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Abstract We establish inequalities for the eigenvalues of the sub-Laplace operator associ-
ated with a pseudo-Hermitian structure on a strictly pseudoconvex CR manifold. Our inequal-
ities extend those obtained by Niu and Zhang (Pac J Math 208(2):325–345, 2003 [26]) for the
Dirichlet eigenvalues of the sub-Laplacian on a bounded domain in the Heisenberg group and
are in the spirit of the well known Payne–Pólya–Weinberger and Yang universal inequalities.

Mathematics Subject Classification 32V20 · 35H20 · 58J50

1 Introduction

The sub-Laplacian�b associated with a pseudo-Hermitian structure on a strictly pseudocon-
vex CR manifold M is prototypical of a class of subelliptic operators which appear naturally
in several geometric situations that could be gathered under the concept of “Heisenberg man-
ifolds”. The recent work of Ponge [29] provides a detailed discussion and a fairly compre-
hensive presentation of the spectral properties of such operators, including Weyl asymptotic
formulae and heat kernel expansions.

The sub-Laplacian�b plays a fundamental role in CR geometry, similar to that played by
the Laplace–Beltrami operator in Riemannian geometry (e.g., CR Yamabe problem). Several
works published in recent years are devoted to the study of this operator and the investigation
of its spectral properties, see for instance [3–5,8,17,24,26,29]. In particular, it is known that
�b is subelliptic of order 1

2 , that is for each x ∈ M , there exist a neighborhood U ⊂ M and
a constant C > 0 such that, ∀ u ∈ C∞

0 (U ),
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438 A. Aribi, A. El Soufi

‖u‖2
H1/2 ≤ C〈(−�b + I ) u, u〉L2 .

This a priori estimate leads to the proof of the hypoellipticity of�b and the discreteness of its
spectrum when M is a closed manifold (see [4,5,25]). Since the pioneering work of Greenleaf
[17], many recent contributions aim to extend to the CR context some of the spectral geo-
metric results established in the Riemannian setting such as Li–Yau or Lichnerowicz–Obata
inequalities (see, for example, [4,3,8,24]). It is worth noticing that the determination of the
eigenvalues of the sub-Laplacian on the standard CR sphere S

2n+1 remains an open problem,
except likely for n = 1 according to [28].

In this article, we focus on finding bounds on the eigenvalues in the same vein as Payne–
Pólya–Weinberger universal inequalities [27]. These inequalities, established in the 1950s
for the eigenvalues of the Dirichlet Laplacian in a bounded domain of the Euclidean space
R

n , were first stated as follows: for every k ≥ 1,

λk+1 − λk ≤ 4

n

{
1

k

k∑
i=1

λi

}
, (1.1)

before being improved by several authors (see for instance [1,23,30]). For example, the
following inequality due to Yang [30] implies (1.1) :

k∑
i=1

(λk+1 − λi )
2 ≤ 4

n

k∑
i=1

λi (λk+1 − λi ). (1.2)

Extensions of universal inequalities to bounded domains in Riemannian manifolds other than
the Euclidean space have also been obtained. Let us mention, for example, the following
Yang’s type inequality obtained by Ashbaugh [1] for domains of the unit sphere S

n ⊂ R
n+1

(see also [10]):

k∑
i=1

(λk+1 − λi )
2 ≤ 4

n

k∑
i=1

(λk+1 − λi )

(
λi + n2

4

)
. (1.3)

It is a remarkable fact that the equality holds for every k in this last inequality when the
λi are the eigenvalues of the Laplace–Beltrami operator on the whole sphere. This fact was
observed by El Soufi et al. [16] in their paper where inequality (1.3), as well as many other
inequalities in the literature, are recovered as particular cases of the following inequality
which applies to the eigenvalues of the Laplace–Beltrami operator of any n-dimensional
compact Riemannian manifold M , with Dirichlet boundary conditions if ∂M �= ∅,

k∑
i=1

(λk+1 − λi )
2 ≤ 4

n

k∑
i=1

(λk+1 − λi )

(
λi + 1

4
‖H‖2∞

)
, (1.4)

where H is the mean curvature vector field of any isometric immersion of M into a Euclidean
space R

n+p . Notice that inequality (1.4) had also been found independently by Chen and
Cheng [9] for the Dirichlet eigenvalues on a bounded domain of a Riemannian manifold.

Niu and Zhang [26] were certainly the first to address this issue for subelliptic operators.
They obtained Payne–Pólya–Weinberger and Hile–Protter type inequalities for the Dirichlet
eigenvalues of the sub-Laplacian on a bounded domain of the Heisenberg group H

n of real
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Eigenvalues of the sub-Laplace operator 439

dimension 2n + 1. The following Yang type inequality has been obtained in this context in
[16] as an improvement of Niu–Zhang results:

k∑
i=1

(λk+1 − λi )
2 ≤ 2

n

k∑
i=1

λi (λk+1 − λi ). (1.5)

In what follows (see Corollary 4.1 below), we will prove that inequality (1.5) remains
valid for any strictly pseudoconvex CR manifold M of real dimension 2n + 1 provided it
admits a Riemannian submersion over an open set of R

2n which is constant along the charac-
teristic curves of M (i.e. the integral curves of the Reeb vector field). Of course, the standard
projection H

n → R
2n satisfies these assumptions.

As for the CR sphere S
2n+1 and domains of S

2n+1, we will obtain the following inequality
(Corollary 3.1):

k∑
i=1

(
λk+1 − λi

)2 ≤ 2

n

k∑
i=1

(
λk+1 − λi

)(
λi + n2),

which is sharp for k = 1.
All these results are actually particular cases of a more general result (Theorem 3.1) that

we establish in Sect. 3 for an arbitrary strictly pseudoconvex CR manifold M of real dimen-
sion 2n + 1 endowed with a compatible pseudo-Hermitian structure θ . Indeed, we prove that
the eigenvalues of the sub-Laplacian�b in a bounded domain� ⊂ M , with Dirichlet bound-
ary conditions if � �= M , satisfy inequalities of the form (see Theorem 3.1 for a complete
statement): for every integer k ≥ 1 and every p ∈ R,

k∑
i=1

(λk+1 − λi )
p ≤ max{2, p}

n

k∑
i=1

(λk+1 − λi )
p−1
(
λi + 1

4
‖Hb( f )‖2∞

)
, (1.6)

λk+1 ≤
(

1 + 2

n

)
1

k

k∑
i=1

λi + 1

2n
‖Hb( f )‖2∞, (1.7)

and

λk+1 ≤
(

1 + 2

n

)
k

1
n λ1 + 1

4

((
1 + 2

n

)
k

1
n − 1

)
‖Hb( f )‖2∞, (1.8)

where f is any C2 semi-isometric map from (M, θ) to a Euclidean space R
m , and where

Hb( f ) is a vector field defined similarly to the tension vector field in the Riemannian case
(see Sect. 2 for definitions).

Besides the CR sphere and Heisenberg groups, many other cases in which one has an
explicit expression for ‖Hb( f )‖∞ are given in a series of corollaries in Sect. 4.

In Sect. 5 we prove that the inequalities (1.6), (1.7) and (1.8) remain true when f is a
semi-isometric map from (M, θ) to a Heisenberg group H

m which sends the horizontal dis-
tribution of M into that of H

m . This can also be seen as a generalization of what was known
about the Dirichlet eigenvalues of the sub-Laplacian in a bounded domain of the Heisenberg
group, since the identity map of H

n obviously satisfies Hb(IHn ) = 0.
When M is compact without boundary, one has λ1 = 0 and the inequality (1.8) leads to

a relationship between the eigenvalues λk of the sub-Laplacian of (M, θ) and the invariant
Hb( f ) of any semi-isometric map f from (M, θ) to a Euclidean space. For the first positive
eigenvalue λ2, we even have the following inequality:
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λ2(−�b) ≤ 1

2nV (M, θ)

∫
M

|Hb( f )|2
Rm , (1.9)

where V (M, θ) is the volume of (M, θ). Section 6 deals with these Reilly type inequalities
and the characterization of equality cases. For example, we show that the equality holds in

(1.9) if and only if f (M) is contained in a sphere S
m−1(r) of radius r =

√
2n

λ2(−�b)
and f is

a pseudo-harmonic map from M to Sm−1(r).
These Reilly type results are also extended to maps f from (M, θ) to a Heisenberg group

H
m which sends the horizontal distribution of M into that of H

m (see Theorem 6.2).
The last part of the paper deals with Carnot groups which constitute a natural general-

ization of Heisenberg groups. A Carnot group is equipped with a natural operator called
“horizontal Laplacian”. We give PPW and Yang type inequalities for the eigenvalues of the
horizontal Laplacian in terms of the rank of the horizontal distribution of the group.

