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Abstract We study the nonexistence of solutions for fractional elliptic problems via a
monotonicity result which obtained by the method of moving planes with an improved
Aleksandrov–Bakelman–Pucci type estimate for the fractional Laplacian in unbounded
domain.
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1 Introduction

This paper is devoted to the study of nonexistence results for positive solutions of a class of
fractional elliptic equations and systems in the half space R

N+ , i.e.,{
(−�)αu = u p in R

N+ ,

u = 0 in R
N \R

N+
(1.1)

and ⎧⎨
⎩

(−�)αu = vq in R
N+ ,

(−�)αv = u p in R
N+ ,

u = v = 0 in R
N \R

N+
(1.2)

where R
N+ = {x = (x̃, xN ) ∈ R

N−1 × R | xN > 0}, α ∈ (0, 1) and the fractional Laplacian
operator (−�)α is defined as
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642 A. Quaas, A. Xia

(−�)αu(x) = CN ,α P.V .

∫

RN

u(x) − u(y)

|x − y|N+2α
dy for all x ∈ R

N . (1.3)

Here P.V . denotes the principal value of the integral, that for notational simplicity we omit
in what follows and we without lose of generality take CN ,α = 1.

If α = 1, Dancer [11] studied the nonexistence of positive solutions for the following
nonlinear elliptic equation {−�u = u p in R

N+ ,

u = 0 in ∂R
N+

(1.4)

and proved that problem (1.4) have no bounded positive solutions if 1 < p < N+1
N−3 . We note

that N+2
N−2 < N+1

N−3 if N > 3, so this improves Theorem 1.3 in Gidas and Spruck [19] which

established that the problem (1.4) have no nonnegative classical solution if 1 < p < N+2
N−2 .

The main idea of [11], which consist in the following: if there is a solution of (1.4) in {xN > 0},
and if one is able to show that any such solution is increasing in xN -direction, then, after
eventually some supplementary work and bounded assumption, one should be able to pass
at the limit as xN → ∞ and thus get a solution of the same problem in R

N−1, which in turn
permits to use the nonexistence result for the whole space. Also, there is a simplify version of
the argument by Dancer, see [2]. For more general operators, similar problem for equations
and systems have been studied by the Quaas and Sirakov [24,25] and reference therein for
other related results.

During the last years there has been a renewed and increasing interest in the study of
linear and nonlinear integral operators, especially the fractional Laplacian, so one naturally
wonders if the method in [2] and [11] is still applicable for the fractional Laplacian operator.

Our first main result is

Theorem 1.1 If N > 2α+1 and 1 < p <
(N−1)+2α
(N−1)−2α

, there are no positive viscosity bounded
solutions of Eq. (1.1).

Remark 1.1 This Theorem improves Corollary 1.6 of [15] in the case N+2α
N−2α

< p <
(N−1)+2α
(N−1)−2α

, see also Theorem 1.2 in [14].

In order to complete the proof of Theorem 1.1 we need a Liouville type result for the
corresponding entire space problem

(−�)αu = u p in R
N . (1.5)

By Theorem 3 in [9], Theorem 4.5 in [10] and some regularity results (see Theorems 2.5 and
2.6 below), we have the following result. See also [22] and [14].

Theorem 1.2 For 1 < p < N+2α
N−2α

and N > 2α, there are no positive viscosity bounded
solutions of Eq. (1.5).

For system (1.2), we can get similar result as Eq. (1.1). The same we first consider the
corresponding system in the entire space{

(−�)αu = vq in R
N ,

(−�)αv = u p in R
N .

(1.6)

We can deduce the following result from Theorem 1 in [23] and regularity results Theo-
rems 2.5 and 2.6 below.
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Liouville type theorems for nonlinear elliptic equations and systems 643

Theorem 1.3 If N > 2α and (p, q) satisfy

N

N − 2α
< p, q ≤ N + 2α

N − 2α
but not both equal to

N + 2α

N − 2α
,

then there are no positive viscosity bounded solutions of system (1.6).

We note that Theorem 1.3 does not considered the case 1 < p, q ≤ N
N−2α

. In [12],
Dahmani–Karami–Kerbal use weak formulation approach and rely on a suitable choice of
test functions, they proved that there are no nonnegative bounded weak solutions of system
(1.6) if

max

{
2α(p + 1)

pq − 1
,

2α(q + 1)

pq − 1

}
> N − 2α, where p, q > 1. (1.7)

Noticed that if 1 < p, q ≤ N
N−2α

, then condition (1.7) is satisfied. So Theorem 1 in [12] and
regularity results Theorems 2.5 and 2.6 below can imply that

Theorem 1.4 Suppose N > 2α, then there are no positive viscosity bounded solution of
(1.6) if (p, q) satisfy (1.7).

Remark 1.2 If we replace the fractional Laplacian operator in system (1.6) by more general
integro differential operator, we can get similar result as Theorem 1.4 by considering the
fundamental solutions as in [17] and [24], see [26].

Thus use the same method as the proof of Theorem 1.1, we can establish our second result.

Theorem 1.5 Suppose p, q > 1 and N > 2α + 1, then there are no positive viscosity
bounded solutions of system (1.2) if and only if

(N − 1)

(N − 1) − 2α
≤ p, q ≤ (N − 1) + 2α

(N − 1) − 2α
but not both equal to

N − 1 + 2α

N − 1 − 2α

and

max

{
2α(p + 1)

pq − 1
,

2α(q + 1)

pq − 1

}
> N − 1 − 2α.

This article is organized as follows. In Sect. 2 we present some preliminaries to introduce
the notion of viscosity solutions, weak Harnack inequality, maximum principle in narrow
domain and the Aleksandrov–Bakelman–Pucci (ABP) estimate in unbounded domain as in [3]
for fractional Laplacian. In Sects. 3 and 4 are devoted to prove the nonexistence of positive
viscosity bounded solutions of Eq. (1.1) and system (1.2) respectively and the respective
monotonicity results.

