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Abstract In this work, we prove an optimal Penrose inequality for asymptotically locally
hyperbolic manifolds which can be realized as graphs over Kottler space. Such inequality
relies heavily on an optimal weighted Alexandrov–Fenchel inequality for the mean convex
star-shaped hypersurfaces in Kottler space.
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1 Introduction

The famous Penrose inequality (conjecture) in general relativity, as a refinement of the positive
mass theorem [40,43], states that the total mass of a spacetime is no less than the mass of
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756 Y. Ge et al.

its black holes which are measured by the area of its event horizons. When the cosmological
constant � = 0, its Riemannian version reads that an asymptotically flat manifold (Mn, g)

with an outermost minimal boundary � (a horizon) has the ADM mass

m ADM ≥ 1

2

( |�|
ωn−1

) n−2
n−1

, (1.1)

provided that the dominant condition Rg ≥ 0 holds. Here Rg is the scalar curvature of
(Mn, g), |�| is the area of � and ωn−1 is the area of the unit (n − 1)-sphere. Moreover,
equality holds if and only if (M, g) is isometric to the exterior Schwarzschild solution. For
the case n = 3, (1.1) was proved by Huisken and Ilmanen [28] using the inverse mean
curvature flow and by Bray [3] using a conformal flow. Later, Bray’s proof was generalized
by Bray and Lee [7] to the case n ≤ 7. For related results and further development, see the
excellent surveys [4,35] and also [5,6,19,25,26]. Recently Lam [30] gave an elegant proof of
(1.1) for asymptotically flat graphs over R

n for all dimensions by using Alexandrov- Fenchel
inequalities (see [39]). His proof was later extended in [14,29,36]. Very recently, a general
Penrose inequality for a higher order mass was conjectured in [21], which is true for the
graph cases [21,32] and conformally flat cases [22].

In recent years, there has been great interest to extend the previous results to a spacetime
with a negative cosmological constant � < 0. In the time symmetric case, (Mn, g) is
now an asymptotically hyperbolic manifold with an outermost minimal boundary �. For
the asymptotically hyperbolic manifolds, a mass-like invariant, which generalizes the ADM
mass, was introduced by Chruściel et al. [10,11,27]. See also an earlier contribution by
Wang [41] for the special case of conformally compact manifolds. For this mass mH the
corresponding Penrose conjecture is

mH ≥ 1

2

{( |�|
ωn−1

) n−2
n−1 +

( |�|
ωn−1

) n
n−1

}
, (1.2)

provided that the dominant energy condition Rg ≥ −n(n − 1) holds. This is a very difficult
problem. Neves [38] showed that the powerful inverse mean curvature flow of Huisken and
Ilmanen [28] alone could not work for proving (1.2). For the special case that the asymp-
totically hyperbolic manifold can be represented by a graph over the hyperbolic space H

n ,
Dl-Gicquaud and Sakovich [13] and de Lima and Girão [16] proved this conjecture with a
help of a sharp Alexandrov–Fenchel inequality for a weighted mean curvature integral in H

n .
More precisely, in [13], several suboptimal inequalities similar to the Alexandrov–Fenchel
inequality in the hyperbolic space are given, the sharp inequality (the one that implies the
Penrose inequality for hyperbolic graphs) is settled in [16]. Recently there have been many
contributions in establishing Alexandrov–Fenchel inequalities in H

n , see [9,23,24,31,42].
Penrose inequalities for the Gauss–Bonnet–Chern mass have been studied in [21,24].

In this paper we are interested in studying asymptotically locally hyperbolic (ALH) man-
ifolds. Let us first introduce the locally hyperbolic metrics. Fix κ = ±1, 0 and suppose
(N n−1, ĝ) is a closed space form of sectional curvature κ . Consider the product manifold
Pκ = Iκ × N , where I−1 = (1,+∞) and I0 = I1 = (0,∞) endowed with the warped
product metric

bκ = dρ2

V 2
κ (ρ)

+ ρ2 ĝ, ρ ∈ Iκ , and Vκ (ρ) =
√

ρ2 + κ. (1.3)

One can easily check that the sectional curvature of (Pκ , bκ ) equals to −1 and thus it is called
locally hyperbolic. Note that in the case κ = 1 and (N , ĝ) is a round sphere, (Pκ , bκ ) is exactly
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A Penrose inequality for graphs over Kottler space 757

the hyperbolic space. Since there are a lot of work on the case that κ = 1 and (N , ĝ) is a round
sphere, see the work mentioned above, we will in principle focus on the remaining case, the
locally hyperbolic case. Namely, κ = −1, 0 or κ = 1 and N is a space form other than the
standard sphere. In this case, the mass defined by (1.6) below is a geometric invariant. (See
Section 3 in [10]). In order to define this mass, we recall from [10] the following definition
of ALH manifolds.

Definition 1.1 A Riemannian manifold (Mn, g) is called asymptotically locally hyperbolic
(ALH) if there exists a compact subset K and a diffeomorphism at infinity � : M \ K →
N × (ρ0,+∞), where ρ0 > 1 such that

‖(�−1)∗g − bκ‖bκ + ‖∇bκ
(
(�−1)∗g

) ‖bκ = O(ρ−τ ), τ >
n

2
, (1.4)

and ∫
M

Vκ |Rg + n(n − 1)|dVg < ∞. (1.5)

Then a mass type invariant of (Mn, g) with respect to �, which we call ALH mass, can
be defined by

m(M,g) = cn lim
ρ→∞

∫
Nρ

(
Vκ (divbκ e − d trbκ e) + (trbκ e)dVκ − e(∇bκ Vκ , ·)

)
νdμ, (1.6)

where e := (�−1)∗g − bκ , Nρ = {ρ} × N , ν is the outer normal of Nρ induced by bκ and
dμ is the area element with respect to the induced metric on Nρ , ϑn−1 is the area of N

ϑn−1 = |N | and cn = 1

2(n − 1)ϑn−1
.

For this mass, there is a corresponding Penrose conjecture.

Conjecture 1 Let (M, g) be an ALH manifold with an outermost minimal horizon �. Then
the mass

m(M,g) ≥ 1

2

(( |�|
ϑn−1

) n
n−1 + κ

( |�|
ϑn−1

) n−2
n−1

)
,

provided that M satisfies the dominant condition

Rg + n(n − 1) ≥ 0. (1.7)

Moreover, equality holds if and only if (M, g) is a Kottler space.

The Kottler space, or Kottler–Schwarzschild space, is an analogue of the Schwarzschild
space in the context of asymptotically locally hyperbolic manifolds which is introduced as
follows. We consider the metric

gκ,m = dρ2

V 2
κ,m(ρ)

+ ρ2 ĝ, Vκ,m =
√

ρ2 + κ − 2m

ρn−2 . (1.8)

Let ρκ,m be the largest positive root of Vκ,m . Then the triple

(Pκ,m = [ρκ,m,+∞) × N , gκ,m, Vκ,m)
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758 Y. Ge et al.

is a complete vacuum static data set with the negative cosmological constant −n which
satisfies

�̄Vκ,m gκ,m − ∇̄2Vκ,m + Vκ,m Ricgκ,m = 0 and Rgκ,m = −n(n − 1). (1.9)

We remark here that throughout the all paper, �̄ and ∇̄ denote the Laplacian and covariant
derivative with respect to the metric gκ,m .

Remark that in (1.8) if κ ≥ 0, the parameter m is always positive; if κ = −1, the parameter
m can be negative. In fact, m belongs to the following interval

m ∈ [mc,+∞) and mc = − (n − 2)
n−2

2

n
n
2

. (1.10)

Comparing with the case of the asymptotically hyperbolic, this is a new and interesting
situation. The corresponding positive mass theorem looks now like

Conjecture 2 Let (M, g) be an ALH manifold (κ = −1 case without boundary). Then the
mass

m(M,g) ≥ mc = − (n − 2)
n−2

2

n
n
2

,

provided that M satisfies the dominant condition (1.7).

These problems were first studied by Chruściel and Simon [12]. Recently, Lee and Neves
[33,34] used the powerful inverse mean curvature flow to obtain a Penrose inequality for 3
dimensional conformally compact ALH manifolds if the mass m ≤ 0. Roughly speaking,
they managed to show that the inverse mean curvature flow of Huisken and Ilmanen does
work for ALH with κ = 0,−1, though Neves [38] has previously showed that it alone does
not work for the asymptotically hyperbolic manifolds, i.e., κ = 1. Very recently, de Lima
and Girão [17] proved Conjecture 1 for a class of graphical ALH for all dimensions n ≥ 3,
in the range m ∈ [0,∞).

