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Abstract Motivated by some questions arising in the study of quasistatic growth in brittle
fracture, we investigate the asymptotic behavior of the energy of the solution u of a Neumann
problem near a crack in dimension 2. We consider non smooth cracks K that are merely closed
and connected. At any point of density 1/2 in K , we show that the blow-up limit of u is the
usual “cracktip” function C

√
r sin(θ/2), with a well-defined coefficient (the “stress intensity

factor” or SIF). The method relies on Bonnet’s monotonicity formula (Bonnet, Variational
methods for discontinuous structures, pp. 93–103. Birkhäuser, Basel, 1996) together with
�-convergence techniques.

Mathematics Subject Classification Primary: 35J20 · Secondary: 74R10

1 Introduction

According to Griffith’s theory, the propagation of a brittle fracture in an elastic body is gov-
erned by the competition between the energy spent to produce a crack, proportional to its
length, and the corresponding release of bulk energy. An energetic formulation of this idea
is the core of variational models for crack propagation, which were introduced by Francfort
and Marigo in [10] and are based on a Mumford–Shah-type [17] functional.

In this work, we will restrict ourselves to the case of anti-plane shear, where the domain
is a cylinder �× R, with � ⊂ R

2, which is linearly elastic with Lamé coefficients λ and μ.
Moreover we assume the crack to be vertically invariant, while the displacement is vertical
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590 A. Chambolle, A. Lemenant

only. Under those assumptions, the problem reduces to a purely 2D, scalar problem. Extend-
ing our result to (truely 2D) planar elasticity requires a finer knowledge of monotonicity
formulas for the bilaplacian and is still out of reach, it is the subject of future study.

Given a loading process g : t �→ g(t) ∈ H1(�), and assuming that K (t) ⊂ � (a closed
set) is the fracture at time t , the bulk energy at the time t0 is given by

E(t0) := min
u

∫

�\K (t0)

(A∇u) · ∇u dx, (1)

where the minimum is taken among all functions u ∈ H1(�\ K (t0),R) satisfying u = g(t0)
on ∂�\K (t0), and the surface energy, for any fracture K ⊇ K (t0) is proportional to κH1(K ),
where H1 denotes the one dimensional Hausdorff measure and κ is a constant which is known
as the toughness of the material. Here the matrix A which appears in the integral in (1) is
(μ/2)I d , however in the paper we will also address the case of more general matrices A(x),
which will be assumed to be uniformly elliptic and spatially Hölder-continuous.

The proof of existence for a crack K (t) satisfying the propagation criterions of brittle
fracture as postulated by Francfort and Marigo [10], was first proved by Dal Maso and
Toader [8] in the simple 2D linearized anti-plane setting, then extended in various directions
by other authors [4,7,11,1].

In this paper we will freeze the “time” at a certain fixed value t0, and therefore do not
really matter exactly which model of existence we use. We will only need to know that such
fractures exist, as a main motivation for our results.

In the quasistatic model, the fracture K (t) is in equilibrium at any time, which means
that the total energy cannot be improved at time t0 by extending the crack. Precisely, for any
closed set K ⊇ K (t0) such that K (t0)∪K is connected, and for any u ∈ H1(�\(K (t0)∪K ))
satisfying u = g(t0) on ∂� \ (K (t0) ∪ K ), one must have that

E(t0)+ κH1(K (t0)) ≤
∫

�\(K (t0)∪K )

(A∇u) · ∇u dx + κH1(K ).

This implies that the propagation of the crack is totally dependent on the external force g,
and a necessary condition for K to propagate is that of the first order limit of the bulk energy,
namely

lim sup
h→0+

E(t0 + h)− E(t0)

h
, (2)

to be greater or equal to κ . The limit in (2) can be interpreted as an energy release rate along
the growing crack, which is the central object of many recent works [3,5,6,13,14].

In all the aforementioned papers, a strong regularity assumption is made on the fracture
K (t): it is assumed to be a segment near the tip in [3,5,13]; to our knowledge the weakest
assumption is the C1,1 regularity in [14]. The main reason for this is the precise knowledge
of the asymptotic development of the displacement u near the tip of the crack, when it is
straight. Indeed the standard elliptic theory in polygonal domains (see e.g. Grisvard [12])
says that in a small ball B(0, ε) (we assume the crack tip is the origin), if u denotes the
minimizer for the problem (1), then there exists ũ ∈ H2(B(0, ε) \ K (t0)) such that

u = C
√

r sin(θ/2)+ ũ, (3)

(in polar coordinates, assuming the crack is {θ = ±π}). In fracture theory, the constant C in
front of the sinus is usually referred as the stress intensity factor (SIF). In [14], G. Lazzaroni
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The stress intensity factor for non-smooth fractures 591

and R. Toader proved that (3) is still true if K (t0) is a C1,1 regular curve, up to a change of
coordinates, and they base their study of the energy release rate upon this fact.

The main goal of this paper is to extend (3) to fractures that are merely closed and connected
sets, and asymptotic to a half-line at small scales. (We will need the technical assumption
that the Hausdorff density is 1/2 at the origin, that is, the length in small balls is roughly the
radius—which basically means that K (t0) admits a tangent, up to suitable rotations.) Our
main result is as follows:

Theorem 1.1 Assume that K := K (t0) ⊂ � ⊂ R
2 is closed and connected, and let u be a

solution for the minimizing problem in (1) with someα-hölderian coefficients A : � → S2×2.
Assume that x0 ∈ K ∩� is a point of density 1/2, that is,

lim sup
r→0

H1(K ∩ B(x0, r))

2r
= 1

2

and that A(x0) = I d. Then the limit

lim
r→0

1

r

∫

B(x0,r)\K

(A∇u) · ∇u dx (4)

exists and is finite. Moreover denoting C0 the value of this limit, considering Rr a suitable
family of rotations, and taking

v0(r, θ) := u(0)+
√

2C0r

π
sin(θ/2), (r, θ) ∈ [0, 1] × [−π, π],

then the blow up sequence ur := r− 1
2 u(r Rr (x − x0)) converges to v0 and ∇ur converges to

∇v0 both strongly in L2(B(0, 1)) when r → 0.

If A(x0) �= I d we obtain a similar statement by applying the change of variable x �→√
A(x0)x (see Theorem 4.2). We also stress that a rigourous sense to the value of u(0) has to

be given, and this will be done in Lemma 4.1. Besides, the exact definition of the rotations
Rr will be given in Remark 2.

Theorem 1.1 is a first step toward understanding the energy release rate for non-smooth
fractures, and study qualitative properties of the crack path. It provides also the existence
of a generalized stress intensity factor, that we can define as being the limit in (4), and
which always exists without any regularity assumptions on K (t0) of that of being closed and
connected (see Proposition 5).

Our main motivation is the study of brittle fracture, but of course Theorem 1.1 contains
a general result about the regularity of solutions for a Neumann Problem in rough domains,
that could be interesting for other purpose.

