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Abstract Consider a functional I0 with the mountain-pass geometry and a critical point
u0 of mountain-pass type. In this paper, we discuss about the existence of critical points uε
around u0 for functionals Iε perturbed from I0 in a suitable sense. As applications, we show
the existence of a solution to the nonlinear Schrödinger–Poisson equations and the nonlinear
Klein–Gordon–Maxwell equations with quite general class of nonlinearity.
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1 Introduction and statement of main result

We divide this introductory section into two parts. The first part is devoted to present an
abstract critical point theory inspired by the work of Byeon and Jeanjean [12]. In the remaining
part, we introduce its applications to the nonlinear Schrödinger–Poisson equations and the
nonlinear Klein–Gordon–Maxwell equations.

1.1 Abstract critical point theory

Let H be a separable Hilbert space with norm ‖ · ‖ and let I0 : H → R be a C1 functional
of the form

I0(u) = 1

2
‖u‖2 − P(u),whereP : H → R and P ′ : H → H∗ are compact. (1.1)
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650 W. Jeong, J. Seok

If we assume P ′(0) = 0, then 0 ∈ H is a critical point of I0. This type of functionals has been
received much attention by a large number of authors because, in many applications, their
critical points are weak solutions of various semilinear elliptic partial differential equations
arising from diverse areas of mathematics and physics.

Suppose that I0 has the mountain pass geometry and also has a critical point of mountain
pass type. More precisely, suppose that I0 satisfies the following:

(M1) there exist c, r > 0 such that if ‖u‖ = r , then I0(u) ≥ c > I0(0) and there exists
v0 ∈ H such that ‖v0‖ > r and I0(v0) < I0(0);

(M2) there exists a critical point u0 ∈ H of I0 such that

I0(u0) = C0 := min
γ∈� max

s∈[0,1] I0(γ (s)),

where � = {γ ∈ C([0, 1], H) | γ (0) = 0, γ (1) = v0}.
Consider a functional Iε perturbed from the limit functional I0:

Iε(u) := I0(u)+ Jε(u) (1.2)

where ε > 0 denotes a small parameter and Jε : H → R is a C1 functional such that

(J) (i) Jε(u) and J ′
ε(u) converge to 0 locally uniformly for u, i.e., for any M > 0,

lim
ε→0

sup
‖u‖≤M

|Jε(u)| = lim
ε→0

sup
‖u‖≤M

‖J ′
ε(u)‖ = 0;

(ii) Jε : H → R and J ′
ε : H → H∗ are compact.

The first aim of this paper is to develop a variational method for finding a critical point uε
of Iε around u0 when ε is small. From a variational point of view, there are two main issues
for obtaining critical points of a functional, that is,

(I1) the geometric structure of a functional for generating Palais–Smale sequences;
(I2) the compactness of Palais–Smale sequences.

By (J), we can easily see the functional Iε inherits the mountain pass geometry from I0 if
ε is sufficiently small, and thus the existence of a Palais–Smale sequence is straightforward
from the Ekeland variational principle. Also, the compactness of Palais–Smale sequences
comes from the boundedness of them because P(u) and Jε(u) are compact. However, unless
quite strong restriction on Iε is made, it is difficult in general to check whether Palais–Smale
sequences of Iε are bounded even when the limit functional I0 has the compactness of every
Palais–Smale sequences and ε > 0 is small.

To resolve this difficulty, one thus need to develop more sophisticated critical point theories
which assert the existence of a bounded Palais–Smale sequence instead of using the Ekeland’s
variational principle. One powerful method to this direction is the well-known Struwe’s
monotonicity trick (See [17,27]). Let Iμ : H → R be of the form

Iμ(u) = α(u)− μβ(u),

where μ > 0, α is a C1 functional which is coercive, i.e., lim‖u‖→∞ α(u) = ∞ and β is
a C1 functional such that β(u) ≥ 0 and β, β ′ map bounded sets into bounded sets. Then,
Struwe’s monotonicity technique says that if Iμ has the mountain pass geometry, there is
a bounded Palais–Smale sequence corresponding to mountain pass level for almost every
μ > 0. However, we point out that this method is not perturbative in nature; neither α is a
limit functional nor μ > 0 is a small parameter so this technique is not suitable for achieving
our goal.
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On perturbation of a functional with the mountain pass geometry 651

As the perturbation scheme, there is a critical point theory recently developed by Azzollini,
d’Avenia and Pomponio [6]. Let H1

r (R
N ) be the set of radial functions in the standard Sobolev

space W 1,2(RN ) with norm

‖u‖2 =
∫

RN

|∇u|2 + ωu2 dx, ω > 0.

Choose the limit functional I0 as

I0(u) := 1

2

∫

RN

|∇u|2 + ωu2 dx −
∫

RN

F(u) dx, (1.3)

where F(t) = ∫ t
0 f (s) ds and f : R → R is a continuous function satisfying the following

three conditions:

(ii.1) (Superlinearity near zero) lims→0+ f (s)/s = 0;
(ii.2) (Subcriticality near infinity) lim sups→∞ f (s)/s p < ∞ for some p ∈ (1, N+2

N−2 );

(ii.3) (The Berestycki-Lions condition) there exists T > 0 such that 1
2ωT 2 < F(T ),

Here we note that above three conditions are almost optimal for (1.3) to admit at least one
nontrivial critical point. The perturbation term Jε(u) is defined by

Jε(u) := ε

k∑
i=1

Ri (u) for some k,

where each Ri satisfies the following:

(R1) Ri is a nonnegative even C1 functional on H1
r (R

N );
(R2) there exists δi > 0 such that R′

i (u)[u] ≤ C‖u‖δi for any u ∈ H1
r (R

N );
(R3) if u j ⇀ u weakly in H1

r (R
N ), then

lim sup
j→∞

R′
i (u j )[u − u j ] ≤ 0;

(R4) there exist αi , βi ≥ 0 such that if u ∈ H1
r (R

N ), t > 0 and ut = u(·/t), then

Ri (ut ) = tαi Ri (t
βi u).