Motivated by these work and our previous wok on the Gauss–Bonnet–Chern mass, in this
paper we want to show Conjecture 1 for a class of graphical ALH for all dimensions n ≥ 3,
in the full range

m ∈ [mc,∞) =
[
− (n − 2)

n−2
2

n
n
2

,∞
)

.

In order to state our results, let us introduce the corresponding Kottler–Schwarzschild
spacetime in general relativity

−V 2
κ,mdt2 + gκ,m .

We consider its Riemannian version, namely Qκ,m = R × Pκ,m with the metric

g̃κ,m = V 2
κ,mdt2 + gκ,m . (1.11)

It is well-known that g̃κ,m is an Einstein metric, i.e.

Ricg̃κ,m + ng̃κ,m = 0,

which actually follows from (1.9). Now let m be any fixed number

m ∈ [mc,∞).
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A Penrose inequality for graphs over Kottler space 759

We identify Pκ,m with the slice {0} × Pκ,m ⊂ Qκ,m and consider a graph over Pκ,m or over
a subset Pκ,m\� in Qκ,m , where � is a compact smooth subset containing {0} × ∂ Pκ,m . A
graph associated to a smooth function f : Pκ,m\� → R is a manifold Mn with the induced
metric from (Qκ,m, g̃κ,m), i.e.

g = V 2
κ,m(ρ)∇̄ f ⊗ ∇̄ f + gκ,m . (1.12)

Definition 1.2 We say Mn ⊂ Qκ,m is an ALH graph over Pκ,m\� (associated to a smooth
function f : Pκ,m\� → R) if there exists a compact subset K and a diffeomorphism at
infinity � : M \ K → N × (ρ0,+∞) ⊂ Pκ,m\�, where ρ0 > 1 such that

‖(�−1)∗g − gκ,m‖gκ,m + ‖∇̄ (
(�−1)∗g

) ‖gκ,m = O(ρ−τ ), τ >
n

2
, (1.13)

or equivalently,

|V ∇̄ f |gκ,m + |V ∇̄2 f + ∇̄V ∇̄ f |gκ,m = O(ρ− τ
2 ), τ >

n

2
, (1.14)

and ∫
M

Vκ,m |Rg + n(n − 1)|dVg < ∞. (1.15)

An ALH graph over Pκ,m\� in Qκ,m must be an ALH manifold in the sense of Definition
1.1. Conversely, if a graph over Pκ,m\� in Qκ,m is an ALH manifold, then it is also an
ALH graph in the sense of Definition 1.2. In other words, for a graph over Pκ,m\� in Qκ,m ,
Definition 1.1 and Definition 1.2 are equivalent. For the proof see Appendix B.

We now state the main results of this paper.

Theorem 1.3 Suppose M ⊂ Qκ,m is an ALH graph over Pκ,m with inner boundary �,
associated to a function f : Pκ,m\� → R. Assume that � is in a level set of f and
|∇̄ f (x)| → ∞ as x → �. Then we have

m(M,g) = m + cn

∫
M

〈
∂

∂t
, ξ

〉
(Rg + n(n − 1))dVg + cn

∫
�

Vκ,m Hdμ, (1.16)

where H is the mean curvature of � in (Pκ,m, gκ,m) and ξ is the unit outer normal of (M, g)

in (Qκ,m, g̃κ,m). Moreover, if in addition the dominant energy condition

Rg + n(n − 1) ≥ 0 (1.17)

holds, we have

m(M,g) ≥ m + cn

∫
�

Vκ,m Hdμ. (1.18)

Remark 1.4 For any ALH graph over the whole Pκ,m , we have

m(M,g) ≥ m ≥ mc, (1.19)

provided that the dominant energy condition Rg + n(n − 1) ≥ 0 holds, since in this case

m(M,g) = m + cn

∫
M

〈
∂

∂t
, ξ

〉
(Rg + n(n − 1))dVg ≥ m ≥ mc.

This can be viewed as a version of the positive mass theorem in this setting. See
Conjecture 2.
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760 Y. Ge et al.

Comparing with the work of [17], which considers graphs over the local hyperbolic space
Pκ , our setting enables us to consider the negative mass range. In order to obtain a Pen-
rose type inequality, we need to establish a Minkowski type inequality in the Kottler space.
This motivates us to study geometric inequalities in the Kottler space. The corresponding
Minkowski type inequality is proved in the following Theorem.

Theorem 1.5 Let � be a compact embedded hypersurface which is star-shaped with positive
mean curvature in Pκ,m, then we have

∫
�

Vκ,m Hdμ ≥ (n − 1)ϑn−1

(( |�|
ϑn−1

) n
n−1 −

( |∂ Pκ,m |
ϑn−1

) n
n−1

)

+(n − 1)κϑn−1

(( |�|
ϑn−1

) n−2
n−1 −

( |∂ Pκ,m |
ϑn−1

) n−2
n−1

)
, (1.20)

where ∂ Pκ,m = {ρκ,m} × N . Equality holds if and only if � is a slice.

In this paper by star-shaped we mean that � can be represented as a graph over {ρκ,m}×N n−1

in Pκ,m .
When m = 0, i.e, Pκ,m = Pκ , which is a locally hyperbolic space, Theorem 1.5 was

proved in [17]. When m �= 0, Pκ,m has no constant curvature. A similar inequality was first
proved by Brendle–Hung–Wang in their work on anti-de Sitter Schwarzschild space [9]. Our
proof of Theorem 1.5 uses crucially their work.

One can check easily that for the Kottler space Pκ,m the area of its horizon ∂ Pκ,m satisfies

m = 1

2

(( |∂ Pκ,m |
ϑn−1

) n
n−1 + κ

( |∂ Pκ,m |
ϑn−1

) n−2
n−1

)
. (1.21)

Combining (1.18), (1.20) and (1.21), we immediately obtain the Penrose inequality for ALH
graphs.

Theorem 1.6 If M ⊂ Qκ,m is an ALH graph as in Theorem 1.3, so that its horizon � ⊂
(Pκ,m, gκ,m) is star-shaped with positive mean curvature, then

m(M,g) ≥ 1

2

(( |�|
ϑn−1

) n
n−1 + κ

( |�|
ϑn−1

) n−2
n−1

)
. (1.22)

Equality is achieved by the Kottler space.

When n = 3, as mentioned above, this inequality was proved by Lee and Neves [33,34],
even without the graphical condition. When m = 0 it was proved by de Lima and Girão
[17]. However, if one restricts himself only to the case m = 0, by (1.16) and the dominant
energy condition (1.17) one has m(M,g) ≥ 0, which means that (1.22) is interesting only if
the volume |�| of � is not so small, in the case κ = −1. This remark was also pointed out
in [17]. Our result, Theorem 1.6, remedies this problem.

It is easy to show that the Kottler–Schwarzschild space Pκ,m can be represented as an
ALH graph in (Qκ,m′ , g̃κ,m′) over Pκ,m′ , if m′ ≤ m. In general we believe that the class of
ALH graphs over Pκ,m with smaller m is larger than the class of ALH graphs over Pκ,m with
bigger m. That is, we believe the class of ALH graphs with m = 0 considered in the paper
of de Lima-Girão contains the class of ALH graphs with m > 0 and the class with mc < 0 is
the biggest. In Appendix A, we show that it is true at least for rotationally symmetric graphs.
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A Penrose inequality for graphs over Kottler space 761

By the above results and the results in [16], it is clear that the class of ALH graphs with
negative mass we consider here can not be represented as ALH graphs over Pκ,0 in Qκ,0,
since, otherwise the ALH mass is positive. Moreover, in Appendix A we give examples of
ALH manifolds with positive ALH mass, which can be represented as an ALH graph over
P−1,m′ with m′ < 0, but can not be represented as an ALH graph over P−1,0.

The rigidity in Theorem 1.6 should follow from the argument of Huang and Wu [29]. We
will return to this problem later.

2 Kottler–Schwarzschild space

As stated in the introduction, the Kottler space, or Kottler–Schwarzschild space, is an analogue
of the Schwarzschild space in the setting of asymptotically locally hyperbolic manifolds. Let
(N n−1, ĝ) be a closed space form of constant sectional curvature κ . Then the n-dimensional
Kottler–Schwarzschild space Pκ,m = [ρκ,m,∞) × N is equipped with the metric

gκ,m = dρ2

V 2
κ,m(ρ)

+ ρ2 ĝ, Vκ,m =
√

ρ2 + κ − 2m

ρn−2 . (2.1)

Remark that in (2.1), in order to have a positive root ρκ,m of φ(ρ) := ρ2 + κ − 2m
ρn−2 ,

if κ ≥ 0, the parameter m should be always positive; if κ = −1, the parameter m can be
negative. In fact, in this case, m belongs to the following interval

m ∈ [mc,+∞) and mc = − (n − 2)
n−2

2

n
n
2

. (2.2)

Here the certain critical value mc comes from the following. If m ≤ 0, one can solve the
equation

φ′(ρ) = 2ρ + (n − 2)
2m

ρn−1 = 0,

to get the root ρh = (−(n − 2)m)
1
n . Note the fact that φ(ρh) ≤ 0, which yields

m ≥ − (n − 2)
n−2

2

n
n
2

.

