observe first that A > 0 if and only if there is some r, > O such that «(r,) < 1/2. In
particular, Theorem 1.2 applies in the case of the following “minimal” profile @ = B, .
defined as follows

Bay,r,(r) = 1/2, ifr <a, and Bag,r, (r) = ao, ifr >r,, (1.5)

where a, € [0,1/2), r, > 0. If a probability measure satisfies CI5°(8,,.r,), then it
satisfies the Poincaré inequality with the constant

o 571 (ao)

VAay,r, =

(2) Then we notice that any non increasing function o : Rt — R™, with a(0) = 1/2, can
be written as an infimum of minimal profiles:

To

o = inf lga(r),r-
r>0

Therefore, the constant A given in Theorem 1.2 is the supremum of the constants Ay (),
r > 0 defined above. This shows that the information contained in the concentration
profile « is treated pointwise, and that the global behavior of « is not taken into account.

(3) It is well known that the standard Gaussian measure y satisfies the dimension free con-
centration property with the profile « = @ (this follows from the Isoperimetric theorem
in Gauss space due to Sudakov and Cirelson [40] and Borell [11], see e.g. [28]). Hence,
applying Theorem 1.2, we conclude that y satisfies the Poincaré inequality with the
constant A = 1, which is well known to be optimal (see e.g. [3, Chapter 1]).

(4) Finally we observe that, if the concentration profile «(r) goes to zero too fast when
r — 00, then A = 400 and so u is a Dirac measure. This happens for instance when
a(r) =be ™", r >0, withk > 2anda,b > 0.

Theorem 1.2 completes a previous result obtained by the first author [18] (see also [21]),
namely that the Gaussian dimension free concentration is characterized by a transport-entropy
inequality. We now state this result and start by recalling some notation. The Kantorovich—
Rubinstein distance W, p > 1, between v, u € P(X) is defined by

W) (v, ) = _inf E[dP(X,Y)],
P (v, u)

where the infimum runs over the set IT(v, u) of couples of random variables (X, Y) such that
Law(X) = pand Law(Y) = v. Then, a probability measure is said to satisfy the p-Talagrand
transport-entropy inequality with constant C > 0, if it holds

W5 (v, ) < CH(wlp), Vv e PX), (1.6)

where the relative entropy functional is defined by H (v|u) = f log 21% dv if v is absolutely
continuous with respect to i, and H (v|u) = +oo otherwise. Inequalities of this type were
introduced by Marton and Talagrand in the nineties [31,43]. We refer to the survey [20] for
more informations on this topic.

Theorem 1.5 [18] Fix p > 2 and C > 0. Then, a probability measure | satisfies the p-
Talagrand transport inequality (1.6) with constant C if and only if it satisfies the dimension
[free concentration inequality CI;o (), with a concentration profile of the form

a(r) = exp (—%[r — ra]i) , r>=0,
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From dimension free concentration to the Poincaré inequality 903

for some r, > 0 (with [X]+ := max(X, 0)).

As we will see, the proofs of Theorem 1.2 and 1.5 are very different. Both make use
of probability limit theorems, but not at the same scale: Theorem 1.5 used Sanov’s large
deviations theorem, whereas Theorem 1.2 is an application of the central limit theorem.
Moreover, contrary to what happens in Theorem 1.2 (see item (2) of Remark 1.4), the global
behavior of the concentration profile is used in Theorem 1.5.

In view of Theorems 1.2 and 1.5, it is natural to formulate the following general question:

(Q) Which functional inequality is equivalent to CI;’,O («) for a concentration profile of
the form

a(r) = exp (—a[r — ra]]j_) , r=>0,
wherea > 0,r, >0and k > 07?

Remark 1.6 1t is easy to see, using the central limit theorem, that for p € [1,2) the only
probability measures verifying CI‘;o (o), for some o such that a(r,) < 1/2 for at least one
ro > 0, are Dirac masses. Thus the question (Q) is interesting only for p > 2.

To summarize, Theorem 1.5 shows that the answer to (Q) is the p-Talagrand inequality
for k = p and p > 2. Theorem 1.2 shows that the answer is the Poincaré inequality for
p = 2 and for k € (0, 1]. Moreover point (4) of Remark 1.4 above shows that for p = 2, the
question is interesting only for k € [1; 2]. The case k € (1; 2) is still open.

Finally, we mention that some partial results are known for p = oo. Indeed, Bobkov
and Houdré [9] characterized the set of probability measures on R satisfying CIS(Bq, .r,)>
with a, € [0, 1/2), where B, ,, is the minimal concentration profile defined by (1.5). They
showed that a probability measure p belongs to this class if and only if the map U, defined
by

1
_ -1
Uux) = F, (l +e*x)’ x € R,
where F),(x) = p((—o0, x]) and Fljl(p) = inf{x € R; F,(x) > p}, p € (0, 1), satisfies
the following inequality on the interval where it is defined:

|Up(x) = Up(W)| < a+blx —yl,

for some a, b > 0.

Finally, we mention that, under additional assumptions, Theorem 1.2 extends to convex
sets. More precisely, we will prove that, inter alia, in geodesic spaces in which the distance
function is convex (Busemann spaces), a probability measure satisfies CIS®(c) restricted
to convex sets, with a non trivial profile «, if and only if it satisfies the Poincaré inequal-
ity restricted to convex functions (see Sect. 6 for a precise statement). This generalizes a
previous result by Bobkov and Gotze that was only valid for probability on the real line
[7, Theorem 4.2].

1.2 Alternative formulation in terms of observable diameters

It is possible to give an alternative formulation of Theorems 1.2 and 1.3 using the notion
of observable diameter introduced by Gromov [24, Chapter 3.1/2]. Recall that, if (X, d, )
is a metric space equipped with a probability measure and ¢ € [0, 1], the partial diameter
of (X, d) is defined as the infimum of the diameters of all the subsets A C X satisfying
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w(A) > 1 —t. It is denoted by Part Diam(X, d, u,t). If f : X — R is some 1-Lipschitz
function, we denote by 1y € P(R) the push forward of p under f. Then, the observable
diameter of (X, d, ) is defined as follows
ObsDiam(X, d, u,t) = sup PartDiam(R, | - |, uy, 1) € RT U {4o0}.
f 1-Lip
We define accordingly the observable diameters of (X", dp, u", t) for all n € N*,

The observable diameters are related to concentration profiles by the following lemma
(see e.g. [16, Lemma 2.22]).

Lemma 1.7 If u satisfies CI(«), then
Obs Diam(X, d, u, 20(r)) < 2r,
forallr > 0 such that a(r) < 1/2.
Conversely, for all t € [0, 1/2], forall A C X, with u(A) > 1/2, it holds
w(Arp) =1 -1
with r(t) = Obs Diam (X, d, u, t).
The following corollary gives an interpretation of the Poincaré inequality in terms of the

boundedness of the observable diameters of the sequence of metric probability spaces
(X", da, " nens.

