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Abstract Given a manifold M , we build two spherically symmetric model manifolds based
on the maximum and the minimum of its curvatures. We then show that the first Dirichlet
eigenvalue of the Laplace–Beltrami operator on a geodesic disk of the original manifold
can be bounded from above and below by the first eigenvalue on geodesic disks with the
same radius on the model manifolds. These results may be seen as extensions of Cheng’s
eigenvalue comparison theorems, where the model constant curvature manifolds have been
replaced by more general spherically symmetric manifolds. To prove this, we extend Rauch’s
and Bishop’s comparison theorems to this setting.
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1 Introduction

Optimal domains in isoperimetric inequalities relating eigenvalues to geometrical quantities
such as volume and surface area quite often display some degree of symmetry. In many
instances, this symmetry is actually the maximal possible, such as in the Rayleigh–Faber–
Krahn and the Szegö–Weinberger inequalities, corresponding to Dirichlet and Neumann
boundary conditions for Euclidean domains, respectively. It is thus quite natural that sym-
metrization plays a fundamental role in this aspect of spectral theory and is at the heart
of many isoperimetric inequalities of this type. The Rayleigh–Faber–Krahn inequality, for
instance, is a consequence of the fact that Schwarz symmetrization does not increase the
Dirichlet integral while leaving the L2 norm unchanged. Even in some cases where the min-
imiser is not one but two balls, this symmetrization plays a role, as happens not only in the
case of the second Dirichlet eigenvalue, but also when other restrictions are enforced—see,
for instance, [6,12].

However, Schwarz and other similar symmetrization procedures are mostly Euclidean
techniques, and do not extend to manifolds in general. This does not mean that symmetry
does not play a similarly fundamental role in isoperimetrical eigenvalue inequalities on
manifolds. One such example is Hersch’s result for two-dimensional spheres [15], which
states that among all surfaces with the same area which are homeomorphic to S

2, the round
sphere (canonical metric) maximises the first nontrivial eigenvalue.

The purpose of the present paper is to develop the usage of symmetrization techniques
in the case of manifolds, allowing us to derive comparison isoperimetric inequalities for
eigenvalues in this context. To this end, we shall consider a symmetrization procedure based
on curvature. More precisely, given a complete n-manifold M and a point p in M such
that we have lower and upper bounds for the radial Ricci and sectional curvatures within a
geodesic disk of radius r0, which depend only on the distance t to the point p, we build two
spherically symmetric manifolds centred at a point p∗ and whose curvatures are determined
by the respective bounds. In this way, we are then able to obtain that the first eigenvalue of
this geodesic disk with Dirichlet boundary conditions is bounded from above and below by
the first Dirichlet eigenvalue on geodesic disks centred at p∗ on these two manifolds—see
Theorems 3.6 and 4.4 for the precise statements of these results.

The above results may be seen as extensions of Cheng’s bounds for the first eigenvalue,
where the comparison is made between a geodesic disk on M and those on spaces of constant
curvature which are obtained by taking lower and upper bounds of the curvature [10,11].
The starting point behind Theorems 3.6 and 4.4 is twofold. On the one hand, it should be
possible to replace the constant curvature spaces in Cheng’s results by spherically symmetric
spaces, in such a way that these still yield curvature bounds which imply the desired eigen-
value bounds. On the other hand, spherically symmetric manifolds posses a relatively simple
characterization and the first Dirichlet eigenvalue on a geodesic disk is given by the zero
of a solution to a second order ordinary differential equation. Thus, not only do there exist
many bounds for these eigenvalues, some of which providing quite accurate estimates—see
[2,3,5,14], for instance—but also this reduction allows us to estimate the first eigenvalue of
a disk on a general n-dimensional manifold by solving a one-dimensional spectral problem
which, by construction, will be more accurate than Cheng’s methods.

The structure of the paper is as follows. In the next section, we lay out the background to
the problem and the necessary basic definitions, including the characterizations of the relevant
quantities in the case of spherically symmetric manifolds. The bound for eigenvalues in the
case where the radial Ricci curvature is bounded from below is derived in Sect. 3, together
with some of its consequences. The case where the radial sectional curvature is bounded
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Spherical symmetrization of geodesic disks 703

from above is dealt with in Sect. 4. Both situations require the extension of other comparison
results to the spherically symmetric setting (as opposed to the constant curvature setting),
which we believe to be interesting in their own right, such as Rauch’s and Bishop’s comparison
theorems—see Theorems 4.1, 3.3 and 4.2, respectively. In Sect. 5 we briefly discuss some
properties of the model manifolds, such as their maximum domain of existence. Finally, in
the last section we present some examples illustrating our results.

2 Preliminaries

In this section we recall the notion of spherically symmetric Riemannian manifold with
respect to a point and show some of their geometrical and spectral properties.

Given a complete n-dimensional Riemannian manifold M with n ≥ 2, metric g and Levi-
Civita connection ∇, for any fixed point p ∈ M , the exponential map expp : Dp → M\C(p)
is a diffeomorphism from a star-shaped open set Dp of Tp M with

Dp =
{

tξ |0 ≤ t < dξ , ξ ∈ Sn−1
p

}

onto the open set M\C(p), where C(p) is the cut locus of p, a closed set of zero n-Hausdorff
measure, Sn−1

p is the unit sphere of Tp M , and dξ is defined by

dξ = dξ (p) := sup{t > 0|γξ (s) = γ(p,ξ)(s) := expp(sξ) is the unique

minimal geodesic joining p and γξ (t)}.
Clearly, this exponential map provides a maximal normal geodesic coordinate chart at p.

As in [2,3,7], we introduce two important maps. For a fixed vector ξ ∈ Tp M, |ξ | = 1, let
ξ⊥ be the orthogonal complement of {Rξ} in Tp M and τt : Tp M → Texpp(tξ)M the parallel

translation along γξ . The path of linear transformations A(t, ξ) : ξ⊥ → ξ⊥ is given by

A(t, ξ)η = (τt )
−1Yη(t),

where Yη(t) = d(expp)(tξ)(tη) is the Jacobi field along γξ satisfying Yη(0) = 0, and
(∇t Yη)(0) = η. This operator satisfies the Jacobi equation A

′′ + RA = 0 with ini-
tial conditions A(0, ξ) = 0,A′(0, ξ) = I , where R(t) is the self-adjoint operator on
ξ⊥,R(t)η = (τt )

−1 R(γ ′
ξ (t), τtη)γ

′
ξ (t). The trace of the later operator is just the radial

Ricci tensor along unit speed geodesics starting from p,

Ricci(γξ (t))(γ
′
ξ (t), γ

′
ξ (t)).

By Gauss’s lemma, the first fundamental form of the Riemannian metric g on M\C(p) in
the spherical geodesic coordinate chart can be expressed by

ds2(expp(tξ)) = dt2 + |A(t, ξ)dξ |2, ∀tξ ∈ Dp.

Fixing an o.n. basis {ηi , i ≥ 2} of ξ⊥ = Tξ Sn−1
p , and extending it to a local frame ξi of Sn−1

p ,
we consider the metric components gi j (t, ξ), i, j ≥ 1, in this coordinate system {t, ξi , i ≥ 2},
and define on Dp a function J > 0 by

J n−1 = √|g| := √
det[gi j ], (2.1)

that is,
√|g| = det A(t, ξ), and dVM = J n−1dtdσ is the volume element of M\C(p),

where dσ denotes the (n − 1)-dimensional volume element on S
n−1 ≡ Sn−1

p ⊆ Tp M . If
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r(x) = d(x, p) denotes the intrinsic distance to the point p, then for x ∈ M\(C(p) ∪ {p}),
the unit vector field

vx = ∇r(x)

is the radial unit tangent vector at x , according to the definition given in [18]. To see this we
only have to recall that for any ξ ∈ Sn−1

p and t > 0,∇r(γξ (t)) = γ ′
ξ (t) is valid away from

the cut locus of p (cf. [13]). Applying (2.1), the volume of a geodesic ball of radius r and
centered at p, is given by

V (B(p, r)) = V (B(p, r)\C(p)) =
∫

Sn−1
p

⎛
⎜⎝

min{r,dξ }∫

0

det(A(t, ξ))dt

⎞
⎟⎠ dσ.