2 Preliminaries

The purpose of this section is to introduce some preliminaries and prove the ABP estimate
in unbounded domain for fractional Laplacian. We start this section by defining the notion
of viscosity solution for nonlocal equation. For a given domain � of R

N and functions h and
g, we consider the equation of the form:

(−�)αu = h in �, u = g in R
N \�. (2.1)
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Definition 2.1 We say that a function u : R
N → R continuous in � is a viscosity super-

solution (sub-solution) of (2.1) if

u ≥ g (resp. u ≤ g) in R
N \�̄

and for every point x0 ∈ � and some neighborhood V of x0 with V̄ ⊂ � and for any
φ ∈ C2(V̄ ) such that u(x0) = φ(x0) and

u(x) ≥ φ(x) (resp. u(x) ≤ φ(x)) for all x ∈ V,

defining

ũ =
{

φ in V,

u in R
N \V,

(2.2)

we have

(−�)α ũ(x0) ≥ h(x0) (resp. (−�)α ũ(x0) ≤ h(x0)).

Remark 2.1 (a) This definition is equivalent in the case of super-solution to take φ punctually
in C1,1 in x0 ∈ � such that u − φ as a zero at x0 that is a global minimum then
(−�)αφ(x0) ≥ h(x0), see Lemma 4.3 of [6]. The analogous results holds for sub-
solution.

(b) Other definition and their equivalence can be found in [1].

In order to prove Theorems 1.1 and 1.5, we will use the classical method of moving planes.
A key tool in the use of the method of moving planes is the maximum principle for narrow
domain, which is a consequence of the ABP estimate in unbounded domain for fractional
Laplacian, for local operators see [3]. The ABP estimate for bounded domain with nonlocal
operator see [21]. In this section we will prove the ABP estimate in an unbounded domain
for the fractional Laplacian.

We first recall the following definition of [3]. For a given domain � ∈ R
N , the quantity

R(�) is defined to be the smallest positive constant R such that

meas(BR(x)\�) ≥ 1

2
meas(BR(x)) for all x ∈ �. (2.3)

If no such radius R exists, we define R(�) = +∞. It is easy to say that whenever the domain
� contained between two parallel hyperplanes at a distance d , we have

R(�) ≤ 2N d

ωN
,

where ωN is the volume of unit ball in R
N .

We define the open cube Qr in R
N is centered at x0 with side-length r . Then we have the

following version weak Lε estimate for fractional Laplacian see for a instance Lemma 9.2
in [6]. See also Theorem 10.3 in [21].

Lemma 2.1 (weak Lεestimate) There exist universal constants ζ0 > 0, 0 < μ < 1 and
M > 1 such that if u ∈ C(Q̄4

√
N ) satisfies:

(1) u ≥ 0 in R
N ,

(2) inf Q3 u ≤ 1 and
(3) �αu(x) ≤ ζ0 in Q4

√
N .
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Liouville type theorems for nonlinear elliptic equations and systems 645

Then

|{x ∈ Q1 : u(x) > Mk}| ≤ (1 − μ)k

for k = 1, 2, 3, . . . .

As a consequence, we have that

|{x ∈ Q1 : u(x) ≥ t}| ≤ dt−ε, ∀ t > 0,

where d and ε are positive universal constants.

Now use Lemma 2.1 and the same argument as Theorem 4.8 in [5] (see also [20]) to get
the following result by noticing that L N norm is replaced by L∞ norm.

Theorem 2.1 Let u ∈ C(Q̄1) satisfies �αu ≤ h in Q1 and u ≥ 0 in R
N , where h ∈ C(Q̄1).

Then

‖u‖L p0 (Q1/4) ≤ C

(
inf
Q1/2

u + ‖h‖L∞(Q1)

)
,

where p0 and C are positive universal constants.

Next, by Theorem 2.1 and some covering arguments we can get the following weak
Harnack inequality.

Theorem 2.2 (weak Harnack inequality) Let u ∈ C(B̄2R) satisfies �αu ≤ h in B2R and
u ≥ 0 in R

N , where h ∈ C(B̄2R). Then
⎛
⎜⎝ 1

|BR |
∫
BR

u p0

⎞
⎟⎠

1/p0

≤ C

{
inf
BR

u + R2α‖h‖L∞(B2R)

}
,

where p0 and C are positive universal constants.

Proof Let t = 4/
√

N and v(x) = u(t Rx), then �αv(x) = (t R)2α�αu(t Rx) ≤ h̃ in B√
N/2,

where h̃(x) = (t R)2αh(t Rx). We note that Q1 ⊂ B√
N/2, so by Theorem 2.1 we have

‖v‖L p(Q1/4) ≤ C

{
inf
Q1/2

v + ‖h̃‖L∞(B√
N/2)

}
.

Since B1/8 ⊂ Q1/4 ⊂ Q1/2, then

‖v‖L p(B1/8) ≤ C

{
inf
B1/8

v + ‖h̃‖L∞(B√
N/2)

}
.

By the definition of t and changing variables, we have
⎛
⎜⎝ 1

|Bδ|
∫
Bδ

u p

⎞
⎟⎠

1/p0

≤ C

{
inf
Bδ

u + R2α‖h‖L∞(B2R)

}
, (2.4)

where δ = 1
2
√

N
R.

Next, since u ∈ C(B̄2R) and then exist x0 ∈ B̄R such that

u(x0) = inf
BR

u. (2.5)
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By the Fubini’s theorem and changing variables,∫
B

R+ δ
4

∫
B δ

4
(y)

u p dx dy =
∫

B δ
4

∫
B

R+ δ
4

u p(y + ξ) dy dξ

≥ |B δ
4
|
∫
BR

u p(y) dy.

