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Abstract In this paper, we prove a classification theorem for self-shrinkers of the mean
curvature flow with |A|2 ≤ 1 in arbitrary codimension. In particular, this implies a gap
theorem for self-shrinkers in arbitrary codimension.
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1 Introduction

Let x : Mn → R
n+p be an n-dimensional submanifold in the (n+p)-dimensional Euclidean

space. If we let the position vector x evolve in the direction of the mean curvature H, then it
gives rise to a solution to the mean curvature flow:

x : M × [0, T ) → R
n+p,

∂x

∂t
= H (1.1)

We call the immersed manifold M a self-shrinker if it satisfies the quasilinear elliptic
system:

H = −x⊥ (1.2)

where ⊥ denotes the projection onto the normal bundle of M.

Communicated by J. Jost.

H.-D. Cao
Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA
e-mail: huc2@lehigh.edu

H. Li (B)
Department of Mathematical Sciences, Tsinghua University,
Beijing 100084, People’s Republic of China
e-mail: hli@math.tsinghua.edu.cn

123



880 H.-D. Cao, H. Li

Self-shrinkers are an important class of solutions to the mean curvature flow (1.1). Not
only they are shrinking homothetically under mean curvature flow (see, e.g., [5]), but also
they describe possible Type I blow ups at a given singularity of the mean curvature flow.

In the curve case, Abresch and Langer [1] gave a complete classification of all solutions
to (1.2). These curves are so-called Abresch–Langer curves.

In the hypersurface case (i.e. codimension 1), Ecker and Huisken [8] proved that if an
entire graph with polynomial volume growth is a self-shrinker, then it is necessarily a hyper-
plane. Recently Wang [16] removed the condition of polynomial volume growth in Ecker–
Huisken’s Theorem. Let |A|2 denote the norm square of the second fundamental form of
M. In [9] and [10], Huisken proved a classification theorem that n-dimensional self-shrin-
kers satisfying (1.2) in R

n+1 with non-negative mean curvature, bounded |A|, and poly-
nomial volume growth are � × R

n−1, or S
m(

√
m) × R

n−m(0 ≤ m ≤ n). Here, � is a
Abresch–Langer curve and S

m(
√

m) is a m-dimensional sphere of radius
√

m. Recently,
Colding and Minicozzi [5] showed that Huisken’s classification theorem still holds without
the assumption that |A| is bounded. Moreover, they showed that the only embedded entropy
stable self-shrinkers with polynomial volume growth in R

n+1 are hyperplanes, n-spheres,
and cylinders.

In arbitrary codimensional case, Smoczyk [15] proved the following two results: (i) For
any n-dimensional compact self-shrinker Mn in Rn+p satisfying (1.2), if H �= 0 and unit
mean curvature vector field ν = H/|H| is parallel in the normal bundle, then Mn = S

n(
√

n)

in R
n+1; (ii) For any n-dimensional non-compact self-shrinker Mn in Rn+p satisfying (1.2),

if Mn is a complete self-shrinker with H �= 0 and unit mean curvature vector field ν = H/|H|
is parallel in the normal bundle, and having uniformly bounded geometry, then Mn is either
� × R

n−1, or N m × R
n−m . Here � is an Abresch–Langer curve and N m is a m-dimensional

minimal submanifold in S
m+p−1(

√
m). On the other hand, Ding and Wang [6] recently have

extended the result of Wang [16] to higher codimensional case under the condition of flat
normal bundle.