Thus, for r smaller than the injectivity radius at p, i.e. r < in j (p) = d(p,C(p)) = minξ dξ ,
we have

V (B(p, r)) =
r∫

0

∫

Sn−1
p

det(A(t, ξ))dσdt. (2.2)

For each ξ ∈ Sn−1
p , the cut point expp(dξ ξ) is either a conjugate point to p, which implies

det(A(dξ , ξ)) = 0, or expp is not injective at dξ ξ . We also recall the following inequality
about r(x) (cf. [21], Prop. 39, and pp. 266–267), with ∂r = ∇r as a vector of differentiation
(see Prop. 7, on p. 47 of the same reference),

∂r�r ≤ ∂r�r + ‖Hess r‖2 = −Ricci(∂r , ∂r ), with �r = ∂r ln(
√|g|),

which implies that

J ′′ + 1

(n − 1)
Ricci(γ ′

ξ (t), γ
′
ξ (t)) J ≤ 0, (2.3)

J (0, ξ) = 0, J ′(0, ξ) = 1. (2.4)

We are interested in comparing our manifolds with model manifolds which are spherically
symmetric with respect to a base point and whose Ricci and sectional curvatures bound those
of the original manifolds. The following definitions are helpful to clarify these concepts. Let

l(p) := sup
x∈M

r(x) = max
ξ

dξ .

To see the last equality holds we take a sequence xn ∈ M such that d(p, xn) → l(p)
when n → +∞, and let γξn be a minimizing unit speed geodesic connecting p to xn . Then
d(p, xn) ≤ dξn , proving that l(p) ≤ maxξ dξ . If M is complete not compact, this reasoning
also shows that both l(p) and maxξ dξ are infinite. In the later case, we conclude there exists
ξ with dξ = +∞. Naturally, M is compact iff l(p) is finite. In this case M = B̄(p, l(p)),
where ∂B(p, l(p)) = {q ∈ M : d(p, q) = l(p)} constitutes a nonempty closed subset
C+(p) of C(p), since a minimizing geodesic connecting p with any of its elements cannot
minimize distance after reaching it, at maximum distance l(p). In particular they are of the
form q = expp(dξ ξ), with dξ = l(p) ≥ in j (p).
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Spherical symmetrization of geodesic disks 705

Definition 2.1 A domain 	 = expp([0, l) × Sn−1
p ) ⊂ M\C(p), with l < in j (p), is said

to be spherically symmetric with respect to a point p ∈ 	, if and only if the matrix A(t, ξ)
satisfies A(t, ξ) = f (t)I , for a function f ∈ C2([0, l)), with f (0) = 0, f ′(0) = 1, and
f |(0, l) > 0.

In this case the Riemannian metric of M can be expressed on 	 by

ds2 = dt2 + f (t)2|dξ |2, ∀ξ ∈ Sn−1
p , 0 < t < l. (2.5)

Thus, J (t, ξ) = f (t). If 	̄ = M and M is a compact Riemannian manifold, then l < +∞
and we are assuming dξ = l = l(p) = in j (p) for all ξ . In this case by continuity of A(t, ξ),
f (l) is defined and is equal to J (l, ξ), being zero only if expp(lξ) is a conjugate point ∀ξ .

Spherically symmetric manifolds are also sometimes called generalized space forms as
in the work of Katz and Kondo [18], and a standard model for such manifolds is given by
the quotient manifold of the warped product M∗ = [0, l) × f S

n−1, with the metric (2.5)
(see [21], p. 13 and [20], pp. 204–211, and Chapter 7, for notation and properties). Here f
satisfies the conditions of Definition 2.1, with all pairs (0, ξ) identified with a single point p
(see [2]). This metric is of class Ck, k ≥ 0, if f ∈ Ck((0, l)) and of class Ck+3 at t = 0 with
vanishing 2d-derivatives at t = 0, for all 2d ≤ k + 3 (see [21], p. 13). For r < l,

V (B(p, r)) = wn

r∫

0

f n−1(t)dt, (2.6)

where wn denotes the (n − 1)-volume of the unit sphere S
n−1 of R

n , and by the co-area
formula

A(∂B(p, r)) = d

dr
V (B(p, r)) = wn f n−1(r).

If l = +∞ and the metric is of class C2 then M∗ is complete, since geodesics starting at p
are defined for all t ∈ R. If l is finite and f (l) = 0 then M∗ “closes”, and defines a one-point
compactification metric space M̄∗ = M∗ ∪ {q∗} by identifying all pairs (l, ξ) with a single
point q∗, and extending the distance function as d(q∗, (t, ξ)) = l − t . This space will be a
Riemannian metric space if at the closing point the metric (2.5) can be extended continuously,
that is, at t = l, f is C3 with f ′(l) = −1 and f ′′(l) = 0. In this case, the metric is of class
Ck at the closing point, if the even derivatives of f satisfy at t = l conditions analogous to
those satisfied at t = 0.

For the particular case of surfaces (n = 2), if | f ′(t)| ≤ 1, then

φ(t, θ) = ( f (t) cos θ, f (t) sin θ, h(t)),

with h(t) = ∫ t
0

√
1 − ( f ′(s))2, defines an isometric embedding of M∗ into a surface of

revolution of R
3. If M∗ has negative sectional curvature at p no such local embedding exists

near p, since f ′(t) is nondecreasing (see (2.11)).
We will use the following concept.

Definition 2.2 Given a continuous function k : [0, l) → R, we say that M has a radial Ricci
curvature lower bound (n − 1)k at the point p if

Ricci(vx , vx ) ≥ (n − 1)k(r(x)), ∀x ∈ M\C(p) ∪ {p}, (2.7)

where Ricci is the Ricci curvature of M .

Similarly, we define
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Definition 2.3 Given a continuous function k : [0, l) → R, we say that M has a radial
sectional curvature upper bound k at the point p if

K (vx , V ) ≤ k(r(x)), ∀x ∈ M\C(p) ∪ {p}, (2.8)

where V ⊥ vx , V ∈ Sn−1
x ⊆ Tx M , and K (vx , V ) denotes the sectional curvature of the

plane spanned by vx and V .

Remark 2.4 Since the radial distance is given by r(x) = d(p, x), for x = γξ (t), the parameter
t may be seen as the argument of the continuous function k : [0, l) → R in Definition 2.2.
Additionally, d

dt |x = ∇r(x) = vx , which implies our conditions (2.7) and (2.8) become
Ricci( d

dt ,
d
dt ) ≥ (n − 1)k(t) and K ( d

dt , V ) ≤ k(t), respectively. We also consider the same
definitions holding only on a geodesic ball B(p, r0) of M .

We shall now construct naturally defined optimal continuous functions k∓(p, t) satisfying
Definitions 2.2 and 2.3, respectively, with respect to the base point p. We first recall that
β(t, x, w) = (γ(x,w)(t), γ ′

(x,w)(t)) can be seen as an integral curve of a vector field on T M ,
depending smoothly on the variables (t, x, w), that we restrict to w = ξ ∈ Tx M with
‖ξ‖ = 1, for each x ∈ M , that is (x, ξ) lies in the unit sphere bundle SM ⊂ T M , and define
the normalized radial Ricci tensor, smoothly defined for all (x, ξ) ∈ SM, t ∈ R, as

Riccirad(x, ξ, t) = 1

(n − 1)
Ricci(γ ′

(x,ξ)(t), γ
′
(x,ξ)(t)).