On the other hand, applying the mean value principle for integral, there exist y0 ∈ BR+ δ
4

such that ∫
B δ

4
(y0)

u p dx ≥
(

δ

4R + δ

)N ∫
BR

u p(x) dx . (2.6)

Next we construct a sequence of balls {B δ
4
(xk)}n

k=1 such that xk ∈ B̄R+ δ
4
, xk+1 ∈ B δ

4
(xk)

(k = 0, 1, 2, . . . , n − 1), xn = y0, n ≤ 24
Rδ

. To apply (2.4) in ball B δ
4
(xk), then

inf
B δ

4
(xk )

u ≥ 1

C

⎛
⎜⎜⎝ 1

|B δ
4
|

∫
B δ

4
(xk )

u p

⎞
⎟⎟⎠

1/p

− R2α‖h‖L∞(B R
2

(xk ))

≥ 1

C

⎛
⎜⎜⎝ 1

|B δ
4
|

∫
B δ

4
(xk )∩B δ

4
(xk+1)

u p

⎞
⎟⎟⎠

1/p

− R2α‖h‖L∞(B2R)

≥ 1

C̃
inf

B δ
4
(xk+1)

u − R2α‖h‖L∞(B2R).

Without loss of generality we let C̃ ≥ 2 and replying the process above, we can obtain

inf
B δ

4
(x0)

u ≥ 1

C̃n
inf

B δ
4
(y0)

u − 2R2α‖h‖L∞(B2R). (2.7)

Next, by the definition of δ, (2.6) and applying (2.4) in B δ
4
(y0), we have

inf
B δ

4
(y0)

u ≥ 1

C

⎛
⎜⎜⎝ 1

|B δ
4
|

∫
B δ

4
(y0)

u p

⎞
⎟⎟⎠

1/p

− R2α‖h‖L∞(B2R)

≥ 1

C ′

⎛
⎜⎝ 1

|BR |
∫
BR

u p

⎞
⎟⎠

1/p

− R2α‖h‖L∞(B2R). (2.8)

Finally, we complete our proof by combining (2.7), (2.8) and (2.5). 
�
The following is an improved ABP estimate. It applies in any domain satisfying R(�) <

+∞. Notice that here we do not need the domain is bounded.
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Liouville type theorems for nonlinear elliptic equations and systems 647

Theorem 2.3 Let � be an open domain with R(�) < +∞. Suppose u ∈ C(�̄) and h ∈
C(�̄) satisfy sup� u < ∞ and {

�αu ≥ h in �,

u = 0 in R
N \�.

(2.9)

Then

sup
�

u ≤ C R(�)2α‖h‖L∞(�),

where C is a positive constant.

Proof Here we follow the idea of [3] (see also [4]). To prove this, assume first that � is
bounded. Then the supremum of u is achieved, so that there exist x̃ ∈ � such that

M := sup
�

u = u(x̃).

To simplify notation, we write R := R(�) and BR := BR(x̃). We know that

meas(BR\�)

meas(BR)
≥ 1

2
. (2.10)

Consider the function

v = M − u.

We claim that v satisfies �αv ≤ −h̃ in R
N , with h̃ continuous and ‖h−‖L∞(�) =

‖h̃‖L∞(RN ), where h−(x) = min{h(x), 0}. In fact, let φ be a test function so that v − φ has a
global minimum at x0 ∈ R

N such that v(x0) = φ(x0). If φ(x0) = M then �αφ(x0) ≤ 0 and
if φ(x0) < M then x0 ∈ � so by Eq. (2.9) we have �αφ(x0) ≤ −h(x0) ≤ (−h−)(x0). Now
since h is continuous in �̄ we can extended h− with a non positive continuous function h̃
such that ‖h−‖L∞(�) = ‖h̃‖L∞(RN ) and therefore �αφ(x0) ≤ −h̃(x0) so the claim follows.

Using (2.10), v(x0) = 0 and Theorem 2.2 applied to v in B2R , we have

(1/2)1/p M ≤
(

meas(BR\�)

meas(BR)

)1/p

M

≤
⎛
⎜⎝ 1

meas(BR)

∫
BR\�

v p

⎞
⎟⎠

1/p

≤
⎛
⎜⎝ 1

meas(BR)

∫
BR

v p

⎞
⎟⎠

1/p

≤ C

{
inf
BR

v + R2α‖h̃‖L∞(B2R)

}

= C R2α‖h−‖L∞(B2R∩�),

where p > 0. This proves the desired inequalities.
In case the � is unbounded, the proof is same with minor changes. We define M := sup� u

and we take, for any η > 0, a point x0 such that M −η ≤ u(x0). We now have that v(x0) ≤ η.
We proceed as before and get desired estimate by letting η → 0. 
�

123
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It is not difficult to deduce from Theorem 2.3 the following maximum principle in domains
(not necessarily bounded) for which R(�) is sufficiently small.

Theorem 2.4 Let � be an open domain. Suppose that φ : � → R is in L∞(�) and u ∈ C(�̄)

is a solution of {
(−�)αu ≥ φ(x)u(x) in �,

u ≥ 0 in R
N \�,

(2.11)

with φu ∈ C(�̄). Then there exist a number R̄ such that R(�−) ≤ R̄ implies that each
solution satisfies u ≥ 0 in �.

Proof By (2.11), we observe that
{

�α û(x) ≥ −φ(x)û(x) in �−,

û(x) = 0 in R
N \�−,

(2.12)

where û(x) = − min{u(x), 0}, i.e., û = −u− and �− = {x ∈ � | u(x) < 0}.
By Theorem 2.3 with h(x) = −φ(x)û(x), we obtain

‖û‖L∞(�−) = sup
�−

û ≤ C R(�−)2α‖φ(x)û(x)‖L∞(�−).