Then, it was proved in [6] that there exists a bounded Palais–Smale sequence of Iε for
sufficiently small ε > 0. To obtain this result, the authors applied new ideas developed by
Hirata et al. [15]. In fact, the ideas in [15] are equally applicable when Iε has the symmetric
mountain pass geometry so the existence of bounded Palais–Smale sequences corresponding
to the symmetric mountain pass energy level of Iε was also proved in [6]. On the other hand,
this result requires the Hilbert space H , the limit functional I0 and the perturbation term
Jε(u) to be of some specific form as well as Jε(u) to fulfill a kind of scaling property, which
does not seem essential.

Inspired by the work of Byeon and Jeanjean [12], we remove these restrictions. In fact,
we will develop a critical point theory for functionals defined on abstract Hilbert space. Our
result says that if we assume that the mountain pass type critical point of I0 from (M2) is a
ground state, i.e., it has the lowest energy level and the set of ground state critical points of
I0 is compact in H (these are accomplished by I0 of [6]), then there exists a Palais–Smale
sequence of Iε near the set of ground state critical points of I0 for sufficiently small ε > 0.
More precisely, we will show that there is a bounded Palais–Smale sequence of Iε away from
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the origin. We also point out that our result is related to the stability of the mountain pass type
critical points under small perturbation of functionals. Recall that there is a non-variational
theorem, the implicit function theorem, which tells that if Iε is C2 and u0 is a non-degenerate
critical point of I0, i.e., I ′

0(u0) = 0 and I ′′
0 (u0) is non-singular, then there is a curve of critical

points uε of Iε converging to u0 as ε → 0. This means that the non-degeneracy condition
provides a critical point u0 with stability under small perturbation. Also, this kind of existence
result can be generalized via degree theory when the conditions for Iε and u0 are weakened
as follows:

(i) Iε is C1;
(ii) u0 is an isolated critical point of I0 and ind(I ′

0(u0), 0) �= 0.

However, the non-degeneracy or even the isolatedness of a critical point obtained variationally
is quite hard to check in general so that these methods can be applied to a very restricted
class of Iε . We stress that when applying our methods we do not need to worry about any
non-degeneracy issue at all.

Now, to state our main theorem, we list the conditions which should be fulfilled by I0:

(M1) I0(0) = 0, there exist c, r > 0 such that if ‖u‖ = r , then I0(u) ≥ c and there exists
v0 ∈ H such that ‖v0‖ > r and I0(v0) < 0;

(M2) there exists a critical point u0 ∈ H of I0 such that

I0(u0) = C0 := min
γ∈� max

s∈[0,1] I0(γ (s)),

where � = {γ ∈ C([0, 1], H) | γ (0) = 0, γ (1) = v0};
(M3) it holds that

C0 = inf{I0(u) | u ∈ H \ {0}, I ′
0(u) = 0};

(M4) the set S := {u ∈ H | I ′
0(u) = 0, I0(u) = C0} is compact in H ;

(M5) there exists a curve γ0(s) ∈ � passing through u0 at s = s0 and satisfying

I0(u0) > I0(γ0(s)) for all s �= s0.

Then, our main result is the following:

Theorem 1 Assume that (M1)–(M5) hold for a C1 functional I0 with the form (1.1) and (J)
holds for one parameter family of C1 functionals Jε . Then, there exists ε0 > 0 such that for
any ε ∈ (0, ε0), the functional Iε := I0 + Jε admits a nontrivial critical point uε ∈ H. In
addition, for any sequence {ε j } converging to 0, the sequence of critical points {uε j } found
above converges to some W ∈ S up to a subsequence.

Remark 1 Observe that if I0 satisfies the Palais–Smale condition, the conditions (M2) and
(M4) are automatically implied by (M1) and the well-known mountain pass theorem [1]. For
the sake of generality, we assume that I0 satisfies (M1)–(M5) instead of assuming the (PS)
condition, (M1), (M3) and (M5).

Remark 2 It is natural to anticipate that the critical point uε found above is of mountain pass
type. Also, we think that the technical condition (M5) is not essential because (M5) never
contribute to make a mountain pass type critical point stable. It seems interesting to prove
Theorem 1 without (M) for wider application.
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On perturbation of a functional with the mountain pass geometry 653

1.2 Applications to some systems of PDEs

As a first application, we consider the following system of equations:
{−
u + ωu − λφu + Fu(x, u) = 0 in R

3,

−
φ = u2, lim|x |→∞ φ(x) = 0 in R
3,

(1.4)

where ω ∈ (0,∞), λ ∈ R and u : R
3 → R, φ : R

3 → R are unknown functions and
F : R

3 × R → R is a given potential function. The system (1.4) is called the nonlinear
Schrödinger–Poisson equations because a single nonlinear Schrödinger equation is coupled
with a Poisson-term.

A great deal of work has been devoted to the Eq. (1.4) especially in case of λ < 0. See
[2,3,5,6,8,13,14,18,26]. On the other hand, Mugnai first dealt with the case of λ > 0 in [25],
where he showed that there are infinitely many triples (λ, u, φ) ∈ R

+ × H1
r (R

3)× D1
r (R

3)

which solve (1.4) when the potential function F satisfies the following conditions:

F̂1 F : R
3×R → [0,∞] is such that the derivative Fu : R

3×R → R is a Carathéodory
function, F(x, s) = F(|x |, s) and F(x, 0) = Fu(x, 0) = 0;
F̂2 there exist C1,C2 and 1 < q < p < 5 such that |Fu(x, s)| ≤ C1|s|q + C2|s|p;
F̂3 there exists k ≥ 2 such that 0 ≤ s Fu(x, s) ≤ k F(x, s);
F̂4 it holds that F(x, s) = F(x,−s).

Here H1
r (R

3) denoted the set of radial functions in the standard Sobolev space W 1,2(R3)

and D1
r (R

3) the set of radial functions in the space D1(R3), the completion of C∞
0 (R

3) with
respect to the norm

‖u‖2
D1 =

∫

R3

|∇u|2 dx .