The proof of Theorem 1.1 will be done in two main steps, presented in Sects. 3 and 4,
which will come just after some preliminaries (Sect. 2). The first step is to prove the existence
of limit in (4). For this we will use the monotonicity argument of Bonnet [2], which was used
to prove existence of blow up limits for the minimizers of the Mumford–Shah functional.
We will adapt here the argument to more general energies as the one with coefficient A(x),
and also with a second member f . Notice that when f = 0 we need only K to be closed and
connected, whereas when f �= 0 we need furthermore that K is of finite length.

The second step is to prove the convergence strongly in L2 of the blow-up limit ur :=
r− 1

2 u(r Rr (x − x0)) and its gradient, to the function C
√

r sin(θ/2). This is the purpose of
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592 A. Chambolle, A. Lemenant

Theorem 4.2, and the existence of limit in (4) is the first step, because it implies that ∇ur is
bounded in L2(B(0, 1)) which helps us to extract subsequences.

Notice that Bonnet [2] already had a kind of blow-up convergence for ur , analogue to ours
in his paper on regularity for Mumford–Shah minimizers. The main difference with the result
of Bonnet, is that here the set K is any given set whereas for Bonnet, K was a minimizer for
the Mumford–Shah functional, which allowed him to modify it at his convenience to create
competitors and prove some results on u. Here we cannot argue by the same way and this
brings some interesting technical difficulties in the proof of convergence of ur .

2 Preliminaries

Let� ⊂ R
2, K ⊂ �be a closed and connected set satisfying H1(K ) < +∞ (here H1 denotes

the one dimensional Hausdorff measure), f ∈ L∞(�), λ ≥ 0 and g ∈ H1(�) ∩ L∞(�). If
K and K ′ are two closed sets of R

2 we will denote the Hausdorff distance by

dH (K , K ′) := max

(
sup
x∈K

dist(x, K ′), sup
x∈K ′

dist(x, K )

)
.

We also consider some α-Hölder regular coefficients A : x �→ A(x) ∈ S2×2, uniformly
bounded and uniformly coercive (with constant γ ). We will use the following series of nota-
tions

‖X‖2
A :=t X AX = (AX) · X =

∥∥∥√AX
∥∥∥2

I d
=
∥∥∥√AX

∥∥∥2
.

For simplicity we will assume without loss of generality that κ = 1. We consider a slight
more general energy than the one in (1) with a second member f , namely

F(u) :=
∫

�\K

‖∇u‖2
Adx + 1

λ

∫

�

|λu − f |2. (5)

We will also allow the case λ = 0 and then we ask also f = 0 and F is simply

F(u) :=
∫

�\K

‖∇u‖2
Adx .

We consider a minimizer u for F among all functions v ∈ H1(� \ K ) such that v = g on
∂�, i.e. u is a weak solution for the problem⎧⎨

⎩
λu − divA∇u = f in � \ K
(A∇u) · ν = 0 on K
u = g on ∂�

(6)

It is well known that such a minimizer exists and is unique (up to additional constant if
necessary in connected components of � \ K when eventually f = 0), which provides a
week solution for the problem (6).

We begin with some elementary geometrical facts.

Proposition 1 Let K ⊂ R
2 be a closed and connected set such that

lim sup
r→0

H1(K ∩ B(x0, r))

2r
= 1

2
. (7)
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The stress intensity factor for non-smooth fractures 593

For all r > 0 small enough, let xr be any chosen point in K ∩ ∂B(x0, r). Then we have that

lim
r→0

1

r
dH (K ∩ B(x0, r), [xr , x0]) = 0. (8)

Proof Since K is closed, connected and not reduced to one point (because of (7)) we have
that K ∩ ∂B(x0, r) is nonempty for all r small enough. Moreover since K is connected,
there exists a simple connected curve �r ⊂ K that starts from x0 and hits ∂B(x0, r) for the
first time at some point yr ∈ K ∩ ∂B(x0, r). Since �r is connected we have that H1(�) ≥
H1([yr , x0]) = r and using (7) we get H1(�r ) ≤ r + o(r). From the last two inequali-
ties, since �r is a connected curve, it is then very classical using Pythagoras inequality to
prove that

dH (�r , [yr , x0]) = o(r). (9)

Indeed, let z be the point in�r of maximal distance to [yr , x0], and let h be this distance. Now
letw be a point at distance h to [yr , x0], whose orthogonal projection onto [yr , x0] is exactly
the middle of [yr , x0]. Then the triangle (yr , x0, w) is isocel, and in particular minimizes the
perimeter among all triangle of same basis and same height. Therefore,

2
√
(r/2)2 + h2 = |w − yr | + |w − x0| ≤ |z − yr | + |z − x0| ≤ H1(�r ) ≤ r + o(r)

which implies that h = o(r) and proves (9).
Now (7) also implies that

H1(K ∩ B(x0, r) \ �r ) = o(r),

from which we deduce that

sup{dist(x, �); x ∈ K ∩ B(x0, r)} = o(r)

which implies dH (K ∩ B(x0, r), [yr , x0]) = o(r). Finally (8) follows from the fact that
dist(xr , yr ) = o(r) for any other point xr ∈ K ∩ ∂B(x0, r). ��
Remark 1 The density condition (7) does not imply the existence of tangent at the origin.
One of such example can be found in [5, Remark 2.7.], as being a curve with oscillating
tangent at the origin: exp(−t2)(cos(t)e1 + sin(t)e2), t ∈ [0,+∞].
Remark 2 (Definition of Rr ) As noticed in the preceding remark, the existence of tangent,
i.e. the existence of a limit for the sequence of rescaled set 1

r (K ∩ B(x0, r) − x0), is not
always guaranteed by the density condition. On the other hand if Rr denotes for each r > 0,
the rotation that maps xr on the negative part of the first axis, then Rr (

1
r (K ∩ B(x0, r)− x0))

converges to the segment [−1, 0] × {0}. In the sequel, Rr will always refer to this rotation.

Remark 3 There exists some connected sets such that 1
rn

K ∩ B(0, rn) converges to some

radius in B(0, 1) for some sequence rn → 0, and such that 1
tn

K ∩ B(0, tn) converges to
a diameter for another sequence tn → 0. Such a set can be constructed as follows. Take a
sequence qn → 0 such that

qn+1/qn −→ 0 (10)

The idea relies on the observation that thanks to (10), while looking at the scale of size qn ,
that is, in the ball B(0, qn), all the piece of set contained in B(0, qn+1) is negligible in terms
of Hausdorff distance. Therefore we can build two subsequences, one at the scales q2n , and
the other one at the scales q2n+1, that will not be seen by each other.
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594 A. Chambolle, A. Lemenant

Fig. 1 A crack tip with two different limits along different subsequences

To do so, we consider the points An := (0, 4
3 qn) on the second axis of R

2 and we define
K , as being R

− × {0} union of all horizontal diameters of B(A2n+1, q2n), that are connected
to the first axis by their left extremities. In other words, denoting e1 = (1, 0) and e2 = (0, 1)
the two unit canonical vectors of R

2,

K := R
−e1 ∪

( ⋃
n∈N∗

(Re1 + A2n+1) ∩ B(A2n+1, q2n)

)
∪
⋃

n∈N∗

([
0,

4

3
qn+1

]
e2 + Z2n

)
,

where Z2n is the left extremity point of the segment (Re1 + A2n+1)∩ B(A2n+1, q2n) (which
is actually the horizontal diameter of B(A2n+1, q2n)), see Fig. 1.