Thus

‖û‖L∞(�−) ≤ C R(�−)2α‖φ(x)‖L∞(�)‖û(x)‖L∞(�−).

We see that, if choose R̄ such that C R(�−)2α‖φ(x)‖L∞(�) < 1, then we have

‖û‖L∞(�−) = 0.

This implies |�−| = 0 and since �− is open, we have �− = ∅. Then we complete the proof.

�

Next we give a regularity theorem.

Theorem 2.5 Let g bounded in R
N \� and f ∈ Cβ

loc(�) and u be a viscosity solution of

(−�)αu = f in �, u = g on R
N \�,

then there exists γ such that u ∈ C2α+γ

loc (�).

Proof Here we use ideas of Silvestre [27] and the argument of Chen et al. [8]. Suppose
without loss of generality that B1 ⊂ � and f ∈ Cβ(B1). Let η be a non-negative, smooth
function with support in B1, such that η = 1 in B1/2. Now we discuss the following equation

−�w = −η f in R
N .

By Hölder regularity theory for the Laplacian we find w ∈ C2,β , so that (−�)1−αw ∈ C2α+β ,
see [28] or for example Theorem 3.1 in [16]. Then, since

(−�)α(u − (−�)1−αw) = 0 in B1,

we can use Theorem 1.1 and Remark 9.4 of [7] (see also Theorem 4.1 there), to obtain that
there exist β̃ such that u − (−�)1−αw ∈ C2α+β̃ , from where we conclude. 
�
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Remark 2.2 We say that a function u continuous in � and bounded in R
N is a classical

solution of (2.1) if (−�)αu(x) is well defined for all x ∈ �,

(−�)αu(x) = h, for all x ∈ �

and u(x) = g a.e. in R
N \�. Classical super and sub-solutions are defined similarly.

The Maximum Principle is key tool in the analysis, one can see that a nonnegative solution
u is either strictly positive or identically zero in R

N . A more general case can be found in
[27].

Proposition 2.1 Let � be an open and bounded domain of R
N , and let u be a classical

solution of

(−�)αu ≥ 0 in � and u ≥ 0 in R
N \�.

Then u ≥ 0 in R
N . Moreover, if u(x) = 0 for some point inside �, then u ≡ 0 in all R

N .

Proof If the conclusion is false, then there exists x ′ ∈ � such that u(x ′) < 0. Since � is
bounded and u ≥ 0 in R

N \�, then the continuity of u implies that there exists x0 ∈ � such
that

u(x0) = min
x∈�

u(x) = min
x∈RN

u(x).

So we can find some points y ∈ R
N such that u(y) > u(x0) and finally by the definition of

fractional Laplacian operator (see (1.3)) we can obtain (−�)αu(x0) < 0, which contradicts
our assumption. Therefore u ≥ 0 in R

N .
On the other hand, if u(x1) = 0 for some point x1 ∈ � and u �≡ 0 in R

N , as above we
have (−�)αu(x1) < 0 which contradicts the assumption. 
�

We also need the following Cβ estimate, which is a direct conclusion of Theorem 2.6 in
[6].

Theorem 2.6 Let � be a regular domain. If u ∈ C(�̄) satisfies the inequalities

�αu ≥ −C0 and �αu ≤ C0 in �,

then for any �′ � � there exist constant β > 0 such that u ∈ Cβ(�′) and

‖u‖Cβ (�′) ≤ C

{
sup
�

|u| + ‖u‖L∞(�) + C0

}

for some constant C > 0 which depends on N.

Remark 2.3 Theorems 2.6 and 2.5 imply that if u is a viscosity and bounded solution of
(−�)αu = u p in � with p > 0, then u is classical. In fact, if u is bounded, we have u p is
bounded. So Theorem 2.6 implies there exist constants β, γ > 0 such that u ∈ Cβ and then
u p ∈ Cγ . Finally by Theorem 2.5 u is a classical solution.

We are going to use the following convergence result for fractional Laplacian (see Corol-
lary 4.6 in [6] for integro differential equation).

Theorem 2.7 Let {uk}, k ∈ N be a sequence of functions that are bounded in R
N and

continuous in �, fk and f are continuous in � such that

(1) �αuk = fk in � in viscosity sense.
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(2) uk → u locally uniformly in �.
(3) uk → u a.e. in R

N .
(4) fk → f locally uniformly in �.

Then �αu = f in � in viscosity sense.

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We consider first the monotonicity of
solutions. In fact, the monotonicity results used in the proof of Theorem 1.1 can be applied
to much more general nonlinearities, we prove the following:

Theorem 3.1 Suppose we have a positive viscosity bounded solution u of{
(−�)αu = f (u) x ∈ R

N+ ,

u = 0 x ∈ R
N \R

N+ ,
(3.1)

where f (u) is a locally Lipschitz continuous function with f (0) ≥ 0 and nondecreasing in
u. Then u is strictly increasing in xN -direction.

In order to prove Theorem 3.1, we use the method of moving planes. For which we give
some preliminary notations, we define

�μ =
{

x = (x̃, xN ) ∈ R
N+ | 0 < xN < μ

}
,

Tμ =
{

x = (x̃, xN ) ∈ R
N+ | xN = μ

}
,

uμ(x) = u(xμ), wμ(x) = uμ(x) − u(x),

where μ > 0 and xμ = (x̃, 2μ − xN ) for all (x̃, xN ) ∈ R
N−1 × R. For any subset A of R

N ,
we write Aμ = {xμ | x ∈ A}, the reflection of A with respect to Tμ.