By a change of variable r = r(ρ) with

r ′(ρ) = 1

Vκ,m(ρ)
, r(ρκ,m) = 0,

we can rewrite Pκ,m as Pκ,m = [0,∞) × N equipped with the metric

gκ,m := ḡ := dr2 + λκ(r)2 ĝ, (2.3)

where λκ : [0,∞) → [ρκ,m,∞) is the inverse of r(ρ), i.e., λκ(r(ρ)) = ρ. It is easy to check

λ′
κ (r) = Vκ,m(ρ) =

√
κ + λκ(r)2 − 2mλκ(r)2−n, (2.4)

λ′′
κ (r) = λκ(r) + (n − 2)mλκ(r)1−n . (2.5)

By the definition of ρκ,m, we know that

λ′′
κ (r) ≥ 0 for r ∈ [0,∞).
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762 Y. Ge et al.

One can also verify

λκ(r) = O(er ) as r → ∞. (2.6)

We take κ = −1 as example to verify (2.6).

r(ρ) =
ρ∫

ρ−1,m

1√−1 + s2 − 2ms2−n
ds

=
ρ∫

1

1√−1 + s2
ds +

1∫
ρ−1,m

1√−1 + s2 − 2ms2−n
ds

+
ρ∫

1

(
1√−1 + s2 − 2ms2−n

− 1√−1 + s2

)
ds

= ln(2
√

ρ2 − 1 + 2ρ) − c − m

n
ρ−n + O(ρ−n−2) as ρ → ∞.

Here c = ln 2 + ∫ 1
ρ−1,m

1√−1+s2−2ms2−n
ds. By Taylor expansion, we have

er(ρ)+c

4
+ e−(r(ρ)+c) = (1 + o(1))ρ + o(1),

which implies λκ(r) = ρ = O(er ) as r → ∞.
Let Rαβγ δ denote the Riemannian curvature tensor in Pκ,m . Let ∇̄ and �̄ denote the

covariant derivative and the Laplacian on Pκ,m , respectively. The Riemannian and Ricci
curvature of (Pκ,m, ḡ) are given by

Ri jkl = λκ(r)2(κ − λ′
κ (r)2)(ĝik ĝ jl − ĝil ĝ jk) = (2mλ−n

κ − 1)(ḡik ḡ jl − ḡil ḡ jk),

Ri jkr = 0,

Rir jr = −λκ(r)λ′′
κ (r)ĝi j = −(1 + (n − 2)mλ−n

κ )ḡi j .

Ric(ḡ) = −
(

λ′′
κ (r)

λκ(r)
− (n − 2)

κ − λ′
κ (r)2

λκ(r)2

)
ḡ − (n − 2)

(
λ′′

κ (r)

λκ(r)
+ κ − λ′

κ (r)2

λκ(r)2

)
dr2

= (−(n − 1) + (n − 2)mλκ(r)−n)ḡ − n(n − 2)mλκ(r)−ndr2.

It follows from (2.6) that

|Rαβγ δ + ḡαγ ḡβδ − ḡαδ ḡβγ |ḡ = O(e−nr ), |∇̄μ Rαβγ δ|ĝ = O(e−nr ); (2.7)

|Ric(ḡ) + (n − 1)ḡ|ḡ = O(e−nr ). (2.8)

3 The ALH mass of graphs in the kottler spaces

First, one can check directly

Lemma 3.1 The Kottler space (Pκ,m, gκ,m) is an ALH manifold with the ALH mass

m(Pκ,m ,gκ,m ) = m.
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A Penrose inequality for graphs over Kottler space 763

Second, instead of computing the ALH mass with Vκ in (1.5) one can compute it with
Vκ,m by using the following Lemma

Lemma 3.2 We have

m(M,g) = m+cn lim
ρ→∞

∫
Nρ

(
Vκ,m(divgκ,m ẽ−dtrgκ,m ẽ)+(trgκ,m ẽ)dVκ,m−ẽ(∇gκ,m Vκ,m, ·)

)
ν̄dμ,

(3.1)
where ẽ := (�−1)∗g − gκ,m and ν̄ denotes the outer normal of Nρ induced by gκ,m.

Proof First note that

e = (�−1)∗g − bκ = ẽ + (gκ,m − bκ ),

thus we have

m(M,g) = m(Pκ,m ,gκ,m ) + cn lim
ρ→∞

∫
Nρ

(
Vκ (divbκ ẽ − dtrbκ ẽ)+(trbκ ẽ)dVκ − ẽ(∇bκ Vκ , ·)

)
νdμ

= m + cn lim
ρ→∞

∫
Nρ

(
Vκ (divbκ ẽ − dtrbκ ẽ) + (trbκ ẽ)dVκ − ẽ(∇bκ Vκ , ·)

)
νdμ.

Then using the fact that gκ,m is ALH, one can replace Vκ by Vκ,m , bκ by gκ,m and ν by ν̄ in
(1.6) without changing mass, that is,

lim
ρ→∞

∫
Nρ

(
Vκ (divbκ ẽ − dtrbκ ẽ) + (trbκ ẽ)dVκ − ẽ(∇bκ Vκ , ·)

)
νdμ

= lim
ρ→∞

∫
Nρ

(
Vκ,m(divgκ,m ẽ − dtrgκ,m ẽ) + (trgκ,m ẽ)dVκ,m − ẽ(∇gκ,m Vκ,m, ·)

)
ν̄dμ.

This implies the desired result. ��
According to [37], the second term in (3.1) is also an integral invariant when the reference

metric is taken as the Kottler–Schwarzschild metric gκ,m rather than bκ . In the spirit of [14,15],
one can estimate the second term since (Pκ,m, gκ,m, Vκ,m) satisfies the static equation (1.9).
Therefore we can prove Theorem 1.3 for the graphs over a Kottler–Schwarzschild space
which extends the previous works of graphs over the Euclidean space, hyperbolic space as
well as the locally hyperbolic spaces.

Proof of Theorem 1.3 The proof of this theorem follows in the spirit of the one in [14,15].
For the convenience of readers, we sketch it. Denote (M, g) ⊂ (Qκ,m, g̃κ,m) with the unit
outer normal ξ and the shape operator B = −∇ g̃κ,m ξ . Define the Newton tensor inductively
by

Tr = Sr I − BTr−1, T0 = I,

where Sr denotes the r -th mean curvature of (M, g) with respect to ξ . Let {εi }n
i=1 be a local

orthonormal frame on M, then a direct computation gives (or see (3.3) in [1] for the proof)

divgTr :=
n∑

i=1

(∇εi Tr )(εi ) = −B(divgTr−1) −
n∑

i=1

(R̃(ξ, Tr−1(εi ))εi )
T , (3.2)
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764 Y. Ge et al.

where R̃ denotes the curvature tensor of (Qκ,m, g̃κ,m) and (R̃(ξ, Tr−1(εi ))εi )
T denotes the

tangential component of R̃(ξ, Tr−1(εi ))εi .
Using the fact that ∂

∂t is a Killing vector field, one can check directly (or refer to (8.4) in
[1] for the proof)

divg

(
Tr

(
∂

∂t

)T
)

=
〈

divgTr ,

(
∂

∂t

)T
〉

+ (r + 1)Sr+1

〈
∂

∂t
, ξ

〉
, (3.3)

where ( ∂
∂t )

T is the tangential component of ∂
∂t along M.

Combining (3.2) and (3.3) together, we get the following flux-type formula (for r = 1)

divg

(
T1

(
∂

∂t

)T
)

= 2S2

〈
∂

∂t
, ξ

〉
+ Ricg̃κ,m

(
ξ,

(
∂

∂t

)T
)

. (3.4)

Denote by

e0 = (Vκ,m)−1 ∂

∂t
.