Applying Theorem 1, we considerably generalize the class of the nonlinearity F(x, s) by
just assuming that

(F1) F : R
3 × R → R is such that the derivative Fu : R

3 × R → R is a Carathéodory
function, F(x, s) = F(|x |, s) and F(x, 0) = Fu(x, 0) = 0;

(F2) lims→0 Fu(x, s)/s = 0 uniformly for x ∈ R
3 and lim sup|s|→∞ |Fu(x, s)|/|s|p < ∞

uniformly for x ∈ R
3 for some p ∈ (1, 5).

Under these assumptions on F , we obtain the following result:

Theorem 2 Suppose that (F1) and (F2) hold. Then, for sufficiently large λ > 0, there exists
a solution (u, φ) ∈ H1

r (R
3)× D1

r (R
3) of (1.4).

Observe that we drop the conditions (F̂3), (F̂4) and nonnegativity of F(x, s). Also, our
theorem covers not only infinitely many λ’s but also a continuum of them.

Next, as a second application, we consider the following system of equations:
{−
u − ω2(1 − qφ)2u + F ′(u) = 0 in R

3,

−
φ = q(1 − qφ)u2 in R
3,

(1.5)

where q > 0 and the potential F is supposed to be

F(s) = m2

2
s2 − G(s)

123



654 W. Jeong, J. Seok

and G : R → R is continuous. This system is called the nonlinear Klein–Gordon–Maxwell
equations and also has received a great interest by various authors [4,7,9,10,13,14,22–24].
When G(s) is a power nonlinearity, i.e.,

G(s) = 1

p
|s|p,

D’Aprile and Mugnai proved in [13] that there is no nontrivial finite energy solution (u, φ) ∈
H1(R)× D1(R) and proved in [14] that there are infinitely many finite energy radial solutions
(u, φ) ∈ H1

r (R)× D1
r (R) if we assume one of the following conditions:

(i) m > ω > 0 and p ∈ [4, 6);
(ii) m

√
(p − 2)/2 > ω > 0 and p ∈ (2, 4).

In [7], Azzollini, Pisani and Pomponio improved the existence range of (m, ω) for p ∈ (2, 4)
as follows:

0 < ω < mg(p), g(p) =
{√

(p − 2)(4 − p) if 2 < p < 3,
1 if 3 ≤ p < 4.

They also dealt with a limit case m = ω in [7]. If q > 0 is sufficiently small, the existence
of solution can be shown for all m > ω > 0, p ∈ (2, 4) by a work of Long [22]. More
precisely, for sufficiently small q , the existence of solutions to (1.5) was shown in [22] when
G is C2(R) such that G(0) = G ′(0) = 0 and satisfies the following:

Ĝ1 the equation

−
u + (m2 − ω2)u − G ′(u) = 0 (1.6)

has a unique positive solution u0 ∈ H4
r (R

3);
Ĝ2 u0 is non-degenerate, i.e., the kernel of linearized operator of (1.6) at u0,

Lu0 [φ] := −
φ + (m2 − ω2)φ − G ′′(u0)φ, φ ∈ H2
r (R

3)

is trivial on H2
r (R

3).

We note that in case of G(u) = |u|p/p, 2 < p < 6, (Ĝ1) and (Ĝ2) hold for all 0 < ω < m
by the well-known work of Kwong [19]. This result is based on the fact that as q → 0 the
first equation in (1.5) tends to (1.6) so the conditions (Ĝ1) and (Ĝ2) are needed for applying
the implicit function theorem as mentioned in the first part of introduction.

The final result of this paper is to eliminate these uniqueness and non-degeneracy assump-
tions, which significantly restrict the class of G. We will only assume that

(G1) G ∈ C1(R), G(0) = 0, and lims→0 G ′(s)/s = 0;
(G2) lim sups→∞ |G ′(s)/s p| < ∞ for some p ∈ (1, 5);
(G3) there exists T > 0 such that 1

2 (m
2 − ω2) T 2 < G(T ),

which are believed to be optimal conditions that can be given to (1.6). Under these assumptions
on G, we have the following result:

Theorem 3 For sufficiently small q > 0 and any ω with 0 < ω < m, there exists a solution
(u, φ) ∈ H1

r (R
3)× D1

r (R
3) of (1.5).

Before closing this section, we refer to the results on [10,24], in which the authors con-
sidered the nonnegative potential case, i.e., F(s) ≥ 0 for all s. Based on the paper [10],
it was proved in [25] that for sufficiently small q > 0, there exists a triple (ω, u, φ) ∈
R

+ × H1
r (R

3)× D1
r (R

3) satisfying (1.5) if we assume the following:
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(F1) F ∈ C2(R), F ≥ 0 and F(0) = F ′(0) = 0;
(F2) F ′′(0) = m2 > 0;
(F3) there exist C1,C2 > 0 and p ∈ (0, 4) such that |F ′′(s)| ≤ C1 +C2|s|p for every s ∈ R;
(F4) 0 ≤ s F ′(s) ≤ 2F(s) for every s ∈ R;
(F5) there exist m1, c > 0 with m1 < m2/2 such that F(s) ≤ m1s2 + c for every s ∈ R.

It was also proved in [25] that the same result holds if (F4) and (F5) are replaced with (F4)’
and (F5)’, which admit potentials F with super quadratic growth rate as the following:

(F4)’ there exists k ≥ 2 such that 0 ≤ s F ′(s) ≤ k F(s) for every s ∈ R;
(F5)’ there exist m1, c > 0 and θ > 2 such that F(s) ≤ c|s| + m1|s|θ for every s ∈ R and

m1 < min

{
m2

k(θ − 1)
, 52−θ (θ − 2)θ−2

(θ − 1)θ−1

(
1 + c

2

)2−θ
k1−θm2(θ−1)

}
.

