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Abstract We show that the only nonlocal s-minimal cones in R
2 are the trivial ones for all

s ∈ (0, 1). As a consequence we obtain that the singular set of a nonlocal minimal surface
has at most n − 3 Hausdorff dimension.

Mathematics Subject Classification 35B65 · 26A33 · 49Q15 · 28A75

1 Introduction

Nonlocal minimal surfaces were introduced in [3] as boundaries of measurable sets E whose
characteristic function χE minimizes a certain Hs/2 norm. More precisely, for anys ∈ (0, 1),

the nonlocal s-perimeter functional Pers(E,�) of a measurable set E in an open set � ⊂ R
n

is defined as the �-contribution of χE in ‖χE‖Hs/2 , that is

Pers(E,�) := L(E ∩ �, R
n \ E) + L(E \ �,� \ E), (1)

where L(A, B) denotes the double integral

L(A, B) :=
∫

A

∫

B

dx dy

|x − y|n+s
, A, B measurable sets.

A set E is s-minimal in � if Pers(E,�) is finite and

Pers(E,�) ≤ Pers(F,�)

for any measurable set F for which E \ � = F \ �.
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34 O. Savin and E. Valdinoci

We say that E is s-minimal in R
n if it is s-minimal in any ball BR for any R > 0. The

boundary of s-minimal sets are referred to as nonlocal s-minimal surfaces.
The theory of nonlocal minimal surfaces developed in [3] is (at least for some features)

similar to the theory of standard minimal surfaces. In fact as s → 1−, the s-minimal surfaces
converge to the classical minimal surfaces and the functional in (1) (after a multiplication
by a factor of the order of (1 − s)) Gamma-converges to the classical perimeter functional
(see [5,1]).

In [3] it was shown that nonlocal s-minimal surfaces are C1,α outside a singular set of
Hausdorff dimension n − 2. The precise dimension of the singular set is determined by the
problem of existence in low dimensions of a nontrivial global s-minimal cone (i.e. an s-min-
imal set E such that t E = E for any t > 0). In the case of classical minimal surfaces Simons
theorem states that the only global minimal cones in dimension n ≤ 7 must be half-planes,
which implies that the Hausdorff dimension of the singular set of a minimal surface in R

n

is n − 8. In [6], the authors used these results to show that if s is sufficiently close to 1 the
same holds for s-minimal surfaces i.e. global s-minimal cones must be half-planes if n ≤ 7
and the Hausdorff dimension of the singular set is n − 8. See also [7] for regularity results
in related seetings.

Given the nonlocal character of the functional in (1), it seems more difficult to analyze
global s-minimal cones for general values of s ∈ (0, 1). The purpose of this paper is to show
that there are no nontrivial s-minimal cones in the plane. Our theorem is the following.

Theorem 1 If E is an s-minimal cone in R
2, then E is a half-plane.

From Theorem 1 above and Theorem 9.4 of [3], we obtain that s-minimal sets in two-
dimensional domains are locally C1,α (for further regularity, see [2]). Also, from Theorem 1
and classical blow-up and blow-down arguments1, we obtain that s-minimal sets in the plane
are half-planes. We summarize these observations in the following result:

Corollary 1 If E is an s-minimal set in � ⊂ R
2, and �′ � �, then (∂ E) ∩ �′ is a C1,α-

curve.
If E is an s-minimal set in R

2, then ∂ E is a straight line.

In higher dimensions, by combining the result of Theorem 1 here with the dimensional
reduction performed in [3], we obtain that any nonlocal s-minimal surface in R

n is locally
C1,α outside a singular set of Hausdorff dimension n − 3.

Corollary 2 Let ∂ E be a nonlocal s-minimal surface in � ⊂ R
n and let �E ⊂ ∂ E ∩ �

denote its singular set. Then Hd(�E ) = 0 for any d > n − 3.

The idea of the proof of Theorem 1 is the following. If E ⊂ R
2 is an s-minimal cone then

we construct a set Ẽ as a translation of E in BR/2 which coincides with E outside BR . Then
the difference between the energies (of the extension) of Ẽ and E tends to 0 as R → ∞.