In the local coordinates x = (x1, · · · , xn) of (Pκ,m, gκ,m), the tangent space T Mn is spanned
by

Zi = (Vκ,m∇̄i f )e0 + ∂

∂xi
,

and thus

ξ = 1√
1 + V 2

κ,m |∇̄ f |2
(e0 − Vκ,m∇̄ f ),

which implies

(
∂

∂t

)T

= Vκ,me0 − Vκ,m√
1 + V 2

κ,m |∇̄ f |2
ξ

= V 3
κ,m |∇̄ f |2

1 + V 2
κ,m |∇̄ f |2 e0 + V 2

κ,m

1 + V 2
κ,m |∇̄ f |2 ∇̄ f.

On the other hand ( ∂
∂t )

T := (( ∂
∂t )

T )i Zi which yields

((
∂

∂t

)T
)i

= V 2
κ,m∇̄ i f

1 + V 2
κ,m |∇̄ f |2 . (3.5)

Note that the shape operator of Mn is given by (cf. (4.5) in [24] for instance)

Bi
j = Vκ,m√

1 + V 2
κ,m |∇̄ f |2

(
∇̄ i ∇̄ j f + ∇̄ i f ∇̄ j Vκ,m

Vκ,m(1 + V 2
κ,m |∇̄ f |2) + ∇̄ i Vκ,m∇̄ j f

Vκ,m

− V 2∇̄ i f ∇̄s f ∇̄s∇̄ j f

1 + V 2
κ,m |∇̄ f |2

)
. (3.6)
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By the decay property of metric (1.12) together with (3.5), one can check that

gi j

(
T1

(
∂

∂t

)T
)i

ν̄ j ≈ (gκ,m)i j

(
T1

(
∂

∂t

)T
)i

ν̄ j

= (T1)
i
p

V 2
κ,m∇̄ p f

1 + V 2
κ,m |∇̄ f |2 ν̄i ≈ (T1)

i
p

V 2
κ,m∇̄ p f√

1 + V 2
κ,m |∇̄ f |2

ν̄i , (3.7)

where ≈ means that the two terms differ only by the terms that vanish at infinity after
integration.

With expression (3.6) and applying the similar argument in the proof of (4.11) in [24],
one can check that

Vκ,m(∇̄ j ẽi
j − ∇̄ i ẽ j

j ) − (ẽi j ∇̄ j Vκ,m − ẽ j
j ∇̄ i Vκ,m) = (T1)

i
p

V 2
κ,m∇̄ p f√

1 + V 2
κ,m |∇̄ f |2

.

As in the proof of Theorem 1.4 in [24], integrating by parts gives an extra boundary term that

lim
ρ→∞

∫
Nρ

(
Vκ,m(divgκ,m ẽ−dtrgκ,m ẽ)+(trgκ,m ẽ)dVκ,m −ẽ(∇gκ,m Vκ,m, ·)

)
ν̄dμ

+
∫
�

Vκ,m H

(
V 2

κ,m |∇̄ f |2
1 + V 2

κ,m |∇̄ f |2
)

dμ

= lim
ρ→∞

∫
Nρ

(T1)
i
p

V 2
κ,m∇̄ p f√

1 + V 2
κ,m |∇̄ f |2

ν̄i dμ +
∫
�

Vκ,m H

(
V 2

κ,m |∇̄ f |2
1 + V 2

κ,m |∇̄ f |2
)

dμ.

Next using (3.7) and the assumption that |∇̄ f (x)| → ∞ as x → �, we have

lim
ρ→∞

∫
Nρ

(T1)
i
p

V 2
κ,m∇̄ p f√

1 + V 2
κ,m |∇̄ f |2

ν̄i dμ +
∫
�

Vκ,m H

(
V 2

κ,m |∇̄ f |2
1 + V 2

κ,m |∇̄ f |2
)

dμ

= lim
ρ→∞

∫
Nρ

gi j

(
T1

(
∂

∂t

)T
)i

ν̄ j dμ +
∫
�

Vκ,m Hdμ.

Finally integrating (3.4) and revoking Lemma 3.2, we finally obtain

m(M,g) = m+cn

∫
M

(
2S2

〈
∂

∂t
, ξ

〉
+ Ricg̃κ,m

(
ξ,

(
∂

∂t

)T
))

dVg +cn

∫
�

Vκ,m Hdμ. (3.8)

From the Gauss equation we obtain

Rg = Rg̃κ,m − 2Ricg̃κ,m (ξ, ξ) + 2S2.

Since g̃κ,m is an Einstein metric, we have

Rg = −n(n − 1) + 2S2 and Ricg̃κ,m

(
ξ,

(
∂

∂t

)T
)

= 0.

Combining all the things together, we complete the proof of the theorem. ��
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4 Inverse mean curvature flow

Let �0 be a star-shaped, strictly mean convex closed hypersurface in Pκ,m parametrized by
X0 : N → Pκ,m . Since the case κ = 1 has been considered in [9], we focus on the case κ = 0
or −1. Consider a family of hypersurfaces X (·, t) : N → Pκ,m evolving by the inverse mean
curvature flow:

∂ X

∂t
(x, t) = 1

H(x, t)
ν(x, t), X (x, 0) = X0(x), (4.1)

where ν(·, t) is the outward normal of �t = X (N , t).
Let us first fix the notations. Let gi j , hi j and dμ denote the induced metric, the second

fundamental form and the volume element of �t , respectively. Let ∇ and � denote the covari-
ant derivative and the Laplacian on �t , respectively. We always use the Einstein summation
convention. Let |A|2 = gi j gkl hikh jl .

We collect some evolution equations in the following lemma. For the proof see for instance
[20].

Lemma 4.1 Along flow (4.1), we have the following evolution equations.

(1) The volume element of �t evolves under

∂

∂t
dμ = dμ.

Consequently,

∂

∂t
|�t | = |�t |.

(2) h j
i evolves under

∂h j
i

∂t
= �h j

i

H2 + |A|2
H2 h j

i − 2hk
i h j

k

H
− 2∇i H∇ j H

H3

+ 1

H2 gkl(2g pj Rqikphq
l − g pj Rqkpl h

q
i − Rqkil h

q j + Rνkνl h
j
i )

+ 1

H2 gkl gq j (∇q Rνkli + ∇l Rνikq) − 2

H
gkj Rνiνk .

(3) The mean curvature evolves under

∂ H

∂t
= �H

H2 − 2
|∇ H |2

H3 − |A|2
H

− Ric(ν, ν)

H
.

(4) The function Vκ,m evolves under

∂

∂t
Vκ,m = p

H
,

where p := 〈∇Vκ,m, ν〉 is the support function of �.

(5) The function χ = 1
〈λκ∂r ,ν〉 evolves under

∂χ

∂t
= �χ

H2 − 2|∇χ |2
χ H2 − |A|2

H2 χ + −χ Ric(ν, ν) + χ2λκ Ric(ν, ∂r )

H2 . (4.2)
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A Penrose inequality for graphs over Kottler space 767

(6) The function p, defined above, evolves under

∂p

∂t
= ∇2

Vκ,m(ν, ν)

H
+ 1

H2 〈∇Vκ,m,∇ H〉,
and thus

d

dt

∫
�t

pdμ = n
∫
�t

Vκ,m

H
dμ.

��
Since �0 is star-shaped, we can write �0 as a graph of a function over N :

�0 = {(u0(x), x) : x ∈ N }.
It is well known that there exists a maximal time interval [0, T ∗), 0 < T ∗ ≤ ∞, such that
the flow exists and any X (·, t), t ∈ [0, T ∗) are also graphs of functions u over N :

�t = {(u(x, t), x) : x ∈ N }.
Define a function ϕ(·, t) : N → R by

ϕ(x, t) =
u(x,t)∫
0

1

λκ(r)
dr,

where λκ(r) is defined in (2.3).
Let

v =
√

1 + |∇ĝϕ|2ĝ.

In term of the local coordinates xi on N , the induced metric and the second fundamental
form of �t are given, respectively, by

gi j = λ2
κ (ĝi j + ϕiϕ j ), hi j = λκ

v
(λ′

κ (ĝi j + ϕiϕ j ) − ϕi j ). (4.3)

Here ϕi = ∇ ĝ
i ϕ and ϕi j = ∇ ĝ

i ∇ ĝ
j ϕ. Thus the mean curvature is given by

H = gi j hi j = (n − 1)
λ′

κ

λκv
− g̃i jϕi j

λκv
, (4.4)

where g̃i j = ĝi j − ϕi ϕ j

v2 .