Corollary 1.8 A probability measure (1 on (X, d) satisfies the Poincaré inequality (1.2) with
the optimal constant ) if and only if for some t € (0, 1/2)

Foo(t) := sup Obs Diam(X", dp, u", t) < oo.
neN*

Moreover,

(1) < reo()V% < alog (b) , Ve (0,1/2)

t
where a > 0 and b > 1 are some universal constants.

1.3 Tools

In this section, we briefly introduce the main tools that will be used in the proof of The-
orem 1.2: inf-convolution operators, related to both concentration and to Hamilton—Jacobi
equations, and the central limit theorem.

The first main tool in the proof of Theorem 1.2 is a new alternative formulation of concen-
tration of measure CIIO,o (o) in terms of deviation inequalities for inf-convolution operators
that was introduced in [21]. Recall that for all + > 0, the infimum convolution operator
f +— Q;f is defined for all f : X" — R U {400} bounded from below as follows

|
; p
sz(X)Zylen)g”[f(y)thpi_ldp(x,y)], xex” (1.7)
(we should write Q7 ’("), but we will omit, for simplicity, the superscripts p and (n) in the
notation).

In the next proposition, we recall a result from [21] that gives a new way to express
concentration of measure (our first main tool).
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From dimension free concentration to the Poincaré inequality 905

Proposition 1.9 Let 1 € P(X); u satisfies CI;’,O(a) if and only if for all n € N* and
for all measurable function f : X" — R U {400} bounded from below and such that
W f = +o00) < 1/2, it holds

WNQif > m(f)+r) <a@!P =P Vet >0, (1.8)
where m(f) = inf{m € R; " (f <m) > 1/2}.
The second main tool is the well known fact that the function u : (¢, x) — Q, f(x) is, in
some weak sense, solution of the Hamilton—Jacobi equation
u
ot
This result is very classical on R¥ (see e.g [14]); extensions to metric spaces were proposed
in [2,5,30] or [22]. This will be discussed in the next section.

The third tool is the central limit theorem for triangular arrays of independent random
variables (see e.g. [15, p. 530]).

Theorem 1.10 For each n, let X1, X2 4, ..., Xn n be independent real random variables
and define T, = X1, + -+ + Xu,n. Assume that IE[TnZ] = 1, E[Xkn] = O forall k €
{0, ..., n}, and that the following Lindeberg condition holds, for allt > 0

1

n
D E[XF,lx, 5] > 0 asn — +oo. (1.9)
k=1

Then the distribution of T, converges weakly to the standard normal law.

We end this introduction with a short roadmap of the paper. In Sect. 2 we make some
comments on Theorem 1.2. In particular, we compare Theorem 1.2 to a result by E. Milman
on the Poincaré inequality in spaces with non-negative curvature and show, as an immedi-
ate consequence of our main result as well as E. Milman’s result, that the celebrated KLS
conjecture for isotropic log-concave probability measures can be reduced to some universal
concentration inequalities (for isotropic log-concave probability measures). In Sect. 3, we
recall some properties of the infimum convolution operators that will be used in the proofs.
Section 4 is dedicated to the proof of Theorem 1.2 and Sect. 5 to the proof of Theorem 1.3, by
means of the Herbst argument (the latter is somehow classical (see e.g. [3,28]) but requires
some care due to our general framework). Finally Sect. 6 deals with the case of convex sets
and the Poincaré inequality restricted to convex functions.

2 Comparison with other results

In this section we collect some remarks and consequences of our main theorem. First we shall
compare our result to one of E. Milman, in Riemannian setting. Then, we state the celebrated
KLS conjecture and give an equivalent formulation in terms of dimension free concentration
property. Finally, we may comment on other type of dimension free concentration properties
involving a different definition of enlargement.

2.1 Dimension free concentration vs. non negative curvature.
In Riemannian setting, Theorem 1.2 is reminiscent of the following recent result by E. Milman

showing that under non-negative curvature the Poincaré constant of a probability measure
can be expressed through very weak concentration properties of the measure [34,35].
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906 N. Gozlan et al.

We recall that the Minkowski content of a set A C X is defined as follows

n(Ar) — n(A)

wt(A) := liminf
r—0 r

Theorem 2.1 (Milman [35]) Let ju(dx) = e~ V™ dx be an absolutely continuous proba-
bility measure on a smooth complete separable Riemannian manifold M equipped with its
geodesic distance d. Suppose that V : M — R is a function of class C? such that

Ric + Hess V > 0,
and that  satisfies the following concentration of measure inequality
wu(Ar) = 1 —a(r), Vr=0,
with o : [0, 00) — [0, 1/2] such that a(r,) < 1/2, for some r, > 0. Then w satisfies the
following Cheeger’s inequality
©F(A) = Dmin(u(A); 1 — u(A)), VA C M,
with

D:sup[w; r>0sta(r) < 1/2},

where W : [0, 1/2) is some universal function.

We recall that Cheeger’s inequality with the constant D implies the Poincaré inequality (1.2)
with the constant A = D? /4 [13,33]. In our result the non-negative curvature assumption of
Milman’s result is replaced by the assumption that the concentration is dimension free.

Remark 2.2 Notice that, if M has non-negative Ricci curvature and p(dx) = ﬁl k(x)dx
is the normalized restriction of the Riemanian volume to a geodesically convex set K, then
Milman [36] also obtains that

[1—20[(1’) ]
D=supy——; r>0¢.

r

This bound is optimal (see [36]).

2.2 A remark on the KLS conjecture

In this section, X = R¥ is always equipped with its standard Euclidean norm | - |.

Let us recall the celebrated conjecture by Kannan et al. [26]. Recall first that a probability
measure (4 on R¥ is isotropic iffx u(dx) = 0and fx,-xj u(dx) =é;jforalll <i, j <n.
It is log-concave if it has a density of the form e~", where V : R¥ — RU {400} is a convex
function.

Conjecture 2.3 (Kannan et al. [26]) There is a universal constant D > 0 such that for all
k € N*, any log-concave and isotropic probability measure (v on R¥ satisfies the following
Cheeger inequality

©F(A) = Dmin(u(A); 1 — u(A)), VA CRE.

Equivalently, there is a universal constant . > 0 such that for all k € N*, any log-concave
and isotropic probability measure w on R¥ satisfies the following Poincaré inequality

AVar, (f) < / VP dp,
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From dimension free concentration to the Poincaré inequality 907

forall f:RF — R Lipschitz.

Note that, in the statement above, the converse implication from Poincaré to Cheeger inequal-
ity is due to Buser [12] and Ledoux [27,29] and is in fact true more generally on Riemannian
manifolds with non-negative Ricci curvature [29].

According to E. Milman’s Theorem 2.1, the above conjecture can be reduced to a statement
about universal concentration inequalities for log-concave isotropic probabilities.

Corollary 2.4 The KLS conjecture is equivalent to the following statement. There exists
ro > 0,a, € [0, 1/2) such that for any m € N*, any log-concave and isotropic probability
v on R™ satisfies

V(A+71r,By) > 1—a,, VACR"stv(A)>1/2, (2.1)

where By is the Euclidean unit ball of R™.