This implies that also the energy of Ẽ ∪ E is arbitrarily close to the energy of E . On the other
hand if E is not a half-plane the set Ẽ ∪ E can be modified locally to decrease its energy by
a fixed small amount and we reach a contradiction.

The proof we present is quite robust, and we plan to use this method in a forthcoming
paper to obtain monotonicity and symmetry results in a general framework.

In the next section we introduce some notation and obtain the perturbative estimates that
are needed for the proof of Theorem 1 in Sect. 3.

1 For instance, one can use the proof of Theorem 28.17 in [8], where the density estimates, the compactness
arguments and the monotonicity formulas for classical minimal surfaces are replaced by the ones in [3]. Of
course, in all the results presented, we are implicitly ruling out the trivial case in which either the s-minimal
set E or its complement is empty.
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Regularity of nonlocal minimal cones 35

2 Perturbative estimates

We start by introducing some notation.
Notation.
We denote points in R

n by lower case letters, such as x = (x1, . . . , xn) ∈ R
n and points

in R
n+1+ := R

n × (0,+∞) by upper case letters, such as X = (x, xn+1) = (x1, . . . , xn+1) ∈
R

n+1+ .

The open ball in R
n+1 of radius R and center 0 is denoted by BR . Also we denote by

B+
R := BR ∩ R

n+1+ the open half-ball in R
n+1 and by Sn+ := Sn ∩ R

n+1+ the unit half-sphere.
The fractional parameter s ∈ (0, 1) will be fixed throughout this paper; we also set

a := 1 − s ∈ (0, 1).

The standard Euclidean base of R
n+1 is denoted by {e1, . . . , en+1}. Whenever there is no

possibility of confusion we identify R
n with the hyperplane R

n × {0} ⊂ R
n+1.

The transpose of a square matrix A will be denoted by AT , and the transpose of a row
vector V is the column vector denoted by V T . We denote by I the identity matrix in R

n+1.

We introduce the functional

ER(u) :=
∫

B+
R

|∇u(X)|2xa
n+1 d X. (2)

which is related to the s-minimal sets by an extension problem, as shown in Section 7 of [3]
(this is a version of the extension problem for the fractional Laplacian discussed in [4]). More
precisely, given a set E ⊆ R

n with locally finite s-perimeter, we can associate to it uniquely
its extension function u : R

n+1+ → R whose trace on R
n × {0} is given by χE − χRn\E and

which minimizes the energy functional in (2) for any R > 0.

We recall (see Proposition 7.3 of [3]) that E is s-minimal in R
n if and only if its extension

u is minimal for the energy in (2) under compact perturbations whose trace in R
n ×{0} takes

the values ±1. More precisely, for any R > 0,

ER(u) ≤ ER(v) (3)

for any v that coincides with u on ∂ B+
R ∩ {xn+1 > 0} and whose trace on R

n × {0} is given
by χF − χRn\F for any measurable set F which is a compact perturbation of E in BR .

Next we estimate the variation of the functional in (2) with respect to horizontal domain
perturbations. For this we introduce a standard cutoff function

φ ∈ C∞
0

(
R

n+1) , with φ(X) = 1 if |X | ≤ 1/2 and φ(X) = 0 if |X | ≥ 3/4.

Given R > 0, we let

Y := X + φ(X/R)e1. (4)

Then we have that X �→ Y = Y (X) is a diffeomorphism of R
n+1+ as long as R is sufficiently

large (possibly in dependence of φ).
Given a measurable function u : R

n+1+ → R, we define

u+
R (Y ) := u(X). (5)

Similarly, by switching e1 with −e1 (or φ with −φ in (4)), we can define u−
R (Y ).