2 Preliminaries

Let M be an orientable CR manifold of CR dimension n. This means that M is an orient-
able manifold of real dimension 2n + 1 equipped with a pair (H(M), J ), where H(M) is a
subbundle of the tangent bundle T M of real rank 2n (often called Levi distribution) and J
is an integrable complex structure on H(M). The integrability condition for J means that,
∀X, Y ∈ �(H(M)),

[X, Y ] − [J X, JY ] ∈ �(H(M))
and

[J X, Y ] + [X, JY ] = J ([X, Y ] − [J X, JY ]) .
Since M is orientable, there exists a nonzero 1-form θ ∈ �(T ∗M) such that K erθ = H(M).
Such a 1-form, called pseudo-Hermitian structure on M , is of course not unique. Actually, the
set of pseudo-Hermitian structures that are compatible with the CR structure of M consists
in all the forms f θ where f is a smooth nowhere zero function on M.

To each pseudo-Hermitian structure θ we associate its Levi form Gθ defined on H(M) by

Gθ (X, Y ) = −dθ(J X, Y ) = θ([J X, Y ])
(note that a factor 1

2 is sometimes put before dθ so that in the case of the sphere S
2n+1 ⊂ C

n+1,
the Webster metric defined below coincides with the standard metric).

The integrability of J implies that Gθ is symmetric and J -invariant. The C R manifold M
is said to be strictly pseudoconvex if the Levi form Gθ of a compatible pseudo-Hermitian
structure θ is either positive definite or negative definite. Of course, this condition does not
depend on the choice of θ . It implies that the distribution H(M) is far from being integrable.

In all the sequel, a pair (M, θ)will be called strictly pseudoconvex CR manifold if M is a
strictly pseudoconvex CR manifold endowed with a compatible pseudo-Hermitian structure
θ with positive definite Levi form. The structure θ is then a contact form which induces on
M the following volume form

ϑθ = 1

2n n!θ ∧ (dθ)n .
We will denote by V (M, θ) the volume of M with respect to ϑθ .

123



Eigenvalues of the sub-Laplace operator 441

A pseudo-Hermitian structure θ on a strictly pseudoconvex CR manifold determines a
vector field ξ , often called characteristic direction or Reeb vector field of θ , defined to be the
unique tangent vector field on M satisfying θ(ξ) = 1 and ξ�dθ = 0. Therefore, Lξ θ = 0
and [H(M), ξ ] ⊂ H(M).

The Tanaka–Webster connection of a strictly pseudoconvex CR manifold (M, θ) is the
unique affine connection ∇ on T M satisfying the following conditions:

(1) ∇θ = 0, ∇dθ = 0 and ∇ J = 0 (hence the distribution H(M) and the vector field ξ are
parallel for ∇)

(2) The Torsion T∇ of ∇ is such that, ∀X, Y ∈ H(M),

T∇(X, Y ) = −θ([X, Y ])ξ and T∇(ξ, J X) = −J T∇(ξ, X) ∈ H(M).

Basic examples: Standard models for CR manifolds are given by the Heisenberg group and
real hypersurfaces of complex manifolds. The Heisenberg group will be discussed in Sect.
5. If M is an orientable real hypersurface of C

n+1, then the sub-bundle H(M) defined as
the orthogonal complement of Jν in T M , where ν is a unit normal vector field and J is the
standard complex structure of C

n+1, is stable by J . The pair (H(M), J ) endows M with a
CR structure whose compatible pseudo-Hermitian structures are represented by

θ(X) = −1

2
〈X, Jν〉,

where 〈, 〉 is the standard inner product in C
n+1. A straightforward calculation gives

Gθ (X, X) = 1

2
(B(X, X)+ B(J X, J X)) ,

where B is the second fundamental form of the hypersurface. Thus, M is strictly pseudocon-
vex if and only if the J -invariant part of its second fundamental form is positive definite on
H(M).

Since the second fundamental form of the sphere S
2n+1 ⊂ C

n+1 coincides with the stan-
dard inner product, the above construction endows S

2n+1 with a strictly pseudoconvex CR
structure whose Levi form is nothing but the restriction of the standard inner product to
the horizontal bundle H

(
S

2n+1
)

where, for every x ∈ S
2n+1, Hx

(
S

2n+1
)

is the orthogonal
complement in C

n+1 of the complex line passing through x .

Sub-Laplacian: A Strictly pseudoconvex CR manifold (M, θ) is equipped with a natural sec-
ond order differential operator �b commonly known as the “sub-Laplacian”. This operator
is defined in terms of the Tanaka–Webster connection ∇ by:

�bu = traceGθ∇du.

Given a local Gθ -orthonormal frame {X1, . . . , X2n} of H(M), one has

�bu =
2n∑

i=1

{Xi · Xi · u − (∇Xi Xi ).u} =
2n∑

i=1

〈∇Xi ∇H u, Xi 〉Gθ ,

where ∇H u ∈ H(M) is the horizontal gradient of u defined by, ∀X ∈ H(M), X · u =
Gθ (X, ∇H u). Integration by parts yields for every compactly supported smooth function u
on M , ∫

M

u�buϑθ = −
∫
M

|∇H u|2Gθ
ϑθ .
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When (M, θ) is strictly pseudoconvex, the Levi form Gθ extends to a Riemannian metric
gθ on M , sometimes called the Webster metric, so that the decomposition T M = H(M)⊕Rξ

is orthogonal and the vector ξ has unit length, that is, ∀ X, Y ∈ T M ,

gθ (X, Y ) = Gθ (X
H , Y H )+ θ(X)θ(Y ),

where X H = πH X is the projection of X on H(M) with respect to the decomposition
T M = H(M) ⊕ Rξ . Notice that the Riemannian volume form associated to gθ coincides
with ϑθ (see [7, Lemma 1]). On the other hand, the Levi–Civita connection ∇gθ of (M, gθ )
is related to the Tanaka–Webster connection ∇ by the following identities (see for instance
[13, p. 38]): for every pair X , Y of horizontal vector fields, ∇X Y = (∇gθ

X Y )H and, moreover,

∇gθ
ξ X − ∇ξ X = 1

2
J X, ∇gθ

X ξ − ∇X ξ = ∇gθ
X ξ =

(
1

2
J + τ

)
X,

∇gθ
X Y − ∇X Y = −

〈(
1

2
J + τ

)
X, Y

〉
gθ

ξ and ∇gθ
ξ ξ = ∇ξ ξ = 0,

where τ : H(M) −→ H(M) is the traceless symmetric (1,1)-tensor defined by τ X =
T∇(ξ, X) = ∇ξ X − [ξ, X ]. Notice that τ = 0 if and only if ξ is a Killing vector field wrt
the metric gθ (and then the metric gθ is a Sasakian metric on M).

If we denote by divgθ the divergence with respect to the metric gθ , one easily gets

�bu = divgθ∇H u, (2.1)

which immediately leads to the following relationship, known as Greenleaf’s formula:

�b = �gθ − ξ2

where �gθ is the Laplace–Beltrami operator of (M, gθ ).

Levi tension vector field Let (M, θ) be a strictly pseudoconvex CR manifold of dimen-
sion 2n + 1 and let (N , h) be a Riemannian manifold. The energy density of a smooth
f : (M, θ) −→ (N , h) with respect to horizontal directions is defined at a point x ∈ M by

eb( f )x = 1

2
traceGθ (πH f ∗h)x = 1

2

2n∑
i=1

|d f (Xi )|2h,

where {X1, . . . , X2n} is a local Gθ -orthonormal frame of H(M). According to [6, Theorem
3.1], the first variation of the energy functional

Eb( f ) =
∫
M

eb( f )ϑθ

is determined by the vector, that we will call “Levi tension” of f ,

Hb( f ) = traceGθ β f ,

where β f is the vector valued 2-form on H(M) given by

β f (X, Y ) = ∇ f
X d f (Y )− d f (∇X Y ),
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Eigenvalues of the sub-Laplace operator 443

∇ f is the connection induced on the bundle f −1T N by the Levi–Civita connection of (N , h),
and ∇ is the Tanaka–Webster connection of (M, θ). That is,

Hb( f ) =
2n∑

i=1

∇ f
Xi

d f (Xi )− d f (∇Xi Xi ).

Mappings with Hb( f ) = 0 are called pseudo-harmonic by Barletta et al. [6]. In the case
where (N , h) is the standard R

m , it is clear that

Hb( f ) = (�b f1, . . . , �b fm). (2.2)

Since ∇X Y = (∇gθ
X Y )H = ∇gθ

X Y − 〈( 1
2 J + τ)X, Y 〉Gθ ξ for every pair (X, Y ) of horizontal

vector fields, one has

β f (X, Y ) = B f (X, Y )+
〈(

1

2
J + τ

)
X, Y

〉
Gθ

d f (ξ)

and

Hb( f ) = H( f )− B f (ξ, ξ) = H( f )− ∇ f
ξ d f (ξ)

where B f (X, Y ) = ∇ f
X d f (Y ) − d f (∇gθ

X Y ) and H( f ) = tracegθ B f is the tension vector
field (see [14]). In the particular case where f is an isometric immersion from (M, gθ ) to
(N , h), B f coincides with the second fundamental form of f and H( f ) coincides with its
mean curvature vector.