This corollary follows immediately from Theorem 2.1. Below, we propose an alternative
proof based on our main result (Theorem 1.2).

Proof of Corollary 2.4 According to Theorem 1.3, it is clear that the KLS conjecture implies
uniform exponential concentration estimates for isotropic log-concave probability measures.

Conversely, let 11 be isotropic and log-concave on R¥. For all n € N*, the probability 11" is
still isotropic and log-concave on (R¥)". So applying (2.1)tov = u” on (R¥)", foralln e N¥,
we conclude that p satisfies CIS®(B,,,r,), where the concentration profile B, ., is defined
by (1.5). According to Theorem 1.2, we conclude that u satisfies Poincaré inequality with

—_ 2
the constant A = (dD 1(ao) / r(,) . Since this holds for any isotropic log-concave probability
measure in any dimension, this ends the proof. O

2.3 Euclidean vs. Talagrand type enlargements

Theorem 1.2 improves a preceding result by the first author [18] where a stronger form of
exponential dimension free concentration, introduced by Talagrand [41,42], was shown to
be equivalent to a transport-entropy inequality which was known to be also equivalent to
the Poincaré inequality. These equivalences, together with our main result, will allow us to
prove that the two notions of exponential dimension free concentration properties are actually
equivalent (see Theorem 2.9 below).

In order to present these equivalences, we need some notation and definition.

Givenn € N*and A C X", consider the following family of enlargements of A:

n
A’a’,:[xeX";EiyeAs.tze(ad(xi,yi))fr}, a>0, r=0

i=1

where 0(r) = 1%, if t € [0, 1] and 0(t) = 21 — 1,if 1 > 1.
In the next definition, we recall the dimension free concentration property introduced by
Talagrand.

Definition 2.5 A probability measure © on X is said to satisfy the Talagrand exponential
type dimension free concentration inequality with constants a, b > 0 if for all n € N*, for
all A C X" with u"(A) > 1/2, it holds

W' (Ag,) =1—be™", Vr=>0. (2.2)
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908 N. Gozlan et al.

Remark 2.6 Using elementary algebra, one can compare the Talagrand concentration
inequality (2.2) with the dimension free concentration inequality (1.1) under investigation in
this paper. More precisely we may prove that the former is stronger than the latter. Indeed,
since ¢ > 6(+/1) is concave and vanishes at 0, it is thus sub-additive. In turn, the following
inequality holds

> 0(ad(xi. yi) = 0

i=1

n
> @d’(xi, yi) | =6lada(x, y)), Vx,yex".
i=1

Therefore,

ga,@(ar) C Ar,27
and so, if u satisfies the Talagrand concentration inequality (2.2), then it obviously verifies
the dimension free concentration inequality with the profile «(u) = be= @) < epe=2a4,
u > 0.

The following theorem summarizes the known links between Talagrand exponential type
dimension free concentration and the Poincaré inequality.

Theorem 2.7 Let i be a probability measure on X. The following statements are equivalent

(1) W satisfies the Poincaré inequality (1.2) with a constant ). > 0.

(2) w satisfies the Talagrand exponential type dimension free concentration inequality (2.2)
with constants a, b > 0.

(3) W satisfies the following transport-entropy inequality

inf R (@(Cd(X,Y)) < Hv|p), YvePX),
(X.Y)eM (1)

for some constant C > 0, (recall that T1(u, v) and the relative entropy H(v|u) are
defined before Theorem 1.5).

Moreover the constants above are related as follows :

(1) = (2) witha = kA and b = 1, for some universal constant k.
2) = 3) withC = a.

3) = (1) with » = 2C2.

Let us make some bibliographical comments about the different implications in Theorem 2.7.
The implication (1) = (2) is due to Bobkov and Ledoux [10], the implication (2) = (3) is
due to the first author [18, Theorem 5.1], and the implication (3) = (1) is due to Maurey [32]
or Otto and Villani [37]. The equivalence between (1) and (3) was first proved by Bobkov et
al. [6].

Remark 2.8 It is worth noting that the implication (2) = (3) follows from Theorem 1.5 for
p = 2 by a change of metric argument. Namely, suppose that u satisfies the concentration
property (2) of Theorem 2.7, for some a > 0, and define d(x, y) = /0(ad(x, y)) for all
x,y € X. It is not difficult to check that the function 61/2 is subadditive, and therefore d
defines a new distance on X. The £, extension of d to the product X is

n 172
dr(x, y) = [Ze(ad(xi,yi))} Xy e,

i=1
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From dimension free concentration to the Poincaré inequality 909

and it holds

Aur = [x € X" dy(x, A) < ﬁ} . VAC ™

Therefore, statement (2) can be restated by saying that p satisfies CISO (o) (with respect to the

distance d) with the Gaussian concentration profile «(r) = be ", Applying Theorem 1.5,
we conclude that u satisfies the 2-Talagrand transport entropy inequality with the constant 1
with respect to the distance d, which is exactly (3) with C = a.

An immediate consequence of Theorem 1.2 and of Bobkov-Ledoux theorem (1) = (2)
above is the following result showing the equivalence between the two forms of dimension
free exponential concentration.

Theorem 2.9 Let i be a probability measure on X. The following are equivalent.

(1) The probability measure u satisfies the Talagrand exponential type dimension free con-
centration inequality (2.2) with constants a and b.
(2) The probability measure |1 satisfies CIS® (a) with a profile a(u) = b'e™", u > 0.

Moreover, the constants are related as follows: (1) = (2) with a’ = 2a and b’ = eb, and
(2) = (1) witha = ka’ //1og(2b’) (for some universal constant k) and b = 1.

We do not know if there exists a direct proof of the implication (2) = (1).

Proof Wehave already proved that (1) implies (2) (see Remark 2.6). Let us prove the converse.
According to Theorem 1.2 we conclude from (2) that u satisfies the Poincaré inequality with

2
—1
a constant A > (%’1(”») , for all u such that w(u) < 1/2. A classical inequality gives

D) < %e*fz/z, t > 0. Therefore, ® ' (1) > 2./— log(21), for all # € (0, 1/2). Hence,
2

taking u = 2log(2b’)/a’ [which guarantees that «(u) = 1/(4b")] yields to A > —2

= log(2b')*
According to the implication (1) = (2) in Theorem 2.7 we conclude that u satisfies Talagrand
concentration inequality (2.2) with a = xa’/,/log(2b’). O

3 Some properties of the inf-convolution operators

In this short (technical) section, we recall some properties of the inf-convolution operators
related to Hamilton—Jacobi equations and to the concentration of measure, in the setting of
metric spaces (recall that (X, d) is a complete separable metric space).

3.1 Inf-convolution operators and Hamilton—Jacobi equations

In this paragraph, we shall only consider the case p = 2. We do this restriction for simplicity
and also since only that particular case will be used in the proof of Theorem 1.2 (in the next
section). However we mention that most of the results of this section can be extended to any
p>1

The following proposition collects two basic observations about the operators Q;, t > 0.