Then it is easy to see that, for the Hausdorff distance,

1

q2n
K ∩ B(x, q2n) −→ Re1 ∩ B(0, 1)

and
1

q2n+1
(K ∩ U (x, q2n+1) −→ R

−e1 ∩ B(0, 1)

as desired.

Remark 4 Notice that a consequence of Theorem 1.1 for the example exhibited in Remark
3 is the following curious fact: even if 1

r K ∩ B(x, r) has no limit when r → 0, the limit of
1
r

∫
B(0,r) ‖∇u‖2 as r → 0 exists thus has same value C0 for any subsequences of r . Now,

since K has density 1/2 along the odd subsequence rn = q2n+1, applying the proof of The-
orem 1.1 for this subsequence we infer that the limit of the blow up sequence r−1/2

n u(rn x)
converges to

√
2C0r/π sin(θ/2). But now regarding the limit in the even scales, rn = q2n ,

as K is converging to a diameter, a similar proof as the one used to prove Theorem 1.1 would
imply that the blow up sequence is converging to the solution of a Neumann problem in a
domain which is a ball, cut into two pieces by a diameter. This implies C0 = 0 (because of
the decomposition of u in spherical harmonics), so that actually returning to the odd sub-
sequence, for which K is converging to a radius, we can conclude that r−1/2

n u(rn x) must
converge to 0 as well.

It is well known that any closed and connected set K is arcwise connected, namely for
any x �= y in K one can find an injective Lipschitz curve inside K going from x to y (see e.g.
[9, Proposition 30.14]). This allows us to talk about geodesic curve inside K , that connects
x to y, which stands to be the curve with that property which support has minimal length.
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The stress intensity factor for non-smooth fractures 595

Definition 2.1 We say that K is locally-chord-arc at x0 if there exists a constant C and a
radius r0 such that for every r ≤ r0 and for any couple of points y and z lying on K ∩∂B(x0, r)
the geodesic curve inside K connecting y and z has length less than Cr .

Proposition 2 Let K ⊂ R
2 be a closed and connected set satisfying the density condition

lim sup
r→0

1

2r
H1(K ∩ B(x0, r)) = 1

2
. (11)

Then K is locally-chord-arc at x0.

Proof The density condition (11) together with the fact that K is closed and connected guar-
antees that K is non reduced to one point, contains x0, and that ∂B(x0, r) ∩ K is nonempty
for r small enough. Let r0 > 0 be one of this radius small enough such that moreover

H1(K ∩ B(x0, r)) ≤
(

1 + 1

10

)
r ∀r ≤ 3r0. (12)

Let now y and z be two points in K ∩ ∂B(x0, r) for any r ≤ r0 and let � ⊂ K be the
geodesic curve connecting y and z. Then � is injective (by definition since it is a geodesic)
and in addition we claim that � ⊂ B(x0, 3r). Indeed, otherwise there would be a point
x ∈ � \ B(x0, 3r) which would imply H1(� ∩ B(x0, 3r)) ≥ 4r (because y and z are lying
on ∂B(x0, r)) and this contradicts (12). But now that � ⊂ B(x0, 3r), condition (12) again
implies that H1(�) ≤ H1(K ∩ B(x0, 3r)) ≤ 4r which proves the proposition. ��

In the sequel we will need to know that a minimizer of F is bounded.

Proposition 3 Let K be closed and connected, u be a minimizer for the functional F defined
in (5) with f ∈ L∞(�) and λ > 0. Then

‖u‖∞ ≤ 1

min(1, λ)
max(‖ f ‖∞, ‖g‖∞).

Proof It suffice to fix M := (min(1, λ))−1 max(‖ f ‖∞, ‖g‖∞) and notice that the function

w := max(−M,min(u,M))

is a competitor for u and has less energy. By uniqueness of the minimizer we deduce that
u = w. ��

3 Bonnet’s monotonicity Lemma and variants

In this section we prove the existence of the limit

lim
r→0

1

r

∫
√

A(0)B(x,r)

‖∇u‖2
Adx,

for any x ∈ � when u is a minimizer of F . Of course when x ∈ � \ K this is clear by the
interior regularity of solution for the Problem (6), and the value of the limit in this case is
zero. Therefore it is enough to consider a point x ∈ K . The case of harmonic functions need
no further assumptions on K than being just closed and connected, and the argument comes
from [2] and [9]. Our aim is to consider the case of a non zero second member f and more
general second order operator of divergence form.

We begin with some technical tools.
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596 A. Chambolle, A. Lemenant

3.1 Technical tools

We will need the following 2 versions of the Gauss-Green formula.

Lemma 3.1 (Integration by parts, first version) Let K be closed and connected, u be a min-
imizer for the functional F defined in (5). Then for any x ∈ � and for a.e. r such that
B(x, r) ⊂ � it holds

∫

B(x,r)\K

‖∇u‖2
A dy =

∫

B(x,r)\K

( f − λu)u dy +
∫

∂B(x,r)\K

u(A∇u) · ν dH1.

Proof If u is a minimizer, then comparing the energy of u with the one of u + tϕ and using
a standard variational argument we get

∫

�\K

(A∇u) · ∇ϕ dx =
∫

�

(λu − f )ϕ dx (13)

must hold for any function ϕ ∈ H1(� \ K ) compactly supported inside �. Let us choose ϕ
to be equal to ψεu(x), where ψε(x) = gε(‖x‖) is radial, and gε is equal to 1 on [0, r − ε],
equal to 0 on [r + ε,+∞[ and linear on [r − ε, r + ε]. Applying (13) with ϕ = ψεu gives

∫

�\K

(A∇u) · u∇ψε +
∫

�\K

(A∇u) · ψε∇u =
∫

�

(λu − f )ψεu. (14)

It is clear that ψε converges to 1B(x,r) strongly in L2(�), which gives the desired conver-
gence for the second term and last term in (14). Now for the first term, we notice that ψε is
Lipschitz and its derivative is equal a.e. to x

2ε‖x‖1B(x,r+ε)\B(x,r−ε) so that

∫

�\K

(A∇u) · u∇ψε = 1

2ε

∫

(B(x,r+ε)\B(x,r−ε))\K

(A∇u) · u
x

‖x‖

which converges to
∫
∂B(x,r)\K (A∇u) · u ν dH1 for a.e. r by Lebesgue’s differentiation

theorem applied to the L1 function r �→ ∫
∂B(x,r)\K (A∇u) · ν dH1. ��

The first part of the next Lemma comes from a topological argument in [9] (see p. 299).