We point out that Theorem 3 completely includes the former result. It is easy to see that if
we set

F(s) = 1

2
m2s2 − G(s),

(G1)–(G3) follow from (F1), (F2), F(3) and (F5) for ω > 0 satisfying m1 < ω2/2 < m2/2.
Observe that Theorem 3 covers a continuum of ω > 0 as Theorem 2. Moreover, we can also
see that Theorem 3 admits a wide class of potentials F ≥ 0 with super quadratic growth
since, for given G satisfying (G1)–(G3) and G(s) ≤ m2s2/2, we can modify G as G̃ by
defining that G̃(s) is the same with G(s) until s < T1 for some T1 > T and interpolate it
continuously with some negative function with super quadratic growth. It seems that Theorem
3 however does not cover the latter result entirely and vise versa because (G1)–(G3) don’t
admit potentials

F(s) = m

2
s2 + m1|s|p, 2 < p < 6

while they are free from the Ambrosetti and Rabinowitz type global condition (F4)’.
The rest of paper is organized as follows. In Sect. 2, we give a proof of Theorem 1.

In Sect. 3, we prove Theorems 2 and 3 by making use of Theorem 1.

2 Proof of Theorem 1

In this section, we give a proof of Theorem 1. Our approach is based on the idea developed
by Byeon and Jeanjean in [12]. The strategy is to search for a Palais–Smale sequence of Iε
near the set of the least energy critical points of I0.

Before proceeding, we define a modified mountain pass energy level of Iε

Cε = min
γ∈�M

max
s∈[0,1] Iε(γ (s)),

where

�M =
{
γ ∈ � | sup

s∈[0,1]
‖γ (s)‖ ≤ M

}
, M := 2 max

{
sup
u∈S

‖u‖, sup
s∈[0,1]

‖γ0(s)‖
}
.

By the choice of M , we see that γ0 ∈ �M , and thus

C0 = min
γ∈�M

max
s∈[0,1] I0(γ (s)).
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Now, we shall prove a series of propositions, whose combination gives a complete proof
of Theorem 1.

Proposition 1 The mountain pass energy level Cε is continuous at 0, i.e.,

lim
ε→0

Cε = C0.

Proof By (M5), there is a curve γ0 ∈ � satisfying maxs∈[0,1] I0(γ0(s)) = I0(u0) = C0.
Then we obtain from (J) that

Cε ≤ max
s∈[0,1] Iε(γ0(s))

≤ max
s∈[0,1] I0(γ0(s))+ max

s∈[0,1] Jε(γ0(s))

= I0(u0)+ o(1) = C0 + o(1) as ε → 0.

This shows lim supε→0 Cε ≤ C0.

On the other hand, the definition of Cε gives that for any δ > 0, there exists a curve
γε,δ ∈ �M such that Cε + δ ≥ maxs∈[0,1] Iε(γε,δ(s)). Moreover by (J), it follows that for any
η > 0 and any small ε > 0 depending on η,

|Jε(γε,δ(s))| ≤ η uniformly for s ∈ [0, 1] and δ > 0.

Then we see that

Cε + δ ≥ max
s∈[0,1]

{
I0(γε,δ(s))+ Jε(γε,δ(s))

}

≥ max
s∈[0,1] I0(γε,δ(s))− η

≥ C0 − η.

By taking δ, η → 0, we have that lim infε→0 Cε ≥ C0, and thus this completes the proof. �
Next, we define

Bd(u) := {v ∈ H | ‖v − u‖ ≤ d}
and

Sd :=
⋃
u∈S

Bd(u).

Proposition 2 Suppose that there exist sequences {ε j } → 0 and {u j } ⊂ Sd satisfying

lim
j→∞ Iε j (u j ) ≤ C0 and lim

j→∞ I ′
ε j
(u j ) = 0. (2.1)

Then there is d0 > 0 such that for 0 < d < d0, {u j } converges to some u ∈ S, up to a
subsequence.

Proof From the definition of Sd , there exists a sequence {w j } ⊂ S such that u j ∈ Bd(w j ).
Then, by (M4), we can assume w j converges to some w ∈ S in H by taking a subsequence
if it is necessary. This gives that u j ∈ B2d(w) for j large, and so {u j } converges weakly to
some u in H . Here we notice the set B2d(w) is weakly closed in H because it is convex and
closed in H . Then u ∈ B2d(w), which implies u is nontrivial for d > 0 small enough.

Now by using (2.1), (J) and the fact that P ′ is compact, we see that

I ′
ε j
(u j )ϕ → I ′

0(u)ϕ = 0 for all ϕ ∈ H,

123



On perturbation of a functional with the mountain pass geometry 657

which shows u is a nontrivial critical point of I0. Moreover, we have that

C0 ≥ lim
j→∞ Iε j (u j ) = lim

j→∞ I0(u j )+ lim
j→∞ Jε j (u j )

≥ 1

2
‖u‖2 − P(u) = I0(u) ≥ C0,

where the latter inequality holds due to (M3). It leads to I0(u) = C0 and consequently u ∈ S.
Finally we use again (2.1), (J) and the fact that P is compact to see that

lim inf
j→∞ ‖u j‖2 ≥ ‖u‖2 = 2 {I0(u)+ P(u)} = 2 {C0 + P(u)}

≥ 2

{
lim sup

j→∞
Iε j (u j )+ P(u)

}

= lim sup
j→∞

‖u j‖2 − 2

{
lim

j→∞ P(u j )− P(u)

}
+ 2 lim

j→∞ Jε j (u j )

= lim sup
j→∞

‖u j‖2.

Thus {u j } converges strongly to u in H , up to a subsequence. This completes the proof. �
Now we let

Dε := max
s∈[0,1] Iε(γ0(s)).

Then by Proposition 1, we see that Cε ≤ Dε and

lim
ε→0

Cε = lim
ε→0

Dε = C0.

Also we define

I Dε
ε = {u ∈ H | Iε(u) ≤ Dε}.

Hereafter, the letter d0 always means the real number in Proposition 2.

Proposition 3 For any d1, d2 > 0 satisfying d2 < d1 < d0, there are constants α > 0 and
ε0 > 0 depending on d1 and d2 such that for ε ∈ (0, ε0), the following is true:

‖I ′
ε(u)‖ ≥ α forall u ∈ I Dε

ε ∩ (Sd1 \ Sd2).

