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Abstract In this paper we prove the existence and uniqueness of the form-type equation on
Kähler manifolds of nonnegative orthogonal bisectional curvature.
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1 Introduction

In the previous paper [2], we introduced the form-type Calabi–Yau equation on a compact
complex n-dimensional manifold with a balanced metric and with a non-vanishing holomor-
phic n-form�. A balanced metric ω on X is a hermitian metric such that dωn−1 = 0. Given
a balanced metric ω0 on X , let us denote by P(ω0) the set of all smooth real (n − 2, n − 2)-

forms ψ such that ωn−1
0 +

√−1
2 ∂∂̄ψ > 0 on X . Then, for each ϕ ∈ P(ω0), there exists a

balanced metric, which we denote by ωϕ , such that ωn−1
ϕ = ωn−1

0 +
√−1

2 ∂∂̄ϕ. We say that
such a metric ωϕ is in the balanced class of ω0. Our aim is to find a balanced metric ωϕ in
the balanced class of ω0 such that

‖�‖ωϕ = a constant C0 > 0. (1.1)
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328 J. Fu et al.

The geometric meaning of such a metric is that its Ricci curvatures of the hermitian connec-
tion and the spin connection are zero. On the other hand, the direct non-Kähler analogue of
the Calabi conjecture has recently been solved by Tosatti–Weinkove [9] (see also [5], and
the references in [5,9]). In general their solutions provide hermitian Ricci-flat metrics which
are not balanced.

As in the Kähler case, Eq. (1.1) can be reformulated in the following form

ωn
ϕ

ωn
0

= e f

∫
X ω

n
ϕ∫

X ω
n
0
, (1.2)

where f ∈ C∞(X) is given and satisfies the compatibility condition:
∫

X

e f ωn
0 =

∫

X

ωn
0 . (1.3)

We would like to find a solution ϕ ∈ P(ω0). The Eq. (1.2) is called a form-type Calabi–Yau
equation, a reminiscent of the classic function type Calabi–Yau equation. We note here that
when n = 2, the form type equation is reduced automatically to the classic function type
equation and the balanced metric is a Kähler metric. Hence in this case the Eq. (1.2) is the
classic Calabi–Yau equation and has been solved by Yau in [10]. Therefore, in the following
we assume n ≥ 3.

We have constructed solutions for (1.1) when X is a complex torus [2]. A natural approach
to solve (1.2) is to use the continuity method. The openness and uniqueness were discussed in
the previous work [2]. We do not know whether there is a geometric obstruction for solving
(1.2) in general.

Equation (1.2) is still meaningful on a compact complex manifold with a balanced metric,
whose canonical bundle is not holomorphically trivial. Geometrically, solving (1.2) allows us
to solve the problem of prescribed volume form on X , in the balanced class of each balanced
metric on X . Namely, given any positive (n, n)-form W on X and a balanced metricω0, we let

e f =
(

W

ωn
0

) ∫
X ω

n
0∫

X W
;

then by solving (1.2) we are able to find a metric ωϕ in the balanced class of ω0 such that ωn
ϕ

is equal to W , up to a constant rescaling.
It seems to us very hard to understand Eq. (1.2) in general. In this paper, we want to give

the mechanics of looking for all solutions within the balanced class of a given balanced met-
ric. The idea is, in some sense, to transfer the form-type Calabi–Yau equation to a function
type equation.

So in the following we let (X, η) be an n-dimensional Kähler manifold, n ≥ 3, and ω0 be
a balanced metric on X . We let on X

Pη(ω0) =
{
v ∈ C∞(X) | ωn−1

0 + (
√−1/2)∂∂̄v ∧ ηn−2 > 0

}
.

For each u ∈ Pη(ω0), we denote by ωu the unique positive (1, 1)-form on X such that

ωn−1
u = ωn−1

0 + (
√−1/2)∂∂̄u ∧ ηn−2 on X.

Then we consider the equation

ωn
u

ωn
0

= e f

∫
X ω

n
u∫

X ω
n
0
, (1.4)

where f ∈ C∞(X) is given and satisfies the compatibility condition (1.3).
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Form-type equations on Kähler manifolds 329

In this paper, we are able to solve (1.4), under the assumption that the Kähler metric η
has nonnegative orthogonal bisectional curvature; that is, for any orthonormal tangent frame
{e1, . . . , en} at any x ∈ M , the curvature tensor of η satisfies that

Riī j j̄ ≡ R(ei , ēi , e j , ē j ) ≥ 0, for all 1 ≤ i, j ≤ n and i 
= j. (1.5)

We remark that nonnegativity of the orthogonal bisectional curvature is weaker than non-
negativity of the bisectional curvature. In fact, the former condition are satisfied by not only
complex projective spaces and the Hermitian symmetric spaces, but also some compact Käh-
ler manifolds of dimension ≥ 2 whose holomorphic sectional curvature is strictly negative
somewhere. We refer the reader to the recent work Gu–Zhang [4] for the study of nonneg-
ative orthogonal bisectional curvature, which generalizes the earlier work of Mok [7] and
Siu–Yau [8].

Our main result is as follows:

Theorem 1 Let (X, η) be a compact Kähler manifold of nonnegative orthogonal bisectional
curvature, andω0 be a balanced metric on X. Then, for any smooth function f on X satisfying
(1.3), Eq. (1.4) admits a solution u ∈ Pη(ω0), which is unique up to a constant.