Lemma 3.2 (Integration by parts, second version) Let K ⊂ � be closed and connected,
x ∈ K and r0 > 0 be such that B(x, r0) ⊂ �. For all r ∈ (0, r0) we decompose ∂B(x, r) \
K = ⋃

j∈J (r) I j (r) where I j (r) are disjoints arcs of circles. Then for each j ∈ J (r) there
exists a connected component U j (r) of � \ (I j (r) ∪ K ) such that

∂U j (r) \ K = I j (r).

Moreover if u is a minimizer for the functional F defined in (5), then for a.e. r ∈ (0, r0) and
for every j ∈ I j (r) we have
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The stress intensity factor for non-smooth fractures 597

∫

I j (r)

(A∇u) · ν dH1 =
∫

U j

(λu − f )dx, (15)

where ν is the inward normal vector in U j , i.e. pointing inside U j .

Proof We assume without loss of generality that x = 0. By assumption K is closed, so that
∂B(0, r) \ K is a relatively open set in ∂B(0, r) which is one dimensional. Therefore we
can decompose ∂B(0, r) \ K as a union of arc of circles as in the statement of the Lemma,
namely

∂B(0, r) \ K =
⋃
j∈J

I j .

(we avoid the dependance in r to lighten the notations). Let us denote by U+
j the connected

component of�\(K ∪ I j ) containing the points of B(0, r)\ K very close to I j , and similarly
U−

j is the one containing the points of � \ (K ∪ B(0, r)) very close to I j . Then there is one

between U±
j , that we will denote by U j , which satisfies

∂U j \ K = I j . (16)

The proof of (16) relies on the connectedness of K [see [9] pp. 299 and 300 for details: in
our case the connectedness of K implies the topological assumption denoted by (8) in [9]
that is used to prove (16) (which is actually (14) in [9])].

Then we want to prove (15) by an argument similar to Lemma 3.1 applied in U j . For
this purpose we consider as before a radial function but we need to separate two cases: if
U j ⊂ B(0, r) then we take the same function ψε(x) = gε(‖x‖) where gε is equal to 1 on
[0, r − ε], equal to 0 on [r + ε,+∞[ and linear on [r − ε, r + ε]. Now if U j ⊂ � \ B(0, r)
we define ψε := 1 − ψε .

Then we take as a competitor for u the function u + tϕ, with ϕ = 1Û j
ψε , where Û j is

the connected component of � \ K containing U j . Notice that this is an admissible choice,
namely ϕ ∈ H1(� \ K ) and ϕ = 0 on ∂�.

Applying (13) with ϕ = 1Û j
ψε gives

∫

Û j

(A∇u) · ∇ψε =
∫

Û j

(λu − f )ψε. (17)

As in the proof of Lemma 3.1, it is clear that 1Û j
ψε converges to 1Û j

strongly in L2(�),
which gives the desired convergence for the right hand side term in (17). Now for the left
hand side term, we use as before that ψε is Lipschitz and its derivative is equal a.e. to
± x

2ε‖x‖1B(x,r+ε)\B(x,r−ε) (with the correct sign depending on which side of I j lies U j ) so
that ∫

�\K

(A∇u) · ∇ψε = ± 1

2ε

∫

Û j ∩(B(x,r+ε)\B(x,(1−ε)r))

(A∇u) · x

‖x‖

which converges to
∫

I j
(A∇u) ·νdH1 for a.e. r by Lebesgue’s differentiation theorem applied

to the L1 function r �→ ∫
∂B(x,r)∩Û j

(A∇u) · ν dH1. ��
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598 A. Chambolle, A. Lemenant

3.2 Monotonicity result

So we arrive now to the monotonicity results. The starting point is the following proposition,
which is the key ingredient in Bonnet’s proof of the classification of global minimizers for
the Mumford–Shah functional [2] (see also Sect. 47 of Guy David’s book [9] for a more deta-
illed proof with slightly weaker assumptions than [2]). The same argument was also used in
Lemma 2.2. of [16] to prove a monotonicity result for the energy of a harmonic function in
the complement of minimal cones in R

3. Notice also that a similar argument with the elastic
energy (i.e. L2 norm of the symmetric gradient) of a vectorial function u : � → R

2 seems
not to be working.

Proposition 4 ([2,9] Monotonicity of Energy, the harmonic case) Let K be a closed and
connected set and let u be a solution for the problem (6) with A = I d, f = 0 and λ = 0
(therefore u is harmonic in � \ K ). For any point x0 ∈ K we denote

E(r) :=
∫

B(x0,r)\K

‖∇u‖2dx .

Then r �→ E(r)/r is an increasing function of r on (0, r0). As a consequence, the limit
limr→0 E(r)/r exists and is finite.

Remark 5 Notice that our statement is slightly different than the one in [9], where the assump-
tion H1(K ) < ∞ is needed whereas K is not necessarily connected. Here we do not suppose
H1(K ) < ∞ but we ask K to be connected which is a stronger topological assumption
but weaker regularity assumption than [9] (see Remark 47.42 in [9] for the precise role of
H1(K ) < ∞). The result as stated in Proposition 4 follows as a particular case of Proposition
5 proved below.

Now we prove a variant of Bonnet’s monotonicity Lemma, which will be the starting point
for our main Theorem. We consider α-Hölder regular coefficients A : x �→ A(x) ∈ S2×2,
uniformly bounded and γ -coercive with γ > 0. For any x ∈ � and r > 0 we define the
ellipsoid

BA(x, r) := √
A(x)(B(x, r)).

Remark 6 (Change of variable) Let u be a solution for Problem 6 in �, that we assume to
contain the origin, and fix A0 := A(0). Then u ◦ √

A0 is the solution of a similar problem in
(
√

A0)
−1(� \ K ) with coefficient Ã := (

√
A0)

−1 ◦ A ◦ (√A0)
−1 instead of A. In particular

Ã(0) = I d , and ∫

B(0,r)

‖∇v‖2
Ã

dx =
∫

BA(0,r))

‖∇u‖2
A det

(√
A0

)−1
dx (18)

We will need the following Lemma of Gronwall type. The proof is given in the appendix.

Lemma 3.3 (Gronwall) Assume that E(r) admits a derivative a.e. on [0, r0], is absolutely
continuous, and satisfies the following inequality for some α ∈ (0, 1)

E(r) ≤ (
r + Cr1+α) E ′(r)+ C N (r)r2, ∀r ∈ [0, r0], (19)

with N integrable on (0, r0). Then the limit limr→0 E(r)/r exists and is finite. Moreover if
N = 0 then
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r �→ E(r)

r

(
1 + Crα

) 1
α

is nondecreasing.

We now prove a variant of Proposition 4 in the context of general coefficients and second
member.

Proposition 5 (Energy estimate for general coefficients and second member) Let u be a
solution for the problem (6) with α-Hölderian coefficients A, λ > 0 and f, g ∈ L∞, and
assume that K is a closed and connected set of finite length. For any point x0 ∈ K we denote

E(r) :=
∫

BA(x0,r)\K

‖∇u‖2
Adx .