Along flow (4.1), the graph function u evolves under

∂u

∂t
= v

H
. (4.5)

Hence

∂ϕ

∂t
= v

λH
= v2

(n − 1)λ′
κ − g̃i jϕi j

:= 1

F(u,∇ĝϕ,∇ĝ
2ϕ)

. (4.6)

By the parabolic maximum principle, we can derive the C0 and C1 estimates.
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Proposition 4.2 Let u(t) = inf N u(·, t) and ū(t) = supN u(·, t). Then

λκ(u(t)) ≥ e
1

n−1 tλκ(u(0)), λκ(ū(t)) ≤ e
1

n−1 tλκ(ū(0)). (4.7)

Proof At the point where u(·, t) attains its minimum, we have v = 1 and ϕi j ≥ 0, and hence

H ≤ (n − 1)λ′
κ (u)

λκ(u)
.

Thus from (4.5) we infer that

d

dt
inf
N

λκ(u(t)) ≥ (n − 1)λκ(u(t)), (4.8)

from which the first assertion follows. The second one is proved in a similar way by consid-
ering the maximum point of u(·, t). ��

To derive the C1 estimate, we need to estimate the upper and lower bounds for H .

Proposition 4.3 We have H ≤ n − 1 + O(e− 1
n−1 t ) and H ≥ Ce− 1

n−1 t for some positive
constant C depending only on n, m and �0.

Proof By Lemma 4.1 and (2.8), we have

∂

∂t
H2 = �H2

H2 − 3

2

|∇ H2|2
H4 − 2|A|2 + 2(n − 1) + O(e−nr ). (4.9)

In view of the inequality |A|2 ≥ 1
n−1 H2, by using Proposition 4.2 and the maximum principle,

we deduce

d

dt
sup

N
H(·, t)2 ≤ − 2

n − 1
sup

N
H(·, t)2 + 2(n − 1) + O(e− n

n−1 t ).

The first assertion follows.
For the second assertion, we take derivative s of (4.6) with respect to t and get

∂

∂t

(
∂ϕ

∂t

)
= − 1

F2

∂ F

∂ϕi

(
∂ϕ

∂t

)
i
− 1

F2

∂ F

∂ϕi j

(
∂ϕ

∂t

)
i j

− 2(n − 1)λκλ′′
κ

v2 F2

∂ϕ

∂t
.

Since λ′′
κ (r) ≥ 0, by using the maximum principle, we have

d

dt
sup

N

∂ϕ

∂t
(·, t) ≤ 0. (4.10)

Taking into account of (4.6) and Proposition 4.2, we conclude that

H ≥ C
v

λκ

≥ Ce− 1
n−1 t .

��

Proposition 4.4 We have |∇ĝϕ|ĝ = O(e
− 1

(n−1)2
t
) and v = 1 + O(e

− 1
(n−1)2

t
).

Proof Let ω = 1
2 |∇ĝϕ|2ĝ . Since

∂ϕ

∂t
= v

λκ H
:= 1

F(u,∇ĝϕ,∇ĝ
2ϕ)

, (4.11)
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one can verify that the evolution equation of ω is

∂ω

∂t
= g̃i j

v2 F2 ωi j − 1

F2

∂ F

∂ϕi
ωi − 2(n − 2)κ

v2 F2 ω − g̃i j

v2 F2 ĝklϕikϕ jl − 2(n − 1)λκλ′′
κ

v2 F2 ω.

(4.12)

Notice that vF = λH and −κ ≤ λ2
κ − 2mλ2−n

κ . Using (2.4), Proposition 4.2 and 4.3, we
have

− 2(n − 2)κ

v2 F2 − 2(n − 1)λκλ′′
κ

v2 F2 ≤ 2(n − 2)(λ2
κ − 2mλ2−n

κ )

λ2
κ H2 − 2(n−1)(1 + (n−2)mλ−n

κ )

H2

= − 2

H2 − 2(n − 2)(n + 1)m

λn
κ H2

≤ − 2

(n − 1)2 + Ce− 2
n−1 t + Ce− n−2

n−1 t . (4.13)

Thus by using the maximum principle on (4.12) we have

∂

∂t
sup

N
ω(·, t) ≤

(
− 2

(n − 1)2 + Ce− 2
n−1 t

)
sup

N
ω(·, t), (4.14)

which implies ω = O(e
− 2

(n−1)2
t
). The assertion follows. ��

Remark 4.5 Proposition 4.4 implies that the star-shapedness of �t is preserved. Thus as long
as the flow exists, we have 〈∂r , ν〉 > 0 and a graph representation of �t .

Proposition 4.6 There exists a positive constant C depending only on n, m and �0, such
that H ≥ C.

Proof Recall the function χ = 1
〈λ(r)∂r ,ν〉 . Proposition 4.2 and 4.4 ensure that χ is well defined

and there exists C > 0 such that C−1e− 1
n−1 t ≤ χ ≤ Ce− 1

n−1 t .
By Lemma 4.1 and (2.8), we have

∂

∂t
log H = � log H

H2 − |∇ log H |2
H2 − |A|2

H2 + n − 1

H2 + 1

H2 O(e−nr ) (4.15)

and

∂

∂t
log χ = � log χ

H2 − |∇ log χ |2
H2 − |A|2

H2 + 1

H2 O(e−nr ). (4.16)

Combining (4.9) and (4.15) and using Proposition 4.2, we obtain

∂

∂t
(log χ − log H) = �(log χ − log H)

H2

+〈∇(log H + log χ),∇(log H − log χ)〉
H2

−n − 1

H2 + Ce− n
n−1 t

H2 .

Using Proposition 4.3 and the maximum principle, we have

d

dt
sup

N
(log χ − log H)(·, t) ≤ − 1

n − 1
+ Ce− 2

n−1 t + Ce− n−2
n−1 t . (4.17)

Hence elog χ−log H ≤ Ce− 1
n−1 t . Note that χ = v

λ
. Consequently, H ≥ C . ��
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With the help of Proposition 4.6, we are able to improve Proposition 4.4.

Proposition 4.7 We have |∇ĝϕ|ĝ = O(e− 1
n−1 t ) and v = 1 + O(e− 1

n−1 t ).

Proof We need the following refinement of (4.13), by taking Proposition 4.6 into account:

−2(n − 2)κ

v2 F2 = −2(n − 2)κ

λ2
κ H2 ≤ Ce− 2

n−1 t ;

−2(n − 1)λκλ′′
κ

v2 F2 = −2(n − 1)(1 + n−2
2 mλ−n

κ )

H2

≤ − 2

(n − 1)
+ Ce− 2

n−1 t + Ce− n−2
n−1 t .

Then the proof follows the same way as Proposition 4.4. ��
We now derive the C2 estimates.

Proposition 4.8 The second fundamental form hi j is uniformly bounded. Consequently,
|∇2

ĝϕ|ĝ ≤ C.

Proof Let M j
i = Hh j

i . By Lemma 4.1, we have that M j
i evolves under

∂ M j
i

∂t
= �M j

i

H2 − 2
∇k H∇k M j

i

H3 − 2
∇i H∇ j H

H2

−2
Mk

i M j
k

H2 + 2(n − 1)M j
i

H2 +
( |M |

H2 + 1

)
O(e− n

n−1 t ).

Hence the maximal eigenvalue μ of M j
i satisfies

∂μ

∂t
= −2

μ2

H2 + 2(n − 1)μ

H2 +
( μ

H
+ 1

)
O(e− n

n−1 t ). (4.18)

In view of Proposition 4.3 and 4.6, by using the maximum principle we know that μ is
uniformly bounded from above. Combining the fact C1 ≤ H ≤ C2, we conclude that h j

i is
uniformly bounded both from above and below. ��

Proposition 4.2–4.6 ensure the uniform parabolicity of Eq. (4.6). With the C2 estimates,
we can derive the higher order estimates via standard parabolic Krylov and Schauder theory,
which allows us to obtain the long time existence for the flow.

Proposition 4.9 The flow (4.1) exists for t ∈ [0,∞).

��
With Proposition 4.2–4.7 at hand, we can follow the same argument of Proposition 15 and

16 in [9] to obtain improved estimates for H and h j
i .

Proposition 4.10 H = n − 1 + O(te− 2
n−1 t ) and |h j

i − δ
j
i | ≤ O(t2e− 2

n−1 t ).

��
Consequently, we have

Proposition 4.11 |∇2
ĝϕ|ĝ ≤ O(t2e− 1

n−1 t ).
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Proof Using Proposition 4.2 and 4.7, we get

λ′
κ = λk + O(e− t

n−1 ),
1

v
= O(e− 2t

n−1 ). (4.19)

It follows from Proposition 4.11 that∣∣∣∣hi j − λ′
κ

λκv
gi j

∣∣∣∣
g

≤ |hi j − gi j |g + (n − 1)

∣∣∣∣ λ′
κ

λκv
− 1

∣∣∣∣ ≤ O(t2e− 2
n−1 t ). (4.20)

On the other hand,

gi j = λ2
κ ĝi j + ϕiϕ j = O(e

2
n−1 t )ĝi j .