Subsequently, Eq. (1.2) has a solution ϕ = uηn−2 ∈ P(ω0). Now we explain how to use
Theorem 1 to find all solutions of (1.2) in the balanced class of ω0 on a compact Kähler
manifold (X, η) of nonnegative orthogonal bisectional curvature. Let ωψ , for ψ ∈ P(ω0),
be a balanced metric in the balanced class of ω0. We then let

Pη(ωψ) =
{
v ∈ C∞(X) | ωn−1

ψ + (
√−1/2)∂∂̄v ∧ ηn−2 > 0

}
.

For each v ∈ Pη(ωψ), we denote by ωψ,v the unique positive (1,1)-form on X such that

ωn−1
ψ,v = ωn−1

ψ + (
√−1/2)∂∂̄v ∧ ηn−2.

Such a (1, 1)-form ωψ,v is still in the balanced class of ω0. Then we consider the equation

ωn
ψ,u

ωn
ψ

= e fψ

∫
X ω

n
ψ,u∫

X ω
n
ψ

, (1.6)

where fψ ∈ C∞(X) is given by

e fψ = e f ω
n
0

ωn
ψ

∫
X ω

n
ψ∫

X ω
n
0

and satisfies the compatibility condition.
Replacing ω0 with ωψ and f with fψ in Theorem 1, we show that (1.6) admits a solution,

denoted by uψ , which is unique up to a constant. It then follows that ϕ = ψ + uψηn−2 ∈
P(ω0) is a solution to (1.2). Hence, when we vary ψ ∈ P(ω0), we obtain all solutions
ϕ = ψ + uψηn−2 (which are infinitely many) to Eq. (1.2) in the balanced class of ω0 on X
of nonnegative orthogonal bisectional curvature. In particular, the form-type equation on a
complex torus is completely settled in this way.

Corollary 2 Let (X, η) be a compact Kähler manifold of nonnegative orthogonal bisectional
curvature, and ω0 be a balanced metric on X. Let f be a smooth function on X satisfying
(1.3). Then for any ψ ∈ P(ω0), Eq. (1.2) admits a solution ϕ = ψ + uψηn−2. Here uψ is a
solution to (1.6) which is unique up to a constant.
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330 J. Fu et al.

Thus, the idea used in this paper, which is to transfer from the form-type Calabi–Yau
equation to a function-type equation, may be useful. Later we will establish the Theorem 1
on any compact Kähler manifold. We need to overcome some difficulties of estimates.

We employ the continuity method to prove Theorem 1. In Sect. 2, we establish an a priori
C2 estimate for the solution u. This is the place where we need the curvature condition. The
C2 estimate enables us to obtain a general a priori C0 estimate, by combining the maximum
principle and the weak Harnack inequality. This is the content of Sect. 3. We then adapt the
Evans–Krylov theory to our form-type equation, and obtain in Sect. 4 the Hölder estimates
for second derivatives. The openness is covered by Theorem 3 in our previous paper [2].
For readers’ convenience, we briefly indicate the argument in the last section, Sect. 5. The
uniqueness is also proved in Sect. 5.

2 C2 estimates for form-type equations

In this section, we would like to establish the following estimate:

Lemma 3 Given F ∈ C2(X), let u ∈ C4(X) satisfy that

ωn−1
0 + (

√−1/2)∂∂̄u ∧ ηn−2 > 0 on X,

and that

det
[
ωn−1

0 + (
√−1/2)∂∂̄u ∧ ηn−2

]
= eF detωn−1

0 . (2.1)

Assume that η has nonnegative orthogonal bisectional curvature. Then, we have

�ηu ≤ C + C(u − inf
X

u) on X, (2.2)

and

sup
X

|ωn−1
0 + ∂∂̄u ∧ ηn−2|η ≤ C +

(

sup
X

u − inf
X

u

)

.

Here �ηv = ∑
ηi j̄vi j̄ denotes the Laplacian of a function v with respect to η, and C > 0

is a constant depending only on inf X (�ηF), supX F, η, n, and ω0.

Here are some conventions: For an (n − 1, n − 1)-form 	, we denote

	 =
(√−1

2

)n−1

(n − 1)!

×
∑

p,q

s(p, q)	pq̄ dz1 ∧ dz̄1 · · · ∧̂dz p ∧ dz̄ p ∧ · · · ∧ dz̄q ∧ d̂ z̄q ∧ · · · ∧ dzn ∧ dz̄n,

in which

s(p, q) =
{−1, if p > q;

1, if p ≤ q.
(2.3)

Here we introduce the sign function s so that,

dz p ∧ dz̄q ∧ s(p, q)dz1 ∧ dz̄1 · · · ∧̂dz p ∧ dz̄ p ∧ · · · ∧ dz̄q ∧ d̂ z̄q ∧ · · · ∧ dzn ∧ dz̄n

= dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n, for all 1 ≤ p, q ≤ n.
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Form-type equations on Kähler manifolds 331

We denote

det	 = det(	pq̄).

If the matrix (	pq̄) is invertible, we denote by (	pq̄) the transposed inverse of (	pq̄), i.e.,
∑

l

	i l̄	
j l̄ = δi j .

Note that, for a positive (1, 1)-form ω given by

ω =
√−1

2

n∑

i, j=1

gi j̄ dzi ∧ dz̄ j ,

we have

ωn =
(√−1

2

)n

n! det(gi j̄ )dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n,

and by our convention,

(ωn−1)i j̄ = det(gi j̄ )g
i j̄ .