Proposition 3.1 Let h : X — R be a Lipschitz function. Then
(i) forallx € X, Q;h(x) — h(x), whent — 0%,
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910 N. Gozlan et al.

(ii) forallv € P(X),
lim supl/h(x) — Q/h(x)v(dx) < 1/IVVl(x)|2 v(dx). (3.1)
ot I 4

Before giving the proof of Proposition 3.1, let us complete the picture by recalling the
following theorem of [2,23] (improving preceding results of [5,30]). This result will not be
used in the sequel.

Theorem 3.2 Let h be a bounded function on a polish metric space X. Then (t, x) — Q:h(x)
satisfies the following Hamilton—Jacobi (in)equation

d 1
— Q/h(x) < —=|VO,h|*(x), Vt>0, Vxe X (3.2)
dl‘+ 4

where d /dt stands for the right derivative, and |Vh|(x) = limsup,_, W More-

over, if the space X is geodesic (i.e. for all x, y € X there exists at least one curve (z;):¢[0,1]
such that zo = x, z1 = y and d(zs, z;) = |t — s|d(x, y)) then (3.2) holds with equality.

Observe that, strangely, the two inequalities (3.1) and (3.2) go in the opposite direction.
This suggests that, at t = 0, there should be equality, at least for some class of functions.

Proof of Proposition 3.1 Let L > 0 be a Lipschitz constant of &; since Q;h < h one has

— i 1 2
Qih(x) = _nf [h(y) +odi(, y)] :

(Namely, if d(x, y) > 2Lt, itholds h(y) — h(x) + %dz(x, y) > (—L + %d(x, y)) dx,y) >

0.)
Hence
0 < h(x)—ch(X): ‘h(x)—h(y)_dz(x,y)]
N t yeB(x,2L1) t 12
- l [h(x)—h()]+ d(x,y)  d*(x,y) ]
< sup - 5
yeB(x,2Lt) d(x,y) t t
< sup sup [A(x)—h()]+ 2 _1 “w [h(x)—h(]%
T reR | yeBoLy  d(x,y) 4 yepiorny  dixy)

We conclude from this that 0 < (h — Q,h)/t < L?/4. This implies in particular that
Q.h — h when t — 0. Taking the lim sup when t — 0% gives

h(x) — Q:h 1
lim supM < 2|V h()|? (3.3)

t—0+ t 4

Inequality (3.1) follows from (3.3) using Fatou’s lemma in its lim sup version. The application
of Fatou’s lemma is justified by the fact that the family of functions {(h — Q:h)/t};~¢ is
uniformly bounded. O

Remark 3.3 The proof of (3.3) can also be found in [45, Theorem 22.46] (see also [23,
Proposition A.3], [2,5,30]).
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From dimension free concentration to the Poincaré inequality 911

3.2 Inf-convolution operators and concentration of measure

In this subsection we briefly recall the short proof of Proposition 1.9 for the sake of com-
pleteness [proposition that relates the infimum convolution operator and the concentration
property CI7° ()]

Proof Let f : X" — R U {400} be a function bounded from below with " (f = 400) <
1/2. By definition of m(f), it holds u"(f < m(f)) > 1/2. Define A = {f < m(f)}. If
/ satisfies the dimension free concentration property CI;’,O (@), since by definition of m(f),
u"(A) = 1/2, one has u" (X" \ Ay, p) < a(u), for all u > 0. Then, observe that

01/ () < m(f)+— L P ), xean,

Hence {Q; f > m(f) +r} C {dp(-, A) > r'/Pt'=VP} = X\ A,1/p;1-1/p_,, which proves
(1.8).

To prove the converse, take a Borel set A C X" such that u"(A) > 1/2 and consider the
function i4 equals to O on A and 400 on A€. For this function, Q,is = dﬁ (x, A)/tf”’l and
one can choose m(i4) = 0. Applying (1.8) gives the concentration property CI;o (o).

4 Poincaré inequality and concentration of measure

This section is dedicated to the proof of our main result Theorem 1.2, and to Corollary
1.8. Moreover, we shall explain how Theorem 1.2 can be used to improve any non-trivial
dimension free concentration property to an exponential one.

4.1 From dimension free concentration to the Poincaré inequality: proof of Theorem 1.2
Proof of Theorem 1.2 Leth : X — Rbe abounded Lipschitz function such that f hdu =0.
For all n € N*, define f, : " — R* by

Ja@) =h(x) + -+ h(x), Vx=(x1,...,x,) € X"

Our aim is to apply the central limit theorem. Applying (1.8) to f, with 1 = 1/4/n and
r = /nu, for some u > 0, we easily arrive at

Mn(fo‘ E[Ql/fh(xl)_M(Ql/fh)] \F

+j‘/—fu (7= 1) + Ui) < a(/u), (1)

where onz = VarM(Ql/ﬁh) and m(f,) is a median of f;, under i, that is to say any number
m € R such that u"(f >m) > 1/2 and " (f, <m) > 1/2.

We deal with each term of (4.1) separately. According to point (i) of Proposition 3.1,
we observe that 0, — o = ,/Var,(h), when n goes to co and according to Point (ii) of
Proposition 3.1, that

hmsupfu(h—Ql/fh /IV h)? du.

n—+00

On the other hand, letm,, = m(f,)/(y/no). According to the central limit theorem (Theorem
1.10) the law of the random variables T,, = f,/(y/no) under u" converges weakly to the
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912 N. Gozlan et al.

standard Gaussian. Since weak convergence implies the convergence of quantiles as soon
as the limit distribution has a continuous repartition function (see for instance [44, Lemma
21.2]), we have in particular, m,, — 0 as n — oo.

Now, fix € > 0. According to the above observations, (4.1) yields, for any # > 0 and any
n sufficiently large,

n

n 1 1+¢ 1 B
M (MZ[Ql/ﬁh(xi)—M(Ql/ﬁh)] > (€+Z/|V h|2du+u))

i=1
< a(Vu). (4.2)

In order to apply (again) the central limit theorem (Theorem 1.10), introduce the following
random variables

_ " 1
Tu(x) = — | Q1 (xi) — n(Qy, mh)
Z’*/ﬁ“"[ 1/ 1/yn ]

under p". Since h is bounded Q, /;h is uniformly bounded in n, and by Lebesgue theorem,
as n goes to 0o, we see that the Lindeberg condition (1.9) is verified:

1 2
- h— h ) 1 ,
/ Gr% (Ql/ﬁ M(Ql/\/ﬁ ) ‘Ql/ﬁh*M(Ql/ﬁh)|>t~/7wndM —0 asn— +oo

Therefore, letting n go to +00, and ¢ to 0, by continuity of ®, the inequality (4.2) provides
—( [IV~h?d
q:(w + ”) < a(Vi), Yu>0.
4o o

Let u > 0 be such that a(y/u) < 1/2 and k(u) := 5_1 (a(4/u)) > 0. We easily get from the
latter inequality that

k(u)/Var, (h) < u + %/ IV~ h|?du.