For the natural inclusion j : S
2n+1 ↪→ C

n+1 of S
2n+1, the formβ j is given by,β j (X, Y ) =

−〈X, Y 〉Cn+1
−→x +〈J X, Y 〉Cn+1 J−→x , where −→x is the position vector field (here ν(−→x ) = −−→x

and ξ(−→x ) = 2J−→x ). Thus,

Hb( j) = −2n −→x . (2.3)

In the sequel we will focus on maps f : (M, θ) −→ (N , h) that preserve lengths in the
horizontal directions as well as the orthogonality between H(M) and ξ , that is, ∀X ∈ H(M),

|d f (X)|h = |X |Gθ and 〈d f (X), d f (ξ)〉h = 0,

which also amounts to f ∗h = gθ + (μ− 1)θ2 for some nonnegative function μ on M . For
convenience, such a map will be termed semi-isometric. Notice that the dimension of the tar-
get manifold N should be at least 2n. When the dimension of N is 2n, then a semi-isometric
map f : (M, θ) −→ (N , h) is noting but a Riemannian submersion satisfying d f (ξ) = 0.
Important examples are given by the standard projection from the Heisenberg group H

n to
R

2n and the Hopf fibration S
2n+1 → CPn .

Lemma 2.1 Let (M, θ) be a strictly pseudoconvex CR manifold and let (N , h) be a
Riemannian manifold. If f : (M, θ) −→ (N , h) is a C2 semi-isometric map, then the
form β f takes its values in the orthogonal complement of d f (H(M)). In particular, the
vector Hb( f ) is orthogonal to d f (H(M)).

Proof Let X, Y and Z be three horizontal vector fields. Since the Levi–Civita connection of
(N , h) is torsionless, one has ∇ f

X d f (Y )− ∇ f
Y d f (X) = d f ([X, Y ]). From the properties of

the torsion of the Tanaka–Webster connection ∇, one has ∇X Y − ∇Y X = [X, Y ]H . Thus,

β f (X, Y )− β f (Y, X) = θ([X, Y ])d f (ξ).
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Since d f (ξ) is orthogonal to d f (H(M)), we deduce the following symmetry property:

〈β f (X, Y ), d f (Z)〉h = 〈β f (Y, X), d f (Z)〉h . (2.4)

On the other hand, we have,

Z · 〈d f (X), d f (Y )〉h = Z · 〈X, Y 〉Gθ . (2.5)

Since Gθ is parallel with respect to the Tanaka–Webster connection ∇ and h is parallel with
respect to the Levi–Civita connection ∇h , one gets

Z · 〈d f (X), d f (Y )〉h =
〈
∇ f

Z d f (X), d f (Y )
〉
h

+ 〈d f (X), ∇ f
Z d f (Y )〉h

and

Z · 〈X, Y 〉Gθ = 〈∇Z X, Y 〉Gθ + 〈X, ∇Z Y 〉Gθ

= 〈d f (∇Z X), d f (Y )〉h + 〈d f (X), d f (∇Z Y )〉h

where the last equality comes from the fact that ∇Z X and ∇Z Y are horizontal. Replacing
into (2.5) we obtain

〈∇ f
Z d f (X)− d f (∇Z X), d f (Y )〉h + 〈∇ f

Z d f (Y )− d f (∇Z Y ), d f (X)〉h = 0.

Therefore, ∀ X, Y, Z ∈ H(M),

〈β f (Z , X), d f (Y )〉h + 〈β f (Z , Y ), d f (X)〉h = 0. (2.6)

Taking X = Y in (2.6) we obtain, ∀ X, Z ∈ H(M),

〈β f (Z , X), d f (X)〉h = 0. (2.7)

Now, taking Z = X in (2.6) and using (2.4) and (2.7), we get, ∀ X, Y ∈ H(M),

〈β f (X, X), d f (Y )〉h = 0.

The symmetry property (2.4) enables us to conclude. ��

A direct consequence of Lemma 2.1 is the following

Corollary 2.1 If f : (M, θ) −→ (N , h) is a Riemannian submersion from a strictly
pseudoconvex CR manifold (M, θ) to a Riemannian manifold (N , h) with d f (ξ) = 0, then
β f = 0 and Hb( f ) = 0.

3 Eigenvalues of the sub-Laplacian and semi-isometric maps into Euclidean spaces

Let (M, θ) be a strictly pseudoconvex CR manifold and let� be a bounded (relatively com-
pact) domain of M . In the case where M is a closed manifold, we allow � to be equal to the
whole of M . We are interested in Schrödinger-type operator −�b + V where V is a function
on�. We assume in all the sequel that the spectrum of −�b + V in�, with Dirichlet bound-
ary conditions if ∂� �= ∅, is discrete and bounded from below. We will always denote by
{λ j } j≥1 the non decreasing sequence of eigenvalues of −�b + V and by {u j } j≥1 a complete
orthonormal family of eigenfunctions in � with (−�b + V )u j = λ j u j .

123



Eigenvalues of the sub-Laplace operator 445

Theorem 3.1 Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n + 1
and let f : (M, θ) −→ R

m be a semi-isometric C2 map. The sequence of eigenvalues
{λ j } j≥1 of the Schrödinger-type operator −�b + V in a bounded domain � ⊂ M, with
Dirichlet boundary conditions if � �= M, satisfies for every k ≥ 1 and p ∈ R,

k∑
i=1

(λk+1 − λi )
p ≤ max{2, p}

n

k∑
i=1

(λk+1 − λi )
p−1
(
λi + 1

4
Di

)
(3.1)

with

Di =
∫
�

(|Hb( f )|2
Rm − 4V

)
u2

i ϑθ .

Moreover, if V is bounded below on �, then for every k ≥ 1,

λk+1 ≤
(

1 + 2

n

)
1

k

k∑
i=1

λi + 1

2n
D∞ (3.2)

and

λk+1 ≤
(

1 + 2

n

)
k

1
n λ1 + 1

4

((
1 + 2

n

)
k

1
n − 1

)
D∞ (3.3)

with D∞ = sup�
(|Hb( f )|2

Rm − 4V
)
.

Applying this result to the standard CR sphere whose standard embedding j : S
2n+1 →

C
n+1 satisfies |Hb( j)|2

Cn+1 = 4n2 (see (2.3)), we get the following

Corollary 3.1 Let� be a domain in the standard CR sphere S
2n+1 ⊂ C

n+1. The eigenvalues
of the operator −�b + V in �, with Dirichlet boundary conditions if � �= S

2n+1, satisfy,
for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1 − λi

)p ≤ max{2, p}
n

k∑
i=1

(
λk+1 − λi

)p−1(
λi + n2 − Ti

)

with Ti = ∫
�

V u2
i ϑθ . Moreover, if V is bounded below on �, then, for every k ≥ 1,

λk+1 ≤
(

1 + 2

n

)
1

k

k∑
i=1

λi + 2n − 2

n
inf
�

V

and

λk+1 ≤
(

1 + 2

n

)
k

1
n λ1 + C(n, k, V )

with C(n, k, V ) = ((1 + 2
n )k

1
n − 1)(n2 − inf� V ).

Theorem 3.1 also applies to the Heisenberg group H
n endowed with its standard CR struc-

ture. The corresponding sub-Laplacian is nothing but the operator�Hn = 1
4

∑
j≤n(X

2
j +Y 2

j )

(see Sect. 5 for details). Since the standard projection H
n → R

2n is semi-isometric (up to a
dilation, see (5.3) below) with zero Levi tension (see Corollary 2.1), Theorem 3.1 leads to the
following corollary which improves the results by Niu–Zhang [26] and El Soufi–Harrell–Ilias
[16].
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446 A. Aribi, A. El Soufi

Corollary 3.2 Let� be a domain in the Heisenberg group H
n. The eigenvalues of the oper-

ator −�b + V in�, with Dirichlet boundary conditions, satisfy, for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1 − λi

)p ≤ max{2, p}
n

k∑
i=1

(
λk+1 − λi

)p−1(
λi − Ti

)

with Ti = ∫
�

V u2
i ϑθ . Moreover, if V is bounded below on �, then, for every k ≥ 1,

λk+1 ≤
(

1 + 2

n

)
1

k

k∑
i=1

λi − 2

n
inf
�

V

and

λk+1 ≤
(

1 + 2

n

)
k

1
n λ1 −

((
1 + 2

n

)
k

1
n − 1

)
inf
�

V .

The proof of Theorem 3.1 relies on a general result of algebraic nature using commutators.
The use of this approach in obtaining bounds for eigenvalues is now fairly prevalent. Pioneer-
ing works in this direction are due to Harrell, alone or with collaborators (see [16,18–22]).
For our purpose, we will use the following version that can be found in a recent paper by
Ashbaugh and Hermi [2] (see inequality (26) of Corollary 3 and inequality (46) of Corollary
8 in [2]).