It follows that

det(ωn−1) = det(gi j̄ )
n−1, (2.4)

and

(ωn−1)i j̄ = gi j̄

det(gi j̄ )
.

In the following, the subscripts such as “, p” stand for the ordinary local derivatives; for
example,

ηi j̄,k = ∂ηi j̄

∂zk
, ηi j̄,lm̄ = ∂2ηi j̄

∂zl∂ z̄m
. (2.5)

For a function h we can omit the comma: hl = h,l , hlm̄ = h,lm̄ , etc. Unless otherwise
indicated, all the summations below range from 1 to n. We remark that, under the convention,
Eq. (1.4) can be rewritten as

det[ωn−1
0 + (

√−1/2)∂∂̄u ∧ ηn−2]
detωn−1

0

= e(n−1) f
(∫

X ω
n
u∫

X ω
n
0

)n−1

,

which is convenient for deriving the estimates.

Proof of Lemma 3 Let

�u = � + (
√−1/2)∂∂̄u ∧ ηn−2, where � = ωn−1

0 .

Let

φ =
∑

i, j ηi j̄ (�u)i j̄

det η
− Au,
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332 J. Fu et al.

where A > 0 is a large constant to be determined. Using wedge products, the function φ can
also be written as

φ = nη ∧�u

ηn
− Au

= (h +�ηu)− Au, where h = nη ∧ ωn−1
0

ηn
. (2.6)

Consider the operator

Lφ = (n − 1)
∑

k,l

�kl̄
u

(√−1

2
∂∂̄φ ∧ ηn−2

)

kl̄

.

Suppose that φ attains its maximum at some point P in X . We choose a normal coordinate
system such that at P , ηi j̄ = δi j and dηi j̄ = 0. Then, we rotate the axes so that at P we have
(�u)pq̄ = δpq(�u)p p̄ . Thus, for any smooth function v on X , we have at P that

(n − 1)

(√−1

2
∂∂̄v ∧ ηn−2

)

i j̄

= δi j

∑

p 
=i

vp p̄ + (1 − δi j )v j ī . (2.7)

By (2.7) we obtain that

(�u)i ī = �i ī + 1

n − 1

∑

q 
=i

uqq̄ , (2.8)

(�u)i j̄ = �i j̄ + u j ī

n − 1
= 0, for all i 
= j. (2.9)

It follows that

n∑

i=1

(�u)i ī =
n∑

i=1

�i ī +
n∑

i=1

uiī = h +�ηu. (2.10)

Furthermore, we have

(�u)i j̄,p = �i j̄,p + δi j

n − 1

∑

q 
=i

uqq̄ p + 1 − δi j

n − 1
u j ī p, (2.11)

and

(�u)i ī,p p̄ = �i ī,p p̄ + 1

n − 1

∑

k 
=i

ukk̄ p p̄ + 1

n − 1

∑

k 
=i

ukk̄

⎛

⎝
∑

j 
=k, j 
=i

η j j̄,p p̄

⎞

⎠

− 1

n − 1

∑

a 
=i,b 
=i,a 
=b

uab̄ηbā,p p̄.

Note that under the normal coordinate system, the curvature (Ri j̄kl̄) of η reads

Ri j̄kl̄ = −ηi j̄,kl̄ +
∑

a,b

ηab̄ηi b̄,kηa j̄,l̄ = −ηi j̄,kl̄ , at P.
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Form-type equations on Kähler manifolds 333

This together with (2.9) imply that

(�u)i ī,p p̄ = �i ī,p p̄ + 1

n − 1

∑

k 
=i

ukk̄ p p̄ − 1

n − 1

∑

k 
=i

ukk̄

⎛

⎝
∑

j 
=k, j 
=i

R j j̄ p p̄

⎞

⎠

−
∑

a 
=i,b 
=i,a 
=b

�ab̄ Rab̄ p p̄. (2.12)

We compute at P that

Lφ =(n − 1)
∑

l

(�u)
ll̄

(√−1

2
∂∂̄φ ∧ ηn−2

)

ll̄

=
∑

l

∑

p 
=l

(�u)
ll̄φp p̄.

Note that

0 = φp(P) = h p + (�ηu)p − Au p. (2.13)

Differentiating once more to obtain that

0 ≥ φp p̄(P) = h p p̄ + (�ηu)p p̄ − Au p p̄.

It follows that

0 ≥ Lφ =
∑

l

∑

p 
=l

(�u)
ll̄φp p̄

=
∑

l

∑

p 
=l

(�u)
ll̄ [h p p̄ + (�ηu)p p̄] − A

∑

l

∑

p 
=l

(�u)
ll̄ u p p̄. (2.14)

Notice that
∑

l

∑

p 
=l

(�u)
ll̄ [h p p̄ + (�ηu)p p̄]

=
∑

l

∑

p 
=l

(�u)
ll̄ h p p̄ +

∑

l,a

∑

p 
=l

(�u)
ll̄ uaā p p̄ +

∑

l

∑

p 
=l

(�u)
ll̄
∑

a,b

ηab̄
,p p̄uab̄

=
∑

l

∑

p 
=l

(�u)
ll̄ h p p̄ +

∑

l,a

∑

p 
=l

(�u)
ll̄ uaā p p̄ +

∑

l,a

∑

p 
=l

(�u)
ll̄ Raā p p̄uaā

− (n − 1)
∑

l

∑

p 
=l

∑

a 
=b

(�u)
ll̄ Rbā p p̄�bā, (by (2.9)). (2.15)

Here the fourth derivative term can be handled by the Eq. (2.1): We rewrite (2.1) as

log det�u = F + log det�.