Thus from (4.3) we see

|ϕi j |ĝ = λκ

v
|hi j − λ′

κ

λκv
gi j |ĝ ≤ O(t2e− 1

n−1 t ). (4.21)

��
If we do more delicate analysis, we may improve the estimates given in Proposition 4.11

to o(e− 1
n−1 t ) as in the work of Gerhardt for the inverse mean curvature flow in H

n . (see also
[18]). Here we avoid to do so, as in the work of Brendle et al. [9]. We remark that on a general
asymptotically hyperbolic manifolds such estimates may be difficult to obtain, cf. the work
of Neves [38].

5 Minkowski type inequalities

We start this section with

Theorem 5.1 ([9]) Let � be a compact embedded hypersurface which is star-shaped with
positive mean curvature in (ρκ,m,∞) × N n−1. Let � be the region bounded by � and the
horizon ∂ M = {ρκ,m} × N. Then

∫
�

Vκ,m Hdμ ≥ n(n − 1)

∫
�

Vκ,mdvol + (n − 1)κϑn−1

(( |�|
ϑn−1

) n−2
n−1 −

( |∂ M |
ϑn−1

) n−2
n−1

)
.

(5.1)

Equality holds if and only if � = {ρ} × N for some ρ ∈ [ρκ,m,∞).

When κ = 1, Theorem 5.1 was proved in [9]; when κ = 0,−1, the proof follows from
a similar argument, which is even simpler. For the convenience of the reader, we include it
here. To prove this theorem, we need the following two lemmas.

Lemma 5.2 The functional

Q1(t) :=
∫
�t

Vκ,m Hdμ − n(n − 1)
∫
�t

Vκ,mdvol + (n − 1)κρn−2
κ,m ϑn−1

|�t | n−2
n−1

(5.2)

is monotone non-increasing along flow (4.1).
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Proof The proof of this lemma can be found in [9]. For completeness, we include the cal-
culations here. To simplify the notation, we denote ρ0 = ρκ,m . In view of Lemma 4.1 and
integrating by parts, we calculate

d

dt

∫
�t

Vκ,m Hdμ

= −
∫
�t

1

H
�Vκ,mdμ −

∫
�t

Vκ,m

H
(|A|2 + Ric(ν, ν))dμ +

∫
�t

(p + Vκ,m H)dμ

= −
∫
�t

Vκ,m

H
|A|2 +

∫
�t

(2p + Vκ,m H)dμ

≤
∫
�t

(
2p + n − 2

n − 1
Vκ,m H

)
dμ, (5.3)

where in the third line we used the simple fact �Vκ,m = �Vκ,m − ∇2
Vκ,m(ν, ν) − H p and

(1.9).
Then we use the divergence theorem to deal with the first term that∫

�t

pdμ =
∫
�t

〈∇Vκ,m, ν〉dμ

=
∫
�t

�̄Vκ,mdvol + ((n − 2)m + ρn
0 )ϑn−1

= n
∫
�t

Vκ,mdvol +
(

n

2
ρn

0 + n − 2

2
κρn−2

0

)
ϑn−1, (5.4)

where in the last equality we used the relation 2m = ρn
0 +κρn−2

0 and the fact �̄Vκ,m = nVκ,m

which follows from (1.9).
Similarly, by Lemma 4.1 and (5.4), we have

d

dt

∫
�t

nVκ,mdvol = n
∫
�t

Vκ,m

H
dμ. (5.5)

Also a Heintze–Karcher type inequality proved by Brendle [8] is needed to estimate the
third term, that is,

(n − 1)

∫
�t

Vκ,m

H
dμ ≥ n

∫
�t

Vκ,mdvol + ρn
0 ϑn−1. (5.6)

Hence substituting (5.4), (5.6) into (5.3) together with (5.5), we infer

d

dt

⎛
⎜⎝

∫
�t

Vκ,m Hdμ − n(n − 1)

∫
�t

Vκ,mdvol

⎞
⎟⎠

≤
∫
�t

2nVκ,mdvol + (nρn
0 + (n − 2)κρn−2

0 )ϑn−1
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+
∫
�t

n − 2

n − 1
Vκ,m Hdμ −

⎛
⎜⎝n2

∫
�t

Vκ,mdvol + nρn
0 ϑn−1

⎞
⎟⎠

= n − 2

n − 1

⎛
⎜⎝

∫
�t

Vκ,m Hdμ − n(n − 1)

∫
�t

Vκ,mdvol + (n − 1)κρn−2
0 ϑn−1

⎞
⎟⎠ .

Taking into account of Lemma 4.1 (1), we get the assertion. ��

Lemma 5.3

lim inf t→∞Q1(t) ≥ (n − 1)κϑ
1

n−1
n−1 .

Proof In view of (5.4), it suffices to prove

lim inf t→∞

∫
�t

Vκ,m Hdμ − (n − 1)
∫
�t

pdμ

|�t | n−2
n−1

≥ (n − 1)κϑ
1

n−1
n−1 . (5.7)

From (4.4), Proposition 4.7 and 4.11, we have

H = 1

v

(
(n − 1)

λ′
κ

λκ

− 1

λκ

�ĝϕ

)
+ O(t2e− 3t

n−1 ). (5.8)

Using Proposition 4.7 and the expressions of λκ, λ′
κ , and v, we get

Vκ,m = λ′
κ = λk

(
1 + κ

2
(λκ)−2

)
+ O(e− 4t

n−1 ),
1

v
= 1 − 1

2
|∇ĝϕ|2ĝ + O(e− 4t

n−1 )

(5.9)

and

√
det g =

(
λn−1

κ + 1

2
|∇ĝϕ|2ĝλn−1

κ + O(e
n−5
n−1 t )

) √
det ĝ. (5.10)

Hence we have

∫
�t

Vκ,m Hdμ = (n − 1)

∫
N

(λn
κ + κλn−2

κ )dμĝ −
∫
N

λn−1
κ �ĝϕdμĝ + O(e

n−3
n−1 t )

= (n − 1)

∫
N

(λn
κ + κλn−2

κ )dμĝ +
∫
N

(n − 1)λn−4
k |∇ĝλκ |2dμĝ + O(e

n−3
n−1 t ), (5.11)

where in the second line, we have integrated by parts and used the fact

|∇ĝλκ − λ2
κ∇ĝϕ|ĝ = |λk − λ′

k ||∇ĝu|ĝ = O(e− t
n−1 ). (5.12)
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Meanwhile, we infer from (2.4), (5.9), (5.10) and (5.12) that

−
∫
�t

pdμ =
∫
�t

(Vκ,m − 〈∇̄Vκ,m, ν〉)dμ −
∫
�t

Vκ,mdμ

≥
∫
�t

(Vκ,m − |∇̄Vκ,m |)dμ −
∫
�t

Vκ,mdμ

= κ

2

∫
N

λn−2
κ dμĝ −

∫
N

λn
κ

(
1 + 1

2
κλ−2

κ + 1

2
λ−4

κ |∇λκ |2
)

dμĝ + O(e
n−3
n−1 t )

= −
∫
N

λn
κ

(
1 + 1

2
λ−4

κ |∇λκ |2
)

dμĝ + O(e
n−3
n−1 t ) (5.13)

(5.11) and (5.13) imply that (5.7) is reduced to prove

(n − 1)κ

∫
N

λn−2
κ + n − 1

2

∫
N

λn−4
κ |∇λκ |2 ≥ (n − 1)κϑn−1

1
n−1

⎛
⎝∫

N

λn−1
κ

⎞
⎠

n−2
n−1

. (5.14)

When κ = 1, it was already observed in [9] that (5.14) is a non-sharp version of Beckner’s
Sobolev type inequality, Lemma 5.4. When κ = −1, by the Hölder inequality, we have

∫
N

λn−2
κ ≤ ϑn−1

1
n−1

⎛
⎝∫

N

λn−1
κ

⎞
⎠

n−2
n−1

,

which implies (5.14). When κ = 0, (5.14) is trivial. Hence we show (5.7) and complete the
proof. ��
Lemma 5.4 ([2]) For every positive function f on S

n−1, we have

(n − 1)

∫

Sn−1

f n−2dvolSn−1 + n − 2

2

∫

Sn−1

f n−4|∇ f |2g
Sn−1

dvolSn−1

≥ (n − 1)ω
1

n−1
n−1

⎛
⎜⎝

∫

Sn−1

f n−1dvolSn−1

⎞
⎟⎠

n−2
n−1

.