Lemma 3.1 Let A : D ⊂ H → H be a self-adjoint operator defined on a dense domain
D which is semibounded below and has a discrete spectrum λ1 ≤ λ2 · · · ≤ λi ≤ · · ·. Let
B : A(D) → H be a symmetric operator which leaves D invariant. Denoting by {ui }i≥1

a complete orthonormal family of eigenvectors of A with Aui = λi ui , we have, for every
k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1 − λi

)p〈 [A, B]ui , Bui
〉 ≤ max

{
1,

p

2

} k∑
i=1

(λk+1 − λi )
p−1 ‖[A, B]ui‖2.

Proof of Theorem 3.1 Let f : (M, θ) → R
m be a semi-isometric map and let f1, . . . , fm

be its Euclidean components. For each α = 1, . . . ,m, we denote by fα the multipli-
cation operator naturally associated with fα . Let us start by the calculation of

〈[−�b +
V, fα]ui , fαui

〉
L2 and ‖[−�b + V, fα]ui‖2

L2 . One has,

[−�b + V, fα]ui = −�b( fαui )+ fα(�bui )

= −(�b fα)ui − 2〈∇H fα, ∇H ui 〉Gθ .

Thus, 〈[−�b + V, fα]ui , fαui
〉
L2 = −

∫
�

fα(�b fα)u
2
i − 1

2

∫
�

〈∇H f 2
α , ∇H u2

i 〉Gθ . (3.4)

Here and in the sequel, all the integrals over M are calculated with respect to the volume
form ϑθ or, equivalently, the Riemannian volume element induced by the Webster metric
gθ . The integration over the eventual boundary is calculated with respect to the Riemannian
metric induced on ∂� by the Webster metric gθ . Integration by parts leads to (see (2.1))∫

�

〈∇H f 2
α , ∇H u2

i 〉Gθ = −
∫
�

(�b f 2
α )u

2
i +

∫
∂M

u2
i 〈∇H f 2

α , ν〉gθ

123



Eigenvalues of the sub-Laplace operator 447

where ν is the unit normal vector to the boundary with respect to the Webster metric gθ .
Since ui vanishes on ∂� when ∂� �= ∅, we get∫

�

〈
∇H f 2

α , ∇H u2
i

〉
Gθ

= −
∫
�

(
�b f 2

α

)
u2

i

= −2

⎡
⎣∫
�

fα(�b fα)u
2
i +

∫
�

|∇H fα|2Gθ
u2

i

⎤
⎦ .

Substituting in (3.4) we obtain

〈[−�b + V, fα]ui , fαui 〉L2 =
∫
�

|∇H fα|2Gθ
u2

i .

Thus

m∑
α=1

〈[−�b + V, fα]ui , fαui 〉L2 =
m∑
α=1

∫
�

|∇H fα|2Gθ
u2

i .

Now, since f preserves the Levi form, one has with respect to a Gθ -orthonormal frame {ei }
of Hp(M),

m∑
α=1

|∇H fα|2Gθ
=

m∑
α=1

2n∑
i=1

〈∇H fα, ei 〉2
Gθ

=
2n∑

i=1

m∑
α=1

〈∇ fα, ei 〉2
Gθ

=
2n∑

i=1

|d f (ei )|2Rm =
2n∑

i=1

|ei |2Gθ
= 2n.

Therefore,

m∑
α=1

〈[−�b + V, fα]ui , fαui 〉L2 = 2n
∫
�

u2
i = 2n. (3.5)

On the other hand, we have

‖[−�b + V, fα]ui‖2
L2 =

∫
�

(
(�b fα)ui + 2〈∇H fα, ∇H ui 〉Gθ

)2

=
∫
�

(�b fα)
2u2

i + 4
∫
�

〈∇H fα, ∇H ui 〉2
Gθ

+ 2
∫
�

(�b fα)〈∇H fα, ∇H u2
i 〉Gθ .

Using (2.2), we get

m∑
α=1

∫
�

(�b fα)
2u2

i =
∫
�

|Hb( f )|2
Rm u2

i .
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Using the isometry property of f with respect to horizontal directions, we get

m∑
α=1

〈∇H fα, ∇H ui 〉2
Gθ

=
m∑
α=1

〈∇ fα, ∇H ui 〉2
Gθ

=
m∑
α=1

|d fα(∇H ui )|2Rm

= |d f (∇H ui )|2Rm = |∇H ui |2Gθ
.

Thus,

m∑
α=1

∫
�

〈∇H fα, ∇H ui 〉2
Gθ

=
∫
�

|∇H ui |2Gθ
= λi −

∫
�

V u2
i .

Finally, denoting by {Eα} the standard basis of R
m and using Lemma 2.1, we get,

m∑
α

∫
�

�b fα
〈
∇H fα, ∇H u2

i

〉
Gθ

=
〈

m∑
α

�b fαEα,
m∑
α

〈
∇ fα, ∇H u2

i

〉
Gθ

Eα

〉
Rm

=
〈
Hb( f ), d f

(
∇H u2

i

)〉
Rm

= 0.

Using all these facts, we get

m∑
α=1

‖[−�b + V, fα]ui‖2
L2 = 4

⎛
⎝λi −

∫
�

V u2
i

⎞
⎠+

∫
�

|Hb( f )|2
Rm u2

i .

(3.6)

Applying Lemma 3.1 with A = −�b + V and B = fα , summing up with respect to
α = 1, . . . ,m, and using (3.5) and (3.6), we get the inequality (3.1).

To prove the inequality (3.2), we consider the quadratic relation that we derive from (3.1)
after replacing p by 2 and Di by D∞, that is, ∀ k ≥ 1,

k∑
i=1

(λk+1 − λi )
2 ≤ 2

n

k∑
i=1

(λk+1 − λi )

(
λi + D∞

4

)
(3.7)

which leads to

λ2
k+1 − λk+1

((
2 + 2

n

)
Mk + 1

2n
D∞
)

+
(

1 + 2

n

)
Qk + 1

2n
D∞Mk ≤ 0

with Mk = 1
k

∑k
i=1 λi and Qk = 1

k

∑k
i=1 λ

2
i . Using Cauchy–Schwarz inequality M2

k ≤ Qk ,
we get

λ2
k+1 − λk+1

((
2 + 2

n

)
Mk + 1

2n
D∞
)

+
(

1 + 2

n

)
M2

k + 1

2n
D∞Mk ≤ 0

which can also be written as follows:

(λk+1 − Mk)

(
λk+1 −

(
1 + 2

n

)
Mk − 1

2n
D∞
)

≤ 0.

Since λk+1 − Mk is clearly nonnegative, we get λk+1 ≤ (1 + 2
n )Mk + 1

2n D∞ which proves
(3.2).
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Now, if we set λi := λi + 1
4 D∞, then the inequality (3.7) reads

k∑
1

(λk+1 − λi )
2 ≤ 2

n

k∑
1

(λk+1 − λi )λi .

Following Cheng and Yang’s argument [11, Theorem 2.1 and Corollary 2.1], we obtain

λk+1 ≤
(

1 + 2

n

)
λ1k

1
n

which gives immediately the last inequality of the theorem.

4 Applications to Riemannian submersions over submanifolds of the Euclidean space

Let (M, θ) be a strictly pseudoconvex CR manifold and let f : (M, θ) → N be a Riemann-
ian submersion over a Riemannian manifold N of dimension 2n. The manifold N admits
infinitely many isometric immersions into Euclidean spaces. For every integer m ≥ 2n we
denote by I(N , R

m) the set of all C2 isometric immersions from N to the m-dimensional
Euclidean space R

m . Thanks to the Nash embedding theorem, the set ∪m∈NI(N , R
m) is

never empty, which motivates the introduction of the following invariant :

Heuc(N ) = inf
φ∈∪m∈NI(N ,Rm )

‖H(φ)‖∞

where H(φ) stands for the mean curvature vector field of φ.

Theorem 4.1 Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n + 1
and let f : (M, θ) → N be a Riemannian submersion over a Riemannian manifold of
dimension 2n such that d f (ξ) = 0. The eigenvalues of the operator −�b + V in a bounded
domain � ⊂ M, with Dirichlet boundary conditions if � �= M, satisfy for every k ≥ 1 and
p ∈ R,

k∑
i=1

(
λk+1 − λi

)p ≤ max{2, p}
n

k∑
i=1

(
λk+1 − λi

)p−1(
λi + 1

4
Heuc(N )2 − Ti

)
(4.1)

with Ti = ∫
�

V u2
i ϑθ . Moreover, if V is bounded below on �, then, for every k ≥ 1,

λk+1 ≤
(

1 + 2

n

)
1

k

k∑
i=1

λi + 1

2n
Heuc(N )2 − 2

n
inf
�

V (4.2)

and

λk+1 ≤
(

1 + 2

n

)
k

1
n λ1 + C (4.3)

with C =
(
(1 + 2

n )k
1
n − 1

) ( 1
4 Heuc(N )2 − inf� V

)
.