We assume in addition that K is locally-chord-arc at point x0. Then the limit limr→0(E(r)/r)
exists and is finite.

Moreover if f = 0 and λ = 0, then the assumptions on K of being locally-chord-arc and
of finite length can be both removed, and in this case the function

r �→ E(r)

r

(
1 + Cr

α
2

) 2
α

is nondecreasing, where C > 0 is a constant which is equal to 0 when A = I d (the harmonic
case).

Proof We follow the proof of Bonnet. We begin with the end of the statement, namely we
assume first that K is only closed and connected, and that λ = 0 and f = 0. Let us also
assume without loss of generality that x0 is the origin. Up to the change of coordinates
x �→ √

A(0)x and thank to Remark 6, we can furthermore assume that A(0) = I d . In this
case BA(x, r) = BI d(x, r) = B(x, r).

The Gauss-Green formula (Lemma 3.1) applied in B(0, r) yields
∫

B(0,r)\K

‖∇u‖2
Adx =

∑
j

∫

I j

u(A∇u) · ν dH1, (20)

where ∂B(0, r) \ K = ∪ j I j . On the other hand Lemma 3.2 gives for each j ,
∫

I j

(A∇u) · ν dx = 0.

Denoting by m j the average of u on I j we deduce that
∫

I j

u(A∇u) · ν dH1 =
∫

I j

(u − m j )(A∇u) · ν dH1. (21)

Thus

∫

B(0,r)\K

‖∇u‖2
Adx ≤

N∑
j=1

∫

I j

|u − m j ||(A∇u) · ν| dH1. (22)
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Then by use of Cauchy-Schwarz inequality, ab ≤ 1
4r a2 + rb2, and Wirtinger we can write

∫

I j

|u − m j ||(A∇u) · ν|dH1 ≤
⎛
⎜⎝
∫

I j

|u − m j |2
⎞
⎟⎠

1
2
⎛
⎜⎝
∫

I j

|(A∇u) · ν|2
⎞
⎟⎠

1
2

≤ 1

4r

∫

I j

|u − m j |2 + r
∫

I j

|(A∇u) · ν|2

≤ r
∫

I j

|∇u · τ |2 + r
∫

I j

|(A∇u) · ν|2. (23)

Now we want to recover the full norm ‖∇u‖A from the partial norms |∇u ·τ | and |(A∇u) ·ν|.
For this purpose we write

|∇u · τ |2 = |(A∇u) · τ |2 + |(I d − A)∇u · τ |2 + [2(A∇u) · τ ][((I d − A)∇u) · τ ],
and we notice that, by Hölder regularity of A and γ -coerciveness we have (the constant C
can vary from line to line)

|(I d − A)∇u · τ |2 ≤ ‖(I d − A)∇u‖2

≤ ‖I d − A‖2
L∞(B(0,r),R2)

‖∇u‖2

≤ Cr2α‖∇u‖2

≤ γCr2α‖∇u‖2
A , (24)

and

2|A∇u · τ(I d − A)∇u · τ | = 2|A∇u · τ ||(I d − A)∇u · τ |
≤ 2‖A∇u‖Crα‖∇u‖A

≤ Crα‖A‖∞‖∇u‖2
A.

Therefore summing over j and putting all the estimates together we have proved that for r
small enough,∫

B(0,r)\K

‖∇u‖2
Adx ≤ r

∫

∂B(0,r)

(|A∇u · τ |2 + Crα‖∇u‖2
A

)+ r
∫

∂B(0,r)

|(A∇u) · ν|2

= r
∫

∂B(0,r)

‖A∇u‖2 + Cr1+α
∫

∂B(0,r)

‖∇u‖2
A. (25)

By Hölder regularity of A we infer that
∥∥∥√A

∥∥∥2

L∞(B(0,r),R2)
≤ 1 + Crα/2,

which implies∫

∂B(0,r)

‖A∇u‖2 ≤
∫

∂B(0,r)

∥∥∥√A
∥∥∥2 ‖√A∇u‖2

≤ (1 + Crα/2)
∫

∂B(0,r)

∥∥∥√A∇u
∥∥∥2 = (

1 + Crα/2
) ∫

∂B(0,r)

‖∇u‖2
A .
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Therefore, since E ′(r) = ∫
∂B(0,r) ‖∇u‖2

A we have proved for r small enough,

E(r) ≤ (
r + Cr1+α/2) E ′(r), (26)

and we conclude with Lemma 3.3, applied with the exponent α/2 ∈ (0, 1).
Next we assume that λ �= 0 and f ∈ L∞. Furthermore we now assume that K is locally-

chord-arc at the origin and K is of finite length. If we reproduce the above argument, one
sees that the second member f is just a perturbation under control which does not affect the
limit of E(r)/r . Precisely, this time we will prove the inequality

E(r) ≤ (
r + Cr1+α/2) E ′(r)+ C N (r)r2 for a.e. r ≤ r0, (27)

with N (r) ∈ L1([0, r0]). This implies the proposition thank to Lemma 3.3. The exact defi-
nition of N is given by

N (r) = �K ∩ ∂B(0, r),

which is known to be finite for a.e. r ∈ (0, r0) due to the fact that K has a finite length.
Actually by [9, Lemma 26.1.] we know that N is Borel mesurable on (0, r0) and that

t∫

0

N (s)ds ≤ H1(K ∩ B(0, t)). (28)

This will be needed later. For now, take a radius r a.e. in (0, r0) such that N (r) < +∞
and decompose Sr := ∂B(0, r) \ K into a finite number of arcs of circle denoted I j , for
j = 1..N (r). Moreover since K is closed and connected, for each j there exists a geodesic
curve Fj ⊂ K connecting the two endpoints of I j . We denote D j the domain delimited by
I j and Fj . Since K is locally-chord-arc at the origin we infer that |D j | ≤ Cr2. Notice also
that D j corresponds to the set U j of Lemma 3.2.

The Gauss-Green formula (Lemma 3.1) applied in B(0, r) yields

∫

B(0,r)\K

‖∇u‖2
Adx =

∫

B(0,r)\K

( f − λu) u dx +
N (r)∑
i=1

∫

I j

u(A∇u) · ν dH1, (29)

and applied in D j (Lemma 3.2) gives
∫

I j

u(A∇u) · ν dH1 = ±
∫

D j

( f − λu)dx,

the sign depending on the relative position of D j with respect to ∂B(0, r). Denoting by m j

the average of u on I j we deduce that
∫

I j

u(A∇u) · ν dH1 =
∫

I j

(u − m j )(A∇u) · ν dH1 ±
∫

D j

m j ( f − λu) dx . (30)

Now since u is bounded it comes |m j | ≤ C , and we also have
∑N (r)

j=1 |D j | ≤ C N (r)r2.
Moreover f is also bounded thus returning to (29) and plugging (30) we get

∫

B(0,r)\K

‖∇u‖2dx ≤ C N (r)r2 +
N (r)∑
j=1

∫

I j

|u − m j |
∣∣∣(A∇u) · ν

∣∣∣dH1. (31)
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Then the same computations as for proving (26) (i.e. using Cauchy-Schwarz inequality,
ab ≤ 1

2ε a2 + ε
2 b2, Wirtinger and estimating the rest by the Hölder regularity of A), we

obtain ∫

I j

|u − m j |
∣∣∣∂u

∂ν

∣∣∣dH1 ≤ (
r + Cr1+α/2) ∫

I j

‖∇u‖2
Adx ,

and after summing over j , (27) is proved, as claimed, and we conclude using Lemma 3.3.��

Remark 7 A careful look at the proof of Proposition 5 and Lemma 3.3 would also provide
monotonicity results when λ �= 0. The particular case when A = I d is simpler, and yields
the monotonicity of

r �→ E(r)

r
+ C P(r),

where P(r) is a primitive of N (r) and C > 0 is a constant. The exact monotonicity formula
when A �= I d is more complicate but could be easily derived from our estimates.