Replacing & by sh, s > 0, and taking the infimum, we arrive at

(1) /Var, (h) < ing[5+%/|v—h|2dul - /u/|V—h|2du.
§> S

Optimizing over u, one concludes that Poincaré inequality (1.2) is satisfied with the constant
A announced in Theorem 1.2.

Now let 2 : X — R be an unbounded Lipschitz function. Consider the sequence of
functions h, = (h vV —n) A n, n € N* converging pointwise to 4. For all n € N*, £, is
bounded and Lipschitz, and it is not difficult to check that

IV7hy|(x) =0 ifx e{h < —n}U{h >n} and |V~ h,|(x)
= |V h,|(x) ifx e {—n < h <n}. 4.3)

In particular, the sequence |V~ h,| converges monotonically to |V~h|. Applying Fatou’s
lemma and the monotone convergence theorem, we obtain

k//(h(X) — h(y)?* w(dx)(dy) < Aliminf Var,, (h,)
n—o0
sliminf/W_hn|2du=/|V‘h|2d,u,
n—o0
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From dimension free concentration to the Poincaré inequality 913

which completes the proof of Theorem 1.2. O

4.2 Poincaré inequality and boundedness of observable diameters of product probability
spaces

In this section we prove Corollary 1.8.

Proof of Corollary 1.8 Assume first that p satisfies the Poincaré inequality (1.2) with the
optimal constant A. Then according to Theorem 1.3, 11 satisfies CI5° (o) with the concentration

profile a(r) = be’ﬁ’, where a, b are universal constants (b > 1/2). According to the first
part of Lemma 1.7 [applied to the metric probability space (X", da, u™*)], it follows that for
all n € N*, Obs Diam(X", d, u", 1) < 2%, forall 7 < 1 and thus

Foo(ONA < a'log(b'/1), Vi<1

for some universal constants a’, b’.

Conversely, assume that 0 < ro(f,) < oo forsomet, € (0, 1/2). According to the second
part of Lemma 1.7, p satisfies CIS®(B;, .. (z,)), Where the minimal profiles 8 are defined in
(1.5). According to Theorem 1.2, it follows that u satisfies the Poincaré inequality with an
optimal constant A > 0 such that

Virao(te) = @ (t,).

According to the first step, we conclude that r,(#) < oo for all # < 1, and so the inequality
above is true for all ¢ € (0, 1/2). O

4.3 Self improvement of dimension free concentration inequalities

The next result shows that a non-trivial dimension free concentration inequality can always
be upgraded into an inequality with an exponential decay. This observation goes back to
Talagrand [41, Proposition 5.1].

Corollary 4.1 If u satisfies CIS° () witha profile o such that a(r,) < 1/2 for somer,, then it
satisfies CI5° with an exponential concentration. More explicitly, it satisfies the dimension free

concentration property with the profile @ (r) = be—avrr , where a, b are universal constants
and

—1
Vi = sup{(b(a(r)); r>0sta(r) < 1/2].
r

This result is an immediate corollary of Theorems 1.2 and 1.3.

In [41] this result was stated and proved only for probability measures on R. We thank
E. Milman for mentioning to us that the argument was in fact more general. For the sake of
completeness, we extend below Talagrand’s argument in a very general abstract framework.
For a future use, we only assume that the dimension free concentration property holds on a
good subclass of sets. We refer to the proof of Proposition 6.4 where this refinement will be
used (the subclass of sets being the class of convex sets).

Proposition 4.2 Let (X, d) be a complete separable metric space, p > 1 and for alln € N*
let A, be a class of Borel sets in X" satisfying the following conditions:
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914 N. Gozlan et al.

(i) Foralln e N*andr > 0, if A € A, then A, ), € A,.
(ii) If A € A, then A" € Apy.

Suppose that a Borel probability measure  on X satisfies the following dimension free
concentration property: there exists r, > 0, a, € [0, 1/2) such that for all n € N*,

Mn(Al‘g,p) >1—a, VYAcA,stu"(A)=> 1/2.

Then, for any y € (—log(l — a,)/log(2), 1), there exists ¢ € [1/2, 1) depending only on y
and a, such that for all n € N¥,

c

1_
(A p) = 1— ——y0 ¥r>0, VAeA,st p"(A)=>c.
Y

Note in particular that in the case p = 2 (and A, the class of all Borel sets), we recover the
conclusion of Corollary 4.1 with slightly less accurate constants.

Proof Given A € Ay, it holds (A"),, , C (A,,)" and, according to (i) and (ii), both sets
belong to A,. Therefore, if 1(A) > (1/2)!/", it holds u(A,,) > (1 — a,)'/". Now, let
A € Aj be such that £(A) > 1/2 and let n4 be the greatest integer n € N* such that
w(A) > (1/2)1/". By definition of 4,

log(2) log(2)
— —l<np < ———M—.
log(1/p(A)) log(1/p(A))

According to what precedes,

/’L(Aio) < 1— (1 _ (lg)l/nA < 1— exp (log(l _a()) IOg(I/M(A))) )

log(2) — log(1/u(A))

The function ¢ (u) = exp (%) satisfies

log(1 — a,)

=1l—-— -1 -1,
o(u) loz(2) (u—1D+ou—-1
1—p(u(A)) _ log(1—a,) p .
whenu — 1. So ) oz~ € (0, 1), when u(A) — 1. Therefore, if y is any

number in the interval (—%, 1), there exists ¢ > 1/2 (depending only on y) such that

forall A € Ay with u(A) > c it holds
1 (AS) < yin(A),

Iterating (which is possible thanks to (i) and the easy to check property (Arl, p)r2 » C
Ari4ry,p) yields

1 (AL,) < Y (A, VkeN".
It follows easily that for all u > 0,

w(AS) < (A =) /y)y"r.

Applying the argument above to the product measure u”, p € N*, gives the conclusion. O
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From dimension free concentration to the Poincaré inequality 915

5 From Poincaré inequality to exponential concentration: proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Its conclusion is very classical in, say,
a Euclidean setting. But to deal with the general metric space framework requires some
additional technical ingredients that we present now.

5.1 Technical preparation

In order to regularize Lipschitz functions, we shall introduce an approximate sup-convolution
operator. More precisely, for all ¢ > 0, and for all function f : X" — R U {—o0}, we define
the (approximate) sup-convolution operator by

R. f(x):= su}v) {f(y)—,/e+d22(x,y)], x e X", 5.1
yeX™

The next lemma collects some useful properties about R;.

Lemma 5.1 Let f : X" — R U {—o0} be a function taking at least one finite value and
& > 0. Then

(i) If Re f(x,) < o0 for some x, € X", then R f is finite everywhere and is 1-Lipschitz
with respect to dy. Moreover, it holds

n

Z'V;Rsf(xﬂz <1, Vxea”.

i=1
(i) If f is 1-Lipschitz, then for all x € X",
f(x) = Ve < R f(x) < f(x).
(iii) If (X, d) is a Banach space and f is convex, then R, f is also convex.
Proof We fix ¢ > 0.