Differentiating this in the direction of ∂/∂za yields
∑

k,l

(�u)
kl̄(�u)kl̄,a = (F + log det�)a .

Then,
∑

k,l

(�u)
kl̄(�u)kl̄,ab̄ = (F + log det�)ab̄ +

∑

k,l,p,q

(�u)
kq̄(�u)

pl̄(�u)kl̄,a(�u)pq̄,b̄.
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Contracting this with (ηab̄) and applying the normal coordinates yield that

∑

l,a

(�u)
ll̄(�u)ll̄,aā =

∑

a

(F + log det�)aā +
∑

k,l,a

∣
∣(�u)kl̄,a

∣
∣2

(�u)ll̄(�u)kk̄
.

This together with (2.12) imply that

∑

l,a

(�u)
ll̄�ll̄,aā + 1

n − 1

∑

l,a

∑

p 
=l

(�u)
ll̄ u p p̄aā

=
∑

k,l,a

∣
∣(�u)kl̄,a

∣
∣2

(�u)ll̄(�u)kk̄
+ 1

n − 1

∑

l,a

(�u)
ll̄
∑

p 
=l

u p p̄

⎛

⎝
∑

m 
=p,m 
=l

Rmm̄aā

⎞

⎠

+
∑

l,a

(�u)
ll̄

⎛

⎝
∑

p 
=l,q 
=l,p 
=q

�pq̄ Rpq̄aā

⎞

⎠+�ηF +�η(log det�).

Combining this with (2.15) yields
∑

l

∑

p 
=l

(�u)
ll̄(h p p̄ + (�ηu)p p̄)

=
∑

l,a

∑

p 
=l

(�u)
ll̄ Raā p p̄uaā +

∑

l,a

∑

p 
=l

(�u)
ll̄ u p p̄

⎛

⎝
∑

m 
=p,m 
=l

Raāmm̄

⎞

⎠

+ (n − 1)
∑

k,l,a

∣
∣(�u)kl̄,a

∣
∣2

(�u)ll̄(�u)kk̄
+ (n − 1)�ηF + (n − 1)�η(log det�)

+
∑

l

∑

p 
=l

(�u)
ll̄ h p p̄ − (n − 1)

∑

l,a

(�u)
ll̄�ll̄,aā

+ (n − 1)
∑

l,a

(�u)
ll̄

⎛

⎝
∑

p 
=l,q 
=l,p 
=q

�pq̄ Rpq̄aā

⎞

⎠

− (n − 1)
∑

l

∑

p 
=l

∑

a 
=b

(�u)
ll̄ Rab̄ p p̄�ab̄. (2.16)

The first two terms on the right hand side of the above inequality can be handled as follows.

∑

l,a

∑

p 
=l

(�u)
ll̄ Raā p p̄uaā +

∑

l,a

∑

p 
=l

(�u)
ll̄ u p p̄

⎛

⎝
∑

m 
=p,m 
=l

Raāmm̄

⎞

⎠

=
∑

l,a

(�u)
ll̄ Rll̄aāull̄ −

∑

l,a

(�u)
ll̄ Raāll̄ uaā +

∑

l,p

∑

a 
=l

(�u)
ll̄ uaā Raā p p̄

+
∑

l,a

∑

p 
=l

(�u)
ll̄ u p p̄

⎛

⎝
∑

m 
=p,m 
=l

Raāmm̄

⎞

⎠

= 1

2

∑

l,a

(�u)
ll̄ Rll̄aā(ull̄ − uaā)+ 1

2

∑

l,a

(�u)
aā Rll̄aā(uaā − ull̄)
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Form-type equations on Kähler manifolds 335

+ (n − 1)
∑

l

⎛

⎝
∑

m 
=l

Rmm̄

⎞

⎠ (�u)
ll̄ [(�u)ll̄ −�ll̄

]
(by (2.8))

= 1

2

∑

l,a

Rll̄aā
(ull̄ − uaā)[(�u)aā − (�u)ll̄ ]

(�u)ll̄(�u)aā

+ (n − 1)2
∑

l

Rll̄ − (n − 1)
∑

l

(�u)
ll̄�ll̄

⎛

⎝
∑

m 
=l

Rmm̄

⎞

⎠ . (2.17)

Apply (2.8) to estimate the first term of last equality

1

2

∑

l,a

Rll̄aā
(ull̄ − uaā)[(�u)aā − (�u)ll̄ ]

(�u)ll̄(�u)aā

= n − 1

2

∑

l,a

Rll̄aā
[(�u)aā − (�u)ll̄ ]2

(�u)ll̄(�u)aā

+ n − 1

2

∑

l,a

Rll̄aā
(�ll̄ −�aā)[(�u)aā − (�u)ll̄ ]

(�u)ll̄(�u)aā

≥ (n − 1)
∑

l,a

Rll̄aā
�ll̄ −�aā

(�u)ll̄
, by curvature assumption (1.5). (2.18)

Combining (2.16) with (2.17) and then with (2.18), we obtain

∑

l

∑

p 
=l

(�u)
ll̄(h p p̄ + (�ηu)p p̄)

≥ −C1(n − 1)
∑

l

(�u)
ll̄ − (n − 1)2C1 + (n − 1) inf �ηF. (2.19)

Here and throughout this section, we denote by C1 > 0 a generic constant depending only
on � and the curvature of η.