Proof Let φ : N → R
m be any isometric immersion. It is straightforward to check that the

map f̂ = φ ◦ f : (M, θ) → R
m is semi-isometric and that, ∀X , Y ∈ H(M),

β f̂ (X, Y ) = dφ(β f (X, Y ))+ Bφ(d f (X), d f (Y )) = Bφ(d f (X), d f (Y )),
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where Bφ stands for the second fundamental form of φ and where the last equality follows
from Corollary 2.1. Now, from the assumptions on f , the differential of f induces, for each
x ∈ M , an isometry between Hx (M) and T f (x)N . Thus, if X1, . . . , X2n is a local orthonor-
mal frame of H(M), then d f (X1), . . . , d f (X2n) is also an orthonormal frame of T N . This
leads to the equality

Hb( f̂ ) = H(φ).

Therefore, it suffices to apply Theorem 3.1 to f̂ and then take the infimum with respect to φ
to finish the proof. ��

For example, when N is an open set of R
2n or, more generally, a minimal submanifold in

R
m , then Heuc(N ) = 0 and the theorem above gives a class of pseudoconvex CR manifolds

including domains of the Heisenberg group, for which the following holds:

Corollary 4.1 Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n + 1
which admits a Riemannian submersion f : (M, θ) → N over a minimal submanifold N
of dimension 2n of R

m such that d f (ξ) = 0. The eigenvalues of the operator −�b + V in
a bounded domain � ⊂ M, with Dirichlet boundary conditions if � �= M, satisfy for every
k ≥ 1 and p ∈ R,

k∑
i=1

(λk+1 − λi )
p ≤ max{2, p}

n

k∑
i=1

(λk+1 − λi )
p−1 (λi − Ti ) (4.4)

with Ti = ∫
�

V u2
i ϑθ . Moreover, if V is bounded below on �, then for every k ≥ 1,

λk+1 ≤
(

1 + 2

n

)
1

k

k∑
i=1

λi − 2

n
inf
�

V (4.5)

and

λk+1 ≤
(

1 + 2

n

)
k

1
n λ1 −

((
1 + 2

n

)
k

1
n − 1

)
inf
�

V . (4.6)

The natural embedding j : S
2n → R

2n+1 of the sphere into the Euclidean space satisfies
|H( j)|2

R2n+1 = 4n2. Thus, Theorem 4.1 leads to the following

Corollary 4.2 Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n +1.
Assume that (M, θ) admits a Riemannian submersion f : (M, θ) → D ⊂ S

2n over a
domain D of the standard sphere with d f (ξ) = 0. The eigenvalues of the operator −�b + V
in a bounded domain � ⊂ M, with Dirichlet boundary conditions if � �= M, satisfy for
every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1 − λi

)p ≤ max{2, p}
n

k∑
i=1

(
λk+1 − λi

)p−1(
λi + n2 − Ti

)

with Ti = ∫
�

V u2
i ϑθ . Moreover, if V is bounded below on �, then for every k ≥ 1,

λk+1 ≤
(

1 + 2

n

)
1

k

k∑
i=1

λi + 2n − 2

n
inf
�

V
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and

λk+1 ≤
(

1 + 2

n

)
k

1
n λ1 + C

with C(n, k, V ) = ((1 + 2
n )k

1
n − 1)(n2 − inf� V ).

In the particular case of a manifold M without boundary that satisfies the assumptions of
Corollary 4.2, one has, with V = 0, λ2(−�b) = 0,

λ2(−�b) ≤ 2n

and, for every k ≥ 1,

λk+1(−�b) ≤ n(n + 2)k
1
n − n2.

We denote by FPm the m-dimensional real projective space if F = R, the complex pro-
jective space of real dimension 2m if F = C, and the quaternionic projective space of real
dimension 4m if F = Q. The manifold FPm carries a natural metric so that the Hopf fibration
π : S

dF(m+1)−1 ⊂ F
m+1 → FPm is a Riemannian fibration, where dF = dimR F.

Let Hm+1(F) = {A ∈ Mm+1(F)|A∗ := t A = A} be the vector space of (m+1)×(m+1)
Hermitian matrices with coefficients in F, that we endow with the inner product

〈A, B〉 = 1

2
trace(A B).

The map ψ : S
dF(m+1)−1 ⊂ F

m+1 −→ Hm+1(F) given by

ψ(z) =

⎛
⎜⎜⎝

|z0|2 z0 z̄1 · · · z0 z̄m

z1 z̄0 |z1|2 · · · z1 z̄m

· · · · · · · · · · · ·
zm z̄0 zm z̄1 · · · |zm |2

⎞
⎟⎟⎠

induces through the Hopf fibration an isometric embeddingφ from FPm into Hm+1(F). More-

over, φ(FPm) is a minimal submanifold of the hypersphere S( I
m+1 ,

√
m

2(m+1) ) of Hm+1(F)

of radius
√

m
2(m+1) centered at I

m+1 . One deduces that the mean curvature H(φ) satisfies

|H(φ)|2 = 2m(m + 1)d2
F
.

Therefore, Heuc(FPm)2 ≤ 2m(m + 1)d2
F

and Theorem 4.1 leads to the following

Corollary 4.3 Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n + 1
which admits a Riemannian submersion f : (M, θ) → D ⊂ FPm over a domain of the pro-
jective space FPm of real dimension 2n (i.e. m = 2n/dF) with d f (ξ) = 0. The eigenvalues
of the operator −�b + V in a bounded domain� ⊂ M, with Dirichlet boundary conditions
if � �= M, satisfy for every k ≥ 1 and p ∈ R,

k∑
i=1

(λk+1 − λi )
p ≤ max{2, p}

n

k∑
i=1

(λk+1 − λi )
p−1 (λi + n(2n + dF)− Ti )

with Ti = ∫
�

V u2
i ϑθ . Moreover, if V is bounded below on �, then for every k ≥ 1,

λk+1 ≤
(

1 + 2

n

)
1

k

k∑
i=1

λi + 2(2n + dF)− 2

n
inf
�

V
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and

λk+1 ≤
(

1 + 2

n

)
k

1
n λ1 + C

with C(n, k, V ) = ((1 + 2
n )k

1
n − 1) (n(2n + dF)− inf� V ) .

5 Eigenvalues of the sub-Laplacian and semi-isometric maps into Heisenberg groups

A model for the Heisenberg group is given by H
m = R

2m+1 ∼= C
m × R endowed with the

group law

(z, t) · (w, s) = (z + w, t + s + 2I m〈z, w〉),
where (z, t) = (z1, . . . , zn, t), (w, s) = (w1, . . . , wn, s) ∈ C

m × R, and 〈z, w〉 =∑
j≤m z jw j is the standard complex scalar product in C

m . A natural basis of the correspond-
ing Lie algebra is given by the family of left invariant vector fields {X1, . . . , Xm, Y1, . . . , Ym,

T } that coincides with the standard basis of R
2m+1 at the origin. That is, T = ∂

∂t and, ∀ j ≤ m,

X j = ∂

∂x j
+ 2y j

∂

∂t
, Y j = ∂

∂y j
− 2x j

∂

∂t
.

The Levi distribution H(Hm) is spanned by the vector fields {X j , Y j } j≤m . The complex
sub-bundle T 1,0 of T H

m ⊗ C spanned by

Z j = ∂

∂z j
+ i z̄ j

∂

∂t
= 1

2

(
X j − iY j

)
, j = 1, . . . ,m

is such that H(Hm) = Re
(
T 1,0 ⊕ T 0,1

)
, with

T 0,1 = span

{
Z̄ j = ∂

∂ z̄ j
− i z j

∂

∂t
= 1

2

(
X j + iY j

)
, j = 1, . . .m

}
.

This endows H(Hm) with an almost complex structure J (so that T 1,0 = ker(J − i) and
T 0,1 = ker(J + i)) which is actually integrable since [Z j , Zk] = 0 for all j, k ≤ m.
Moreover, we have for all j ≤ m, J X j = Y j .

The standard pseudo-Hermitian structure on H
m is

θHm = dt + i
m∑

j=1

(z j d z̄ j − z̄ j dz j ) = dt + 2
m∑

j=1

(x j dy j − y j dx j ), (5.1)

whose differential is dθHm = 2i
∑n

j=1 dz j ∧ dz̄ j and characteristic direction is T = ∂
∂t .

Since, for all j ≤ m and k ≤ m, one has [X j , Yk] = −4δ jk T and [X j , Xk] = [Y j , Yk] = 0,
the Levi form GθHm on H(Hm) satisfies

GθHm (X j , Xk) = GθHm (Y j , Yk) = 4δ jk and GθHm (X j , Yk) = 0.