Very recently, based on an identity of Colding and Minicozzi (see (9.42) in [5]), Le and
Sesum [11] proved a gap theorem (cf. Theorem 1.7 in [11]) for self-shrinkers of codimension
1: if a hypersurface Mn ⊂ R

n+1 is a smooth complete embedded self-shrinker without bound-
ary and with polynomial volume growth, and satisfies |A|2 < 1, then Mn is a hyperplane.
Motivated by this result of Le and Sesum, we prove in this paper the following classification
theorem for self-shrinkers in arbitrary codimensions:

Theorem 1.1 If Mn → R
n+p(p ≥ 1) is an n-dimensional complete self-shrinker without

boundary and with polynomial volume growth, and satisfies

|A|2 ≤ 1, (1.3)

then M is one of the followings:

(i) a round sphere S
n
(√

n
)

in R
n+1,

(ii) a cylinder S
m

(√
m

) × R
n−m, 1 ≤ m ≤ n − 1, in R

n+1,

(iii) a hyperplane in R
n+1.

Here |A|2 is the norm square of the second fundamental form of M.

As an immediate consequence, we have the following gap theorem valid for arbitrary
codimensions:
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A gap theorem for self-shrinkers 881

Corollary 1.1 If Mn → R
n+p(p ≥ 1) is a smooth complete embedded self-shrinker without

boundary and with polynomial volume growth, and satisfies

|A|2 < 1, (1.4)

then M is a hyperplane in R
n+1.

Remark 1.1 We expect that the condition on volume growth in Theorem 1.1 and Corollary
1.1 can be removed. In fact, it was conjectured by the first author that a complete self-shrinker
automatically has polynomial volume growth. Note that Zhou and the first author [4] proved
that a complete Ricci shrinker necessarily has at most Euclidean volume growth.

Remark 1.2 Shortly after our work was finished, Ding and Xin [7] proved that any complete
non-compact properly immersed self-shrinker Mn in R

n+p has at most Euclidean volume
growth.

2 Preliminaries

In this section, we recall some formulas and notations for submanifolds in Euclidean space
by using the method of moving frames.

Let x : Mn → R
n+p be an n-dimensional submanifold of the (n + p)-dimensional

Euclidean space Rn+p. Let {e1, . . . , en} be a local orthonormal basis of M with respect to
the induced metric, and {θ1, . . . , θn} be their dual 1-forms. Let en+1, . . . , en+p be the local
unit orthonormal normal vector fields.

In this paper we make the following convention on the range of indices:

1 ≤ i, j, k ≤ n; n + 1 ≤ α, β, γ ≤ n + p.

Then we have the following structure equations,

dx =
∑

i

θi ei , (2.1)

dei =
∑

j

θi j e j +
∑

α, j

hα
i jθ j eα, (2.2)

deα = −
∑

i, j

hα
i jθ j ei +

∑

β

θαβeβ, (2.3)

where hα
i j denote the components of the second fundamental form of M and θi j , θαβ denote

the connection 1-forms of the tangent bundle and normal bundle of M, respectively.
The Gauss equations are given by

Ri jkl =
∑

α

(hα
ikhα

jl − hα
il h

α
jk) (2.4)

Rik =
∑

α

Hαhα
ik −

∑

α, j

hα
i j h

α
jk (2.5)

R = H2 − |A|2 (2.6)
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where R is the scalar curvature of M, |A|2 = ∑
α,i, j (h

α
i j )

2 is the norm square of the second
fundamental form, H = ∑

α Hαeα = ∑
α(

∑

i
hα

i i )eα is the mean curvature vector field, and

H = |H| is the mean curvature of M.

The Codazzi equations are given by (see, e.g., [12])

hα
i jk = hα

ik j , (2.7)

where the covariant derivative of hα
i j is defined by

∑

k

hα
i jkθk = dhα

i j +
∑

k

hα
k jθki +

∑

k

hα
ikθk j +

∑

β

hβ
i jθβα. (2.8)

If we denote by Rαβi j the curvature tensor of the normal connection θαβ in the normal
bundle of x : M → R

n+p, then the Ricci equations are

Rαβi j =
∑

k

(
hα

ikhβ
k j − hα

jkhβ
ki

)
. (2.9)

By exterior differentiation of (2.8), we have the following Ricci identities (see, e.g., [12])

hα
i jkl − hα

i jlk =
∑

m

hα
mj Rmikl +

∑

m

hα
im Rmjkl +

∑

β

hβ
i j Rβαkl . (2.10)