Substituting (2.19) into (2.14) yields

0 ≥ Lφ ≥ −A
∑

l

∑

p 
=l

(�u)
ll̄ u p p̄ − C1(n − 1)

∑

l

(�u)
ll̄

− (n − 1)2C1 + (n − 1) inf �ηF

= −n(n − 1)A + (n − 1)A
∑

l

(�u)
ll̄�ll̄ − C1(n − 1)

∑

l

(�u)
ll̄

− (n − 1)2C1 + (n − 1) inf �ηF.

Now we choose A > 0 sufficiently large so that

A inf
X
(min

l
�ll̄) ≥ 2C1.
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It follows that

n A

C1
+ (n − 1)− inf �ηF

C1
≥

n∑

l=1

(�u)
ll̄

≥
[

n∑

i=1

(�u)i ī

] 1
n−1 {

det
[
(�u)i j̄

]} −1
n−1

=
[

n∑

i=1

(�u)i ī

] 1
n−1

e
−F
n−1 (det�)

−1
n−1 .

Hence,

h +�ηu =
n∑

i=1

(�u)i ī ≤ C2 at P.

Here and throughout this section, we denote by C2 a generic positive constant depending
only on n, �, η, sup�ηF , and sup F . Therefore, at any point in X ,

(h +�ηu) ≤ (h +�ηu)(P)+ Au − Au(P) ≤ C2 + C2

(

u − inf
X

u

)

.

Since [(�u)i j̄ ] is positive definite everywhere, we have

|(�u)i j̄ | ≤ C2 + C2(u − inf
X

u), for all 1 ≤ i, j ≤ n.

This completes the proof. ��
Lemma 3 enables us to establish the C2 estimate for Eq. (1.4):

Corollary 4 For any f ∈ C∞(X), let u ∈ C∞(X) be a solution of

det(ωn−1
u )

det(ωn−1
0 )

= e(n−1) f
( ∫

X ω
n
u∫

X e f ωn
0

)n−1

, (2.20)

where ωu is a positive (1, 1)-form on X such that

ωn−1
u = ωn−1

0 + (
√−1/2)∂∂̄u ∧ ηn−2 > 0.

Assume that η has nonnegative orthogonal bisectional curvature. Then, we have

�ηu ≤ C + C(u − inf
X

u) on X, (2.21)

and

sup
X

|ωn−1
u |η ≤ C + C(sup

X
u − inf

X
u),

where C > 0 is a constant depending only on f , η, n, and ω0.

Proof Let

F = (n − 1)

⎛

⎝ f + log
∫

X

ωn
u − log

∫

X

e f ωn
0

⎞

⎠.
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To apply Lemma 3, it suffices to estimate inf(�ηF) and sup F . Note that

�ηF = (n − 1)�η f.

Applying the maximum principle to (2.20) at the points where u attain its maximum and
minimum, respectively, yields a uniform bound for the constant:

− sup f ≤ log
∫

X

ωn
u − log

∫

X

e f ωn
0 ≤ − inf f.

This implies that sup |F | ≤ (n − 1)(sup f − inf f ). ��

3 C0 estimates

In this section, we will derive the following general C0 estimate. This together with Corol-
lary 4 will settle the C0 estimate for manifolds of nonnegative orthogonal bisectional curva-
ture.

Lemma 5 Let (X, η) be an arbitrary Kähler manifold with complex dimension n ≥ 2.
Suppose that u ∈ C2(X) satisfies

�u ≤ C1 + C1(u − inf
X

u),

�u > −C2,

where � stands for the Laplacian with respect to η, and C1,C2 are two positive constants.
Then,

sup
X

u − inf
X

u ≤ C,

in which C > 0 is a constant depending only on η, n, C1, and C2.

The proof is based on the following maximum principle (Proposition 6) and the weak
Harnack inequality (Proposition 7). We denote for p > 0,

‖h‖p =
(∫

h pηn
)1/p

, for all h ∈ L p(X, η).

Proposition 6 Let v ∈ C2(X), v > 0 on X, satisfy that

�v + cv ≥ d on X, (3.1)

where c and d are constants. Then, for any real number p > 0,

sup
X
v ≤ C1/p(1 + |c|)n/p(‖v‖p + |d|),

where C > 0 is a constant depending only on η and n.

Proposition 7 Let v ∈ C2(X), v > 0 on X and satisfy

�v − cv ≤ 0 on X, (3.2)

where c is a constant. Then, there exists a real number p0 > 0, depending on η, n, and c,
such that

inf
X
v ≥ C−1/p0(1 + |c|)−n/p0‖v‖p0 ,

where C > 0 depends only on η and n.
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Proposition 6 and Proposition 7 can be proved by Moser’s iteration. The arguments are
standard (see, for example, [6]). We are in a position to prove Lemma 5.

Proof of Lemma 5 Let

v = u − inf
X

u + 1.

Since X is compact, u attains its infimum. Then,

v ≥ 1, and inf
X
v = 1.

On the other hand, we have

�v − C1v ≤ 0, (3.3)

and

�v > −C2. (3.4)

Applying Proposition 7 to (3.3), we obtain that

inf
X
v ≥ C−1/p0(1 + |C1|)−n/p0‖v‖p0 .