We will denote by gHm the corresponding Webster metric.
For a vector W ∈ T(z, t)H

m , if we denote by {v1, w1, . . . , vn, wn, s} its components with
respect to the standard basis of R

2m+1, i.e.,

W =
m∑

j=1

v j
∂

∂x j
+ w j

∂

∂y j
+ s

∂

∂t
,
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then

W =
∑

j

(v j X j + w j Y j )+ {s + 2
∑

j

w j x j − v j y j } ∂
∂t

=
∑

j

(v j X j + w j Y j )+ θHm (W )T . (5.2)

Hence, the coordinates of W with respect to the basis (X1, Y1, . . . , Xm, Ym, T ) of T(z,t)Hm ,
are {v1, w1, . . . , vn, wn, θHm (W )}. Thus,

gHm (W, W ) = 4
n∑
j

(v2
j + w2

j )+ θHm (W )2 (5.3)

= 4|W |2
R2m+1 − 4s2 + θHm (W )2. (5.4)

In particular, if W is horizontal, then gHm (W, W ) = 4|W |2
R2m+1 − 4s2.

Theorem 5.1 Let (M, θ) be a strictly pseudoconvex CR manifold of dimension 2n + 1 and
let f : M −→ H

m be a C2 semi-isometric map satisfying d f (H(M)) ⊆ H(Hm). Then
the eigenvalues of the operator −�b + V in any bounded domain � ⊂ M, with Dirichlet
boundary conditions if � �= M, satisfy for every k ≥ 1 and p ∈ R,

k∑
i=1

(λk+1 − λi )
p ≤ max{2, p}

n

k∑
i=1

(λk+1 − λi )
p−1
(
λi + 1

4
Di

)
(5.5)

with

Di =
∫
�

(|Hb( f )|2
Hm − 4V

)
u2

i ϑθ .

Moreover, if V is bounded below on M, then for every k ≥ 1,

λk+1 ≤
(

1 + 2

n

)
1

k

k∑
i=1

λi + 1

2n
D∞ (5.6)

and

λk+1 ≤
(

1 + 2

n

)
k

1
n λ1 + 1

4

((
1 + 2

n

)
k

1
n − 1

)
D∞ (5.7)

with D∞ = sup�
(|Hb( f )|2

Hm − 4V
)
.

In the particular case where (M, θ) is the Heisenberg group H
n endowed with the standard

CR structure, this theorem provides an alternative way to derive Corollary 3.2

The following observation will be crucial for the proof of Theorem 5.1.

Proposition 5.1 Let (M, θ) be a strictly pseudoconvex CR manifold and let

f : (M, θ) −→ H
m � C

m × R

x −→ f (x) = (F1(x), . . . , Fm(x), α(x))
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be a C2 map such that d f (H(M)) ⊂ H(Hm). Then

Hb( f ) =
m∑

j=1

(�bϕ j X j +�bψ j Y j )

where ϕ j (x) = ReFj (x) and ψ j (x) = ImFj (x).
In particular, Hb( f ) is a horizontal vector field and

|Hb( f )|2
Hm = 4

m∑
j=1

[(�bϕ j )
2 + (�bψ j )

2].

Proof One has, for any vector W ∈ T M ,

d f (W ) =
m∑

j=1

(
dϕ j (W )X j + dψ j (W )Y j

)+ θ(d f (W ))T .

For W ∈ H(M), d f (W ) ∈ H(Hm) and, then,

d f (W ) =
m∑

j=1

(
dϕ j (W )X j + dψ j (W )Y j

)
. (5.8)

Let {ei } be a local orthonormal frame of H(M), then

β f (ei , ei ) = ∇ f
ei d f (ei )− d f (∇ei ei ).

Since ei and ∇ei ei are horizontal and that d f (H(M)) ⊂ H(Hm), we have

β f (ei , ei ) =
m∑

j=1

∇ f
ei (dϕ j (ei )X j + dψ j (ei )Y j )−

m∑
j=1

[dϕ j (∇ei ei )X j + dψ j (∇ei ei )Y j ]

with

∇ f
ei (dϕ j (ei )X j ) = ei · dϕ j (ei )X j + dϕ j (ei )∇H

m

d f (ei )
X j

and

∇ f
ei (dψ j (ei )Y j ) = ei · dψ j (ei )Y j + dψ j (ei )∇H

m

d f (ei )
Y j .

Therefore,

β f (ei , ei ) =
m∑

j=1

[
ei · dϕ j (ei )− dϕ j (∇ei ei )

]
X j +

m∑
j=1

[
ei · dψ j (ei )− dψ j (∇ei ei )

]
Y j

+
m∑

j=1

[
dϕ j (ei )∇H

m

d f (ei )
X j + dψ j (ei )∇H

m

d f (ei )
Y j

]
. (5.9)

Recall that the Levi–Civita connection of H
m is such that

∇H
m

Xk
X j = ∇H

m

Yk
Y j = ∇H

m

T T = 0,

∇H
m

Xk
Y j = −2δk j T, ∇H

m

Xk
T = 2Yk, ∇H

m

Yk
T = −2Xk,

∇H
m

Yk
X j = 2δk j T, ∇H

m

T Xk = 2Yk, ∇H
m

T Yk = −2Xk .
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Thus,

∇H
m

d f (ei )
X j =

∑
k

(dϕk(ei )∇Xk X j + dψk(ei )∇Yk X j )

= dψ j (ei )∇Y j X j = 2dψ j (ei )T .

and

∇H
m

d f (ei )
Y j = −2dϕ j (ei )T .

Replacing into (5.9) and summing up with respect to i , we get

Hb( f ) =
2n∑

i=1

m∑
j=1

([ei · dϕ j (ei )− dϕ j (∇ei ei )]X j + [ei · dψ j (ei )− dψ j (∇ei ei )]Y j
)

=
m∑

j=1

(
�bϕ j X j +�bψ j Y j

)
.

��
Proof of Theorem 5.1 As in the proof of Theorem 3.1, we will use the components of the

map f as multiplication operators. Let us write f (x) = (F1(x), . . . , Fm(x), α(x)) ∈ C
m ×R

and Fj (x) = ϕ j (x)+ iψ j (x). The main difference with respect to the Euclidean case is that
here, only the C

m components of f come in. All along this proof we will use the fact that,
∀ W ∈ Hx (M), the vector d f (W ) is horizontal and (see (5.8))

|d f (W )|2
Hm = 4

m∑
j=1

(|dϕ j (W )|2 + |dψ j (W )|2) . (5.10)

Repeating the same calculations as in the proof of the Theorem 3.1, we get

m∑
j=1

〈[−�b + V, ϕ j ]ui , ϕ j ui 〉L2 + 〈[−�b + V, ψ j ]ui , ψ j ui 〉L2

=
m∑

j=1

∫
�

{|∇Hϕ j |2Gθ
+ |∇Hψ j |2Gθ

}
u2

i .

Let {ei } be a Gθ -orthonormal basis of Hx (M), then

m∑
j=1

|∇Hϕ j |2Gθ
+ |∇Hψ j |2Gθ

=
m∑

j=1

2n∑
i=1

〈∇Hϕ j , ei 〉2
Gθ

+ 〈∇Hψ j , ei 〉2
Gθ

=
2n∑

i=1

m∑
j=1

〈∇ϕ j , ei 〉2
Gθ

+ 〈∇ψ j , ei 〉2
Gθ

=
2n∑

i=1

2m∑
j=1

(dϕ j (ei )
2 + dψ j (ei )

2)

= 1

4

2n∑
i=1

|d f (ei )|2Hm = n

2
.
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Thus,

m∑
j=1

〈[−�b + V, ϕ j ]ui , ϕ j ui 〉L2 + 〈[−�b + V, ψ j ]ui , ψ j ui 〉L2 = n

2
. (5.11)

On the other hand,

‖[−�b + V, ϕ j ]ui‖2
L2 =

∫
�

(
(�bϕ j )ui + 2〈∇Hϕ j , ∇H ui 〉Gθ

)2

=
∫
�

(�bϕ j )
2u2

i + 4
∫
�

〈∇Hϕ j , ∇H ui 〉2
Gθ

+ 2
∫
�

(�bϕ j )〈∇Hϕ j , ∇H u2
i 〉Gθ .

We have a similar formula for ‖[−�b + V, ψ j ]ui‖2
L2 . Since ∇H ui ∈ H(M), one has

m∑
j=1

〈∇Hϕ j , ∇H ui 〉2
Gθ

+ 〈∇Hψ j , ∇H ui 〉2
Gθ

=
m∑

j=1

{dϕ j (∇H ui )
2 + dψ j (∇H ui )

2}

= 1

4
|d f (∇H ui )

2|Hm = 1

4
|∇H ui |2Gθ

.

Therefore,

m∑
j=1

∫
�

(
〈∇Hϕ j , ∇H ui 〉2

Gθ
+ 〈∇Hψ j , ∇H ui 〉2

Gθ

)
= 1

4

∫
�

|∇H ui |2Gθ

= 1

4

⎛
⎝λi −

∫
�

V u2
i

⎞
⎠ .