Proof of Theorem 3.1 We divide the proof in two steps.
Step 1: We prove that if μ > 0 is small enough, then wμ > 0. For this purpose, we first

prove that wμ ≥ 0 if μ > 0 is small enough. If we define

�−
μ = {x ∈ �μ | wμ(x) < 0},

then we just need to show that �−
μ is empty for μ > 0 is small enough. By contradiction, we

assume that �−
μ is not empty. In order to overcome the difficulty introduced by the non local

character of the differential operator in the application of the method of moving planes, we
use a truncation technique as in [18]. We define

w1(x) =
{

wμ(x) x ∈ �−
μ ,

0 x ∈ R
N \�−

μ ,
(3.2)

w2(x) =
{

0 x ∈ �−
μ ,

wμ(x) x ∈ R
N \�−

μ

(3.3)

and we observe that w1(x) = wμ(x) − w2(x) for all x ∈ R
N . Next we claim that for all

μ > 0, we have

(−�)αw2(x) ≤ 0 ∀ x ∈ �−
μ . (3.4)
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By the definition of fractional Laplacian, for x ∈ �−
μ , we have

(−�)αw2(x) =
∫

RN

w2(x) − w2(y)

|x − y|N+2α
dy = −

∫

RN \�−
μ

wμ(y)

|x − y|N+2α
dy

= −
∫

(�μ\�−
μ )∪(�μ\�−

μ )μ

wμ(y)

|x − y|N+2α
dy

−
∫

(RN \R
N+ )∪(RN \R

N+ )μ

wμ(y)

|x − y|N+2α
dy −

∫

(�−
μ )μ

wμ(y)

|x − y|N+2α
dy

= −A1 − A2 − A3.

Next we estimate each of these integrals separately. We first observe that wμ(yμ) =
−wμ(y) for any y ∈ R

N and wμ(y) ≥ 0 in �μ\�−
μ . Then

A1 =
∫

(�μ\�−
μ )∪(�μ\�−

μ )μ

wμ(y)

|x − y|N+2α
dy

=
∫

�μ\�−
μ

wμ(y)

|x − y|N+2α
dy +

∫

�μ\�−
μ

wμ(yμ)

|x − yμ|N+2α
dy

=
∫

�μ\�−
μ

wμ(y)

(
1

|x − y|N+2α
− 1

|x − yμ|N+2α

)
dy ≥ 0,

since |x − yμ| > |x − y| for x ∈ �−
μ and y ∈ �μ\�−

μ . In order to study the sign of A2 we

observe that u = 0 in R
N \R

N+ and uμ = 0 in (RN \R
N+)μ, so we have

A2 =
∫

(RN \R
N+ )∪(RN \R

N+ )μ

wμ(y)

|x − y|N+2α
dy

=
∫

RN \R
N+

uμ(y)

|x − y|N+2α
dy −

∫

(RN \R
N+ )μ

u(y)

|x − y|N+2α
dy

=
∫

RN \R
N+

uμ(y)

(
1

|x − y|N+2α
− 1

|x − yμ|N+2α

)
dy ≥ 0,

since uμ(y) ≥ 0 in R
N \R

N+ and |x − yμ| > |x − y| for all x ∈ �−
μ and y ∈ R

N \R
N+ . Finally,

since wμ(y) < 0 for y ∈ �−
μ , we have

A3 =
∫

(�−
μ )μ

wμ(y)

|x − y|N+2α
dy =

∫

�−
μ

wμ(yμ)

|x − yμ|N+2α
dy

= −
∫

�−
μ

wμ(y)

|x − yμ|N+2α
dy ≥ 0.
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Hence, we can obtain (3.4). Now we apply (3.4) and the linearity of fractional Laplacian to
obtain that, for x ∈ �−

μ ,

(−�)αw1(x) ≥ (−�)αwμ(x) = (−�)αuμ(x) − (−�)αu(x). (3.5)

Combining Eq. (3.1) with (3.5), for x ∈ �−
μ we have

(−�)αw1(x) ≥ (−�)αuμ(x) − (−�)αu(x)

= f (uμ(x)) − f (u(x))

= f (uμ(x)) − f (u(x))

uμ(x) − u(x)
w1.

Let us define ϕ(x) = f (uμ(x))− f (u(x))

uμ(x)−u(x)
for x ∈ �−

μ . Since f is locally Lipschitz continuous,

we have that ϕ(x) ∈ L∞(�−
μ ) and ϕw1 is continuous. Hence we have

(−�)αw1(x) ≥ ϕ(x)w1(x) x ∈ �−
μ , (3.6)

and since w1(x) = 0 in R
N \�−

μ , we may apply Theorem 2.4. Choosing μ > 0 small enough
and then

wμ(x) = w1(x) ≥ 0 x ∈ �−
μ .

But this is a contradiction with our assumption, and therefore �−
μ is empty. Hence we have

wμ(x) ≥ 0 x ∈ �μ.

In order to complete Step 1, we claim that for μ > 0, if wμ ≥ 0 and wμ �≡ 0 in �μ,
then wμ > 0 in �μ. Assuming the claim is true, we complete the proof, in fact the function
u is positive in R

N+ and u = 0 in R
N \R

N+ , so that wμ is positive in {xN = 0} and then by
continuity wμ �≡ 0 in �μ.

Now we prove the claim. Assume there exist x0 ∈ �μ such that wμ(x0) = 0, that is
uμ(x0) = u(x0). Then we have that

(−�)αwμ(x0) = (−�)αuμ(x0) − (−�)αu(x0) = 0. (3.7)

On the other hand, defining Aμ = {x ∈ R
N | xN < μ}. Since wμ(yμ) = −wμ(y) for any

y ∈ R
N and wμ(x0) = 0, then

(−�)αwμ(x0) = −
∫
Aμ

wμ(y)

|x0 − y|N+2α
dy −

∫

RN \Aμ

wμ(y)

|x0 − y|N+2α
dy

= −
∫
Aμ

wμ(y)

|x0 − y|N+2α
dy −

∫
Aμ

wμ(yμ)

|x0 − yμ|N+2α
dy

= −
∫
Aμ

wμ(y)

(
1

|x0 − y|N+2α
− 1

|x0 − yμ|N+2α

)
dy.