Here p0 > 0 is a number depending only on η, n, and C1; C > 0 is a constant depending
only on η and n. Applying Proposition 6 to (3.4) with p = p0 yields that

sup
X
v ≤ (C ′)1/p0(‖v‖p0 + C2),

where C ′ > 0 depends only on η and n. Combining these two inequalities we have

sup
X
v ≤ (C ′)1/p0

[

C1/p0(1 + |C1|)n/p0 inf
X
v + C2

]

= (C ′)1/p0
[
C1/p0(1 + |C1|)n/p0 + C2

]
.

It follows that

sup
X

u − inf
X

u ≤ sup
X
v ≤ C,

where C > 0 depends only on η, n, C1, and C2. ��
Let us now return to Eq. (1.4). We let (X, η)be the complex n-dimensional Kähler manifold

of nonnegative orthogonal bisectional curvature, and ω0 be a Hermitian metric on X .

Corollary 8 For any f ∈ C∞(X), let u ∈ C∞(X) be a solution of

det(ωn−1
u )

det(ωn−1
0 )

= e(n−1) f
( ∫

X ω
n
u∫

X e f ωn
0

)n−1

,

where ωu is a positive (1, 1)-form such that

ωn−1
u = ωn−1

0 + (
√−1/2)∂∂̄u ∧ ηn−2 > 0 on X.

Then,

sup
X

|ωn−1
u |η ≤ C,

where C > 0 is a constant depending only on f , η, n, and ω0.
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Proof By Corollary 4, it suffices to estimate (sup u − inf u). Contracting

ωn−1
0 + (

√−1/2)∂∂̄u ∧ ηn−2 > 0

with η yields that

�ηu > −nη ∧ ωn−1
0

ηn
> −C2 on X.

Here the constant C2 > 0 depends only on η, n, and ω0. We have (2.21), on the other hand.
Therefore, the result is an immediate consequence of Lemma 5. ��

4 Hölder estimates for second derivatives

Let X be a n-dimensional Kähler manifold, η be a Kähler metric on X , and ω0 be a balanced
metric on X . We will establish the following estimate.

Lemma 9 For F ∈ C2(X), let u ∈ C4(X) satisfy that

ωn−1
0 + (

√−1/2)∂∂̄u ∧ ηn−2 > 0 on X,

and that

det[ωn−1
0 + (

√−1/2)∂∂̄u ∧ ηn−2] = eF detωn−1
0 . (4.1)

Suppose that

sup
X

|ωn−1
0 + √−1/2∂∂̄u ∧ ηn−2|η ≤ C3 (4.2)

for some constant C3 > 0. Then,

‖u‖C2,α(X) ≤ C,

where 0 < α < 1 and C > 0 are constants depending only on C3, n, ω0, and η.

We shall apply the Evans–Krylov theory (see, for example, Gilbarg–Trudinger [3, p. 461,
Theorem 17.14]), which is on the real fully nonlinear elliptic equation. Note that Evans–
Krylov theory is based on the weak Harnack estimate (see, for example, [3, p. 246, Theorem
9.22]), which, in turn, makes uses of Aleksandrov’s maximum principle (see, for example,
[3, p. 222, Lemma 9.3]).

We first adapt Aleksandrov’s maximum principle to the complex setting. To see this, we
start from the following result (see, for example, Lemma 9.2 in [3]): Let� ⊂ C

n be a bounded
domain with smooth boundary.

Lemma (Aleksandrov) For v ∈ C2(�) with v ≤ 0 on ∂�, we have

sup
�

v ≤ diam(�)

σ
1/(2n)
2n

⎛

⎜
⎝

∫

�+
v

| det D2v|
⎞

⎟
⎠

1
2n

. (4.3)

Here σ2n is the volume of unit ball in C

n, D2v denotes the real Hessian matrix of v, and �+
v

is the upper contact set of v, i.e.,

�+
v = {y ∈ �; v(x) ≤ v(y)+ Dv(y) · (x − y) for all x ∈ �}.
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Then, it suffices to control the real Hessian D2v by the complex Hessian (vi j̄ ) of v, over

�+
v . Note that �+

v ⊂ {y ∈ �; (D2v)(y) ≤ 0}. We shall make use of the following inequality
(comparing with [1, p. 246], we do not need Hadarmad’s inequality for semipositive matrices):

Proposition 10 Let w be a real C2 function in �. For P ∈ � such that D2w ≥ 0,

det(D2w) ≤ 8n | detwi j̄ |2 at P.

Proof Recall that

∂

∂zi
= 1

2

(
∂

∂xi
− √−1

∂

∂yi

)

, 1 ≤ i ≤ n.

We denote

wxi = ∂w

∂xi
, wxi y j = ∂2w

∂xi∂y j
, . . . .

Then,

wi j̄ = 1

4

(
wxi x j + wyi y j

)+
√−1

4

(
wxi y j − wx j yi

)
, 1 ≤ i, j ≤ n.

Since D2w ≥ 0 at P , we can choose a coordinate system (x1, y1, . . . , xn, yn) near P such
that D2w is diagonalized at P , and hence,

wxi xi ≥ 0, wyi yi ≥ 0, for all 1 ≤ i ≤ n.

Then, under this coordinate system, the complex Hessian of w is also diagonalized, i.e.,

wi j̄ = δi j

4

(
wxi xi + wyi yi

)
.

It follows that, at P ,

16n | detwi j̄ |2 =
n∏

i=1

(
wxi xi + wyi yi

)2

≥ 2n
n∏

i=1

wxi xi

n∏

i=1

wyi yi

= 2n det(D2w).