4 Blow up

Here we prove the second part of Theorem 1.1 concerning the blow up sequence. Before
going on with blow up limits at the origin, we start with a rigorous definition of u(0). Indeed,
let u be a solution for the problem (6) with g ∈ L∞, (λ = f = 0) or ( f ∈ L∞ and
λ > 0). We suppose that K is a closed and connected set satisfying the density condition
(7) at 0. Let Rr the family of rotations given by remark 2 so that r−1 Rr (K ∩ B(0, r)) con-
verges to the segment [−1, 0] × {0} when r goes to 0. For any r small enough we define
Dr := R−1

r (B((r/2, 0), r/4)) and

mr := 1

|Dr |
∫

Dr

u(x)dx .

Lemma 4.1 (Definition of u(0)) The sequence mr converges to some finite number that we
will denote by u(0).

Proof We begin with a discrete sequence rn := 2−nr0 for some r0 small, n ∈ N. In particular
we assume r0 small enough to have

1

rn

∫

B(0,rn)

‖∇u‖2dx ≤ C ∀n ∈ N, (32)

for some constant C that surely exists thank to Sect. 3. Since r−1 Rr (K ∩ B(0, r)) converges
to the segment [−1, 0] × {0}, we are sure that for r0 small enough and for every n, the ball
Bn := R−1

rn
(B(rn/2, 0), 3rn/8) does not meet K and contains both Drn and Drn+1 . We denote

by mn the average of u on Bn . Applying Poincaré inequality in Bn yields

|mrn − mn | =

∣∣∣∣∣∣∣
1

|Drn |
∫

Drn

(u − mn)dx

∣∣∣∣∣∣∣
≤ 1

|Drn |
∫

Bn

|u − mn | ≤ C
1

rn

∫

Bn

‖∇u‖dx
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and the same for mrn+1 so that at the end

|mrn − mrn+1 | ≤ C
1

rn

∫

Bn

‖∇u‖dx ≤ C

⎛
⎜⎝
∫

Bn

‖∇u‖2dx

⎞
⎟⎠

1
2

≤ Cr1/2
n (33)

because of (32). In particular this implies that mrn is a Cauchy sequence, thus converges to
some limit � ∈ R. Now if rk is any other sequence converging to zero, we claim that the
limit of mrk is still equal to �. To see this it suffice to find a subsequence rnk of rn such that
rnk/2 ≤ rk ≤ rnk and compare mrk with mrnk

by the same way as we obtained (33) and
conclude that they must have same limit. ��
Remark 8 In the future it will be convenient to introduce another type of averages on circles,
namely

m̃r := 1

D̃r

∫

D̃r

u dH1,

with

D̃r := B
(
(r, 0),

r

4

)
∩ ∂B(0, r)

It is easily checked that the sequence of m̃r are aslo converging to u(0), i.e. has same limit
as mr .

We are now ready to prove the last part of Theorem 1.1.

Theorem 4.2 (Convergence of the blow-up sequence) Let u be a solution for the problem
(6) with g ∈ L∞, (λ = f = 0) or ( f ∈ L∞ and λ > 0). We suppose that K is a closed
and connected set satisfying the density condition (7) at the origin. We denote by u(0) the
real number given by Lemma (4.1). Let Rr the family of rotations given by Remark 2 so that
r−1 Rr (K ∩ B(0, r)) converges to�0 = [−1, 0]×{0} when r goes to 0. If (r, θ) are the polar
coordinates such that (

√
A(0))−1(�0) = (R− × {π}) we denote by v0 the function defined

in polar coordinates by

v0(r, θ) :=
√

2C0r

π
sin(θ/2).

Then

ur := r− 1
2
(
u
(
r R−1

r x
)− u(0)

) −→
r→0

v0 ◦√A(0),

where the constant C0 is given by

C0 = lim
r→0

⎛
⎜⎝ 1

det(
√

A(0))r

∫

BA(0,r)\K

‖∇u‖2
Adx

⎞
⎟⎠ ,

and the convergence holds strongly in L2(B(0, 1)) for both ur and ∇ur .

Proof We know that Kr := 1
r Rr (K ) converges to the half-line R

− × {0} locally in R
2 for

the Hausdorff distance. To simplify the notations and without loss of generality, in the sequel
we will identify u with u ◦ R−1

r , and K with Rr (K ) so that we can assume that Rr = I d for
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all r . We can also assume that u(0) = 0 and as before, it is enough to consider the case when
A(0) = I d because the general case follows using the change of variable of Proposition 6.

As in the proof of Lemma 4.1, for any r we denote by mr the average of u on the ball

B((r/2, 0), r/4). Thank to Lemmaé1 4.1, the function x �→ r− 1
2 (u(r x) − mr ) has same

limit as ur , thus we will now use a new definition of ur , being ur := r− 1
2 (u(r x) − mr ).

The function ur is defined in 1
r (�\K ). The domain 1

r (�\K ) converges to R
2 \ K0 with

K0 := R
− × {0}.

We will prove that ur converges, in some sense that will be given later, to function in R
2\K0

that satisfies a certain Neumann problem. In the sequel we will work up to subsequences, but
this will not be restrictive in the end by uniqueness of the limit.

The starting point is that ∇ur is uniformly bounded in L2(B(0, 2)) (we start working
in B(0, 2) for security but the real interesting ball will be B(0, 1)). Indeed, ∇ur (x) =√

r∇u(r x),

∫

B(0,2)\Kr

‖∇ur‖2dx =
∫

B(0,2)\Kr

r‖∇u(r x)‖2dx = 1

r

∫

B(0,2r)\K

‖∇u(x)‖2dx .

From Proposition 4, we know that 1
r

∫
B(0,r) ‖∇u(x)‖2

Adx converges to C0 and we deduce

(using the coerciveness of A), that ∇ur is uniformly bounded in L2(B(0, 2)).
Therefore we can extract a subsequence such that ∇ur converges to some h, weakly in

L2(B(0, 2)), and

∫

B(0,1)

‖h‖2 ≤ lim inf
r→0

∫

B(0,1)

‖∇ur‖2dx ≤ C. (34)

Next we want to prove that in compact sets of B(0, 2) \ K0, the convergence is much better.
For this purpose we introduce for any a > 0

U (a) := {x ∈ B(0, 2); d(x, K0) > a}.