Since the map (x, ξ) → dξ (x) is continuous, the set D = {(x, ξ, t) ∈ SM × [0,+∞) : 0 ≤
t < dξ (x)} is an open set of SM ×[0,+∞), with closure D̄ = {(x, ξ, t) ∈ SM ×[0,+∞) :
0 ≤ t ≤ dξ (x)}. Then we define,

k−(x, t) := min
{ξ :(t,x,ξ)∈D̄}

Riccirad(x, ξ, t), x ∈ M, 0 ≤ t < l(x), (2.9)

k+(x, t) := max⎧⎨
⎩
ξ, V : (x, ξ), (γ(x,ξ)(t), V )∈ SM

V ⊥γ ′
(x,ξ)(t)

⎫⎬
⎭

K (γ ′
(x,ξ)(t), V ), x∈M, 0≤ t< in j (x).

(2.10)

If l(x) < +∞ (resp. in j (x) < +∞), then k−(x, t) (resp. k+(x, t)) can be extended
continuously to t = l(x) (resp. t = in j (x)). Furthermore, if M is closed then in j (M) =
minx∈M inj (x) is a positive constant. The proof that the functions k±(x, t) are continuous is
an application of the uniform continuity of continuous functions on compact sets. We have
k−(p, t) ≤ Riccirad(p, ξ, t) for any ξ s.t. 0 ≤ t < dξ (p), and k+(p, t) ≥ K (V, γ ′

(p,ξ)(t)) for

any 0 ≤ t < in j (p), ξ and V ⊥γ ′
(p,ξ)(t) ∩ Sn−1

γ(p,ξ)(t)
, and so (2.7) and (2.8) hold, respectively.

They are optimal in the sense that, if k(t) is in the conditions of Definition 2.2 (resp. 2.3),
then k(t) ≤ k−(p, t) (resp. k(t) ≥ k+(p, t)). Further remarks will be described in Sect. 5,
clarifying the chosen domains for k±(p, t).

The radial sectional curvature and the radial component of the Ricci tensor of a model
space M∗ = [0, l) × f S

n−1, with f of class C2, are respectively given by (cf. Proposition
42 and Corollary 43 of chapter 7 in [20] or subsection 2.3 of chapter 3 in [21])

K
( d

dt , V
) = R

( d
dt , V, d

dt , V
) = − f ′′(t)

f (t) for V ∈ TξSn−1, |V |g = 1,

Ricci
( d

dt ,
d
dt

) = −(n − 1) f ′′(t)
f (t) .

(2.11)
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Thus, Definitions 2.2 and 2.3 are satisfied with equality in (2.7) and (2.8) respectively, and
k(t) = − f ′′(t)/ f (t). We need to require f ∈ C2((0, l)) to define the curvature tensor away
from p. Furthermore, if f ′′(0) = 0, and f is C3 at t = 0, then ∃ limt→0 k(t) = − f ′′′(0).
Though ∇r is not defined at x = p, k(t) is usually required to be continuous at t = 0, as in the
above definitions, which amounts to require f to be C3 at t = 0. This is a natural condition
when n equals two, since then the radial sectional curvature and the sectional curvature
coincide and the extension is defined. A space form with constant sectional curvature k is
also a spherically symmetric manifold and in this particular situation we have

f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin
√

kt√
k

, l = π√
k

k > 0,

t, l = +∞ k = 0,

sinh
√−kt√−k

, l = +∞ k < 0.

(2.12)

Given a Riemannian manifold M of class C1 with metric g of class C0, the fundamental
tone of a domain 	 is given by

λ∗(	) = inf
φ∈H1

0 (	)

∫
	

‖∇φ‖2
∫
	
φ2

,

where H1
0 (	) is the completion of the class of functions φ ∈ C1(	) with compact support

in the interior of 	, for the H1-norm ‖φ‖2
H1 = ∫

	
φ2 + ∫

	
‖∇φ‖2. If M is C2 and g is C1,

and ∂	 is piecewise C2, by Rayleigh’s theorem λ∗(	) corresponds to the first eigenvalue λ1

of the Dirichlet problem

�u + λu = 0 in 	 and u|∂	 = 0.

Moreover, H1
0 (	) ∩ C2(	) is just the space of functions in C2(	) ∩ C0(	̄) that vanish

at the boundary. When M is closed and 	 = M , the Dirichlet problem turns out to be
the closed problem, and taking the constant function φ = 1 we see that for all r > l,
λ∗(B(p, r)) = λ∗(M) = 0. Furthermore, in this case M = B̄(p, l) with l = l(p), and we
may ask if limr→l− λ

∗(B(p, r)) = 0 or, equivalently, if there exists an increasing sequence
Rm → l such that the decreasing sequenceλ∗(B(p, Rm)) converges to zero. This corresponds
to
∫ ‖∇φm‖2 → 0 when m → +∞, where φm is a λ1(B(p, Rm))-eigenfunction normalized

such that
∫
φ2

m = |M | = ∫
M 1. If M is smooth and ∂B(p, l) is a smooth submanifold

of codimension at least two in M (recall that ∂B(p, l) is a subset of C(p)), then Chavel
and Feldman proved in [8] that λ∗(M\	(τ)) → 0, when τ → 0, where 	(τ) = {x :
d(x, ∂B(p, l)) < τ }. Since M\	(τ) is a compact subset of B(p, l), it is contained in
B(p, l ′) for some l ′ < l, and Chavel and Feldman’s result leads to the conclusion that
λ1(B(p, l ′)) → 0, when l ′ → l−. Alternative stronger conditions are for example to find a
sequence φm ∈ H1

0 (B(p, Rm)) that converges to the constant function 1 for the H1-norm,
or for n ≥ 3, when (V (B(p, Rm+1))− V (B(p, Rm)))/(Rm+1 − Rm)

2 → 0 when m → ∞,
as we can see by taking φm(x) = ym(r(x)) with ym defined in the proof of next lemma. The
following Lemma 2.5 shows that this is a general property of all closing model spaces, even if
the Riemannian metric is not defined at the closing point, since we do not require f ′(l) = −1,
and f ′′(l) = 0. In the later case, ∂B(p, l) is a point that can have a conic singularity in which
case the tangent space at this point is not well defined, generalizing Chavel and Feldman’s
result to the non smooth case. A proof for the case of n-spheres can also be found in [7, p. 50].
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Lemma 2.5 Assume M∗ is a generalized space form [0, l) × f S
n−1 with f ∈ C2([0, l))

and C3 at t = 0, f (0) = f ′′(0) = 0, f ′(0) = 1, closing at t = l, i.e. f (l) = 0. If for
some ε > 0, f ∈ C1([0, l + ε)) in case n = 2, or f ∈ C2([0, l + ε)) in case n ≥ 3, then
limr→l− λ1(B(p, r)) = 0.

Proof For r < l, we denote by Br := B(p, r), that has a C2 boundary, and by Bl = M∗.
Let V (r) := |Br | = ∫

Br
1. For any increasing sequence Rm ↗ l, Rm < Rm+1 < l we define

a continuous function ym : [0, l) → [0, 1], that for n ≥ 3 is given by

ym(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 0 ≤ r ≤ Rm

(Rm+1 − r)
(Rm+1 − Rm)

Rm ≤ r ≤ Rm+1

0 Rm+1 ≤ r < l,

and for n = 2,

ym(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 ≤ r ≤ Rm

ln

(
l − r

l − Rm+1

)

ln

(
l − Rm

l − Rm+1

) Rm ≤ r ≤ Rm+1

0 Rm+1 ≤ r < l.

Then φm(x) = ym(r(x)) ∈ H1
0 (BRm+1), where r is the distance function to p in M∗.