Proof To the contrary, suppose that for some d1, d2 > 0 satisfying d0 > d1 > d2, there exist
sequences {ε j } with lim j→∞ ε j = 0 and {u j } ⊂ Sd1 \ Sd2 such that

lim
j→∞ Iε j (u j ) ≤ C0 and lim

j→∞ I ′
ε j
(u j ) = 0.

Then by Proposition 2, there exists u ∈ S such that ‖u j − u‖ → 0 as j → ∞, and thus we
have dist(u j , S) → 0 as j → ∞. It contradicts with u j /∈ Sd2 for all j .

Proposition 4 For d > 0, there exists δ > 0 such that if ε > 0 is sufficiently small,

Iε(γ0(s)) ≥ Cε − δ implies γ0(s) ∈ Sd .

Proof We also argue by contradiction. Suppose that for some d > 0, there are sequences
{δ j } → 0, {ε j } → 0 and {s j } ⊂ [0, 1] such that

Iε j (γ0(s j )) ≥ Cε j − δ j but γ0(s j ) /∈ Sd .
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Then {s j } converges to some s∞ ∈ [0, 1], up to a subsequence, and by taking a limit, we
obtain that

C0 ≥ I0(γ0(s∞)) ≥ C0 and γ0(s∞) /∈ Sd/2.

However, γ0(s∞) should belong to S by (M5), and therefore we see a contradiction.

Proposition 5 For any d < d0 and sufficiently small ε > 0 depending on d, there exists a
sequence {u j } ⊂ Sd ∩ I Dε

ε such that

I ′
ε(u j ) → 0 as j → ∞.

Proof To the contrary, suppose that there is d < d0 and sequences {ε j } → 0 and {c j } ⊂
(0,∞) such that

‖I ′
ε j
(u)‖ ≥ c j > 0 for all u ∈ Sd ∩ I

Dε j
ε j .

By Proposition 3, we see that there exists α > 0, independent of j , such that

‖I ′
ε j
(u)‖ ≥ α for all u ∈ I

Dε j
ε j ∩ (Sd \ Sd/2).

Take a large j such that Proposition 4 holds for d and ε j . Hereafter, we shall denote this ε j

just as ε.
Now, consider a pseudo-gradient vector field Vε of Iε (for definition, see [28]) and take

a neighborhood Nε of Sd ∩ I Dε
ε satisfying Nε ⊂ BM (0). Let ηε be a Lipschitz continuous

function on H such that 0 ≤ ηε ≤ 1 everywhere and

ηε =
{

1 on Sd ∩ I Dε
ε ,

0 on H\Nε.

Also let ξε be a Lipschitz continuous function on R such that 0 ≤ ξε ≤ 1 everywhere and

ξε(s) =
{

1 if |s − Cε| ≤ δ/2,
0 if |s − Cε| ≥ δ.

Then there exists a global solution ψε : H × R → H of the initial value problem
⎧⎪⎨
⎪⎩

∂

∂τ
ψε(u, τ ) = −ηε(ψε(u, τ ))ξε(Iε(ψε(u, τ )))Vε(ψε(u, τ )),

ψε(u, 0) = u.

By recalling Proposition 4, limε→0(Cε − Dε) = 0 and using the fact that

d

dτ
Iε(ψε(u, τ )) ≤ −ηε(ψε(u, τ ))ξε(Iε(ψε(u, τ )))‖I ′

ε(ψε(u, τ ))‖2,

a standard argument gives that for some large τε > 0,

Iε(ψε(γ0(s), τε)) ≤ Cε − δ/4 for any s ∈ [0, 1].
From this, setting γ̃0(s) := ψε(γ0(s), τε), we have that γ̃0(s) ∈ �M and Iε(γ̃0(s)) < Cε for
any s ∈ [0, 1]. This is a contradiction to the definition of Cε.

Proposition 6 For any d > 0, there exists ε0(d) > 0 such that for 0 < ε < ε0(d), the
functional Iε admits a critical point uε ∈ Sd .
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On perturbation of a functional with the mountain pass geometry 659

Proof By Proposition 5, there exists a Palais–Smale sequence {u j } ⊂ Sd/2 corresponding to
a fixed small ε > 0. Since {u j } is bounded in H , it holds that u j ⇀ uε in H for some uε ∈ H .
Then we obtain I ′

ε(uε) = 0 from the compactness of P ′ and J ′
ε and the fact I ′

ε(u j ) → 0 as
j → ∞. Hence uε is a critical point of Iε .

Now we claim that uε ∈ Sd . Indeed, by the fact u j ∈ Sd/2, there is v j ∈ S satisfying
‖v j − u j‖ ≤ d/2. Then from the compactness of S, there exists v ∈ S such that v j → v in
S, up to a subsequence, as j → ∞. This means that for all j , u j ∈ Bd(v), a weakly closed
set in H . Thus, it follows that uε ∈ Bd(v). This completes the proof.

Completion of the proof of Theorem 1 Take d ∈ (0, d0) sufficiently small such that Sd

does not contain the origin. Proposition 6 says that there is a critical point uε ∈ Sd of Iε
if ε is small, so that each uε is nontrivial. Note that for any sequence {ε j } converging to 0,
the sequence {uε j } satisfies all assumptions of Proposition 2. Thus {uε j } converges, up to a
subsequence, to some W ∈ S. This completes the proof of Theorem 1.

3 Proofs of Theorems 2 and 3

In this section, we shall give proofs of Theorems 2 and 3. We first recall the definition of the
function spaces H1(R3) and D1(R3).

For α > 0, let H1 = H1(R3) be the completion of C∞
0 (R

3) with respect to the norm

‖u‖2 =
∫

R3

|∇u|2 + α u2 dx

which is equivalent to the usual Sobolev norm. Moreover, we denote the completion of
C∞

0 (R
3) with respect to the norm

‖u‖2
D1 =

∫

R3

|∇u|2 dx

by D1 = D1(R3).
To avoid a lack of compactness, in our applications, we mainly consider the set of radial

functions as follows:

H1
r = H1

r (R
3) = {u ∈ H1(R3) | u(x) = u(|x |)}

and

D1
r = D1

r (R
3) = {u ∈ D1(R3) | u(x) = u(|x |)}.