Point (iii) follows easily from the fact that R, f is a supremum of convex functions, since
by a simple change of variable

Rg f(x) = sup [f(x—z)— s+||z||§], xea".
zeX"

Point (ii) is also easy. Indeed, the first inequality follows by choosing y = x. For the
second inequality, observe that, since f is 1-Lipschitz,

R.f(x)— f(x) = su/‘lg [f(y)—f(x)—,/s—i—d%(x,y)] SSUI(F)’ {r—\/g—i—rz} =0.
ye n r>

Now we turn to the proof of Point (i).
The first part of the statement follows from the fact that R, f is a supremum of 1-Lipschitz

functions. To prove the other part, we need to fix some notation. For x = (x1,...,x,),z =
(z1,.-.,2p) € X" andi € {1,2, ..., n}, we set
Xz = (01, o Xm0, 2 Xig 1y s Xp)e

Also, we set 0(u) := /e +u,u € R,sothat R, f(x) = supy{f(y) — G(dzz(x, y))} (observe
that 0 is concave).
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916 N. Gozlan et al.

Fix x = (x1,...,x,) € X" and a parameter € (0, 1) that will be chosen later on and
consider z = (z1,...,2,) € X" such that z; # x; foralli € {1,...,n}. We assume that
R f is everywhere finite. Hence, since n minj<j<, d(x;, z;) > 0, there exists y = y(x, z, 1)

such that
R f(x) < f() — /e +d3(x,$) +n min d(x;,z).
1<i<n

As a consequence, using that 6 is concave, for all 1 < i < n, we have
[Ref@a) = Ref )] = [Ref @) = Ref (2| | = [0@ 'z $) = 0@, 90 ]
+n min d(x;, z;)
1<i<n
= [B('z. ) = 3. 9)] 0@ ) +n min dixi,z)
+ 1<i<n
= [dGiz0) = dGi, x)] . (dGi z) + d (i, ) 0'(d3 (%, 9))
+n min d(x;, z;)
1<i<n
< 2d(zi, x)d ($i, 2)0(d3 (x, $)) + 1 1gliignd(xz‘, Zi)
where, in the last line we used that the positive part [d i, zi) — d (i, x,-)] , guarantees that

d(3i, xi) < d (3, z;) and the triangular inequality.
Using the Cauchy-Schwarz inequality, it follows for any § > 0 that

[Ref (¥2)—Re f ()]
d2(x7. 21)

< (2dGi, 200" (3 (x, $)+n)” < (1+8)4d> (i, 200" (3 (x, $))?

1
+{1+ <)%
Therefore, using the triangular and the Cauchy-Schwarz inequalities, we get for any § > 0,

—i 2
L [Ref (¥'zi) = Re f (%) _ ~ , ~ 1
Z [ ( dZ()x,-, -~ | < (148)4d3($, 2)0 (d%(x, y))2+n (1+§) n?

i=1

<(1+8)4(d2(3, x)+do(x, 2))%0' (d5 (x, 9))2+n (1+é) "’
<(1+8)%4d3 (3, x)0' (d5 (x, &))2
+(1+8) (1+§) 4d3(x, )% (d3(x, $)) +n (H%) n*

1\ d3(x,2)* 1
5(1+5)2+(1+5)(1+5)%Jrn(wg)nz,

using that 4u29’(u2)2 <land6'(u?)? < 1/(4¢). The expected result follows at once taking
the limits z; — x;, and then n — 0 and 6 — 0. This ends the proof of the lemma. m]

The next ingredient in the proof of Theorem 1.3 is the so-called Herbst argument that we
explain now. We recall the following notation: for any f: X" — R, set

m(f) =inf {m € R; u"(f <m) > 1/2}.
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Proposition 5.2 Assume that i satisfies the Poincaré inequality (1.2) with a constant A > 0.
Then, there exist universal constants a, b > 0 such that then for all n € N*, it holds

;L”(f>m(f)+\/§+r)§bexp(—a«/xr), Vr >0

for all function f : X" — R such that

DIV <1, Vre " (5.2)
i=1

The same conclusion holds if the function f satisfies
n
DUVIfP@ <1, Vxeam (5.3)
i=1

Proof 1t is well known that the Poincaré inequality tensorizes properly (see e.g. [28, propo-
sition 5.6]). Indeed, recall that for all n € N* and for all product probability measure "

Waro(9) = [ 37 Var (g @),
i=1

where g;(x;) = g(X1, ..., Xim1, Xiy Xig1y -+ Xn), With X1, ..., Xi—1, Xj41, ..., X, fixed.
Therefore, if p satisfies (1.2), then the product probability measure p" satisfies

AVar,n (g) < / D1V gl ) (), (54)
i=1

for all function g : X — R that is Lipschitz in each coordinate.

Let f : X — R be bounded and such that (5.2) holds, and define Z(s) = log f esfapn,
for all s > 0. Applying (5.4) to g = %/ (which is still bounded and Lipschitz) and using
(5.2) yields easily to

2
)»|:/€2Sfdﬂn— (/exfdlun) :| §S2/62sfdun'

log(1 — s%/A) + Z(25) < 2Z(s), YO <s <+/A.

Thus

According to Holder’s inequality, the function Z is convex. Therefore,
Z(2s) > Z(s) + Z'(s)s.
As a result,
log(1 — s2/A) + Z'(s)s < Z(s), YO <s < /A,

and so

ds K 52 ’

d(Z(s))<_log(1—s2/A) VO <5 < i
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Since Z(s)/s — [ f du" when s — 0, we conclude that

s/

i _ 2
/es(f—deu”)dMnSGXP % / Mdv . Vs <A
v

Taking s = v /2, we easily get, by the (exponential) Chebychev Inequality,
_k
M"(f—/fdu”>r)§be 2" Vr=0, (5.5

2
with b = exp (% fol/z = logil_v ) dv) .
Now, since the probability measure w" satisfies the Poincaré inequality with constant
A > 0, (5.2) implies that

AVar,«(f) < 1.

Therefore, by Markov’s inequality, it holds, for all ¢ > 0

n n 2+¢ A 1
7 (fs/fdu _\/T)vaar“"(f)<2'

Hence, according to this definition of m(f), it follows easily that

2
m(f)z/fd/ﬂ’—\/:-

This inequality together with (5.5) provides the expected deviation inequality

M”(f>m(f)+\/§+r)§be%, Vr > 0. (5.6)

Now suppose that f : X" — R is Lipschitz but not bounded. Consider the function f,, =
(f v —n) An,n € N*. Applying (4.3) componentwise, we see that |V, f,| < |V, f| for all
i €{1,2,...,n}. Therefore, f, satisfies (5.2). Applying (5.6) to f,, and letting n go to oo,
one sees easily that (5.6) still holds for the unbounded Lipschitz function f.