Recall that r(x) is Lipschitz continuous on all M∗ with ‖∇r‖ ≤ 1 a.e.. Thus, for n ≥ 3,
∫

M

|φm − 1|2 ≤ |M∗\BRm | = |M∗| − V (Rm) → 0 when m → +∞,

∫

M

‖∇(φm − 1)‖2 ≤ V (Rm+1)− V (Rm)

(Rm+1 − Rm)
2 .

We will prove that for some suitable sequence Rm , we have V (Rm+1)−V (Rm )

(Rm+1−Rm )2
→ 0 as well,

what proves that φm → 1 for the H1-norm. Set F(s) = ( f (s))n−1. Then for n ≥ 3, F(l) =
F ′(l) = 0. We apply a Taylor’s formula for s close to l, F(s) = F(l) + F ′(l)(s − l) + ψ

(s − l)(s − l)2, where

ψ(s − l) =
1∫

0

(1 − t)F ′′(l + t (s − l))dt.

Considering a constant C > 0 such that |ψ(s − l)| ≤ C , for |l − s| < ε, and a sufficiently
small constant 0 < δ < 1, then setting Rm = l − δm we have by (2.6)

V (Rm+1)− V (Rm)

(Rm+1 − Rm)2
= wn

(Rm+1 − Rm)2

Rm+1∫

Rm

ψ(s − l)(s − l)2ds

≤ Cwn

(Rm+1 − Rm)2

Rm+1∫

Rm

(s − l)2ds = Cwn

(δm − δm+1)2

δm∫

δm+1

s2ds
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= Cwn

(δm − δm+1)2

1

3
((δm)3 − (δm+1)3)) = Cwn

3

(1 − δ3)

(1 − δ)2
δm .

The last expression converges to zero when m → +∞, what proves that φm → 1 in H1.
If we consider the case n = 2, by the assumptions, f (s) = ξ(s)(s − l) where ξ(s) =∫ 1

0 f ′(l + t (s − l))dt is a bounded function for s close to l. We chose δm = 1
m! and set

Rm = l − δm . Therefore,
∫

M∗
|φm − 1|2 ≤

∫

M∗\BRm

1 = |M∗| − V (Rm) → 0, when m → +∞,

and for a constant C > 0, for all m

∫

M∗
‖∇(φm − 1)‖2 ≤ C

1(
ln
(

l−Rm
l−Rm+1

))2

Rm+1∫

Rm

1

(l − s)2
(l − s)ds

= C
1(

ln
(

l−Rm
l−Rm+1

))2 (ln(l − Rm)− ln(l − Rm+1))

= C
1

ln
(

l−Rm
l−Rm+1

) = C

ln(m + 1)
→ 0 when m → +∞.

Consequently, φm → 1 for the H1-norm. Thus, in both cases

λ1(BRm ) ≤
∫

M∗ ‖∇φm‖2
∫

M∗ φ2
m

→ 0,

when m goes to +∞. ��
We would like to point out that for any Riemannian manifold of dimension n ≥ 3, the

double limit

lim
s>t,s,t→l−

V (B(p, s))− V (B(p, t))

(s − t)2

does not exist in general, but if A(∂B(p, t)) is a function on t that can be extended at t = l
and differentiable at that extension, then by using the co-area formula, we have the iterated
limit

lim
t→l−

lim
s→t+

V (B(p, s))− V (B(p, t))

(s − t)2
= 1

2

d

dt |t=l
A(∂B(p, t)).

On the other hand, if for suitable increasing sequences Rm the first limit exits, and taking
s = Rm+1 and t = Rm , as we did in the above proof, then it agrees with the second limit.

3 Generalized comparison theorems for manifolds with radial Ricci curvature
bounded from below

We start this section by showing an analog of Proposition 3 of Chapter 2 in [7], for generalized
space forms:
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Lemma 3.1 If T (t) is any solution of

[ f (t)n−1T ′]′ + λ f (t)n−1T = 0, (3.1)

where f (t) > 0 on the interval (0, β), then for � = T ′ we have

[ f (t)n−1�′]′ +
{
λ+ (n − 1)

[
f ′(t)
f (t)

]′}
f (t)n−1� = 0. (3.2)

Furthermore, �|(0, β) < 0 whenever T |(0, β) > 0 and λ > 0.

Proof By straightforward computation we can get (3.2) from (3.1) directly. Since f (t) > 0
on the interval (0, β), and

f (t)n−1T ′(t) = −λ
t∫

0

f (s)n−1T ds,

the second claim of the proposition follows. ��
In the remaining part of this section, M is assumed to be a complete n-dimensional

Riemannian manifold M with a radial Ricci curvature lower bound −(n −1) f ′′(t)/ f (t)with
respect to a given point p, and r denotes the distance function to p. Denote by B(p, r0) the
open geodesic ball with center p and radius r0 of M , and Vn(p−, r0) the geodesic ball with
center p− and radius r0 of an n-dimensional spherically symmetric manifold M− = [0, l)× f

S
n−1 with respect to p−. Let aξ := min{dξ , r0} on M . We always assume r0 < min{l(p), l}.

Lemma 3.2 The eigenfunction corresponding to the first Dirichlet eigenvalue of Vn(p−, r0)

may be chosen to be non-negative and is a radial function φ(t) satisfying φ′(t) < 0 for
0 < t < r0.

Proof The Laplacian on a spherically symmetric manifold in geodesic spherical coordinates
at p− is given by

� = d2

dt2 + (n − 1)
f ′(t)
f (t)

d

dt
+ 1

f 2(t)
�Sn−1 .

Then the first eigenfunction is radial satisfying

d2φ

dt2 + (n − 1)
f ′(t)
f (t)

dφ

dt
+ λ1(Vn(p

−, r0))φ = 0. (3.3)

The last statement now follows from the previous lemma. ��
We define a quantity on M\C(p) by

θ(t, ξ) =
[

J (t, ξ)

f (t)

]n−1

.

Theorem 3.3 (Generalized Bishop’s comparison theorem I) Given ξ ∈ Sn−1
p , and a model

space M− = [0, l) × f S
n−1, under the curvature assumption on the radial Ricci tensor,

Ricci(νx , νx ) ≥ −(n − 1) f ′′(t)/ f (t), for x = γ(p,ξ)(t) with t < min{dξ , l} (resp. with
t < min{aξ , l}) the function θ(t, ξ) is nonincreasing in t. In particular, for all t < min{dξ , l}
(resp. t < min{a(ξ), l}) we have J (t, ξ) ≤ f (t). Furthermore, this inequality is strict for
all t ∈ (t0, t1], with 0 ≤ t0 < t1 < min{dξ , l}, if the above curvature assumption holds with
a strict inequality for t in the same interval.
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Proof From the assumption on the radial Ricci curvature tensor, and (2.3), with initial con-
ditions (2.4), the function J (t, ξ) satisfies the following differential inequality

{
J ′′ + k(t)J ≤ 0, 0 ≤ t < l,

J (0, ξ) = 0, J ′(0, ξ) = 1,
(3.4)

where k(t) = − f ′′(t)/ f (t). On the other hand, y(t) = f (t) is the unique solution of the
equation

⎧⎪⎪⎨
⎪⎪⎩

y′′ + k(t)y = 0,

y(0) = 0, y′(0) = 1,

y > 0 on (0, l).

(3.5)

Consequently, on an interval (0, l) on which y(t) = f (t) > 0, we have J ′′ f − f ′′ J ≤ 0,
that is (J ′ f − f ′ J )′ ≤ 0. The initial conditions for J (t) and f (t) then yield J ′ f − f ′ J ≤
0. Hence, (J/y)′ = (J/ f )′ ≤ 0, whenever y(t) = f (t) > 0 on (0, l). Thus J/ f is a
nonincreasing function. Furthermore, by applying L’Hôpital’s rule, we have

lim
t→0

J (t, ξ)

f (t)
= lim

t→0

J ′(t, ξ)
f ′(t)

= 1.