In the next lemma we estimate a discrete second variation for the energy ER(u).
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36 O. Savin and E. Valdinoci

Lemma 1 Suppose that u is homogeneous of degree zero and ER(u) < +∞. Then
∣∣ER(u+

R ) + ER(u−
R ) − 2ER(u)

∣∣ ≤ C Rn−3+a, (6)

for a suitable C ≥ 0, depending on φ and u.

Proof We start with the following observation. Let us consider the square matrix of order
(n + 1)

A :=

⎛
⎜⎜⎜⎝

a1 . . . . . . an+1

0 . . . . . . 0
. . .

0 . . . . . . 0

⎞
⎟⎟⎟⎠

with 1 + a1 �= 0. Then a direct computation shows that

(I + A)−1 = I − 1

1 + a1
A = I − A

det(I + A)
. (7)

Now, we define

χR(X) :=
{

1 if R/2 ≤ |X | ≤ R,

0 otherwise

and

M(X) := 1

R

⎛
⎜⎜⎜⎝

∂1φ(X/R) . . . . . . ∂n+1φ(X/R)

0 . . . . . . 0
. . .

0 . . . . . . 0

⎞
⎟⎟⎟⎠ .

Notice that

M = O(1/R) χR . (8)

Let now

κ(X) := | det DX Y (X)| = det(I + M(X)) = 1 + ∂1φ(X/R)

R
= 1 + tr M(X).

By (7), we see that

(DX Y )−1 = (I + M)−1 = I − M
κ

. (9)

Also, 1/κ = 1 + O(1/R), therefore, by (8),

M MT

κ
= O(1/R2)χR . (10)

Now, we perform some chain rule differentiation of the domain perturbation. For this, we
take X to be a function of Y ; also, the functions u, Y, χR, M and κ will be evaluated at X,

while u+
R will be evaluated at Y (e.g., the row vector ∇X u is a short notation for ∇X u(X),

while ∇Y u+
R stands for ∇Y u+

R (Y )). We use (5) and (9) to obtain

∇Y u+
R = ∇X u DY X = ∇X u (DX Y )−1 = ∇X u

(
I − M

κ

)
.
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Regularity of nonlocal minimal cones 37

Also, by changing variables,

dY = | det DX Y | d X = κ d X.

Accordingly

∣∣∇Y u+
R

∣∣2
ya

n+1 dY = ∇X u

(
I − M

κ

) (
I − M

κ

)T

(∇X u)T xa
n+1 κ d X

= ∇X u

(
κ I − M − MT + MMT

κ

)
(∇X u)T xa

n+1 d X

= ∇X u

(
(1 + tr M) I − M − MT + MMT

κ

)
(∇X u)T xa

n+1 d X.

Hence, from (10),
∣∣∇Y u+

R

∣∣2
ya

n+1 dY

= ∇X u
(
(1 + tr M) I − M − MT + O

(
1/R2) χR

)
(∇X u)T xa

n+1 d X.

The similar term for ∇Y u−
R may be computed by switching φ to −φ (which makes M

switch to −M): thus we obtain
∣∣∇Y u−

R

∣∣2
ya

n+1 dY

= ∇X u
(
(1 − tr M) I + M + MT + O

(
1/R2) χR

)
(∇X u)T xa

n+1 d X.

By summing up the last two expressions, after simplification we conclude that
(∣∣∇Y u+

R

∣∣2 + ∣∣∇Y u−
R

∣∣2
)

ya
n+1 dY = 2

(
1 + O

(
1/R2) χR

) |∇X u|2 xa
n+1 d X. (11)

On the other hand, the functiong(X) := |∇X u(X)|2 xa
n+1 is homogeneous of degree a − 2,

hence

∫

B+
R

χR |∇X u|2 xa
n+1 d X =

∫

B+
R \B+

R/2

g d X =
R∫

R/2

⎡
⎢⎣

∫

Sn+

g(ϑ
) dϑ

⎤
⎥⎦ 
nd


=
R∫

R/2


n+a−2

⎡
⎢⎣

∫

Sn+

g(ϑ) dϑ

⎤
⎥⎦ d
 = C Rn+a−1,

for a suitable C ≥ 0 depending on u. This and (11) give that∫

B+
R

(∣∣∇Y u+
R

∣∣2 + ∣∣∇Y u−
R

∣∣2
)

ya
n+1 dY − 2

∫

B+
R

|∇X u|2 xa
n+1 d X

= O(1/R2)