Here we note that the continuous embedding H1
r (R

3) ↪→ Lq(R3) is compact for any q ∈
(2, 6).

3.1 Proof of Theorem 2

We are concerned with the existence of a solution (u, φ) satisfying the nonlinear Schrödinger–
Poisson equations

{−
u + ωu − λφu + Fu(x, u) = 0 in R
3,

−
φ = u2, lim|x |→∞ φ(x) = 0 in R
3,

(3.1)
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where ω, λ are positive and the potential function F : R
3 × R → R satisfies (F1)–(F2). In

this subsection, we shall verify Theorem 2 saying that for λ > 0 large, the Eq. (3.1) admit
a nontrivial solution (u, φ) ∈ H1

r × D1
r . To obtain this result, we look for a critical point of

the associated energy functional I : H1
r × D1

r → R given by

I (u, φ) = 1

2
‖u‖2 + λ

4

∫

R3

|∇φ|2 dx − λ

2

∫

R3

φ u2 dx +
∫

R3

F(x, u) dx .

We observe that by the Lax–Milgram theorem, for given u ∈ H1, there exists a unique
solutionφ = φu ∈ D1 satisfying −
φu = u2 in a weak sense. The functionφu is represented
by

φu(x) = 1

4π

∫

R3

u2(y)

|x − y| dy,

and it has the following properties (see [26]):

Proposition 7 The followings hold:

(i) there exists C > 0 such that for any u ∈ H1(R3),

‖φu‖D1 ≤ C‖u‖2
L12/5 and

∫

R3

|∇φu |2 dx =
∫

R3

φuu2 dx ≤ C‖u‖4;

(ii) φu ≥ 0 for all u ∈ H1;
(iii) if u is radially symmetric, then φu is radial;
(iv) φtu = t2φu for all t > 0 and u ∈ H1;
(v) if u j ⇀ u weakly in H1

r , then, up to a subsequence, φu j → φu in D1 and

∫

R3

φu j u j
2 dx →

∫

R3

φuu2 dx .

Now by plugging φu into the first equation of (3.1), we obtain the following Schrödinger
equation with a nonlocal term:

−
u + ωu − λφuu + Fu(x, u) = 0 in R
3. (3.2)

By defining u(x) = εv(x) with ε = 1/
√
λ, (3.2) is equivalent to

−
v + ωv − φvv + Fv,ε(x, v) = 0 in R
3, (3.3)

where

Fv,ε(x, v) = 1

ε
Fv(x, εv),

and we easily see that Fv,ε(x, v) → 0 as ε → 0 uniformly in x from (F2). By the above
proposition and (F2), the functional Iε : H1

r → R given by

Iε(u) = 1

2
‖u‖2 − 1

4

∫

R3

φuu2 dx +
∫

R3

Fε(x, u) dx,

123



On perturbation of a functional with the mountain pass geometry 661

where Fε(x, u) = 1
ε2 F(x, εu), is well-defined. Moreover, a standard calculation shows that

it is a C1 functional with derivative given by

I ′
ε(u)v =

∫

R3

∇u∇v + ωuv dx −
∫

R3

φuuv dx +
∫

R3

Fu,ε(x, u)v dx

for all v ∈ H1
r . Thus it suffices to find a critical point of Iε in order to obtain a solution for

(3.1).
For the purpose of applying Theorem 1 to this problem, we need to consider the following

limit equation of (3.3) which is called Choquard equation (see [20,21]):

−
v + ωv − φvv = 0 in R
3. (3.4)

For u ∈ H1
r , we define an energy functional for (3.4) by

I0(u) = 1

2
‖u‖2 − 1

4

∫

R3

φuu2 dx . (3.5)

Proposition 7 says that the functional

P(u) = 1

4

∫

R3

φuu2 dx

is compact. The following lemma asserts that its derivative P ′(u) is also compact.

Lemma 1 The derivative P ′ : u ∈ H1
r �→ ∫

R3 φuu · dx ∈ (H1
r )

∗ is compact.

Proof Let {u j } be a bounded sequence in H1
r . Then along a subsequence, we may assume

that u j ⇀ u in H1
r . We observe that for all ϕ ∈ H1

r , using Hölder’s inequality,

∣∣P ′(u j )ϕ − P ′(u)ϕ
∣∣ =

∣∣∣∣∣∣∣
∫

R3

φu j u jϕ dx −
∫

R3

φu uϕ dx

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∫

R3

φu j (u j − u)ϕ dx

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

R3

(φu j − φu)uϕ dx

∣∣∣∣∣∣∣
≤ ‖φu j ‖L6‖u j − u‖L12/5‖ϕ‖L12/5

+‖φu j − φu‖L6‖u‖L12/5‖ϕ‖L12/5 = o(1)‖ϕ‖
because φu j → φu in L6 and u j → u in L12/5 up to a subsequence. Then we have that

P ′(u j ) → P ′(u) in (H1
r )

∗,

which proves the compactness of P ′.

In the remaining part of this subsection, we will check that the conditions (M1)–(M5) for
I0(u) and (J) for

Jε(u) :=
∫

R3

Fε(x, u) dx

are satisfied. First we prove the following lemma:
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Lemma 2 The functional I0 satisfies (M1).

Proof By Proposition 7 (i), we easily see that

I0(u) ≥ 1

2
‖u‖2 − C

4
‖u‖4 = 1

4C
> 0

if ‖u‖2 = 1/C . Moreover, if we take u �= 0 and t > 0, then by Proposition 7 (iv),

I0(tu) = t2

2
‖u‖2 − t4

4

∫

R3

φuu2 dx,

which goes to −∞ as t → ∞.

Now we define

C0 = inf
γ∈� max

s∈[0,1] I0(γ (s)),

where � = {γ ∈ C([0, 1], H1
r ) | γ (0) = 0, I0(γ (1)) < 0}. Then we deduce the following

lemma:

Lemma 3 The functional I0 satisfies the Palais–Smale condition at any energy level C.