We define the first and second covariant derivatives, and Laplacian of the mean curvature
vector field H = ∑

α Hαeα in the normal bundle N (M) as follows (cf. [3,12])
∑

i

Hα
,i θi = d Hα +

∑

β

Hβθβα, (2.11)

∑

j

Hα
,i jθ j = d Hα

,i +
∑

j

Hα
, jθ j i +

∑

β

Hβ
,i θβα, (2.12)

	⊥ Hα =
∑

i

Hα
,i i , Hα =

∑

k

hα
kk . (2.13)

Let f be a smooth function on M, we define the covariant derivatives fi , fi j , and the
Laplacian of f as follows

d f =
∑

i

fiθi ,
∑

j

fi jθ j = d fi +
∑

j

f jθ j i , 	 f =
∑

i

fi i . (2.14)

3 A key lemma

As we mentioned in the introduction, the proof of Le–Sesum’s gap theorem relies on an
important identity of Colding and Minicozzi [5] for hypersurfaces. The identity, see (9.42)
in [5] or (4.1) in [11], is obtained in terms of certain second order linear operator for hyper-
surfaces (which is part of the Jacobi operator for the second variation). In this section, we
derive a similar inequality for arbitrary codimensions.

Let a be any fixed vector in R
n+p, we define the following height functions in the a

direction on M,

f = 〈x, a〉, (3.1)
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A gap theorem for self-shrinkers 883

and

gα = 〈eα, a〉 (3.2)

for a fixed normal vector eα.

From (2.14) for fi and the structure equation 2.1, we have

fi = 〈ei , a〉. (3.3)

Similarly, from (2.14) for fi j and the structure equation 2.2, we have

fi j =
∑

α

hα
i j 〈eα, a〉. (3.4)

Since a can be arbitrary in (3.3) and (3.4), we obtain (see [3])

xi = ei , xi j =
∑

α

hα
i j eα. (3.5)

Define the first derivative gα,i of gα by

∑

i

gα,iθi = dgα +
∑

β

gβθβα. (3.6)

We have, by use of (2.3),

gα,i = −
∑

k

hα
ik〈ek, a〉. (3.7)

Taking covariant derivatives on both sides of (3.7) in the e j direction and using (3.5), we
have

gα,i j = −
∑

k

hα
ik j 〈ek, a〉 −

∑

k,β

hα
ikhβ

k j 〈eβ, a〉, (3.8)

where the second derivative gα,i j of gα is defined by

∑

j

gα,i jθ j = dgα,i +
∑

j

gα, jθ j i +
∑

β

gβ,iθβα. (3.9)

Again, since a is arbitrary in (3.7) and (3.8), we obtain (see [3])

eα,i = −
∑

j

hα
i j e j , eα,i j = −

∑

k

hα
ik j ek −

∑

k,β

hα
ikhβ

k j eβ, (3.10)

where the covariant derivative hα
i jk of the second fundamental form hα

i j is defined by (2.8).
Now the self-shrinker equation 1.2 is equivalent to

− Hα = 〈x, eα〉, n + 1 ≤ α ≤ n + p. (3.11)

Taking covariant derivative of (3.11) with respect to ei by use of (3.5) and (3.10), we have

− Hα
,i = −

∑

j

hα
i j 〈x, e j 〉, 1 ≤ i ≤ n, n + 1 ≤ α ≤ n + p. (3.12)
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Taking covariant derivative of (3.12) with respect to ek by use of (3.5) and (3.11), we have

− Hα
,ik = −

∑

j

hα
i jk〈x, e j 〉 − hα

ik −
∑

β, j

hα
i j h

β
jk〈x, eβ〉

= −
∑

j

hα
i jk〈x, e j 〉 − hα

ik +
∑

β, j

Hβhα
i j h

β
jk . (3.13)