∫

B+
R

χR |∇X u|2 xa
n+1 d X

= O(1/R2) · C Rn+a−1,

which completes the proof of the lemma. ��
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Lemma 1 turns out to be particularly useful when n = 2. In this case (6) yields

ER
(
u+

R

) + ER
(
u−

R

) − 2ER(u) ≤ C

Rs
, (12)

and the right hand side becomes arbitrarily small for largeR. As a consequence, we also
obtain the following corollary.

Corollary 3 Suppose that E is an s-minimal cone in R
2 and that u is the extension of

χE − χR2\E . Then

ER
(
u+

R

) ≤ ER(u) + C

Rs
. (13)

Proof Since E is a cone, we know that u is homogeneous of degree zero (see Corollary 8.2
in [3]): thus, the assumptions of Lemma 1 are fulfilled and so (12) holds true.

From the minimality of u (see (3)), we infer that

ER(u) ≤ ER(u−
R ),

which together with (12) gives the desired claim. ��

3 Proof of Theorem 1

We argue by contradiction, by supposing that E ⊂ R
2 is an s-minimal cone different than

a half-plane. By Theorem 10.3 in [3], E is the disjoint union of a finite number of closed
sectors. Then, up to a rotation, we may suppose that a sector of E has angle less than π and
is bisected by e2. Thus, there exist M > 0 and p ∈ BM , on the e2-axis, such that p lies in
the interior of E, and p + e1 and p − e1 lie in the exterior of E .

Let R > 4M be sufficiently large. Using the notation of Lemma 1 we have

u+
R (Y ) = u (Y − e1) , for all Y ∈ B+

2M , and

u+
R (Y ) = u(Y ) for all Y ∈ R

3+ \ B+
R , (14)

where u is the extension of χE − χR2\E . We define

vR(X) := min{u(X), u+
R (X)} and wR(X) := max{u(X), u+

R (X)}.
Denote P := (p, 0) ∈ R

3. We claim that

u+
R < wR = u in a neighborhood of P, and

u < wR = u+
R in a neighborhood of P + e1. (15)

Indeed, by (14)

u+
R (P) = u (P − e1) = (

χE − χR2\E

)
(p − e1) = −1

while

u(P) = (
χE − χR2\E

)
(p) = 1.

Similarly, u+
R (P + e1) = u(P) = 1 while u(P + e1) = −1. This and the continuity of the

functions u and u+
R at P, respectively P + e1, give (15).
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We point out that ER(u) ≤ ER(vR), thanks to (14) and the minimality of u. This and the
identity

ER (vR) + ER (wR) = ER(u) + ER
(
u+

R

)
imply that

ER (wR) ≤ ER
(
u+

R

)
. (16)

Now we observe that wR is not a minimizer for E2M with respect to compact perturbations in
B+

2M . Indeed, if wR were a minimizer we use u ≤ wR and the first fact in (15) to conclude
u = wR in B+

2M from the strong maximum principle. However this contradicts the second
inequality in (15).

Therefore, we can modify wR inside a compact set of B+
2M and obtain a competitor u∗

such that

E2M (u∗) + δ ≤ E2M (wR),

for some δ > 0, independent of R (since wR restricted to B+
2M is independent of R, by (14)).

The inequality above implies

ER (u∗) + δ ≤ ER (wR) , (17)

since u∗ and wR coincide outside B+
2M . Thus, we use (13), (16) and (17) to conclude that

ER(u∗) + δ ≤ ER(wR) ≤ ER(u+
R ) ≤ ER(u) + C

Rs
.

Accordingly, if R is large enough we have that ER(u∗) < ER(u), which contradicts the
minimality of u. This completes the proof of Theorem 1.
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