Exactly the same proof works under the condition (5.3) [using the equivalent inequality
(1.3)] O

5.2 Proof of Theorem 1.3

Thanks to the previous section (Sect. 5.1), we are now in position to prove Theorem 1.3.

Proof of Theorem 1.3 Let A be a measurable subset of X" of measure ©"(A) > 1/2 and

define forall ¢ > 0, f4 .(x) == ,/e + dzz(x, A), x € X". By definition of R, given in (5.1),
itholds fa . = —Rgia, where iy : X — {—o00; 0} is the function defined by i (x) = 0, if
x € A and iy (x) = —oo otherwise. According to Point (i) of Lemma 5.1, we see that f4 .
satisfies Condition (5.3) of Proposition 5.2. Hence, observing that m(f4 ¢) = /¢, it follows
from Proposition 5.2 that

2
'un( e+d22(x,A) > \/E—i—\/:—i—r)fbexp(—a\/xr), vr > 0.
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Letting € go to 0 yields (after a change of variable) to,
1= " (Arp) < b exp(—av/ar), Vr =0,

with ' = max (b, 1 /2)e‘/§“. The proof of Theorem 1.3 is complete. O

6 Poincaré inequality for convex functions and dimension free convex concentration
property.

In this final section, we investigate the links between the dimension free concentration prop-
erty CI5® (@) restricted to convex sets, and the Poincaré inequality restricted to the class of
convex functions (see below for a precise definition)

6.1 Convexity and convex concentration on geodesic spaces

To deal with convexity properties, we shall assume throughout the section that the metric
space (X, d) is geodesic. This means that any two points x and y of X’ can be connected by at
least one constant-speed continuous curve in X': i.e. for all x, y € X, there exists (x;):¢[0,1]
in X satisfying xo = x, x; = y, and forall s,z € [0, 1], d(xg, x;) = |t — s|d (x0, x1). Such a
curve is called a (constant-speed) geodesic joining x to y.

Definition 6.1 Let (X, d) be a geodesic space.

(i) Aset A C X issaid to be convex if for all xo, x; € A and all geodesics (x;);¢[0,1] joining
xp to x1, it holds x; € A, Vr € [0, 1].
(i1) A function f : X — RU {400} is said to be convex if for all geodesics (x;);c[0,1] in X,

) = (I =1) f(xo) +2f (x1).

Accordingly, one will say that u € P(X) satisfies the dimension free convex concentration
property with the concentration profile & and with respect to the £, product structure (in short
CCI5°(w)), if for all convex subset A C X, with "' (A) > 1/2,

w'(Arp) =1 —a(), Vr=0. 6.1)

As for CIS® (@) in Proposition 1.9, the convex concentration property can be characterized
using the inf-convolution operator Q;.

Proposition 6.2 Let i € P(X); w satisfies CCIS® () if and only if for alln € N* and for all
convex function f : X" — R U {+o00} bounded from below and such that /" ( f = +00) <
1/2, it holds

WQif >m(f)+r) <a/tr), Vrt>0, (6.2)

where m(f) = inf{m € R; u"(f < m(f)) = 1/2}.

Proof By the following two observations the proof of the above proposition (that we omit)
becomes essentially identical to the one of Proposition 1.9 in Sect. 3.2: (a) By definition, if
f X —> RU {+o0} is convex then any level set { f < r}, r € R, is convex; (b) for any
convex set A, the function i 4, that equals 0 on A and +00 on X'\ A, is convex. O

For technical reasons, we will have to distinguish between the following two versions of
the Poincaré inequality in restriction to convex functions (in short convex Poincaré):

AVar, (f) < / |V_f|2 du, VY f Lipschitz and convex (6.3)
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and
AVar, (f) < / IV* f1?du, Vf Lipschitz and convex. (6.4)

The argument used in Point (3) of Remark 1.1 to prove the equivalence between (1.2) and
(1.3) in the usual setting does not work anymore since if f is convex, — f is no more convex.
However, if (X, d) is finite dimensional Banach space or a smooth Riemannian manifold and
if one assumes that u is absolutely continuous with respect to the Lebesgue (or the volume)
measure, by Rademacher’s theorem, both gradients in the definition of (6.3) and (6.4) are
equal, except on a set of p-measure 0, which, in turn, guarantees that (6.3) and (6.4) are
equivalent.

6.2 Dimension free convex concentration implies the convex Poincaré inequality (6.3)

Starting from the functional characterization of CCI5°(«) stated in Proposition 6.2 and
following the lines of the proof of Theorem 1.2, we shall obtain the first main theorem of
this section (a counterpart of Theorem 1.2 in the convex situation).

Theorem 6.3 If u satisfies the dimension free convex concentration property CCIS® (), then
W satisfies the convex Poincaré inequality

AVar, (f) < / VP du,

for all locally Lipschitz' and convex function with finite variance with the constant A defined
by

=1
ﬁ:sup[w; r>0stalr) < 1/2].

If moreover fooo ra(r)dr < oo then the variance of all convex and Lipschitz functions is
finite and thus | verifies (6.3).

Proof The proof is very similar to the proof of Theorem 1.2, but one needs to take care of
the technical difficulties coming from the restriction to convex sets/functions. We give here
only the main lines and omit most of the details. Also, we may use the notation of the proof
of Theorem 1.2.

Let h : X — R be a locally Lipschitz convex function such that [hdu = 0 and
[h?dp < +o0. Forall n € N*, define f, : X" — R* by

fux) =h(x) + -+ h(xy), Vx=(x1,...,x,) € X"

We first observe that f;, is convex. Indeed, this point is an easy consequence of the fact
that (x;)e[0,17 is a geodesic in (X", d) if and only if forall i € {1...,n}, (x;)repo,1] are
geodesics in (X, d) (where x; = (x1;, ..., X,,)). Therefore we may apply Proposition 6.2
to the function f;.

For the next step of the proof, we need some analogue of Proposition 3.1 for convex locally
Lipschitz functions #: X — R (not necessarily globally Lipschitz). From the definition of
the convexity property of /, one may easily check that forall x, y € X

h(x) = h(y) = d(x, y)IV"h(x)|.

1 By locally Lipschitz, we mean Lipschitz on every ball of finite radius.
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It follows that for all > 0,
- h(x) — Qth(x) [h(X) —h(y) d*(x, y)]
< ——~" =sup —

yeXx

0
t t 12

2
< sup [|V*h<x>|d("’” St y)]
yeX t t

1
=sup {[V"h)|r —r?} < < |VTh()* < .
reR 4
This implies in particular that Q;h(x) — h(x) for all x € X. Moreover, it holds

1
Jru (h—ngh) < Z/w hPdu, Vne N

Let us first assume that £ is bounded from below. Then it holds, |Q, ﬁhl < |h| + |inf A|
foralln € N*. Since [ h?du < oo, applying the dominated convergence theorem yields to

nEToo 0,% = nEToo VarM(Ql/ﬁh) = Var, (h) = o’
Since th du < 400, we may show that any median of m,, of f,,/(y/no) tends to 0 as n
goes to +00. As a consequence, (4.2) holds for n sufficiently large. The rest of the proof is
identical to the one of Theorem 1.2: we apply the Central Limit Theorem (Theorem 1.10),
observing that the Lindeberg condition holds since |Q; / ﬁh| < |inf i| + |k| for all n € N*,
and [h?dp < oo. This proves the claim in the case where % is assumed bounded from
below. To show that the Poincaré inequality still holds if / is not bounded from below, one
considers the approximation sequence h,, = h VvV —n, n € N* (note that h,, is convex) and
one follows the same line of reasoning as in the end of the proof of Theorem 1.2.