Proof Theorem 4 in [2] gives that

(n − 1)

∫

Sn−1

w2dvolSn−1 + 2

n − 2

∫

Sn−1

|∇w|2g
Sn−1

dvolSn−1

≥ (n − 1)ω
1

n−1
n−1

⎛
⎜⎝

∫

Sn−1

w
2(n−1)

n−2 dvolSn−1

⎞
⎟⎠

n−2
n−1

.

for every positive smooth function w. Set w = f
n−2

2 , one gets the desired result. ��
Remark 5.5 It is easy to see that the above inequality holds also on the quotients of spherical
space form.
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Proof of Theorem 5.1 Note that |∂ M | = ρn−1
0 ϑn−1. The inequality (5.1) follows directly

from Lemma 5.2 and Lemma 5.3. When the equality holds, we have the equality in (5.3),
which forces |A|2 = 1

n−1 H2 and hence � is umbilic. When m �= 0, an umbilic hypersurface
must be a slice {ρ} × N . When m = 0, it follows from the equality case in (5.14) that λκ is
constant, which implies again � is a slice {ρ} × N . ��

We now prove another version of Alexandrov–Fenchel inequalities, which is applicable
to prove Penrose inequalities.

Theorem 5.6 Let � be a compact embedded hypersurface which is star-shaped with positive
mean curvature in (ρ0 = ρκ,m,∞)×N n−1. Let � be the region bounded by � and the horizon
∂ M = {ρ0} × N. Then

∫
Vκ,m Hdμ ≥ (n − 1)κϑn−1

(( |�|
ϑn−1

) n−2
n−1 −

( |∂ M |
ϑn−1

) n−2
n−1

)

+(n − 1)ϑn−1

(( |�|
ϑn−1

) n
n−1 −

( |∂ M |
ϑn−1

) n
n−1

)
.

Equality holds if and only if � = {ρ} × N for some ρ ∈ [ρκ,m,∞).

Proof To simplify the notation, we define

J(�t ) := n
∫
�t

Vκ,mdvol and K(�t ) := ϑn−1

(( |�t |
ϑn−1

) n
n−1 −

( |∂ M |
ϑn−1

) n
n−1

)
.

By (5.5) and (5.6), we have

d

dt

∫
�t

nVκ,mdvol =
∫
�t

n
Vκ,m

H
dμ

≥ n2

n − 1

∫
�t

Vκ,mdvol + n

n − 1
ρn

0 ϑn−1.

Hence

d

dt

⎛
⎜⎝n

∫
�t

Vκ,mdvol + ρn
0 ϑn−1

⎞
⎟⎠ ≥ n

n − 1

⎛
⎜⎝n

∫
�t

Vκ,mdvol + ρn
0 ϑn−1

⎞
⎟⎠ .

Taking into account of Lemma 4.1 (1), we find that

d

dt

J(�t ) − K(�t )( |�t |
ϑn−1

) n
n−1

≥ 0. (5.15)

It suffices to show when the initial surface � satisfies

J(�) ≤ K(�), (5.16)

otherwise the assertion follows directly from Theorem 5.1. By the monotonicity (5.15), we
divide the proof into two cases.
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Case 1 There exists some t1 ∈ (0,∞) such that

J(�t1) − K(�t1) = n
∫
�t

Vκ,mdvol + ρn
0 ϑn−1 − ϑn−1

( |�t1 |
ϑn−1

) n
n−1 = 0.

and

J(�t ) − K(�t ) = n
∫
�t

Vκ,mdvol + ρn
0 ϑn−1 − ϑn−1

( |�t |
ϑn−1

) n
n−1 ≤ 0 for t ∈ [0, t1].

From (5.4), we know that
∫
�t

pdμ − (n − 2)mϑn−1 − ωn−1

( |�t |
ϑn−1

) n
n−1 ≤ 0 for t ∈ [0, t1].

For t ∈ [0, t1], by (5.3), we check that

d

dt

⎛
⎜⎝

∫
�t

Vκ,m Hdμ + 2(n − 1)mϑn−1 − (n − 1)ϑn−1

( |�t |
ϑn−1

) n
n−1

⎞
⎟⎠

≤ n − 2

n − 1

∫
�t

Vκ,m Hdμ + 2
∫
�t

pdμ − nϑn−1

( |�t |
ϑn−1

) n
n−1

= n − 2

n − 1

⎛
⎜⎝

∫
�t

Vκ,m Hdμ − (n − 1)ϑn−1

( |�t |
ϑn−1

) n
n−1

⎞
⎟⎠

+2
∫
�t

pdμ − 2ϑn−1

( |�t |
ϑn−1

) n
n−1

≤ n − 2

n − 1

⎛
⎜⎝

∫
�t

Vκ,m Hdμ − (n − 1)ϑn−1

( |�t |
ϑn−1

) n
n−1 + 2(n − 1)mϑn−1

⎞
⎟⎠ .

Hence the quantity

Q2(t) :=
∫
�t

Vκ,m Hdμ + 2(n − 1)mϑn−1 − (n − 1)ϑn−1

( |�t |
ϑn−1

) n
n−1

( |�t |
ϑn−1

) n−2
n−1

is nonincreasing for t ∈ [0, t1]. Using (1.21) and Theorem 5.1, we obtain

Q2(0) ≥ Q2(t1) = Q1(t1) ≥ (n − 1)κϑn−1.

Case 2 For all t ∈ [0,∞), we have

J(�t ) − K(�t ) ≤ 0.

From above, we know that Q2(t) is monotone non-increasing in t ∈ [0,∞). Thus it suffices
to show that

lim inf t→∞Q2(t) ≥ (n − 1)κϑ
1

n−1
n−1 . (5.17)
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By the Hölder inequality and (5.10) we have

ϑn−1

( |�(t)|
ϑn−1

)n/(n−1)

≤
∫
N

(
√

det(g))n/(n−1)

=
∫
N

λn
κ

(
1 + n

2(n − 1)
λ−4

κ |∇λκ |2 + O(e− 4t
n−1 )

)
. (5.18)

Combining (5.9) and (5.18), we note that (5.17) is reduced to prove

(n − 1)κ

∫
N

λn−2
κ + n − 2

2

∫
N

λn−4
κ |∇λκ |2 ≥ (n − 1)κϑn−1

1
n−1

⎛
⎝∫

N

λn−1
κ

⎞
⎠

n−2
n−1

. (5.19)

When κ = 1, (5.19) follows from the sharp version of Beckner’s Sobolev type inequality on
S

n−1. See also Remark 5.5. When κ = −1, by the Hölder inequality, we have

∫
N

λn−2
κ ≤ ϑn−1

1
n−1

⎛
⎝∫

N

λn−1
κ

⎞
⎠

n−2
n−1

,

which implies (5.19). When κ = 0, (5.19) is trivial. Hence we show (5.17). It is easy to show
that equality implies that � is geodesic. We complete the proof. ��
Acknowledgments We would like to thank the referee for his /or her critical reading and helpful suggestion.

Appendix A: Examples of ALH graphs

We begin this appendix by showing that any Kottler space Pκ,m(m > mc) with metric (2.1),
i.e.

gκ,m = dρ2

V 2
κ,m(ρ)

+ ρ2 ĝ, Vκ,m =
√

ρ2 + κ − 2m

ρn−2 . (6.1)

can be represented as an ALH graph over another Kottler space Pκ,m′ (mc ≤ m′ < m) in
the ambient space Qκ,m′ = R × Pκ,m′ , which is equipped with the Riemannian metric

Vκ,m′(ρ)2dt2 + gκ,m′ .

Obviously one only needs to find a rotational symmetric function f = f (ρ) satisfying

(
ρ2 + κ − 2m′

ρn−2

) (
∂ f

∂ρ

)2

= 1

ρ2 + κ − 2m
ρn−2

− 1

ρ2 + κ − 2m′
ρn−2

.

m′ < m implies that the right hand side is positive for ρ > 0. Let ρ0 := ρκ,m be the largest
positive root of

φ(ρ) := ρ2 + κ − 2m

ρn−2 = 0.
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When ρ approaches ρ0, we have ∂ f
∂ρ

= O((ρ − ρ0)
− 1

2 ), so that one can solve that

f (ρ) =
ρ∫

ρ0

1√
s2 + κ − 2m′

sn−2

√
1

s2 + κ − 2m
sn−2

− 1

s2 + κ − 2m′
sn−2

ds.

Its horizon is {{ρ0} × N : ρn
0 + κρn−2

0 = 2m} which implies (1.21). Also one can check
directly that the ALH mass (1.6) of the Kottler space (6.1) is exactly m.