Since |x0 − yμ| > |x0 − y| for y ∈ Aμ, wμ(y) ≥ 0 and wμ(y) �≡ 0 in Aμ, then we have

(−�)αwμ(x0) < 0, (3.8)

which contradicts (3.7), completing the proof of the claim.
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Step 2: We define

μ∗ = sup{μ | wν > 0 in �ν,∀ν < μ} > 0.

We see that for each 0 < μ < μ∗ the function wμ > 0 in �μ, which implies u is strictly
increasing in xN direction for x ∈ �μ with 0 < μ < μ∗. In fact, for 0 < xN < x̃N < μ∗

and let μ = xN +x̃N
2 . Then

wμ(x) > 0 in �μ.

Hence

0 < wμ(x̃, xN ) = uμ(x̃, xN ) − u(x̃, xN )

= u(x̃, x̃N ) − u(x̃, xN ),

that is u(x̃, x̃N ) > u(x̃, xN ), so u is strictly increasing in xN direction. Therefore, the theorem
is proved if we show that μ∗ = +∞.

Suppose for contradiction that μ∗ is finite. By Theorem 2.4 we can fix ε0 such that the
operator �α − ϕ(x) (where ϕ(x) = f (uμ(x))− f (u(x))

uμ(x)−u(x)
) satisfies the maximum principle in the

domain �μ∗+ε0\�μ∗−ε0 . For instance, we can take ε0 = (ωN /2(N+1))R̄, where R̄ is number
from Theorem 2.4. 
�
Lemma 3.1 There exists δ0 ∈ (0, ε0], such that for each δ ∈ (0, δ0] we have

wμ∗+δ(x) > 0 in �μ∗−ε0\�ε0 .

Suppose this lemma is proved. Then we repeat the proof of Step 1 and apply Theorem 2.4 to
equation in �μ∗+δ\�μ∗−ε0 and in �ε0 (those domains are narrow enough) to conclude that
wμ∗+δ ≥ 0 in �μ∗+δ for each δ ∈ (0, δ0). This contradicts the maximal choice of μ∗.

Proof of Lemma 3.1 Suppose the Lemma is false, that is exist sequences δm → 0 and x (m) =
(x̃ (m), x (m)

N ) ∈ �μ∗−ε0\�ε0 such that

wμ∗+δm (x (m)) ≤ 0. (3.9)

We can suppose that x (m)
N → x0

N ∈ [ε0, μ
∗ − ε0] as m → ∞.

We define the functions

u(m)(x̃, xN ) = u(x̃ + x̃ (m), xN )

and, respectively

w(m)
μ (x̃, xN ) = u(m)(x̃, 2μ − xN ) − u(m)(x̃, xN ).

Note that u(m) satisfies the same equation as u, and

(−�)αu(m) = f (u(m)) ≥ f (0).

So we can infer from Theorem 2.6 that

‖u(m)‖Cβ (K ) ≤ C,

for each compact set K in the closure of R
N+ (the constant C depends on K ). It follows from

Theorems 2.6 and 2.7, that u(m) converges uniformly to a solution ũ of (3.1) and ũ satisfies
�α ũ = − f (ũ) ≤ − f (0) ≤ 0.
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By the strong maximum principle (see Proposition 2.1) we have that either ũ is strictly
positive in R

N+ or ũ vanishes identically in R
N+ . Suppose first that ũ is strictly positive in R

N+ .

By what we have already shown we know that w
(m)
μ (y, xN ) = wμ(y + y(m), xN ) > 0 in �μ

for all μ ≤ μ∗. Hence the limit function w̃μ = limm→∞ w
(m)
μ is nonnegative in �μ for all

μ ≤ μ∗.
So we can repeat the moving plane arguments for ũ, and get μ̃∗ ≥ μ∗ such that w̃μ > 0

in �μ for all μ ≤ μ̃∗, where μ̃∗ to ũ what μ∗ to u. On the other hand, by continuity and (3.9)
we have w̃μ∗(0, x0

N ) = 0, and x0
N ∈ (0, μ∗ − ε0], a contradiction.

Suppose next ũ ≡ 0 in R
N+ . We fix the rectangular domains

Q1 =
{

x ∈ R
N+ | − 1 < x1 < 1, . . . ,−1 < xN−1 < 1, ε0 < xN < 2μ∗ + 1

}
,

Q2 =
{

x ∈ R
N+ | − 2 < x1 < 2, . . . ,−2 < xN−1 < 2,

ε0

2
< xN < 2μ∗ + 2

}
.

Since u(m) converges uniformly to zero in Q2, we can suppose that u(m) ≤ 1 in Q2.
We set

αm = u(m)(0, x (m)
N ) and v(m) = u(m)

αm
.

Now, by (3.1) the function v(m) satisfies

�αv(m) + f (u(m))

u(m)
v(m) = 0 in Q2. (3.10)

By applying Harnack inequality (see Theorem 1.1 in [29] and Proposition 2.4 in[22]) in
these cubes we infer

sup
Q1

v(m) ≤ C1 inf
Q1

v(m) ≤ C1.

Next we recall that w∗
μ > 0 in �μ∗ , which implies

v(m)(y, xN ) ≤ v(m)(y, 2μ∗ − xN ) ≤ C1, for (y, xN ) ∈ �μ∗ .

Hence

‖v(m)‖L∞(Q) ≤ C1,

where

Q1 = {x ∈ R
N+ | − 1 < x1 < 1, . . . ,−1 < xN−1 < 1, 0 < xN < 2μ∗ + 1}.