Moreover, for any Hermitian matrix (ai j̄ ) > 0 on�+
v , we have by an elementary inequality

that

det(ai j̄ ) det(−vi j̄ ) ≤
(−∑i, j ai j̄vi j̄

n

)n

. (4.4)

Now apply Proposition 10 and (4.4) to (4.3) to obtain the following complex version Alek-
sandrov’s maximum principle (compare with [3, p. 222, Lemma 9.3]):

Lemma 11 Let (ai j̄ ) be a positive definite Hermitian matrix in �. For v ∈ C2(�) with
v ≤ 0 on ∂�,

sup
�

v ≤ 2ndiam(�)

n σ 1/(2n)
2n

⎡

⎢
⎣

∫

�+
v

∣
∣
∣
−∑ ai j̄vi j̄

det(ai j̄ )
1/n

∣
∣
∣
2n

⎤

⎥
⎦

1
2n

.
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Then, the weak Harnack inequality below (compare with [3, p. 246, Theorem 9.22]) follows
from Lemma 11 and the cube decomposition procedure.

Theorem (Krylov–Safonov) Let v ∈ W 2,2n(�) satisfy
∑

ai j̄vi j̄ ≤ g in �, where g ∈
L2n(�), and (ai j̄ ) satisfies that

0 < λ|ζ |2 ≤
∑

i, j

ai j̄ (z)ζiζ j ≤ �|ζ |2, for all z ∈ � and ζ ∈ C

n,

in which λ and � are two constants. Suppose that v ≥ 0 in an open ball B2R(y) ⊂ �

centered at y of radius 2R. Then,
⎛

⎜
⎝

1

|BR |
∫

BR

v p

⎞

⎟
⎠

1/p

≤ C

[

inf
BR
v + R

λ
‖g‖L2n(B2R)

]

,

where |BR | denotes the measure of BR, and p > 0 and C > 0 are constants depending only
on n, λ, and �.

Let us denote by

E[(ui j̄ )] = log det
[
ωn−1

0 + (
√−1/2)∂∂̄u ∧ ηn−2

]
.

To apply Evans–Krylov theory, it remains to check the following two conditions ([3, p. 456]):

(1) E is uniformly elliptic with respect to (ui j̄ ),
(2) E is concave on the range of (ui j̄ ).

As in Sect. 2, we denote � = ωn−1
0 and

�u = � + (
√−1/2)∂∂̄u ∧ ηn−2. (4.5)

We use the index convention (2) for an (n − 1, n − 1)-form. Then,

E[(ui j̄ )] = log det[(�u)i j̄ ],
and thus,

∂E

∂(�u)i j̄
= (�u)

i j̄ ,
∂2 E

∂(�u)i j̄∂(�u)kl̄
= −(�u)

i l̄(�u)
k j̄ .

Clearly, E is concave on [(�u)i j̄ ]. By (4.1) and (4.2), we know that the eigenvalues of [(�u)i j̄ ]
with respect to (ηi j̄ ), have uniform bounds which depend only on F , ω0, and C3. Therefore,
E is uniformly elliptic with respect to [(�u)i j̄ ]. Observe that by (4.5), [(�u)i j̄ ] depends
linearly on (u pq̄). Since (ηkl̄) > 0 on X , the conditions (1) and (2) follows immediately from
the chain rule.

Now we can apply the procedure in [3, p. 457–461], and this proves Lemma 9. As a
corollary, we obtain the Hölder estimate of C2 for Eq. (1.4).

Corollary 12 Let (X, η) an n-dimensional Kähler of nonnegative quadratic bisectional cur-
vature, and ω0 be a Hermitian metric on X. Given any f ∈ C∞(X), let u ∈ C∞(X) be a
solution of

det(ωn−1
u )

det(ωn−1
0 )

= e(n−1) f
( ∫

X ω
n
u∫

X e f ωn
0

)n−1

,

123



342 J. Fu et al.

where ωu is a positive (1, 1)-form such that

ωn−1
u = ωn−1

0 + (
√−1/2)∂∂̄u ∧ ηn−2 > 0 on X.

Then,

‖u‖C2,α(X) ≤ C,

where 0 < α < 1 and C > 0 are constants depending only on f , η, n, and ω0.

5 Openness and uniqueness

Throughout this section, we let ω0 be a balanced metric, and let η be an arbitrary Kähler
metric, unless otherwise indicated. We fix k ≥ n+4, 0 < α < 1, and a function f ∈ Ck,α(X)
satisfying

∫

X

e f ωn
0 = V ≡

∫

X

ωn
0 .

Here Ck,α(X) is the usual Hölder space on X . Consider for 0 ≤ t ≤ 1,

det(ωn−1
ut

)

det(ωn−1
0 )

= e(n−1)t f

( ∫
X ω

n
ut∫

X et f ωn
0

)n−1

, (5.1)

where ut ∈ Pη(ω0). By abuse of notation, in this section we denote

Pη(ω0) =
{
v ∈ Ck+2,α(X);ωn−1

0 + (
√−1/2)∂∂̄v ∧ ηn−2 > 0

}
.

Let

T = {t ∈ [0, 1];the equation(5.1) has a solution ut ∈ Ck+2,α(X)

such that ut ∈ Pη(ω0).}. (5.2)

Clearly, we have 0 ∈ T .