For the two remaining terms, we have thanks to Proposition 5.1 and the identity (5.3),

m∑
j=1

∫
�

(
(�bϕ j )

2 + (�bψ j )
2) u2

i = 1

4

∫
�

|Hb( f )|2
Hm u2

i

and
m∑

j=1

∫
�

(
�bϕ j 〈∇Hϕ j , ∇H u2

i 〉Gθ +�bψ j 〈∇Hψ j , ∇H u2
i 〉Gθ

)

= 1

4

∫
�

〈
Hb( f ),

m∑
j=1

dϕ j

(
∇H u2

i

)
X j +

m∑
j=1

dψ j

(
∇H u2

i

)
Y j

〉
Hm

= 1

4

∫
�

〈Hb( f ), d f (∇H u2
i )〉Hm = 0,
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where the last equality follows from the fact that Hb( f ) is orthogonal to d f (H(M)) (Lemma
2.1). Finally,

‖[−�b + V, ϕ j ]ui‖2
L2 + ‖[−�b + V, ψ j ]ui‖2

L2 = λi + 1

4

∫
�

(|Hb( f )|2
Hm − V

)
u2

i .

(5.12)

Applying Lemma 3.1 with A = −�b + V and B = ϕ j then B = ψ j , summing up with
respect to j and using (5.11) and (5.12), we obtain the inequality (5.5).

As in the proof of Theorem 3.1, we derive the inequalities (5.6) and (5.7) from (5.5) with
p = 2.

6 Reilly type inequalities for CR manifolds mapped into the Euclidean space or the
Heisenberg group

Let (M, θ) be a compact strictly pseudo-convex CR manifold. If f : (M, θ) −→ R
m is a

semi-isometric C2 map, then Theorem 3.1 (i.e. inequality (3.1) with k = 1 and p = 1) gives,

λ2(−�b + V ) ≤
(

1 + 2

n

)
λ1(−�b + V )+ 1

2n

∫
M

(|Hb( f )|2
Rm − 4V

)
u2

1.

When M is a compact manifold without boundary and V = 0, one has λ1(−�b) = 0 and
u2

1 = 1
V (M, θ) . Therefore, the following Reilly type result holds (see [15] for details about

Reilly inequalities)

λ2(−�b) ≤ 1

2nV (M, θ)

∫
M

|Hb( f )|2
Rm .

This result can be obtained in an independent and simpler way, in the spirit of Reilly’s
proof, under weaker assumptions on f . Moreover, the equality case can be characterized.
Indeed, we first have the following

Theorem 6.1 Let (M, θ) be a compact strictly pseudoconvex CR manifold of dimension
2n + 1 without boundary. For every C2 map f : (M, θ) −→ R

m one has

λ2(−�b)Eb( f ) ≤ 1

2

∫
M

|Hb( f )|2
Rm (6.1)

where the equality holds if and only if the Euclidean components f1, . . . , fm of f satisfy
−�b fα = λ2(−�b)

(
fα − ∫ fα

)
for every α ≤ m.

Proof Replacing if necessary fα by fα − ∫ fα we can assume without loss of generality that
the Euclidean components f1, . . . , fm of f satisfy

∫
M fαϑθ = 0 so that, we have

λ2(−�b)

∫
M

f 2
α ≤

∫
M

|∇H fα|2Gθ
. (6.2)

Summing up with respect to α, we get

λ2(−�b)

∫
M

| f |2
Rm ≤

∫
M

m∑
α=1

|∇H fα|2Gθ
.
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Denoting by {εα} the standard basis of R
m and by {Xi } a local orthonormal frame of H(M),

we observe that

2eb( f ) =
2n∑

i=1

|d f (Xi )|2Rm =
2n∑

i=1

m∑
α=1

〈d f (Xi ), εα〉2
Rm

=
m∑
α=1

2n∑
i=1

|d fα(Xi )|2Rm =
m∑
α=1

|∇H fα|2Gθ
.

Therefore,

λ2(−�b)

∫
M

| f |2
Rm ≤

∫
M

m∑
α=1

|∇H fα|2Gθ
= 2Eb( f ). (6.3)

On the other hand, we have

4Eb( f )2 =
⎛
⎝ m∑
α=1

∫
M

|∇H fα|2Gθ

⎞
⎠

2

=
⎛
⎝ m∑
α=1

∫
M

fα�b fα

⎞
⎠

2

=
⎛
⎝∫

M

〈
f (x),

m∑
α

(�b fα)εα

〉
Rm

⎞
⎠

2

=
⎛
⎝∫

M

〈 f (x), Hb( f )〉Rm

⎞
⎠

2

≤
∫
M

| f |2
Rm

∫
M

|Hb( f )|2
Rm .

Combining with (6.3), we get

4Eb( f )2 ≤ 2Eb( f )

λ2(−�b)

∫
M

|Hb( f )|2
Rm

which gives the desired inequality.
Now, if we have, for every α ≤ m, −�b fα = λ2(−�b) fα , then Hb( f ) = (�b f1,

. . . ,�b fm) = −λ2(−�b) f and
∫

M |Hb( f )|2
Rm = λ2(−�b)

2
∫

M | f |2
Rm . On the other hand,

Eb( f ) = ∫
M

∑m
α=1 |∇H fα|2Gθ

= λ2(−�b)
∫

M | f |2
Rm which implies that the equality holds

in (6.1). Reciprocally, if the equality holds in (6.1) for a nonconstant map f , then it also
holds in (6.2) for each α. Thus, the functions f1, . . . , fm belong to the λ2(−�b)-eigenspace
of −�b. ��

If a map f : (M, θ) −→ R
m preserves the metric with respect to horizontal directions

(i.e., |d f (X)|Rm = |X |Gθ for any X ∈ H(M)), then its energy density eb( f ) is constant
equal to n and

Eb( f ) = nV (M, θ).

Inequality (6.1) becomes in this case

λ2(−�b) ≤ 1

2nV (M, θ)

∫
M

|Hb( f )|2
Rm . (6.4)

The characterization of the equality case is the last inequality requires the following
Takahashi’s type result.
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Lemma 6.1 Let (M, θ) be a strictly pseudoconvex CR manifold of dimension 2n + 1 and
let f : (M, θ) −→ R

m be C2 map.

(i) Assume that f (M) is contained in a sphere S
m−1(r) of radius r centered at the ori-

gin. Then f is pseudo-harmonic from (M, θ) to Sm−1(r) if and only if its Euclidean
components f1, . . . , fm satisfy, ∀α ≤ m,

−�b fα = μ fα

with μ = 2
r2 eb( f ) ∈ C∞(M).

(ii) Assume that f is semi-isometric. If the Euclidean components f1, . . . , fm of f satisfy,
∀α ≤ m, −�b fα = λ fα, for some λ ∈ R, then f (M) is contained in the sphere

S
m−1(r) of radius r =

√
2n
λ

and f is a pseudo-harmonic map from (M, θ) to Sm−1(r).

Conversely, if f (M) is contained in a sphere S
m−1(r) and if f is a pseudo-harmonic

map from (M, θ) to Sm−1(r), then, ∀α ≤ m, −�b fα = 2n
r2 fα .

This lemma is to be compared with Example 5.3 of [6] in which a sign mistake in Greenleaf’s
formula led to an incorrect characterization of pseudo-harmonic maps into spheres.

Proof of Lemma 6.1

(i) For convenience, let us write f = j ◦ f̄ where j : S
m−1(r) → R

m is the standard
embedding and f̄ : M → S

m−1(r) is defined by f̄ (x) = f (x). It is straightforward to
observe that, ∀X , Y ∈ H(M),

β f (X, Y ) = B j (d f̄ (X), d f̄ (Y ))+ d j (β f̄ (X, Y ))

where B j (W, W )=− 1
r2 |W |2

Rm x is the second fundamental form of the sphere S
m−1(r).

Taking the trace, we obtain

Hb( f ) = −2eb( f̄ )

r2 f̄ + d j (Hb( f̄ )) = −2eb( f )

r2 f + d j (Hb( f̄ )).

Hence, if f is pseudo-harmonic from (M, θ) to Sm−1(r), then Hb( f̄ ) = 0 and, con-
sequently, Hb( f ) = − 2eb( f )

r2 f with Hb( f ) = (�b f1, . . . ,�b fm) (see (2.2)). Thus,

∀α ≤ m, −�b fα = 2
r2 eb( f ) fα .

Reciprocally, if there exists a function μ ∈ C∞(M) such that −�b fα = μ fα for every
α ≤ m, then

0 = �b

(
m∑
α=1

f 2
α

)
= −2μ

m∑
α=1

f 2
α + 2

m∑
α=1

|∇H fα|2Gθ
= −2μr2 + 4eb( f ).