The sequence ur is uniformly bounded in H1(U (a)) for any a. Therefore taking a sequence
an → 0, extracting some subsequence of ur and using a diagonal argument we can find a
subsequence of ur , not relabeled, that converges weakly in H1 and strongly in L2 in any of the
domains U (a). In other words, this subsequence ur converges weakly in H1

loc(B(0, 2) \ K0)

and strongly in L2
loc(B(0, 2), \K0) to some function u0 ∈ H1

loc(B(0, 2)\ K0). By uniqueness
of the limit we must have that ∇u0 = h a.e. in B(0, 2) and therefore (34) reads

∫

B(0,1)

‖∇u0‖2 ≤ lim inf
r→0

∫

B(0,1)

‖∇ur‖2dx ≤ C. (35)

Now we want to prove that u0 is a minimizer for the Dirichlet energy, and at the same time
prove that the convergence hold strongly in L2(B(0, 1)) both for ur and ∇ur . To do this we
consider any function v ∈ H1(B(0, 1) \ K0) with v ≡ u0 in B(0, 1) \ B(0, 1 − δ) and v ≡ 0
in B(0, η), for some small δ > 0. The family of all such functions v is dense in the space
of functions of H1(B(0, 1) \ K0) with trace equal to u0 on ∂B(0, 1) \ K0 and therefore to
prove that u0 is a minimizer, it is enough to prove that
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∫

B(0,1)

‖∇u0‖2dx ≤
∫

B(0,1)

‖∇v‖2dx

for all such functions v.
We denote by Nr (s) the number of points of Kr ∩ ∂B(0, s). As already used before, since

by assumption H1(Kr ∩ B(0, 1)) converges to 1 and

1 ≤
1∫

0

Nr (s)ds ≤ H1(Kr ∩ B(0, 1)),

we can extract a subsequence such that Nr (s) → 1 a.e. Then Fatou’s lemma yields

1∫

0

lim inf
r

∫

∂Bs

‖∇ur‖2dH1 ds ≤ lim inf
r

1∫

0

∫

∂Bs

‖∇ur‖2dH1 ds = C1, (36)

where C1 is closely related to C0. This will allows us later to find a good radius s for which
both N (s) = 1 and

∫
∂Bs

‖∇ur‖2dH1 is uniformly bounded.

At this stage we only know that ∇ur converges weakly in L2 to ∇u0. On the other hand,
up to a further subsequence, we can find a measureμ such that |∇ur |2dx weakly-� converges
to μ. Let x ∈ B(0, 2), ρ > 0 such that B(x, ρ) ⊂ B(0, 2) \ K0. Let ψ be a smooth cutoff,
with support in B(x, ρ), and equal to 1 in B(x, ρ/2). Then we can write that∫

B(x,ρ)

(Ar∇ur ) · ∇(ψ(ur − u0))+ r2λur (ur − u0)ψ − r3/2 fr (ur − u0)ψ = 0 (37)

where Ar (x) = A(r x), fr (x) = f (r x) − λmr , and (taking the limit in the “first” ur while
freezing the test function (ur − u0)ψ , and using the weak convergence in H1(B(x, ρ) of ur

to u0): ∫

B(x,ρ)

(∇u0) · ∇(ψ(ur − u0)) = 0. (38)

Taking the difference of (37) and (38), and using the fact that ur → u0 strongly in L2(Br ),
∇ur is uniformly bounded in L2(Br )

2, and Ar → I d uniformly, we obtain that

lim
r→0

∫

B(x,ρ/2)

‖∇ur − ∇u0‖2 dx = 0

so that clearly, μ (B(0, 2) \ K0) = ‖∇u0‖2 dx : if μ has a singular part it must be concen-
trated on K0. Moreover, we have μ({(−s, 0)}) = 0 for all s ∈ [0, 2) but a countable number.
(Observe that using any other test function in (37) and passing to the limit, we easily deduce
that u0 is harmonic in B(0, 2) \ K0, but this will also be a consequence of the minimality of
the Dirichlet energy which will soon be shown).

Now from (36) we may choose s, 1 − δ < s < 1, so that μ({−s, 0}) = 0, Nr (s) = 1 for
all r large enough, and

lim inf
r

∫

∂Bs

‖∇ur‖2dH1 < +∞
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In particular, upon extracting a further subsequence, we may assume that

sup
r

∫

∂Bs

‖∇ur‖2dH1 < +∞.

Then, by Sobolev’s embedding, and using the fact that the averages m̃r are uniformly bounded
(see Remark 8), we deduce that there exists C > 0 such that

‖ur‖L∞(∂Bs ) ≤ C.

We now consider any constant M > C and define

uM
r = (−M ∨ (ur ∧ M))

we have that uM
r → uM

0 in L2
loc(B(0, 1) \ K0), where uM

0 is naturally defined as being
uM

0 := (−M ∨ (u0 ∧ M)). Up to a subsequence the convergence holds almost every-
where. But now, since the functions are uniformly bounded, it converges also strongly in
L2(B(0, 1) \ K0).

Now, from the original function v ∈ H1(B(0, 1) \ K0), we want to construct a function
vr ∈ H1(B(0, 1) \ Kr ) not much different from v. We denote by C±

r the connected com-
ponents of (B(0, 1) \ Kr ) ∩ {x ≤ 0} containing (−1/2,±1/2) and we define vr (x, y) as
follows. In B(0, 1) ∩ {x > 0} we set vr (x, y) = v(x, y).

In C+
r , vr (x, y) =

{
v(x, y) if y ≥ 0
v(x,−y) otherwise.

In C−
r , vr (x, y) =

{
v(x, y) if y ≤ 0
v(x,−y) otherwise.

And finally vr = 0 everywhere else (i.e. in B(0, 1)∩{x ≤ 0}\ (C+
r ∩C−

r )). Then it is easy to
see that vr ∈ H1(B(0, 1) \ Kr ), converges strongly to v in L2 and 1B(0,1)\Kr ∇vr converges
strongly to 1B(0,1)\K0∇v in L2(B(0, 1)). However, by this procedure the trace on ∂B(0, 1)
is not necessarily preserved.

To get rid of that we let ε < s − (1 − δ), we pick a smooth cut-off ψε with compact
support in Bs , 0 ≤ ψε ≤ 1 and ψε ≡ 1 in Bs−ε, and we let

vεr = ψεvr + (1 − ψε)u
M
r

which converges strongly in L2 to ψεv + (1 − ψε)uM
0 as r → 0. Next we write, since

vεr = uM
r = ur on ∂Bs and ur is a minimizer,

∫

Bs

(Ar∇ur ) · ∇ur + λr2u2
r − 2r3/2 fr ur dx ≤

∫

Bs

(Ar∇vεr ) · ∇vεr + λr2(vεr )
2 − 2r3/2 frv

ε
r dx .