Proof Let {u j } ⊂ H1
r be a sequence satisfying

I0(u j ) → C and I ′
0(u j ) → 0 as j → ∞.

Then we have that for j large,

4C + o(1)(1 + ‖u j‖) ≥ 4I0(u j )− I ′
0(u j )u j = ‖u j‖2.

Hence {u j } is bounded in H1
r . Observe that by the Riesz representation theorem, u j is

represented as

u j = I ′
0(u j )+ P ′(u j ).

Since P ′ is compact and I ′
0(u j ) converges to 0, {u j } converges in H1

r to some u ∈ H1
r . This

completes the proof.

Therefore by Mountain Pass Theorem, we deduce that for any ω > 0, Eq. (3.4) admits a
mountain pass solution u0 in H1

r satisfying I0(u0) = C0, so that (M2) holds.
Now we need to check that (M3) holds. For this, we let

N = {u ∈ H1
r | I ′

0(u) = 0, u �= 0}.
Then we obtain the following lemma:

Lemma 4 The mountain pass solution u0 of (3.4) is a least energy solution, i.e.,

C0 = inf
u∈N

I0(u) =: C1.

Proof First, we easily see that u0 ∈ N , and therefore I0(u0) = C0 ≥ C1.
Before showing that C0 ≤ C1, we need to see that the value C1 is attained by some

v ∈ N . Choose a minimizing sequence {v j } ⊂ N . Then it satisfies I ′
0(v j ) = 0 for all j

and I0(v j ) → C1 as j → ∞. Thus by Lemma 3, {v j } converges to some v ∈ H1
r up to a

subsequence, and therefore I0(v) = 0, that is, v ∈ N and I ′
0(v) = C1.
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Now for this v ∈ N , we set γ1(s) = st1v, where t1 > 0 is such that I0(t1v) < 0 (this
exists by Lemma 2). Since γ1 ∈ � and it holds that

d

dt
I ′
0(γ1(s))|s=1/t1 = 0,

we have that

max
s∈[0,1] I0(γ1(s)) = I0(v) ≥ C0

by the definition of C0. Therefore, C0 = C1.

By the above argument, we notice that there exists t0 > 0 such that I0(tu0) < 0 for
all t ≥ t0. Then setting γ0(s) = st0u0, we see that the curve γ0 ∈ � has maximum value
at s = 1/t0 and satisfies

max
s∈[0,1] I0(γ0(s)) = I0(γ0(1/t0)) = I0(u0) = C0.

Hence (M5) is also satisfied.
Finally, by defining

Sω := {u ∈ H1
r | I ′

0(u) = 0, I0(u) = C0},
we arrive at the following result which clearly holds due to the Palais–Smale condition of
I0 (Lemma 3):

Lemma 5 For any ω > 0, the set Sω is compact in H1
r , that is, (M4) holds.

On the other hand, from (F1)–(F2), we obtain the following result:

Lemma 6 The functional Jε given by

Jε(u) :=
∫

R3

Fε(x, u) dx

satisfies the condition (J).

Proof Given M > 0, choose any u ∈ H1
r with ‖u‖ ≤ M . By (F2), for given δ > 0, there is

Cδ,M > 0 depending on δ and M such that

|F(x, u)| ≤ δ

M2 u2 + Cδ,M |u|p+1.

Thus we have that

|Jε(u)| ≤ 1

ε2

∫

R3

|F(x, εu)| dx

≤ δ

M2

∫

R3

u2 dx + Cδ,M ε
p−1

∫

R3

|u|p+1 dx .

Taking ε → 0, it follows that

lim
ε→0

|Jε(u)| ≤ δ

M2 ‖u‖2 ≤ δ,
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which yields that

lim
ε→0

sup
‖u‖≤M

|Jε(u)| = 0.

Similarly, using the fact that for any δ > 0

|Fu(x, u)| ≤ δ|u| + Cδ|u|p,

it follows that for v ∈ H1
r

|J ′
ε(u)v| ≤ 1

ε

∫

R3

|Fu(x, εu)v| dx

≤ δ

∫

R3

|u||v| dx + Cδ ε
p−1

∫

R3

|u|p|v| dx .

Therefore we deduce that

lim
ε→0

sup
‖u‖≤M

‖J ′
ε(u)‖ = 0.

The compactness of Jε and J ′
ε is well-known in literature(see [28]). This completes the proof.

�
In conclusion, this problem satisfies the conditions (M1)–(M5) and (J) in Theorem 1, and

thus we conclude that for ε > 0 small, the Eq. (3.3) admits a nontrivial solution uε in H1
r and

uε ∈ Sd
ω. In other words, for sufficiently large λ > 0, the Eq. (3.2) has a nontrivial solution

uλ in H1
r . We complete the proof of Theorem 2.

3.2 Proof of Theorem 3

We are interested in the existence of a nontrivial solution of the stationary system of Klein–
Gordon–Maxwell type:

{−
u + [
m2 − ω2(1 − qφ)2

]
u = G ′(u) in R

3,

−
φ = q(1 − qφ)u2 in R
3,

(3.6)

where ω ∈ R, q ∈ (0,∞) and the potential G : R → R is a continuous function satisfying
the so-called Beresticki-Lions conditions (G1)–(G3). In this subsection, we shall give a proof
of Theorem 3 in which for q small enough and any ω with m2 > ω2, the system (3.6) admits
a solution (u, φ) ∈ H1

r × D1
r .

In order to find a solution for (3.6), for any ω with m2 > ω2, let us consider the functional
I : H1 × D1 → R defined by

I (u, φ) = 1

2

∫

R3

|∇u|2 + (m2 − ω2)u2 dx −
∫

R3

G(u) dx

+ω
2

2

⎛
⎜⎝2q

∫

R3

φu2 dx − q2
∫

R3

φ2u2 dx −
∫

R3

|∇φ|2 dx

⎞
⎟⎠ .