Writing

σαβ =
∑

i, j

hα
i j h

β
i j , (3.14)

we have
∑

α,β

σαβ Hα Hβ ≤ |A|2|H |2. (3.15)

We are now ready to prove the following key lemma:

Lemma 3.1 Let Mn be an n-dimensional complete self-shrinker in R
n+p without boundary

and with polynomial volume growth, if |A|2 is bounded on Mn, then

∫

M

|∇⊥ H |2e− |x |2
2 dv =

∫

M

⎡

⎣
∑

α,β

σαβ Hα Hβ − |H |2
⎤

⎦ e− |x |2
2 dv

≤
∫

M

[|A|2 − 1]|H |2e− |x |2
2 dv.

Proof Letting i = k in (3.13) and summing over i, we get

	⊥ Hα =
∑

j

Hα
, j 〈x, e j 〉 + Hα −

∑

β

σαβ Hβ . (3.16)

Since Mn has polynomial volume growth and |A|2 is bounded on Mn, (3.11), (3.12),
(3.14) and (3.16) imply that

∫

M

|∇⊥ H |2e− |x |2
2 dv < +∞,

∫

M

∑

α

Hα	⊥ Hαe− |x |2
2 dv < +∞,

and
∫

M

∑

α,i

Hα Hα
,i 〈x, ei 〉e− |x |2

2 dv < +∞.

Let ϕr (x) be a smooth cut-off function with compact support in Bx0(r + 1) ⊂ M,

ϕr (x) =
{

1, in Bx0(r)

0 in M \ Bx0(r + 1)
0 ≤ ϕr (x) ≤ 1, |∇ϕr | ≤ 1.
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Then, by integration by parts, we get
∫

M

∑

α

	⊥ Hα(ϕr Hα)e− |x |2
2 dv =

∫

M

ϕr Hα Hα
,i 〈x, ei 〉e− |x |2

2 dv −
∫

M

Hα
,i (ϕr Hα),i e

− |x |2
2 dv

=
∫

M

ϕr

⎛

⎝
∑

α,i

Hα Hα
,i 〈x, ei 〉 − |∇⊥ H |2

⎞

⎠ e− |x |2
2 dv

−
∫

M

∑

α,i

Hα Hα
,i (ϕr )i e

− |x |2
2 dv.

Letting r → +∞, the dominated convergence theorem implies that

∫

M

∑

α

	⊥ Hα Hαe− |x |2
2 dv =

∫

M

⎛

⎝
∑

α,i

Hα Hα
,i 〈x, ei 〉 − |∇⊥ H |2

⎞

⎠ e− |x |2
2 dv. (3.17)

Putting (3.16) into (3.17), we obtain:

∫

M

|∇⊥ H |2e− |x |2
2 dv =

∫

M

⎛

⎝
∑

α,β

σαβ Hα Hβ − |H |2
⎞

⎠ e− |x |2
2 dv

≤
∫

M

(|A|2 − 1
) |H |2e− |x |2

2 dv.


�
Remark 3.1 From the proof of Lemma 3.1, one can see that the conclusion of Lemma 3.1 is
valid even if |A|2 has certain growth in |x |2.

4 Proof of Theorem 1.1

Now we present the proof of Theorem 1.1.

Proof of Theorem 1.1 Under the assumptions of Theorem 1.1, from Lemma 3.1, we know
that either H ≡ 0, or H �= 0 but with ∇⊥H ≡ 0 and |A|2 ≡ 1.

If H ≡ 0, we have 〈x, eα〉 ≡ 0, n + 1 ≤ α ≤ n + p, from which we easily conclude from
(3.12) that M is totally geodesic, that is, a hyperplane in R

n+1.