Recall that | fr | ≤ C and |ur | ≤ C/
√

r (by definition) so that 2r3/2 fr ur = o(r), and we
also easily check that

∫

Bs

λr2(vεr )
2 − 2r3/2 frv

ε
r dx = o(r)
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hence we focus on the other terms: we write for δ > 0 small,

∫

Bs

(Ar∇ur ) · ∇ur dx

≤ (1 + η)

∫

Bs

ψ2
ε (Ar∇vr ) · ∇vr dx + C ′/η

∫

Bs

‖∇ψε‖2|vr − uM
r |2 dx

+ C ′/η
∫

Bs

(1 − ψε)
2‖∇ur‖2 dx + o(r)

Then sending r → 0 we obtain

∫

Bs

‖∇u0‖2 ≤ (1 + η)

∫

Bs

ψ2
ε ‖∇v‖2 dx

+ C ′/η
∫

Bs

‖∇ψε‖2|v − uM
0 |2 dx + C ′/ημ(Bε(−s, 0))

but on the support of ∇ψ , v − uM
0 is equal to (1 −ψε)(uM

0 − u0). Therefore letting M tend
to +∞ we get

∫

Bs

‖∇u0‖2 ≤ (1 + η)

∫

Bs

ψ2
ε ‖∇v‖2 dx + C ′/ημ(Bε(−s, 0))

finaly letting ε → 0, then η → 0, and adding the integral over B(0, 1) \ B(0, s) on both
sides (where v and u0 actually coincide) we get the desired inequality, namely

∫

B(0,1)

‖∇u0‖2dx ≤
∫

B(0,1)

‖∇v‖2 dx

which proves that u0 is a minimizer. Moreover taking the particular choice v = u0 in the
same argument as before would give

lim sup
r→0

∫

B(0,1)

‖∇ur‖2dx ≤
∫

B(0,1)

‖∇u0‖2dx

and this toghether with (35), implies the convergence of norms, which by the weak conver-
gence yields the strong convergence in L2 for the gradients, as desired.

Finally all that we did in B(0, 1) could be done in any B(0, R) for R as large as we want,
which gives a definition of u0 in R

2 \ K0. Moreover u0 is of constant normalized energy. In
other words we claim that s �→ 1

s

∫
B(0,s) ‖∇u0‖2 is constant in s, identically equal to C0.

Indeed, by the strong convergence in L2 of ∇ur , the value of 1
s

∫
B(0,s) ‖∇u0‖2 is given by

lim
r→0

1

s

∫

B(0,s)

‖∇ur‖2,
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which we actually claim to be equal to C0: a change of variable gives∫

B(0,s)

‖∇ur‖2 = 1

r

∫

B(0,rs)

‖∇u‖2

= 1

r

∫

B(0,rs)

‖∇u‖2
A + 1

r

∫

B(0,rs)

〈(I d − A)∇u,∇u〉. (39)

The first term in (39) converges to sC0 and the second term converges to zero because less
than ‖I d − A‖L∞(B(0,sr)) times something bounded.

The latter implies that u0 is the cracktip function. More precisely, we claim now that

u0 =
√

2C0r

π
sin(θ/2). (40)

We shall give two different arguments for (40). The first one is very nice and due to Bon-
net: returning to the proof of the monotonicity Lemma applied to u0, which says that s �→
1
s

∫
B(0,s) ‖∇u0‖2 must be increasing (Proposition 4), since s �→ 1

s

∫
B(0,s) ‖∇u0‖2 is actually

constant in s, all the inequalities in the proof are equalities. In particular u0 must be the
optimal function in Wirtinger inequality, thus it is the famous C

√
r sin(θ/2) function.

The second argument is to decompose u0 in spherical harmonics, i.e. as a sum of homoge-
neous harmonic functions in the complement of the half line K0, which Neumann boundary
conditions on K0. Now using that s �→ 1

s

∫
B(0,s) ‖∇u0‖2 is constant we can kill all the terms

of degree different from 1/2 by taking blow-up and blow-in limits. This implies that u0 must
be homogeneous of degree 1/2, and from this information it is not difficult to deduce (40)
by looking at u0 on the unit circle (see Theorem 15 in [15] for a similar argument).

Then, the exact constant C :=
√

2C0
π

in front of the sinus can be easily computed by hand
with the formulas

∂u0

∂τ
= 1

r

∂u0

∂θ
= C

1

2
√

r
cos(θ/2) and

∂u0

∂r
= C

1

2
√

r
sin(θ/2).

It comes

RC0 =
∫

B(0,R)

‖∇u0‖2 =
∫

B(0,R)

∣∣∣∂u0

∂τ

∣∣∣2 +
∣∣∣∂u0

∂r

∣∣∣2 =
R∫

0

π∫

−π

C2

4
drdθ = C2 R

π

2

thus C =
√

2C0
π

.

Finally, originally ur was converging to
√

2C0
π

r sin(θ/2) up to subsequences, but by
uniqueness of the limit we conclude that the whole sequence converges to this function
and this achieves the proof. ��
Acknowledgments The authors wish to thank the anonymous referee for giving precious remarks and cor-
rections on the first version of this paper.

Appendix A: Proof of Lemma 3.3

Proof of Lemma 3.3 We first focus on the homogeneous case, i.e. when N = 0. Observe that
a primitive of 1/(r + Cr1+α) is
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∫
1

r + Cr1+α dr = ln

(
r

(Crα + 1)
1
α

)
=: h(r). (41)

Hence (19) yields that
(

E(r)e−h(r)
)′ = (−h′(r)E(r)+ E ′(r))e−h(r) ≥ 0 ,

in other words,

r �→ E(r)

r

(
1 + Crα

) 1
α

is nondecreasing. Therefore the limit of E(r)(1 + Crα)
1
α /r exists when r goes to zero, and

since (1 + Crα)
1
α converges to 1, we obtain the existence of limit also for E(r)/r . Now by

monotonicity, this limit is necessarily finite since less than E(r0)
r0
(1 + Crα0 )

1
α which is finite

for some r0 fixed.
Now we consider the inhomogeneous case : N �= 0. Using the method of “variation of

the constant” one finds that a particular solution of the inhomogeneous equation

G(r) = (
r + Cr1+α)G ′(r)+ C N (r)r2. (42)

is given by

G(r) = λ(r)
r

(Crα + 1)1/α
,

with λ(r) = −C
∫ r

0 N (t)(Ctα+1)
1−α
α dt (notice that N (t)(Ctα+1)

1−α
α is integrable because

N is).
Observe in particular that

lim
r→0

G(r)

r
= 0. (43)

Now let us return to E(r), which is assumed to satisfy (19). If we subtract G(r) in the equation
(19) we get

H(r) ≤ (
r + Cr1+α) H ′(r) ,

where H(r) = E(r)−G(r). Therefore we can apply the first part of the proof (homogeneous
case) to H which gives the existence of the limit

lim
r→0

(
H(r)

r

)
< +∞,

and we conclude using (43). ��
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