Hence, μ = 2eb( f )
r2 , Hb( f ) = − 2eb( f )

r2 f and, then, Hb( f̄ ) = 0, which means that f is

pseudo-harmonic from (M, θ) to Sm−1(r).
(ii) From the assumptions, one has Hb( f ) = −λ f (see (2.2)). Since f is semi-isometric,

we know that Hb( f ) is orthogonal to d f (H(M)) (Lemma 2.1). Therefore, ∀x ∈ M
and ∀X ∈ Hx (M), one has 〈 f (x), d fx (X)〉Rm = 0 which implies that the function
x �→ | f (x)|2

Rm has zero derivative with respect to all horizontal directions. Since the
distribution H(M) is not integrable, this implies that | f (x)|2

Rm is constant on M , that is
f (M) is contained in a sphere S

m−1(r) of radius r centered at the origin. The pseudo-
harmonicity of f from M into S

m−1(r) then follows from (i). Moreover, one necessarily
has λ = 2eb( f )

r2 with eb( f ) = n since f is semi-isometric. Thus, the radius of the sphere

is such that r2 = 2n
λ

. ��
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Theorem 6.1 and Lemma 6.1 lead to the following

Corollary 6.1 Let (M, θ) be a compact strictly pseudoconvex CR manifold of dimension
2n + 1 without boundary and let f : (M, θ) −→ R

m be C2 semi-isometric map. Then

λ2(−�b) ≤ 1

2nV (M, θ)

∫
M

|Hb( f )|2
Rm . (6.5)

Moreover, the equality holds in this inequality if and only if f (M) is contained in a sphere

S
m−1(r) of radius r =

√
2n

λ2(−�b)
and f is a pseudo-harmonic map from (M, θ) to the sphere

Sm−1(r).

Similarly, for CR manifolds mapped into the Heisenberg group, one has the following

Theorem 6.2 Let (M, θ) be a compact strictly pseudoconvex CR manifold of dimension
2n + 1 without boundary.

(i) Let f : M −→ H
m = R

2m ×R be any C2 map satisfying d f (H(M)) ⊆ H(Hm). Then

λ2(−�b)Eb( f ) ≤ 1

2

∫
M

|Hb( f )|2
Hm

where the equality holds if and only if the first 2m components f1, . . . , f2m of f satisfy
−�b fα = λ2(−�b)

(
fα − ∫ fα

)
for every α ≤ 2m.

(ii) Let f : M −→ H
m be any C2 semi-isometric map satisfying d f (H(M)) ⊆ H(Hm).

Then

λ2(−�b) ≤ 1

2nV (M, θ)

∫
M

|Hb( f )|2
Hm .

Moreover, the equality holds in this last inequality if and only if f (M) is contained in the

product S
2m−1(r)×R ⊂ H

m with r =
√

2n
λ2(−�b)

, and π ◦ f is a pseudo-harmonic map from

(M, θ) to the sphere S2m−1(r), where π : H
m → R

2m is the standard projection.

Proof (i) Let f : M −→ H
m = R

2m × R be a C2 map satisfying d f (H(M)) ⊆ H(Hm)

and set f̃ := π ◦ f : M −→ R
2m where π : H

m → R
2m is the standard projection.

One has, for every pair (X, Y ) of horizontal vectors,

β f̃ (X, Y ) = βπ(d f (X), d f (Y ))+ dπ(β f (X, Y )).

Since for any X ∈ H(Hm), |dπ(X)|2
R2m = 1

4 |X |2
Hm (see (5.3)) and dπ(T ) = 0, one can

easily check that βπ ≡ 0 (Corollary 2.1) and, then, β f̃ (X, Y ) = dπ(β f (X, Y )). Thus,

Hb( f̃ ) = dπ(Hb( f )) and, since Hb( f ) is horizontal (Proposition 5.1), |Hb( f̃ )|2
R2m =

1
4 |Hb( f )|2

Hm . On the other hand, it is clear that eb( f̃ ) = 1
4 eb( f ) and, then, Eb( f̃ ) =

1
4 Eb( f ). Therefore, it suffices to apply Theorem 6.1 to complete the proof of the first
part of the theorem.

(ii) Assume now that the map f is semi-isometric. Using the assumption that f preserves
horizontality, i.e., d f (H(M)) ⊆ H(Hm), one checks that the map 2π ◦ f is also semi-
isometric. Applying Corollary 6.1 to the latter we easily deduce what is stated in part
(ii) of the theorem.
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7 Eigenvalues of the horizontal Laplacian on a Carnot group

A Carnot group of step r is a connected, simply connected, nilpotent Lie group G whose Lie
algebra g admits a stratification

g = V1 ⊕ · · · ⊕ Vr

so that [V1, Vj ] = Vj+1, j = 1, . . . , r − 1 and [Vi , Vj ] ⊂ Vi+ j , j = 1, . . . , r , with
Vk = {0} for k > r . We also assume that g carries a scalar product 〈, 〉g for which the
subspaces Vj are mutually orthogonal. The layer V1 generates the whole g and induces a
sub-bundle H G of T G of rank d1 = dim V1 that we call the horizontal bundle of the Carnot
group. The Heisenberg group H

d is the simplest example of a Carnot group of step 2.
For each i ≤ r , let {ei

1, . . . , ei
di

} be an orthonormal basis of Vi and denote by {Xi
1, . . . , Xi

di
}

the system of left invariant vector fields that coincides with {ei
1, . . . , ei

di
} at the identity ele-

ment of G. We consider the Riemannian metric gG on G with respect to which the family
{X1

1, . . . , X1
d1
, . . . , Xr

1, . . . , Xr
dr

} constitute an orthonormal frame for T G. The correspond-

ing Levi–Civita connection ∇ induces a connection ∇H on H G that we call “horizon-
tal connection”: If X and Y are smooth sections of H G, then ∇H

X Y = πH ∇X Y , where
πH : T G → H G is the orthogonal projection. The horizontal Laplacian�H is then defined
for every C2 function on G by

�H u := traceH ∇H du =
∑
i≤d1

X1
i · (X1

i · u
)
,

where the last equality follows from the fact that ∇H
Xi

1
X j

1 = 0 for any i, j = 1, . . . , d1. The

operator �H is a hypoelliptic operator of Hörmander type.

Theorem 7.1 Let G be a Carnot group and let � be a bounded domain in G. Let V be a
function on� so that the operator −�H + V, with Dirichlet boundary conditions if� �= G,
admits a purely discrete spectrum {λ j } j≥1 which is bounded from below. Then, for every
k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1 − λi

)p ≤ max{4, 2p}
d

k∑
i=1

(
λk+1 − λi

)p−1(
λi − Ti

)
,

where d is the rank of the horizontal distribution H G, Ti = ∫
�

V u2
i vG and vG is the Rie-

mannian volume element associated with gG. Moreover, if V is bounded below on �, then
for every k ≥ 1,

λk+1 ≤
(

1 + 4

d

)
1

k

k∑
i=1

λi − 4

d
inf
�

V

and

λk+1 ≤
(

1 + 4

d

)
k

2
d λ1 − C(d, k) inf

�
V

with C(d, k) = (1 + 4
d )k

2
d − 1.

Proof Let {e1, . . . , ed} be an orthonormal basis of the subspace V1 and denote by {X1, . . . ,

Xd} the system of left invariant vector fields that coincides with {e1, . . . , ed} at the identity
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element of G. Since the group G is nilpotent, the exponential map exp : g −→ G is a global
diffeomorphism. We can define, for each i ≤ d , a smooth map xi : G → R by

xi (g) := 〈
exp−1(g), ei

〉
g
.

These functions satisfy (see [12, Proposition 5.7]), ∀i, j = 1, . . . ,m,

X j · xi = δi j and �H xi = 0.

Again, we apply Lemma 3.1 with A = −�H + V and B = xα , 1 ≤ α ≤ m. We need to
deal with the calculation of 〈[−�H + V, xα]ui , xαui 〉L2 and ‖[−�H + V, xα]ui‖2

L2 , where
{ui }i≥1 a complete orthonormal family of eigenfunctions with (−�b + V )ui = λi ui . We
have after a straightforward calculation:

[−�H + V, xα]ui = −2Xα · ui .

Integrating by parts we get∫
�

(Xα · ui ) xαui = 1

2

∫
�

(
Xα · u2

i

)
xα = −1

2

∫
�

u2
i (Xα · xα) = −1

2

∫
�

u2
i = −1

2
.

Thus,

d∑
α=1

〈[−�H + V, xα]ui , xαui 〉L2 = −2
d∑
α=1

∫
�

(Xα · ui ) xαui = d.

On the other hand, we have

d∑
α=1

‖[−�H + V, xα]ui‖2
L2 = 4

d∑
α=1

∫
�

|Xα · ui |2 = 4 (λi − Ti )

Putting these identities in Lemma 3.1, we obtain the first inequality of the theorem.

The rest of the proof is identical to that of Theorem 3.1. ��
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