Next, suppose that H �= 0, ∇⊥H ≡ 0, and |A|2 ≡ 1. In this case, (3.13) becomes
∑

β, j

Hβhα
i j h

β
jk = hα

ik +
∑

j

hα
i jk〈x, e j 〉, 1 ≤ i, k ≤ n; n + 1 ≤ α ≤ n + p. (4.1)

Multiplying both sides of (4.1) by hα
ik and summing over α, i, k, we get

∑

α,β,i, j,k

Hβhα
i j h

β
jkhα

ik = |A|2 + 1

2
(|A|2), j 〈x, e j 〉 = |A|2 = 1. (4.2)

Next we choose a local orthonormal frame {eα} for the normal bundle of x : M → R
n+p,

such that en+p is parallel to the mean curvature vector H; i.e.,

en+p = H
|H| , Hn+p = H, Hα = 0, α �= n + p. (4.3)
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Because now the equality holds in (3.15), we have

hα
i j = 0, α �= n + p, |A|2 =

∑

i, j

hn+p
i j hn+p

i j = 1. (4.4)

Since ∇⊥H ≡ 0 and |A|2 ≡ 1, by the definition of 	 and using (2.7), (2.10), (2.4), (2.5)
and (2.9), we have (c.f. [12–14,17])

0 = 1

2
	|A|2

=
∑

α,i, j,k

(hα
i jk)

2 +
∑

α,i, j,k

hα
i j h

α
i jkk

=
∑

α,i, j,k

(hα
i jk)

2 +
∑

α,i, j,k,m

hα
i j h

α
mk Rmi jk +

∑

α,i, j,m

hα
i j h

α
im Rmj +

∑

α,β,i, j,k

hα
i j h

β
ik Rβα jk

=
∑

α,i, j,k

(hα
i jk)

2+
∑

α,β,i, j,m

Hβhβ
mj h

α
i j h

α
im −

∑

α,β,i, j,k,m

hα
i j h

β
i j h

α
mkhβ

mk +2
∑

α,β,i, j,k

hα
i j h

β
ik Rβα jk .

Plugging (4.2), (4.3) and (4.4) into the above identity, we conclude that

hα
i jk = 0, n + 1 ≤ α ≤ n + p. (4.5)

Because en+1 ∧n+2 ∧ · · · ∧ en+p−1 is parallel in the normal bundle of M and hα
i j ≡ 0, α �=

n + p, by Theorem 1 of Yau [18], we see that M is a hypersurface in R
n+1. So (4.5) implies

that M is an isoparametric hypersurface, thus from |A|2 = 1 we conclude that M is either
a round sphere S

n(
√

n), or a cylinder S
m(

√
m) × R

n−m, 1 ≤ m ≤ n − 1 in R
n+1. This

completes the proof of Theorem 1.1 
�

5 Further remarks

In this section, we make several simple observations:

Proposition 5.1 If a submanifold Mn → R
n+p is an n-dimensional complete self-shrinker

without boundary and with polynomial volume growth, such that

|H |2 ≥ n, (5.1)

then |H |2 ≡ n and M is a minimal submanifold in the sphere S
n+p−1(

√
n).

Proof of Proposition 5.1 From (3.5) and (3.11), we have

1

2
	|x |2 = n + 〈x,	x〉 = n +

∑

α

Hα〈x, eα〉 = n − |H |2 (5.2)

Under the polynomial volume growth assumption, (1.2) and (5.2) guarantee that
∫

M

(	|x |2)e− |x |2
2 dv < +∞ and

∫

M

|∇|x |2|2e− |x |2
2 dv < +∞.

Then, by integrating by parts and the dominated convergence theorem, it follows that (similar
to the proof of Lemma 3.1)

1

4

∫

M

|∇|x |2|2e− |x |2
2 dv = 1

2

∫

M

(	|x |2)e− |x |2
2 dv =

∫

M

(n − |H |2)e− |x |2
2 dv. (5.3)
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From (5.1) and (5.3), we get |H |2 = n and 〈x, x〉 = r2. Thus by (1.2) we conclude that
r = √

n and M is a minimal submanifold in the sphere S
n+p−1(

√
n). 
�

Proposition 5.2 If a submanifold M → R
n+p is an n-dimensional compact self-shrinker

without boundary and satisfies either |H |2 = constant, or

|H |2 ≤ n, (5.4)

then |H |2 ≡ n and M is a minimal submanifold in the sphere S
n+p−1(

√
n).