Since f is locally Lipschitz, then we have |( f (u) − f (0))/u| ≤ C , where C is a positive
constant. Hence, f (u) ≥ −Cu since f (0) ≥ 0. By applying Theorems 2.6 and 2.7 to (3.10)
we get that v(m) ⇒ v on compacts and v satisfies

�αv + lv ≤ 0,

where l = lim inf t→0
f (t)

t . By the strong maximum principle v vanishes identically in Q or
v > 0 in Q. The first possibility is excluded by v(0, x0

N ) = 1.
Introduce the functions

zβ(y, xN ) = v(y, 2β − xN ) − v(y, xN )
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define in �β ∩ Q for β ≤ β∗ + 1/2. We have, by continuity,

zβ∗ ≥ 0 and zβ∗
(0, x0

N ) = 0.

Since (−�)αzβ∗ ≤ lzβ∗
, the strong maximum principle implies zβ∗ = 0 in �∗

β ∩ Q. This
contradicts the fact that v = 0 on {xN = 0} and v > 0 on {xN = 2β∗}. 
�
Theorem 3.2 Under the hypotheses of Theorem 3.1, if

�αu + f (u) = 0 (3.11)

has a positive bounded solution in R
N+ such that u = 0 on R

N \R
N+ , then the same problem

has a positive solution in R
N−1.

Proof Suppose u is a solution of (3.11), u �≡ 0, 0 ≤ u ≤ M . For each x ∈ (y, xN ) in the
strip �1 = {x ∈ R

N |0 < xN < 1} we set

um(x ′, xN ) = u(x ′, xN + m).

Now um satisfies the same system as u. Then, using the Cβ regularity, Theorem 2.6, we see
that {um} is bounded in Cβ and hence a subsequence of it converge uniformly on compact
subsets of �1 to a function ũ. By Theorem 2.7 ũ satisfies

�α ũ + f (ũ) = 0 in �1. (3.12)

The monotonicity result of Theorem 3.1 trivially implies that ũ is strictly positive and inde-
pendent of the xN -variable.

Otherwise, by the definition of fractional Laplacian

(−�)α ũ(x) =
∫

RN−1

∫
R

ũ(x̃) − ũ(ỹ)

(|x̃ − ỹ|2 + (xN − yN )2)
N+2α

2

dyN d ỹ

=
∫

RN−1

∫
R

ũ(x̃) − ũ(x̃ − ỹ)

(|ỹ|2 + y2
N )

N+2α
2

dyN d ỹ.

Let yN = |ỹ| tan θ , where θ ∈ (−π
2 , π

2 ), then

(−�)α ũ(x) =
∫

RN−1

π
2∫

− π
2

ũ(x̃) − ũ(x̃ − ỹ)

|ỹ|N−1+2α
(cos θ)N−2+2α dθ d ỹ

=
∫

RN−1

ũ(x̃) − ũ(x̃ − ỹ)

|ỹ|N−1+2α
d ỹ

π
2∫

− π
2

(cos θ)N−2+2α dθ,

and
π
2∫

− π
2

(cos θ)N−2+2α dθ = 2

π
2∫

0

(cos θ)N−2+2α dθ < +∞,

since N − 2 + 2α > 0. This mean that the N -dimension fractional Laplacian operator is
actually (N − 1)-dimension, and we have (3.12) in R

N−1. 
�
Proof of Theorem 1.1 Theorem 1.1 is an immediate consequence of Theorems 1.2 and 3.2.


�
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4 Proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5 by the method of moving plane applied to
system in R

N+ . As the proof of Theorem 1.1, we first show the following theorem:

Theorem 4.1 Suppose we have a positive viscosity bounded solution (u, v) of⎧⎪⎨
⎪⎩

(−�)αu = f (v) x ∈ R
N+ ,

(−�)αv = g(u) x ∈ R
N+ ,

u = v = 0 x ∈ R
N \R

N+
(4.1)

where f (v) and g(u) are locally Lipschitz continuous functions with f (0) ≥ 0, g(0) ≥ 0
and nondecreasing in v and u respectively. Then (u, v) is strictly increasing in xN -direction.

Let �μ and Tμ be defined as in Sect. 3. For x = (x̃, xN ) ∈ R
N , we denote

uμ(x) = u(xμ), wμ,u(x) = uμ(x) − u(x),

vμ(x) = v(xμ), and wμ,v(x) = vμ(x) − v(x),

where μ > 0 and xμ = (x̃, 2μ − xN ).

Proof of Theorem 4.1 We divide the proof in two steps.
Step 1: We first prove that if μ is small enough, then wμ,u > 0 and wμ,v > 0 in �μ. For

this purpose, we define

�−
μ,u = {x ∈ �μ | wμ,u(x) < 0} and �−

μ,v = {x ∈ �μ | wμ,v(x) < 0}.
We will show that �−

μ,u is empty if μ is small enough. First we assume by contradiction that
�−

μ,u is not empty and define

w1
μ,u(x) =

{
wμ,u(x) x ∈ �−

μ,u,

0 x ∈ R
N \�−

μ,u,
(4.2)

w2
μ,u(x) =

{
0 x ∈ �−

μ,u,

wμ,u(x) x ∈ R
N \�−

μ,u .
(4.3)

Using the arguments given in Step 1 of the proof of Theorem 3.1, we can obtain that

(−�)αw1
μ,u(x) ≥ (−�)αwμ,u(x) and (−�)αw2

μ,u(x) ≤ 0, for all x ∈ �−
μ,u .

From here, for x ∈ �−
μ,u we have

(−�)αw1
μ,u ≥ (−�)αuμ(x) − (−�)αu(x)

= f (v(x)) − f (vμ(x))

= f (v(x)) − f (vμ(x))

vμ(x) − v(x)
wμ,v.