We easily see that the functional I belongs to C1(H1 × D1,R) and its critical points solve
the system (3.6).
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On the other hand, we find that by the Lax–Milgram theorem, for any u ∈ H1, there
exists a unique φ = φu ∈ D1 which solves −
φ = q(1 − qφ)u2 in a weak sense (see [14]).
Moreover, the function φu satisfies the following properties (see [24]):

Proposition 8 The following properties hold:

(i) if u is radially symmetric, then φu is radial.
(ii) if u j ⇀ u weakly in H1

r , then, up to a subsequence, φu j → φu in D1 and
∫

R3

φu j u j
2 dx →

∫

R3

φuu2 dx .

Then by inserting the function φu into the first equation of (3.6), we obtain the following
equation:

−
u + [
m2 − ω2(1 − qφu)

2] u = G ′(u) in R
3. (3.7)

For any ω with m2 > ω2, we define the energy functional Iq : H1
r → R for (3.7) by

Iq(u) = 1

2

∫

R3

|∇u|2 + (m2 − ω2)u2 dx −
∫

R3

G(u) dx + ω2

2
Jq(u),

where

Jq(u) := 2q
∫

R3

φuu2 dx − q2
∫

R3

φu
2u2 dx −

∫

R3

|∇φu |2 dx .

It is not hard to see that the functional Iq is of class C1 and

I ′
q(u)v =

∫

R3

∇u∇v + (m2 − ω2)uv dx −
∫

R3

G ′(u)v dx

+ω2

⎛
⎜⎝2q

∫

R3

φuuv dx − q2
∫

R3

φu
2uv dx

⎞
⎟⎠

for all v ∈ C∞
0 (R

3) (for calculation, see [24]). In other words, we have the following
proposition:

Proposition 9 The following statements are equivalent:

(i) (u, φ) ∈ H1 × D1 is a critical point of I ;
(ii) u is a critical point of Iq and φ = φu.

Let us consider the following limit equation of (3.7):

−
u + (m2 − ω2)u = G ′(u) in R
3. (3.8)

Also for any ω with m2 > ω2, we define the functional I0 : H1
r → R by

I0(u) := 1

2

∫

R3

|∇u|2 + (m2 − ω2)u2 dx −
∫

R3

G(u) dx

:= 1

2
‖u‖2 −

∫

R3

G(u) dx .
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We let

C0 = inf
γ∈� max

s∈[0,1] I0(γ (s)),

where � = {γ ∈ C([0, 1], H1
r ) | γ (0) = 0, I0(γ (1)) < 0}. Here as for the previous

application, we consider the functional I0 defined on H1
r . Recall that P(u) = ∫

R3 G(u) dx
and its derivative P ′ are compact on H1

r . From now on, we will look for a critical point of
Iq as a solution of (3.7) by applying Theorem 1. Thus we have to check that the conditions
(M1)–(M5) for I0 and (J) for Jq .

Concerning Eq. (3.8), Berestycki and Lions [11] proved that for any ω with m2 > ω2,
(3.8) has a radially symmetric least energy solution u0 ∈ H1

r (R
3) under the the conditions

(G1)–(G3). Moreover, Jeanjean and Tanaka [16] verified that I0 has mountain pass geometry
and a least energy solution u0 of (3.8) is a mountain pass solution, that is, I0(u0) = C0.
Therefore, (M1)–(M3) are clearly satisfied.

Furthermore, we obtain from the Pohozaev identity that for u0,t (x) = u0(x/t),

I0(u0,t ) = t

2

∫

R3

|∇u0| dx + t3

2
(m2 − ω2)

∫

R3

u0
2 dx − t3

∫

R3

G(u0) dx

=
(

t

2
− t3

6

) ∫

R3

|∇u0| dx .

Thus there exists t0 > 0 such that I0(u0,t ) < 0 for all t ≥ t0. Now setting γ0(s) = u0,st0 ,
we have that the curve γ0 ∈ � has maximum value at s = 1/t0 and satisfies

max
s∈[0,1] I0(γ0(s)) = I0(γ0(1/t0)) = I0(u0) = C0.

Hence (M5) is also satisfied.
For any ω with m2 > ω2, we let

Sm,ω = {u ∈ H1
r | I ′

0(u) = 0, I0(u) = C0}.
Then the following result holds (see [12]):

Lemma 7 For any ω with m2 > ω2, the set Sm,ω is compact in H1
r , that is, (M4) holds.

Finally we prove the following result:

Lemma 8 The functional Jq satisfies condition (J).

Proof Multiplying the equation −
φu = q(1 − qφu)u2 by φu and integrating by parts,
we find that ∫

R3

|∇φu |2 dx = q
∫

R3

φuu2 dx − q2
∫

R3

φu
2u2 dx . (3.9)

Then for given M > 0, by choosing any u ∈ H1
r with ‖u‖ ≤ M , we deduce from the Hölder

and Sobolev inequalities that

‖∇φu‖2
L2 ≤ q‖φu‖L6‖u2‖L6/5 + q2‖φ2

u‖L3‖u2‖L3/2

≤ qC‖∇φu‖L2‖u‖2 + q2C‖∇φu‖2
L2‖u‖2,
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which implies

‖∇φu‖L2 ≤ C M2q

1 − C M2q

for small q > 0 and some constant C > 0. By (3.9), we have that

Jq(u) = q
∫

R3

φuu2 dx,

and thus

|Jq(u)| ≤ q ‖φu‖L6‖u‖2
L12/5 ≤ C M2q

C M2q

1 − C M2q

by Hölder’s inequality, and consequently |Jq(u)| → 0 as q → 0. It is similar to show that
‖J ′

q(u)‖ → 0 as q → 0. We omit the proof.
Finally, using the same argument as in the proof of Lemma 1, the compactness of Jq and

J ′
q comes from Proposition 8 and compactness of the Sobolev embedding H1

r ↪→ L p for
2 < p < 6. We also omit the proof.

At this point, the functional Iq(u) satisfies the conditions (M1)–(M5) and (J) in Theorem 1.
Therefore we conclude that for q > 0 small and any ω with m2 > ω2, the Eq. (3.7) admits a
solution uq in H1

r . This completes the proof of Theorem 3.
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