With the same method, one can represent all rotationally symmetric graphs (with horizon)
over Pκ,m in Qκ,m as rotationally symmetric graphs over Pκ,m′ in Qκ,m′ for m′ < m. We
believe that this statement is also true for non-rotationally symmetric graphs, i.e., all graphs
over Pκ,m in Qκ,m can be represented as graphs over Pκ,m′ in Qκ,m′ for m′ < m.

In the next example, we show that for any m > mc there are ALH graphs over Pκ,m′ in
Qκ,m′ (mc ≤ m′ < m) with a horizon and the dominant condition R + n(n − 1) ≥ 0, which
can not be represented as ALH graphs in Qκ,m , and can also not be represented as ALH
graphs in Qκ,m′′ for m′′ > m.

We consider a class of metrics which are perturbation of the Kottler–Schwarzschild spaces.
For this purpose, let (N n−1, ĝ) be a closed space form of constant sectional curvature κ = −1.
Fixing t ∈ (−∞, 1). From now we consider a family of metrics

gm,a = dρ2

V 2
m,a(ρ)

+ ρ2 ĝ, Vm,a =
√

ρ2 − 1 − 2m

ρn−2 − a

ρn−t
.

Here the parameter m belongs to the following interval

m ∈ [mc,+∞) and mc = − (n − 2)
n−2

2

n
n
2

. (6.2)

and the parameter a ≤ 0. When a = 0, they are just the Kottler–Schwarzschild spaces.
Let ρm,a be the largest positive root of

ρ2 − 1 − 2m

ρn−2 − a

ρn−t
= 0.

It is clear that ρm,a is increasing in m and in a, provided it is well defined.
As in Sect. 2, by a change of variable r = r(ρ) with

r ′(ρ) = 1

Vm,a(ρ)
, r(ρm,a) = 0

we write the above metric in the warped product form on [0,∞) × N as follows

gm,a := ḡ := dr2 + λm,a(r)2 ĝ, (6.3)

where λm,a : [0,∞) → [ρm,a,∞) is the inverse of r(ρ), i.e., λm,a(r(ρ)) = ρ. For simplicity,
we omit sometimes the subscripts m, a if there is no confusion. It is easy to check that

Ric(ḡ) = −
(

(n − 1) − (n − 2)mλ−n + −n − t + 4

2
aλt−2−n

)
ḡ

−(n − 2)

(
nmλ−n + n − t + 2

2
aλt−2−n

)
dr2

R(ḡ) = −n(n − 1) + (n − 1)(t − 2)aλt−2−n .
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As a consequence, we get
Fact 1 For all m > mc and a < 0, we have

R(ḡ) + n(n − 1) > 0

When a = 0, then

R(ḡ) + n(n − 1) ≡ 0.

Moreover, for all m > mc and a ≤ 0 close to 0 in order to well define ρm,a , we have
Vm,a |R(ḡ) + n(n − 1)| is integrable.

By the definition of ρm,a, we know that

λ′′
m,a(r) ≥ 0 for r ∈ [0,∞)

and

λm,a(r) = O(er ) as r → +∞.

An immediate result is the following.

Fact 2 For all m > mc, a ≤ 0 and |a| is sufficiently small, gm,a is an ALH metric and has a
horizon {ρm,a} × N . Moreover, its ALH mass is exactly m.

Now we consider the metric gm,a as a graph over some Kottler–Schwarzschild space gm1,0

with m1 < m. More precisely, we have

Fact 3 For all m > mc, there exist b < 0 and m1 ∈ (mc, m) such that for any a ∈ [b, 0) and
for any ρ > ρm,a there holds

Vm1,0(ρ) > Vm,a(ρ).

To show this fact, we first observe that for all ρ > 1,

Vm+a/2,0(ρ) > Vm,a(ρ).

We fix ε1 ∈ (0, (m − mc)/2) and set m1 = m − ε1. It is clear for all a ∈ (−2ε1, 0) and for
all ρ > 1

Vm−ε1,0(ρ) > Vm,a(ρ).

On the other hand, for all a ∈ (−2ε1, 0), there holds ρm,a > ρm,−2ε1 > 0 provided they are
well defined. If ρm,−2ε1 > 1 we are done with b = −ε1. If ρm,−2ε1 ≤ 1, we could choose
b ∈ (−2ε1, 0) with the small absolute value such that for all ρ ∈ (ρm,−2ε1 , 1] we have

Vm−ε1,0(ρ) > Vm,b(ρ).

Now we take m1 = m − ε1 and Fact 3 follows.
By Fact 3, as the beginning of this appendix, we see that the metric gm,a could be written

as a rotationally symmetric ALH graph over P−1,m1 in Q−1,m1 (recall P−1,m1 and Q−1,m1

are defined in Section 1).

Fact 4 For all m > mc, a < 0 and |a| is sufficiently small, the metric gm,a on [ρm,a,∞)× N
can not be realized as a graph over P−1,m in Q−1,m with a horizon.

Suppose that the fact were not true, ie. gm,a would be represented as an ALH graph over
P−1,m in Q−1,m . It follows that the horizon ({ρm,a} × N , gm,a |{ρm,a}×N ) has volume large
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than or equal to the volume
∣∣{ρm,0} × N

∣∣. This contradicts the fact ρm,a < ρm,0. It is clear
that it can also not be realized as a graph in Q−1,m′′ with m′′ > m.

Fact 5 For all m > mc, there exist m2 > m, m1 < m and a < 0 such that the metric gm2,a

on (ρm2,a,∞) × N can not be realized as a graph over P−1,m in Q−1,m with a horizon, but
it can be realized as a graph over P−1,m1 in Q−1,m1 with a horizon. Recall that the metric
gm2,a has ALH mass m2.

In view of Facts 3 and 4, there exists a < 0 and m1 < m, such that ρm1,0 < ρm,a < ρm,0

and for ρ > ρm,a , Vm1,0(ρ) > Vm,a(ρ) holds. Fixing such a, we can choose m2 > m such
that ρm1,0 < ρm2,a < ρm,0 and for ρ > ρm2,a , Vm1,0(ρ) > Vm2,a(ρ) holds. Hence Fact 5
yields. In particular, when m = 0, we can find some metric with positive ALH mass, which
can not be realized as a graph over P−1,0 in Q−1,0 with a horizon, but it can be realized as a
graph over P−1,m1 in Q−1,m1 with a horizon. Here m1 < 0.

In particular, fact 5 provides examples of ALH metrics with positive ALH mass, which
can be represented an ALH graph over P−1,m′ with m′ < 0, but can be not represented as an
ALH graph over P−1,0.

Since the above metrics have R + n(n − 1) > 0, one can perturb these metrics to obtain
non-rotationally symmetric ALH graphs with similar properties.

Appendix B: Definitions of ALH graphs

In this appendix we show for a graph over Pκ,m\� in Qκ,m , Definition 1.1 and Definition
1.2 are equivalent.

Proposition 7.1 A graph over Pκ,m\� in Qκ,m is an ALH graph in the sense of Definition
1.2 if and only if it is an ALH manifold in the sense of Definition 1.1.

Proof We prove the “only if” part. Since the Kottler–Schwarzschild space (Pκ,m, gκ,m) is
ALH in the sense of Definition 1.1, there exists a compact subset K0 ⊂ Pκ,m and a dif-
feomorphism at infinity �0 : Pκ,m \ K0 → N × (ρ0,+∞) ⊂ Pκ , where ρ0 > 1 such
that

‖(�−1
0 )∗gκ,m − bκ‖bκ + ‖∇bκ

(
(�−1

0 )∗gκ,m

)
‖bκ = O(ρ−τ ), τ >

n

2
. (7.1)

Since (Mn, g) is an ALH graph over Pκ,m\� in the sense of Definition 1.2, there exists
a compact subset K and a diffeomorphism at infinity �1 : M \ K → N × (ρ̃0,+∞) ⊂
Pκ,m\(K0 ∪ �) such that

‖(�−1
1 )∗g − gκ,m‖gκ,m + ‖∇̄

(
(�−1

1 )∗g
)

‖gκ,m = O(ρ̃−τ ), τ >
n

2
, (7.2)

where ρ̃ is such that (y, ρ̃) = �−1
0 (x, ρ) ∈ N × (ρ̃0,∞). Define � : M \ K → N ×

(ρ0,+∞) ⊂ Pκ by � = �0 ◦ �1, then it is easy to see from (7.1) and (7.2) that

‖(�−1)∗g − bκ‖bκ + ‖∇bκ
(
(�−1)∗g

) ‖bκ = O(ρ−τ ), τ >
n

2
.

The integrability condition (1.5) follows directly from (1.15), since at infinity, Vκ,m and Vκ

are comparable. The “if” part can be proved in a similar way. ��
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