Proof of Proposition 5.2 Integrating (5.2) over M and using the Stokes theorem, we have
∫

M

(n − |H |2)dv = 0. (5.5)

Hence Proposition 5.2 follows from (5.5), (5.4), and (1.2). 
�
Remark 5.1 Let x : M → R

n+p be an n-dimensional submanifold. If x satisfies

λHα = 〈x, eα〉, n + 1 ≤ α ≤ n + p (5.6)

for some positive constant λ, then we call M a self-expander of the mean curvature flow.
Observe that for a self-expander, we have

1

2
	|x |2 = n + 〈x,	x〉 = n + n

∑

α

Hα〈x, eα〉 = n + nλ|H |2. (5.7)

From (5.7), we immediately get

Proposition 5.3 There exists no n-dimensional compact self-expander without boundary in
R

n+p.

Finally, we list some simple examples of self-shrinkers of higher codimensions.

Example 5.1 For any positive integers m1, . . . , m p such that m1 + · · · + m p = n, the sub-
manifold

Mn = S
m1(

√
m1) × · · · × S

m p (
√

m p) ⊂ R
n+p (5.8)

is an n-dimensional compact self-shrinker in R
n+p with

H = −X, |H|2 = n, |A|2 = p (5.9)

Here

S
mi (ri ) = {Xi ∈ R

mi +1 : |Xi |2 = r2
i }, i = 1, . . . , p (5.10)

is a mi -dimensional round sphere with radius ri .

Example 5.2 For positive integers m1, . . . , m p, q ≥ 1, with m1 + · · · + m p + q = n, the
submanifold

Mn = S
m1(

√
m1) × · · · × S

m p (
√

m p) × R
q ⊂ R

n+p (5.11)

is an n-dimensional complete non-compact self-shrinker in R
n+p with polynomial volume

growth which satisfies

H = −X⊥, |H|2 =
p∑

i=1

mi , |A|2 = p. (5.12)
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Remark 5.2 In Examples 5.1 and 5.2, if we let p ≥ 2, then we have an n-dimensional
self-shrinker of codimension p with |A|2 = p ≥ 2, thus not one of the three cases in
Theorem 1.1.

Remark 5.3 From Example 5.2, we can see that the condition “|H|2 ≥ n” in Proposition 5.1
is necessary.

Example 5.3 (cf. [2]) Let

X : S
2(

√
m(m + 1)) ↪→ S

2m(
√

2) ⊂ R
2m+1, m ≥ 2 (5.13)

be a minimal surface in S
2m(

√
2). Consider it as a surface in R

2m+1, then it is a self-shrinker
with

H = −X, |H|2 = 2, |A|2 = 2 − 2

m(m + 1)
< 2, (5.14)

Remark 5.4 By choosing local orthogonal frame {eα} for the normal bundle of x : Mn →
R

n+p, such that en+p is parallel to the mean curvature vector H, by Lemma 3.1, if |A|2 is
bounded, and

∑

i, j

hn+p
i j hn+p

i j ≤ 1, (5.15)

we have ∇⊥H = 0, that is, |H|2 = constant and unit mean curvature vector field ν = H/|H|
is parallel in the normal bundle. From Proposition 5.2 and Theorem 1.3 of Smoczyk [15],
we have

Proposition 5.4 Let Mn be an n-dimensional complete self-shrinker in R
n+p without bound-

ary and with polynomial volume growth. If |A|2 is bounded on Mn and (5.15) holds, then

Mn = N m × R
n−m, 0 ≤ m ≤ n,

where N m is a m-dimensional minimal submanifold in S
m+p−1(

√
m).
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