Finally, to complete the proof, observe thatif f : X — R is convex and 1-Lipschitz, then
A = {f < m(f)}is aconvex set with £(A) > 1/2, and since A,» C {f < m +r}, we
conclude from CCI» («) that

w(f >m(f)+r)<a@), Vr=>0.

Since fooo ra(r)dr < oo, an integration by part shows that [[f — m(f)]i du < oo.
Therefore, if f is convex, 1-Lipschitz and bounded from below, then f has a finite variance
and so applying the first part of the proof, we conclude that Var,(f) < 1/A. Using the
same truncation as above, we see that this inequality extends to all convex and 1-Lipschitz
functions. This complete the proof. O

6.3 Convex Poincaré inequality implies exponential dimension free convex concentration

To get the converse, namely to get a counterpart of Gromov—Milman theorem for convex sets
[that the convex Poincaré inequalities (6.3) or (6.4) imply the dimension free concentration
property CCI5° ()] with an exponential profile, we need to add the structural assumption
that the underlying metric space is of Busemann type.

Recall that (X, d) is said to be a Busemann’s space if the distance d : X — R7 isaconvex
function (of both variables). Banach spaces are obvious examples of such spaces. Another
important class of Busemann’s spaces are complete connected Riemannian manifolds with
non positive sectional curvature. We refer to [4,8,38] for more informations on the topic and
a proof of this statement.

Let us mention some elementary properties of Busemann’s spaces:
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(B1) if X is a Busemann’s space, any two points of X" are joined by a unique constant speed
geodesic;

(B2) for any convex subset A C X, the function X > x > d(x, A) is convex;

(B3) if (X, d) is a Busemann’s space, then (X", d») is a Busemann’s space.

We are now in position to state our second main theorem (a counterpart of Gromov—
Milman’s Theorem 1.3).

Theorem 6.4 Let (X, d) be a geodesic space and |1 be a probability measure. Assume one
of the following hypotheses: either

(a) X is a Busemann’s space and w satisfies the convex Poincaré inequality (6.4) with a
constant A > 0.

or

(b) (X, | - ) is a Banach space (with ||x — y|| = d(x,y), x,y € X) and u satisfies the
convex Poincaré inequality (6.3) with a constant ). > 0;

Then p satisfies the dimension free convex concentration property CCIS® (&) with the profile
a(r) = bexp(—av/ar), r=>0,
where a, b are universal constants.

As a direct corollary of Theorems 6.4 and 6.3, when X is a Banach space, we conclude
that, similarly to the general case, the set of probability measures p satisfying the dimension
free convex concentration property CCI5° («) with exponential profile coincides with the set
of probability measures verifying the convex Poincaré inequality (6.3).

The remaining of the section is dedicated to the proof of Theorem 6.4. There is a technical
obstacle for applying Herbst argument as in Proposition 5.2. Namely, since the class of convex
functions is not stable under truncation from above (if f is convex and a € R, min(f; a) is
in general not convex) it is delicate to deal safely with f el d u, s > 0. Although a method
based on p-th moments could perhaps be considered in replacement,

we use instead an argument based on Corollary 4.2: we first show that under (6.3) and (6.4),
w verifies the dimension free convex concentration property CCIS® (o) with some polynomial
concentration profile and then we upgrade it into an exponential one using Corollary 4.2.

Proof We start as in the proof of Proposition 1.3 by noticing that the convex Poincaré inequal-
ities (6.3) and (6.4) tensorize properly. Therefore, if u verifies one of the convex Poincaré
inequalities, then for all n € N*,

n
2
A Var, (f) s/Z]vi*/*f] du”,
i=l1

for all Lipschitz and convex function f : X — R. In particular, if f is 1-Lipschitz and such
that >, |Vi+/7f|2 <1, then Var,» (f) < 1/X1. Applying Jensen’s inequality, we see that

2 2
1/ zVar,w(f)zinf/(f—a)zdu"z(inf/lf—aldu”) z(/lf—m(f)ldu")
aeR aceR

Thus, it follows immediately from Markov’s inequality that

Vr > 0. (6.5)

1
w' (f >m(f)+r) < ,
Ar
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Let us first assume that Assumption (a) holds. Observe that the function X" — R :
X = fa(x) := da(x, A) is convex and 1-Lipschitz when A C X" is a convex set [this
follows from properties (B2) and (B3) above]. Moreover, using Point (i) of Lemma 5.1 and

arguing as in the proof of Theorem 1.3, we see that f4 . := /¢ + f/% satisfies the condition

> |Vl.+ fal? < 1. Since the function u > +/& + u? is convex and increasing, the function
fa.e is itself convex. Applying (6.5) to f4 . and letting ¢ — 0, we get

w'(Ar2) =1 — (6.6)

1
Var’
for all convex set A.

In particular, taking r, = 4/ /A we are in the framework of Corollary 4.2, witha, = 1/4
and A, being the class of convex sets of X”. (Note that Assumptions (i) and (ii) are well
verified by A,: a product of convex sets is always convex and properties (B2) and (B3) above
show that the enlargement of a convex set remains convex). We thus conclude that there are
universal constants 0 < ¥ < 1 and 1/2 < ¢ < 1 such that, for all n € N*, for all convex set
A such that u"*(A) > ¢

W A = 1 —be V¥ v >0,

withb = (1 — ¢)/y and a = —log(y)/4. Now, if u"*(A) > 1/2, then applying (6.6) we see

that " (A, 2) > cforr; = m We easily conclude from this that u verifies CCIS® ()

with a(r) = b/e_“ﬁ’, for some other universal constant &’.

Assume now that Assumption (b) holds. Let A C X" be a convex subset. The function f4
defined above is 1-Lipschitz and convex. Therefore, according to point (i) and (iii) Lemma
5.1, the function R, f4, where R, is the operator defined in (5.1), is 1 Lipschitz, convex and
satisfies >°"_| [V, R. fa|*> < 1. Applying (6.5), we conclude that

1
W' (Re fa > m(Re fa) + 1) < T Vr > 0.

Moreover, according to point (i) of Lemma 5.1, it holds f4 — /¢ < R fa < fa. Inserting
this into the deviation inequality above and letting & — 0 yields to the conclusion that (6.6)
holds for all convex A. The rest of the proof is identical. O
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