Consequently, for t < dξ , J (t, ξ) ≤ f (t) holds. Under the assumption on strict inequality
for the radial Ricci curvature holding for t ∈ (t0, t1], then (J/ f )′ < 0, i.e. J/ f is decreasing
in the same interval, and the last assertion holds. ��
Remark 3.4 The proof of the first part of the above theorem may be found in [17] (with the
wrong sign for k(t)).

As another consequence we have the following volume comparison result.

Corollary 3.5 Under the curvature assumption of Theorem 3.3, we have

V (B(p, r0)) ≤ V (Vn(p
−, r0)),

with equality if and only if B(p, r0) is isometric to Vn(p−, r0).

Proof The volume inequality follows immediately from (2.2) and Theorem 3.3. Now let us
suppose that the equality of the volumes holds. Then J (t, ξ) = f (t), for all t smaller than
aξ . As in the proof of Bishops’s comparison theorem II in p. 72–73 of [7], this implies at
each point t with J (t, ξ) = f (t) that tr U 2 = (tr U )2, where U = A

′
A

−1, thus U is a scalar
matrix and so is A with A(ξ, t) = f (t)I . Hence, the metric of B(p, r0) is of the form (2.5),
that is B(p, r0) is isometric to Vn(p−, r0). ��

The next theorem is proved using a similar argument to that of Cheng’s in [10] and the
previous corollary:

Theorem 3.6 Let M be a complete n-dimensional Riemannian manifold with a radial Ricci
curvature lower bound (n − 1)k(t) = −(n − 1) f ′′(t)/ f (t) with respect to the point p. We
then have

λ1(B(p, r0)) ≤ λ1(Vn(p
−, r0)), (3.6)

where λ1(·) denotes the first eigenvalue of the corresponding geodesic ball. Moreover, the
equality in (3.6) holds if and only if B(p, r0) is isometric to Vn(p−, r0).
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Proof Let φ be the first nonnegative eigenfunction of Vn(p−, r0) which, by Lemma 3.2,
depends only on the radial variable. Since φ ◦ r vanishes on ∂B(p, r0), from the Rayleigh
characterization we obtain

λ1(B(p, r0)) ≤
∫
(dφ ◦ r, dφ ◦ r)∫

(φ ◦ r)2
.

As in [10], we shall use spherical geodesic coordinates centred at p under the integral.
Therefore,

∫

B(p,r0)

(dφ ◦ r, dφ ◦ r) =
∫

ξ∈Sn−1

⎡
⎢⎣

a(ξ)∫

0

(
dφ

dt

)2

f (t)n−1θ(t, ξ)dt

⎤
⎥⎦ dσ,

∫

B(p,r0)

(φ ◦ r)2 =
∫

ξ∈Sn−1

⎡
⎢⎣

a(ξ)∫

0

φ(t)2 f (t)n−1θ(t, ξ)dt

⎤
⎥⎦ dσ,

where dσ is the canonical measure of S
n−1 ≡ Sn−1

p .
On the other hand, we have

a(ξ)∫

0

(
dφ

dt

)2

f (t)n−1θ(t, ξ)dt = φ

(
dφ

dt

)
f (t)n−1θ(t, ξ)

∣∣∣a(ξ)0

−
a(ξ)∫

0

φ(t)

f (t)n−1θ(t, ξ)

d

dt

[
f (t)n−1θ(t, ξ) · dφ

dt

]
f (t)n−1θ(t, ξ)dt, (3.7)

and

1

f (t)n−1θ(t, ξ)

d

dt

[
f (t)n−1θ(t, ξ)

dφ

dt

]

= d2φ

dt2 +
[
(n − 1) f ′(t)

f (t)
+ 1

θ(t, ξ)

dθ(t, ξ)

dt

]
dφ

dt

= d2φ

dt2 +
{
(n − 1) f ′(t)

f (t)
+ (n − 1)

f (t)

J (t)

[
J (t)

f (t)

]′} dφ

dt
. (3.8)

Since, by Lemma 3.2, dφ
dt < 0 for 0 < t < r0, and (3.3) holds on (0, l), we have

−
a(ξ)∫

0

φ(t)

f (t)n−1θ(t, ξ)

d

dt

[
f (t)n−1θ(t, ξ) · dφ

dt

]
f (t)n−1θ(t, ξ)dt

≤
a(ξ)∫

0

φ2λ1(Vn(p
−, r0)) · f (t)n−1θ(t, ξ)dt. (3.9)

Thus, substituting (3.9) into (3.7), and using that φ(aξ )
dφ
dt (aξ ) ≤ 0 gives

a(ξ)∫

0

(
dφ

dt

)2

f (t)n−1θ(t, ξ)dt ≤ φ(a(ξ))

(
dφ

dt

)
(a(ξ)) f (a(ξ))n−1θ(a(ξ), ξ)
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+
a(ξ)∫

0

φ2λ1(Vn(p
−, r0)) f (t)n−1θ(t, ξ)dt

≤
a(ξ)∫

0

φ2λ1(Vn(p
−, r0)) f (t)n−1θ(t, ξ)dt.

Consequently, we have proved that

∫

ξ∈Sn−1

⎡
⎢⎣

a(ξ)∫

0

(
dφ

dt

)2

f (t)n−1θ(t, ξ)dt

⎤
⎥⎦ dσ

≤
∫

ξ∈Sn−1

⎡
⎢⎣

a(ξ)∫

0

λ1(Vn(p
−, r0))φ

2 f (t)n−1θ(t, ξ)dt

⎤
⎥⎦ dσ.

Hence, λ1(B(p, r0)) ≤ λ1(Vn(p−, r0)). When equality holds, we have that a(ξ) = r0 for
almost all ξ ∈ Sn−1. Thus, a(ξ) ≡ r0 for all ξ . We can then conclude that J (t, ξ) = f (t), and
so V (B(p, r0)) = V (Vn(p−, r0))which implies, by Corollary 3.5, that B(p, r0) is isometric
to Vn(p−, r0). ��
Corollary 3.7 Under the curvature conditions of the previous theorem, holding for all t <
l(p) = l where M− = [0, l)× f S

n−1, if M is closed and M− also closes i.e. f (l) = 0 and
satisfies the conditions on Lemma 2.5, then for all ξ , expp(lξ) is a conjugate point of p, and
limr→l− λ1(B(p, r)) = 0.

Proof This follows from Theorem 3.6 and Lemma 2.5. Furthermore, by Theorem 3.3 we
must have J (l, ξ) = 0 for all ξ , that is expp(lξ) is a conjugate point. ��
Remark 3.8 Theorem 3.6 is a generalization of Cheng’s Theorem 1.1 in [10], since space
forms are spherically symmetric manifolds with constant k(t). On the other hand, the choice
of a suitable spherically symmetric model space adapted to each base point gives us a finer
estimate of the first eigenvalue.

4 Generalized comparison theorems for manifolds with radial sectional curvature
bounded from above

In order to prove our second result we shall first present some generalizations of Rauch’s
and Bishop’s comparison theorems. We essentially keep the same notation, but we will now
denote by M+ the model space [0, l)× f S

n−1 spherically symmetric with respect to a point
p+, with metric (2.5) and f (t) satisfying the conditions in Definition 2.1, and by Vn(p+, r0)

its geodesic ball of radius r0 and center p+.