Lemma 13 Let T be the set given as above. Then T is open in [0, 1].
Proof Notice that (5.1) is the same as

ωn
ut

ωn
0

= et f

∫
X ω

n
ut∫

X et f ωn
0
.

As in Section 3 of [2], we define

M(w) ≡ log
ωn
w

ωn
0

− log

⎛

⎝ 1

V

∫

X

ωn
w

⎞

⎠ ,

for anyw ∈ Pη(ω0). Then, M(w) ∈ Fk,α(X), where Fk,α(X) is the hypersurface in Ck,α(X)
given by

Fk,α(X) =
⎧
⎨

⎩
g ∈ Ck,α(X);

∫

X

eg ωn
0 = V

⎫
⎬

⎭
.
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Now suppose that t ∈ T . Then, the corresponding ut defines a positive (1, 1)-form ωut

such that

ωn−1
ut

= ωn−1
0 + (

√−1/2)∂∂̄u ∧ ηn−2 > 0 on X;
furthermore, ut satisfies that

M(ut ) = t f + log V − log

⎛

⎝
∫

X

et f ωn
0

⎞

⎠ ∈ Fk,α(X).

The tangent space of Fk,α(X) at M(ut ) is identically the same as the Banach space Ek,α
t (X),

which consists of all h ∈ Ck,α(X) such that
∫

X

h ωn
ut

= 0.

In view of the Implicit Function Theorem, it suffices to show that the linearization operator
Lt ≡ Mut , given by

Lt (v) = n(
√−1/2)∂∂̄v ∧ ηn−2 ∧ ωut

(n − 1)ωn
ut

− n
∫

X (
√−1/2)∂∂̄v ∧ ηn−2 ∧ ωut

(n − 1)
∫

X ω
n
ut

,

is a linear isomorphism from Ek+2,α
t (X) to Ek,α

t (X). This is guaranteed by Lemma 13 in [2].
The proof is thus finished. ��
Remark 14 We thank John Loftin for pointing out that the openness argument in [2] also
works for η being a astheno-Kähler metric, i.e., η is a hermitian metric such that ∂∂̄ηn−2 = 0.

By the results in the previous section, we know that T is also closed, provided that
the orthogonal bisectional curvature of η is nonnegative. Therefore, the existence part in
Theorem 1 is proved. The uniqueness follows immediately from the following proposition.

Proposition 15 Let v ∈ Pη(ω0) satisfying

det
[
ωn−1

0 + (
√−1/2)∂∂̄v ∧ ηn−2

]
= δ detωn−1

0 , (5.3)

where δ > 0 is a constant. Then, v must be a constant function and δ = 1.

Proof Applying the maximum principle to Eq. (5.3) at the maximum points of v yields that
δ ≤ 1. Similarly, we get δ ≥ 1 by considering (5.3) at the minimum points of v. Thus, δ = 1.
Then, we apply the arithmetic–geometric mean inequality to obtain

1 =
[

detωn−1
v

detωn−1
0

]1/n

≤ 1 + 1

n

n∑

i, j=1

(ωn−1
0 )i j̄

(
(
√−1/2)∂∂̄v ∧ ηn−2

)

i j̄

= 1 + ω0 ∧ ηn−2 ∧ (√−1/2)∂∂̄v

ωn
0

≡ 1 + Kv.

Note that the linear operator K so defined is uniformly elliptic, by the metric equivalence of
η and ω0 on the compact manifold X . Applying the strong maximum principle to Kv ≥ 0
yields that v is a constant function. ��

Therefore, the proof of Theorem 1 is completed.

123



344 J. Fu et al.

Acknowledgments The authors would like to thank Professor S.-T. Yau for helpful discussion. Part of the
work was done while the third named author was visiting Fudan University, and he would like to thank their
warm hospitality. Fu is supported in part by NSFC grants 10831008 and 11025103.

References

1. Błocki, Z.: On uniform estimate in Calabi–Yau Theorem. Sci. China Ser. A Math. 48, 244–247 (2005)
2. Fu, J.-X., Wang, Z., Wu, D.: Form-type Calabi–Yau equations. Math. Res. Lett. 17, 887–903 (2010)
3. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second order, Springer, Berlin,

Paperback edition, (2001)
4. Gu, H.-L., Zhang, Z.-H.: An extension of Mok’s Theorem on the generalized Frankel conjecture. Sci.

China Math. 53, 1253–1264 (2010)
5. Guan, B., Li, Q.: Complex Monge–Ampère equations and totally geodesic manifolds. Adv. Math. 225,

1185–1223 (2010)
6. Han, Q., Lin, F.: Elliptic partial differential equations. In: Courant Lecture Notes in Mathematics, vol. 1,

AMS Press, Brooklyn (2000)
7. Mok, N.: The Uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisec-

tional curvature. J. Differ. Geom. 27, 179–214 (1988)
8. Siu, Y.-T., Yau, S.-T.: Complex Kähler manifolds of positive bisectional curvature. Invent. Math. 59,

189–204 (1980)
9. Tosatti, V., Weinkove, B.: The complex Monge–Ampère equation on compact Hermitian manifolds. J.

Am. Math. Soc. 23, 1187–1195 (2010)
10. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère

equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)

123


	Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature
	Abstract
	1 Introduction
	2 C2 estimates for form-type equations
	3 C0 estimates
	4 Hölder estimates for second derivatives
	5 Openness and uniqueness
	Acknowledgments
	References