Let us define ϕv(x) = ( f (v(x))− f (vμ(x)))/(vμ(x)−v(x)) for x ∈ �−
μ,u . By assumption we

have that ϕv(x) ∈ L∞(�−
μ,u) and ϕvwμ,v is continuous. On the other hand, since w1

μ,u = 0
in R

N \�−
μ,u using Theorem 2.3 we have

‖w1
μ,u‖L∞(�−

μ,u) ≤ C R(�−
μ,u)2α‖ϕv(x)wμ,v‖L∞(�−

μ,u ).
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Since f (v) is nondecreasing in v, we have

ϕv(x)wμ,v = f (v(x)) − f (vμ(x)) ≤ 0 in �μ\�−
μ,v and

ϕv(x)wμ,v = f (v(x)) − f (vμ(x)) > 0 in �−
μ,v

Denote �−
μ = �−

μ,u ∩ �−
μ,v , we can obtain that

‖w1
μ,u‖L∞(�−

μ,u) ≤ C R(�−
μ,u)2α‖ϕv(x)wμ,v‖L∞(�−

μ )

≤ C R(�−
μ,u)2α‖ϕv(x)‖L∞(�−

μ )‖wμ,v‖L∞(�−
μ )

≤ C R(�−
μ,u)2α‖wμ,v‖L∞(�−

μ ),

where in the last inequality we use the fact ϕv(x) is locally Lipschitz continuous and we have
changed the constant C if necessary. Similar to (4.2) and (4.3), we define

w1
μ,v(x) =

{
wμ,v(x), x ∈ �−

μ,v,

0, x ∈ R
N \�−

μ,v,
(4.4)

w2
μ,v(x) =

{
0, x ∈ �−

μ,v,

wμ,v(x), x ∈ R
N \�−

μ,v

(4.5)

and argue in a completely analogous way to obtain

‖w1
μ,v‖L∞(�−

μ,v) ≤ C R(�−
μ,v)

2α‖w1
μ,u‖L∞(�−

μ ).

Thus

‖w1
μ,u‖L∞(�−

μ,u ) ≤ C R(�−
μ,v)

2α R(�−
μ,u)2α‖w1

μ,u‖L∞(�−
μ,u)

and

‖w1
μ,v‖L∞(�−

μ,v) ≤ C R(�−
μ,v)

2α R(�−
μ,u)2α‖w1

μ,v‖L∞(�−
μ,v).

Now we just choose μ small enough such that C R(�−
μ,v)

2α R(�−
μ,u)2α < 1 and we conclude

that ‖w1
μ,u‖L∞(�−

μ,u ) = 0, so |�−
μ,u | = 0. Since �−

μ,u is open, we have that �−
μ,u is empty,

which is a contradiction.
Thus we have wμ,u ≥ 0 in �μ when μ is small enough. Similarly, we can obtain wμ,v ≥ 0

in �μ when μ is small enough. In order to complete Step 1 we will prove a bit more general
statement that will be useful later, that is, given μ > 0, if wμ,u ≥ 0, wμ,v ≥ 0, wμ,u �≡ 0
and wμ,v �≡ 0 in �μ, then wμ,u > 0 and wμ,v > 0 in �μ. For proving this property suppose
there exists x0 ∈ �μ such that wμ,u(x0) = 0.

On one hand, by using similar arguments yielding (3.8) we find that

(−�)αwμ,u(x0) < 0. (4.6)

On the other hand, by our assumption wμ,v(x0) = vμ(x0)−v(x0) ≥ 0, from the monotonicity
on f , we obtain

(−�)αwμ,u(x0) = f (vμ(x0)) − f (v(x0)) ≥ 0,

which is impossible with (4.6). This completes Step 1.
Step 2. We define

μ∗ = sup{μ | wν,u > 0, wν,v > 0 in �ν, ∀ν < μ} > 0.
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We see that for each 0 < μ ≤ μ∗ the function wμ,u ≥ 0 and wμ,v ≥ 0 in �μ which imply
(u, v) is strictly increasing in xN direction. Therefore, the theorem is proved if we show that
μ∗ = +∞.

Suppose for contradiction that μ∗ is finite. By Theorem 2.4 we can fix ε0 such
that the operator �α − ϕu(x) and �α − ϕv(x) (where ϕu(x) = g(u(x))−g(uμ(x))

uμ(x)−u(x)
and

ϕv(x) = f (v(x))− f (vμ(x))

vμ(x)−v(x)
) satisfies the maximum principle in the domain �μ∗+ε0\�μ∗−ε0 .

For instance, we can take ε0 = (ωN /2(N+1))R̄, where R̄ is number from Theorem 2.4. 
�
Similar discus as Lemma 3.1 (see also Lemma 3.1 in [13]), we have

Lemma 4.1 There exists δ0 ∈ (0, ε0], such that for each δ ∈ (0, δ0] we have

wμ∗+δ,u > 0 in �μ∗−ε0\�ε0 ,

wμ∗+δ,v > 0 in �μ∗−ε0\�ε0 .

Then we can repeat the Step 1 and apply Theorem 2.4 to equation in �μ∗+δ\�μ∗−ε0 and in
�ε0 (those domains are narrow enough) to conclude that wμ∗+δ,u ≥ 0 in �μ∗+δ for each
δ ∈ (0, δ0). This contradicts the maximal choice of μ∗.

The same argument as Theorem 3.2 we have

Theorem 4.2 Under the hypotheses of Theorem 4.1, if⎧⎪⎨
⎪⎩

(−�)αu = f (v) x ∈ R
N+ ,

(−�)αv = g(u) x ∈ R
N+ ,

u = v = 0 x ∈ R
N \R

N+
(4.7)

has a positive bounded solution, then the same problem has a positive solution in R
N−1.

Proof of Theorem 1.5 Theorem 1.5 is a direct conclusion of Theorems 1.3, 1.4 and 4.2. 
�
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