Theorem 4.1 (Generalized Rauch’s comparison theorem) Suppose M has a radial sectional

curvature upper bound k(t) = − f ′′(t)
f (t) along a given unit speed geodesic γ (t) = γ(p,ξ)(t),

for t ≤ min{cξ , l}, where cξ ≥ dξ is a first conjugate point γ(p,ξ)(cξ ξ) along γ . Let β ≤
min{cξ , l}. For any normal Jacobi field Y along γ|[0,β] satisfying Y (0) = 0, set

ψk(t) = |Y |′(0) f (t).
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714 P. Freitas et al.

Then on (0, β) we have

|Y |′
|Y | ≥ ψ ′

k(t)

ψk(t)
,

[ |Y |
ψk(t)

]′
≥ 0, |Y | ≥ ψk(t). (4.1)

Equality occurs in any of the first two inequalities in (4.1) at t0 ∈ (0, β) if and only if
there exists a unit vector field E, parallel along γ and pointwise orthogonal to γ such that
Y = ψk(t)E on [0, t0].
Proof Here we use a method similar to that in the proof of Rauch’s comparison theorem in
pages 67–68 of [7]. Away from conjugate points we have |Y |′ = g(Y,∇t Y )|Y |−1, which
implies, by our assumption and the Cauchy-Schwarz inequality, that

|Y |′′ = g(Y,∇t Y )
′|Y |−1 + g(Y,∇t Y )(|Y |−1)′

= |Y |−3{|∇t Y |2|Y |2 − g(Y,∇t Y )
2 − g(Y,RY )|Y |2}

≥ f ′′(t)
f (t)

|Y |. (4.2)

Therefore, one obtains {ψk(t)|Y |′ −ψ ′
k(t)|Y |}′ ≥ 0, with f (0) = Y (0) = 0, and the first two

inequalities in (4.1) follow directly. Furthermore, applying L’Hôpital’s rule we have

lim
t→0

|Y |(t)
ψk(t)

= lim
t→0

|Y |′(t)
|Y |′(0) f ′(t)

= 1,

which yields the last inequality in (4.1). When equality holds on one of the first two equivalent
inequalities in (4.1), at a given point t0, the same holds in (4.2) for all t ∈ [0, t0] as well,
as a consequence of the elementary fact that a nonnegative and nondecreasing C1 function
on [0, β), with two zeros at t = 0 and t = t0, must be constant on [0, t0]. Then, on [0, t0],
g(Y,∇t Y )2 = |∇t Y |2|Y |2 and g(Y,RY ) = −( f ′′(t)/ f (t))|Y |2. In particular, ∇t Y is a
multiple of Y (t). Hence, on [0, t0], Y = ψk(t)E , with E(t) = ∇t Y/|∇t Y | a parallel unit
vector field along γ (t). ��

Using the above result and now following a similar method to that in the proof of Bishop’s
comparison Theorem I on page 69 of [7], we obtain

Theorem 4.2 (Generalized Bishop’s comparison theorem II) Suppose M has a radial sec-

tional curvature upper bound given by k(t) = − f ′′(t)
f (t) for t < β ≤ min{in jc(p), l}, where

in jc(p) = infξ cξ , with cξ defined as in previous Theorem 4.1. Then on (0, β)

[√|g|
f n−1

]′
≥ 0,

√|g|(t) ≥ f n−1(t), (4.3)

and equality occurs in the first inequality at t0 ∈ (0, β) if and only if

R = − f ′′(t)
f (t)

, A = f (t)I,

on all of [0, t0].
Proof As in [7], we consider the self-adjoint positive definite matrix on (0, β) defined by
B = A

∗
A. Then det B = (det A)2. For any given α ∈ (0, β), we can choose an orthonormal

basis {e1, . . . , en−1} of {γ ′(0)}⊥, composed by eigenvectors of B(α), and define η j (t) =
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A(t)e j , j = 1, 2, . . . , n − 1. Obviously, η j (0) = A(0)e j = 0. Then as in [7], we have
(ln det A)′(α) ≥ (n − 1) f ′(α)/ f (α), by using the above Theorem 4.1, which implies

(det A)′

det A
≥ [ f n−1(t)]′

f n−1(t)
.

Now first inequality in (4.3) follows directly. Furthermore, by applying L’Hôpital’s
rule (n − 1) times, we have limt→0

√
g(t)/ f (t)n−1 = limt→0 A

′(t)/ f ′(t) = 1, which
implies second inequality of (4.3). The proof in the equality case follows as in the proof of
Theorem 4.1. ��

For convenience, we also state Barta’s Lemma [4,7], which plays an important role in the
proof of Theorem 4.4.

Lemma 4.3 (Barta [4,7]) Let 	 be a normal domain in a Riemannian manifold, and g ∈
C2(	) ∩ C0(	̄), with g|	 > 0 and g|∂	 = 0. Then

inf
	

(
�g

g

)
≤ −λ(	) ≤ sup

	

(
�g

g

)
,

where λ(	) denotes the lowest Dirichlet eigenvalue of the domain 	.

We are now in a position to prove the following generalization of Cheng’s result ([11]).

Theorem 4.4 Suppose M is a complete n-dimensional Riemannian manifold with a radial
sectional curvature upper bound k(t) = − f ′′(t)/ f (t) with respect to the point p. Then, for
r0 < min{in j (p), l}, we have

λ1(B(p, r0)) ≥ λ1(Vn(p
+, r0)), (4.4)

where λ1(·) denotes the lowest Dirichlet eigenvalue of the corresponding geodesic ball.
Furthermore, equality in (4.4) holds if and only if the two geodesic balls are isometric.

Proof As in the proof of Theorem 5 on p. 71 in [7], let φ : [0, r0] → [0,∞) be a nonnegative
radial eigenfunction of λ1(Vn(p+, r0)) of M+. Then, as noted in the proof of Lemma 3.2, this
eigenfunction satisfies (3.3), with φ′(0) = φ(0) = 0, φ ≥ 0 on [0, r0), and dφ

dt < 0 on (0, r0).
Define a function F : B(p, r0) → [0,∞), by F(expp tξ) = φ(t), for (t, ξ) ∈ [0, r0]×S

n−1
p .

Then by a straightforward calculation as in [7], and using Theorem 4.2, we have

�F

F
(expp tξ) ≤ 1

φ

[
φ′′ + (n − 1)

f ′(t)
f (t)

φ′
]

= −λ1(Vn(p
+, r0)).

Hence Barta’s Lemma yields

−λ1(B(p, r0)) ≤ sup
�F

F
(expp tξ) ≤ −λ1(Vn(p

+, r0)),

implying the inequality (4.4). The last claim is a direct application of Theorem 4.2. ��

Remark 4.5 If f (l+) = 0 for some l+ smaller than in j (p), and the model space M+ closes
at l+ in a sufficiently regular way—see Sect. 2—, the above result still holds for r0 up to l−+
in the trivial sense that the lower bound is given by the (vanishing) first eigenvalue of the
resulting closed manifold.
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5 Existence of the model spaces and their applicability

Given a manifold M and a point p in M , in order to apply the generalisations of Bishop’s
comparison theorems for the volume given in Sects. 3 and 4 and Theorems 3.6 and 4.4
to estimate the first eigenvalue of a disk centred at p and radius t , it is necessary that the
corresponding model manifolds are defined for the value of t in question. One situation
where these manifolds will cease to exist is when the function f which is used to define them
stops being positive at some value of t . However, and as may be seen from Theorem 4.4,
other situations may occur. We shall now illustrate some of these possibilities and then focus
mainly on the non-compact case.

A solution f = y(t) of (3.5) defined on a maximal interval [0, l), where t = l is the first
nonzero zero of f , defines a model space M∗ = [0, l)× f S

n−1, that is complete if l = +∞.
For finite l,M∗ closes as explained in Sect. 2.

A straightforward consequence of standard comparison results for solutions of second
order ordinary differential equations such as (3.5) is the following comparison result for
model spaces, that can also be seen as a consequence of Theorem 3.3 using (2.11):

Proposition 5.1 Given two model spaces Mi = [0, li )× fi S
n−1, i = 1, 2, if the radial cur-

vatures ki (t) = − f ′′
i (t)/ fi (t) satisfy k2(t) ≥ k1(t) for all t ∈ (0, l), where l ≤ min{l1, l2},

then f1(t) ≥ f2(t) on (0, l). In particularly if f1(l1) = 0, then l2 ≤ l1, i.e M2 closes before
or at the same time as M1. Furthermore, if strict inequality holds between the ki ’s, then we
also have strict inequality for the functions fi .

The above result immediately implies that, given a manifold M and a point p on M , the
model manifold M− is always defined while M+ is. However, the fact that a model manifold
M+ is defined is not enough to ensure the corresponding comparison results may be applied,
as the following simple example illustrates.

Let C be an infinite cylinder of unit radius and take any point p on C . In this case, since the
curvature vanishes, both model manifolds coincide with Euclidean space and we immediately
obtain that, as long as both theorems may be applied, the first eigenvalue of the disk centred
at p on the cylinder is given by j2

0,1/t2, where j0,1 denotes the first positive zero of the Bessel
function J0. However, for t larger than π , the disk will contain points from the cut locus of p,
and the conditions in Theorem 4.4 no longer hold. In fact, since the boundary of the disk has
now become disconnected, Theorem 3.6 ensures that there is no equality and thus the first
eigenvalue of the disk of radius t must be strictly smaller than that of its Euclidean counterpart
whenever t is larger than π . A similar reasoning applies to the volume comparison Theo-
rem 4.2. This shows that it is possible for the function f corresponding to the model surface
M+ to remain strictly positive, but the volume and eigenvalues bounds are no longer valid.

We shall now discuss the domain of definition of our model spaces M± and see that
while M− can actually be defined up to the maximum distance l(p) in the original manifold
M,M+ is only defined at most up to in j (p). Set k−(t) := k−(p, t) and k+(t) := k+(p, t)
as defined by (2.9) and (2.10), respectively, for t in [0, l(p)) and [0, in j (p)), respectively.
Let f± be the corresponding solutions of (3.5) with respect to k±(t), respectively. If we fix
t < l(p), then there exists some ξ ∈ Sn−1

p s.t. t < dξ . Applying Theorem 3.3, we have
J (t, ξ) ≤ f−(t). Since J (t, ξ) cannot vanish, the same holds for f−(t), that is, the model
M− is defined at least up to l− = l(p). The choice of domain of definition [0, in j (p)) for
k+(p, t) is a consequence of the fact that the proof of Theorem 4.4 is only valid in this range,
as explained above, that is, M+ only represents a model space for M for t < l+ with l+ at
most in j (p).

For the general case, we have thus proved the following

123



Spherical symmetrization of geodesic disks 717

Proposition 5.2 Given M and p ∈ M, the model space M− = [0, l−)× f− S
n−1 is defined

for l− = l(p), and f− satisfying f ′′−(t)/ f−(t) = −k−(t), for all t < l−. If l− < +∞ and
f−(l−) = 0, then any q = expp(dξ ξ) ∈ C+(p) is a conjugate point of p. The model space
M+ = [0, l+)× f+ S

n−1 satisfying f ′′+(t)/ f+(t) = −k+(t) is defined for t ∈ [0, l+) for some
l+ ≤ l = in j (p), and f+(t) ≤ f−(t),∀t < l+.

Remark 5.3 By a result due to Klingenberg (see [9], Theorem 5.9 (1)) when M is a closed even
dimensional Riemannian manifold of positive sectional curvature and in j (p) = in j (M),
then C(p) has a conjugate point. Complete Riemannian manifolds of nonpositive sectional
curvature have no conjugate points, and the exponential map from any point p is a covering
map. It is also known that there are closed surfaces with no conjugate points as shown by
examples constructed in [1].

We observe that if M is closed and we have the same curvature bound k(t) for all base
points, then our comparison theorems reduce to Cheng’s case of k(t) constant. Intuitively we
see that the parameter t of the functions k∓(x, t) defined in (2.9) and (2.10), respectively,
has meaning only when it depends on the point x , unless these functions are constant. To be
more precise, we derive the following:

Lemma 5.4 If M is closed, then k−(t) := minx∈M k−(x, t), defined for 0 ≤ t ≤ in j (M), is
a constant function on t.

Proof We fix in j (M) > t > 0 and s ∈ R s.t. in j (M) > t +s > 0. There exist (x0, ξ0) ∈ SM
s.t. k−(t +s) = k−(x0, t +s) = Riccirad(x0, ξ0, t +s). On the other hand Riccirad(x0, ξ0, t +
s) = Riccirad(xs, ξs, t), where (xs, ξs) = β(s, x0, ξ0). But Riccirad(xs, ξs, t) ≥ k−(xs, t) ≥
k−(t). We have shown that k−(t +s) ≥ k−(t). For the same reason k−(t) = k−((t +s)−s) ≥
k−(t + s), what shows that k−(t) is constant. ��

For the non compact case we have

Lemma 5.5 If k−(x, t) does not depend on the variable x then it is constant as a function
on (x, t).

The proof is similar to that of Lemma 5.4 and similar conclusions may be drawn for an
upper bound for the radial sectional curvature.

We shall now turn our attention to the noncompact case, for which l(p) = +∞. This
implies that the model manifold M− based on the minimum of the curvature is also noncom-
pact and a disk with arbitrary large radius centred at the base point exists.

It remains to consider the situation of M+. More precisely, given a complete non compact
Riemannian manifold M , we want to know under which conditions on the function k+(p, t),
defined by (2.10), the model space can be defined for all time. From what was stated above,
if the sectional curvature is nonpositive it follows that the disk centred at the base point of the
model manifold may also be extended for all t . We are thus mainly interested in the situation
where k(t) takes on positive values, and to find out when M+ will be defined for all t under
these conditions. This is equivalent to finding out under which conditions the solution f (t)
of (3.5) remains positive for all positive t , in which case the corresponding model space will
have a pole at the base point and is of the form M+ = [0,+∞)× f S

n−1. The non-existence
of zeros on the interval (0,∞) is related to the oscillation theory of ordinary differential
equations developed by Hille in [16] and we shall now apply it to our problem.

We say that a solution of an ordinary differential equation is oscillatory on the interval
(a,∞) for some positive a, if there are infinitely many zeros on this interval. If the solu-
tion has at most one zero point on (a,∞), then we say it is non-oscillatory. By the Sturm
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separation theorem, we know if a solution of an ordinary differential equation is oscillatory,
then all remaining solutions of this ordinary differential equation are oscillatory. An ordinary
differential equation is said to be oscillatory if its solutions are oscillatory, otherwise, it is
non-oscillatory.

Define now

k̄(t) := t

∞∫

t

k(τ )dτ,

and write

lim
t→∞ sup k̄(t) = k∗, lim

t→∞ inf k̄(t) = k∗. (5.1)

A result by Hille in [16] states that

Theorem 5.6 Given the ordinary differential equation f ′′(t)+ k(t) f (t) = 0, where k(t) is
a nonnegative function defined for positive t and belongs to L1((ε, 1/ε)) for each ε > 0, if
this equation is non-oscillatory for large t, then k∗ ≤ 1

4 and k∗ ≤ 1. Both estimates are the
best possible of their kind.

We define the multi-parameter family of functions �(t) (t > 0) by

�(t) = b2b2
3e−b3t

b1t − b2e−b3t + b2
, (5.2)

for constants b1, b2 and b3 satisfying

0 < b1 < 1, b3 > 0, b1 + b2b3 = 1.

The following result is proved in [19]

Theorem 5.7 For the initial value problem (3.5) we have

(I) if k(t) ≤ �(t) or k(t) ≤ 1
4(t+1)2

for t > 0, where �(t) is defined by (5.2), then it has a
positive solution on (0,∞);

(II) if k(t) ≥ α for some positive constant α > 0, then it cannot have a positive solution on
(0,∞);

(III) if k∗ > 1
4 or k∗ > 1, where k∗ and k∗ are defined by (5.1), then it cannot have a positive

solution on (0,∞).

Applying this to our problem we obtain the following

Corollary 5.8 Given an n-dimensional (n ≥ 2) complete manifold M, and a point p ∈ M,
if its radial sectional curvature is bounded from above by k(t) with respect to the point p,
where k(t) is a continuous function with respect to the distance parameter t = d(p, ·), then
under the assumptions in (I) of Theorem 5.7, the spherically symmetric manifold M+ :=
(0,∞) × f S

n−1, where the function f is the unique solution of (3.5), can be used as the
model space of M, while under the assumptions in (II) or (III) of Theorem 5.7, it is not
possible to find a spherically symmetric manifold with a pole as the model space of M.

123



Spherical symmetrization of geodesic disks 719

6 Examples

We shall now illustrate our results by obtaining eigenvalue bounds for disks on surfaces. In
this case (n = 2), when | f ′±(t)| ≤ 1 we may take the corresponding isometric surfaces of
revolutions into R

3, centred at the origin as defined in Sect. 2. In this instance, and placing
both model surfaces at the origin, we see that M− is below M+ and this will be the only
intersection point in case of strict inequality of the curvatures.

We shall examine three different situations, namely, both positive and negative curvatures
(a torus), positive curvature (an elliptic paraboloid) and negative curvature (a saddle). In the
case of the torus, we are able to compute explicitly K and K±, while in the other two situations
although it is possible to compute K explicitly, K± have to be computed numerically. In all
three examples the function f is computed numerically by solving equation (3.5) and it is
not to be expected that this equation may be solved in closed form in general—there are
some situations for the torus, for instance, where it will be possible to find f explicitly (see
[19]), but we shall not pursue that here. Our perspective is that, just like in Cheng’s case,
we approximate a spectral problem for a partial differential operator by the much simpler
situation of the determination of the spectrum of an ordinary differential operator.

Example 6.1 Torus: Consider the torus Tε obtained by rotating the circle (x − 1)2 + z2 =
ε2(0 < ε < 1) in the xz-plane around the z-axis. This may be parameterized by

⎧⎨
⎩

x = (1 + ε cos v) cos u
y = (1 + ε cos v) sin u
z = ε sin v

(6.1)

with u, v ∈ [0, 2π), while the corresponding Gaussian curvature depends only on v and is
given by

K = cos v

ε(1 + ε cos v)
.

Given a point p on Tε , we are interested in determining bounds for K on the boundary of
the disk centred at p and with radius t , say B(p, t), so that we can then apply Theorems 3.6
and 4.4 above.

We first note that for any circle on the torus obtained by fixing u in (6.1) the curvature
will be decreasing for v on [0, π) and increasing on [π, 2π). On the other hand, the points
with the largest and smallest values of v in ∂B(p, t) will have the same value of u as the
point p. This yields that, for a point p with coordinates (u, v) = (u0, v0), the minimum and
maximum values of the curvature in ∂B(p, t) are given by

K−(t) =

⎧⎪⎨
⎪⎩

cos(v0 + tε−1)

ε[1 + ε cos(v0 + tε−1)] , 0 < t < (π − v0)ε

−1
ε(1 − ε)

, (π − v0)ε ≤ t ≤ επ

and

K+(t) =

⎧⎪⎨
⎪⎩

cos(v0 − tε−1)

ε[1 + ε cos(v0 − tε−1)] , 0 < t < εv0

1
ε(1 + ε)

, εv0 ≤ t ≤ επ

,

respectively.
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Fig. 1 Functions f for the torus with ν0 equal to 0 (left) and π/2 (right); the upper and lower curves
correspond to K− and K+, respectively

Fig. 2 Surface M− corresponding to a point p on the torus having maximum positive curvature (ν0 = 0)

In order to obtain the model surfaces M±, we now need to solve equation (3.5) with
k(t) replaced by each of the functions K± given by the expressions above. Solving the
corresponding equations numerically for particular points p and ε equal to 1/2 yields the
functions f shown in Fig. 1.

In the case where v0 is equal to zero, the corresponding model surface M+ is a round
sphere, as the maximum of the curvature remains constant, and our results coincide with
Cheng’s. The surface M− corresponding to the same point p is shown on Fig. 2. We note
that in this case M− stops being isometrically embeddable in R

3 for t ≈ 1.097, due to the
fact that f ′ becomes larger than one at this point. However, the comparison theorems remain
valid after that and as long as f remains positive. To obtain the corresponding bounds, we
then need to compute the first eigenvalue for a geodesic disk on these surfaces, which is
obtained from equation (3.3). The values obtained for the two examples above are shown in
Figs. 3 and 4. In all examples we have opted for showing the graphs of t2λ in order to keep
the graphs bounded as t approaches zero.

Example 6.2 Elliptic paraboloid: As a second example we consider the surface of the elliptic
paraboloid given by

z = x2 + 4y2.

Note that it is still possible to compute the curvature at each point on this surface, which is
given by

K (x, y) = 16

(1 + 4x2 + 64y2)2
.

The difficulty lies in the determination of the maximum and minimum values of K on
a geodesic ball centred at a point p, and thus all the following computations were done

123



Spherical symmetrization of geodesic disks 721

Fig. 3 Upper and lower bounds corresponding to t2λ1(B(p, t)) of a disk centred at a point p on the torus
having v0 = 0; the top curve corresponds to Cheng’s upper bound shown here for comparison (Cheng’s lower
bound coincides with ours when v0 = 0)

Fig. 4 Upper and lower bounds corresponding to t2λ1(B(p, t)) of a disk centred at a point p on the torus
having v0 = π/2; the outer curves correspond to Cheng’s bounds shown here for comparison

numerically. For the case where the point p is the vertex of the parabola, we have determined
the corresponding model surfaces which are shown in Fig. 5. We note that while M− is
defined for all positive t , M+ is only defined up to t ≈ 1.7314.

The graph of t2λ on geodesic disks of radius t centred at the pole of these surfaces are
shown in Fig. 6. In agreement with Lemma 2.5, we see thatλ converges to zero as t approaches
the value where M+ closes.
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Fig. 5 Surfaces M± corresponding to p being the vertex of the elliptic paraboloid z = x2 + 4y2

Fig. 6 Upper and lower bounds obtained for the first eigenvalue of the disk centred at the origin for the elliptic
paraboloid defined by z = x2 + 4y2

Example 6.3 Saddle: Finally, we consider an example with negative curvature, the saddle
surface given by

z = x2 − y2.

Again we may compute the curvature at each point which is found to be

K (x, y) = − 4

(1 + 4x2 + 4y2)2
,

while the values of K± have to be found numerically, together with the corresponding func-
tions f . Due to the fact that both K± will be negative, it is not possible to isometrically
embed the resulting surfaces M± in R3.

In this case both model surfaces are defined for all values of the radius, since the curvature
is always negative. In Fig. 7 we plot the corresponding values of t2λ for t in [0, 100], while
Fig. 8 shows an upper bound for the percentage of the error made.
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Fig. 7 Upper and lower bounds obtained for the first eigenvalue of the disk centred at the origin for the saddle
surface given by z = x2 − y2

Fig. 8 Upper bound for the error (percentwise) for the first eigenvalue of the disk centred at the origin for the
saddle surface given by z = x2 − y2
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